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~ 1. A state of motion is said to be quasi static when the vertical accelerations are
small enough to bé neglected as compared with the horizontal accelerations. The equation
of equilibrium may then be used for the vertical coordinate, while the complete equations
of motion are retained only for the horizontal coordinates.

During a motion of this type we have apparent equilibrium distribution of pressure
and mass along any vertical at any time, DBut these apparent equilibrium distributions
vary in space from vertical to vertical, and in time for every single vertical. All great
atmospheric and oceanic motions are of this kind.

Lagrange gave the first example of a fluid motion of this type, considering waves
of great length as compared with the depth of the fluid. This kind of wave has been
simply called »Long« waves. Later Horace Lamb substituted »tidalc¢ for the somewhat
indeterminate word »long«, for the reason that the tides are waves of this kind. But as
this terminology would force us to divide the »tidal waves¢ met with in the atmosphere
and the sea into two classes, those which are of tidal origine and those which are not,
I have preferred the word »quasi static« which alludes to the dynamical nature of the
waves in question, and not to a special although important class among them. '

Quasi static wave motion has hithertoo been considered almost exclusively for
incompressible fluid systems, stratified or not. The aim of this paper is to extend some -
of the results to the case of compressible systems in view of applications to the discussion
of atmospheric motions. The generalisation is easy as loug as the condition of barotropy
is retained for the entire system in case of no stratification, and for each stratum in case
of a stratified system.

I.

A single barotropic stratum.

2. Let z be the vertical coordinate, counting positively upwards. At the height
2 =z, the fluid is to be limited by a horizontal rigid bottom. In the case of equilibrium
the free surface is to form a horizontal plane at the height 2z =2z, The pressure in case
of equilibrium is denoted by 7, and has the value 7, at the bottom, and p, at the free
surface. The latter is. identical with the constant external pressure p, The equilibrium



4 V. BJERKNES Geof. Publ.

density is g with the values g, at the bottom and g, at the free surface. ¢ being the
acccleration of gravity we have the following equilibrium conditions: —

.
(a) @g=—g€:
(b) e=F(p ,

the first being the hydrostatic cquation, and the sccond the barotropic condition, which
gives the physical law of compressibility for the fluid. Tt is supposed that the differences
of density originate exclusively from the pressure.

In the following we assume that the statical problem is solved, and that thus P and
¢ are known functions of the coordinate z.

3. Let p be pressure and ¢ density during motion. Let the displacement of a fluid
particle from its equilibrium position be & in a horizontal direction along the axis of x,
and ¢ in a vertical direction along the axis of 2.

Every quantity defining the departure from conditions of cquilibrium is supposed to
be small of the first order. Thus ¢ — p is smali of the first order as compared with o
or g, and the same with p — p compared with p or 7. The horizontal displacement &
is supposed to be small as compared with the other characteristic horizontal distances of
the problem. In the case of regular waves the other principal horizontal distance will be
the wave length. Otherwise it may be defined more generally as the horizontal distance
~between points in which the quantities ¢ — g, p — Py &, { show differences of their
own order of magnitude. The condition may also be expressed thus, that the horizontal
variations in space of these quantities are slow.

Just as in all problems concerning small oscillations we may then express the acce-
leration by the local time derivative by instead of by the individual dﬁt We may then

write the following equations: (1) the cquation of motion for the horizontal axis

625_ op
CET T b

(2) the equation of equilibrium for the vertical axis

op
@!]Z*b_g

(3) the equation of continuity, which gives the local decrease of density duriug the motion

e | det
—e—a=" g0
(4) the law of compressibility

o= F(p)

where I is the same function as in the static case.

The equations may be simplified by the omission of second order terms. Where
the unknown dynamic density o is the factor of a small quantity we may substitute for
it the known static density g. Thus while we must retain the exact value of o in the
static equation where it is the factor of the acceleration of gravity ¢, we may change it
to g in the dynamic equation where it is the factor of the small horizontal acceleration.
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In the same manner we must retain the exact value of g in the first member of the
equation of continuity, but may change it to g in the second member. A further simpli-
fication then comes, because this ¢ is independent of x. We arrive in this way at the
following system of equations which is linear with respect to the independent variables
D, 0, E; ¢

) 625_ 1 0p
) T g w
1 0p
(b) g—— 1L
0 0(g
© A
@ e—F(p)

To these equations, which determine the conditions for the interior of the fluid, we
have to add the surface conditions. The kinematical condition expresses the fact that

- the vertical displacement is zero at the bottom

{e) / ‘ e=u2y, L=0.

The dynamical condition involves the circumstance that the pressure at the free surface
is equal to the exterior pressure p,. As the free surface during the motion is at the

‘height 2, 4 £, , this condition takes the form

(f) P48y =7p".

Finally it is important to remember oune general property of the motion. By baro-
tropic conditions vortices arc conserved, and as in the case before us there are no initial
. . . . . . .0 0
vortices, the motion will be irrotational. The components of velocity being ETf and _bé ,

this property of the motion will be expressed

008 D0 .

0z 3t  Ox Of

As we can here interchange the order of the differentiations, we can integrate with respect
to time. Equating the irrelevant constant to zero, we find

0f oL
(g) | 3z o

This equation has an important consequence. We have introduced no restriction for the
variation of the dependent variables as function of z. And indeed, p, ¢ and { may vary
at finite rate as functions of this variable. But equation (g) shows that the variable &
varies at the same slow rate as a function of z as { does as function of x. For suffici-

. . . h}
ently short vertical distances we may therefore consider ET,i as a constant.

4. Krom the identity of the equations 3, (b) and (d) with 2, (a) and (b) it follows
that the dynamic distributions of pressure and density must be identical with the statical
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ones, only with a displacement which must be identical with the elevation f, of the free
surface. I. e. we may write

(@) e(@)=el—1)
(b) pE)=pl—10)

As £, is small we may develop according to Taylor
© >

From the last of these equations we may eliminate g by the hydrostatic equation 2 (a)
(d) pE=pE)+ygel

Using (d) in the equation of motion and (c) in the equation of continuity we get

2

(e T T 9,
. 00 0(gf) _ ¥
(f) 25T o %5,

As {; is independent upon z, the first member of equation (f) can be written as a deri-
vative with respect to 2. The second member consists of two factors, of which the one

. 0 . . . . 0
¢ may be written ~ 5 (l;—) in virtue of the hydrostatic equation, while the other 5";
may, as we have seen, be considered as independent upon z if we limit ourselves to the
consideration of sufficiently small vertical distances. Remembering this restriction we
may then write the equation of continuity

o o 0 (p o&
SZ‘(QQ_QC —__b_z(g 670)

and we way integrate it from the bottom z =z, to the free surface z — ¢z, provided that
the distance 2z, — z, is small as compared with the horizontal wave length. As at the
free surface we have {=¢, , g=g, , 5 = P, and at the bottom £ = o , 0=20s,0=270s

we get

_ 1 0&
92512‘?( pl)bx
Now let us introduce
. Py — P o _
(©) c - L 5'—*2 L =7, (D2 — Py
g2

where @, is the specific volume at the bottom of the stratum., Then the equation of
continunity takes the form

e ¥
(h) {y=— 'Tq— Py
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and substituting this in the equation of motion (e) it takes the form

2 0%

® w0 R

Our problem is now solved: (i) is the well known equation of »vibrating chordse,
which has the general integral

) §=4j(x—ct)+Bq>(x+ct)

S and @ being any functions. To the value of the horizontal displacement thus found
will by (h) correspond the elevation

(k) Clz—AC—;f’(w—ct)—BEgg—cp'(x—{—ct)

of the free surface, The result then is that in our fluid stratum invariable waves of any
waveprofile may propagate in either of the two directions, The wvelocity of propagation
is by (g) equal to the geometric mean of the specific volume of the fluid at the bottom and
the difference of pressure between bottom and swurface. It is very remarkable that this
result is independent upon the special law of compression, and therefore equally valid for
liquids and gases.
/
5. After ‘the result is found, we no longer need distinguish between the dynamical
values @, P and the practically equal statical values a, p of specific volume and pressure.
We may write the formula for the velocity of propagation

(a) €= Vaz (p: — 11

In special cases we may now bring this formula in more special forms.

When the fluid is homogeneous and incompressible a, will be the specific volume
of the fluid not merely at the bottom but everywhere in the fluid, and the product
a, (ps — p,) will represent the difference of gravity potential @, — @, between the surface
and the bottom. Then (a) takes the simple form

(b) == V@f— P,

i. e. quasistatic waves in a homogeneous and incompressible fluid stratum propagate with
a velocity equal to the square root of the difference of potential between surface and bottom.
Writing the formula } ¢® =} (P, — P,) we see that the velocity ¢ may be interpreted as
that acquired by a body falling from the surface to half »the dynamic depthe¢ of the fluid
stratum. This is the well known result of Lagrange, only slightly generalized: using the
»dynamic depth« measured in potential measure instead of the geometric depth measured
in length measure, we make the result comprise the case even of so deep layers, that
the acceleration of gravity varies sensibly from the surface to the bottom.

To compare the general formula (a) where the compressibility is taken into aceount,
with (b) where it is neglected, we may in the case of oceanic waves use the »Hydro-
graphic Tables« 7TH and 8 H1), which give corresponding values of pressure, specific
volume and dynamic depth for the »normal« scawater of 0° C and a salinity of 35
per mille. The annexed table gives an extract from these tables, only with transition to
MTS units, i. e. from decibar to centibar, and from dynamic meter to dynamic decimeter.

Y Dynamic Meteorology and Hydrography by V. Bjerknes and different Collaborators, Hydrographic
Tables. Published by the Carnegie Institution of Washington 1910. German edition by Vieweg
& Sohn 1912.
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Then two columns are added, one for the geometric mean of pressures and sp. volumes,
and one for the square root of the differences of potential. These columns then give
the velocities of propagation respectively according to (a) and (b) in meters per second.

» @ a _
% @D
Pressure Depth Specific *p . *r V
centibar dyn. decim. Volume
0 0 0.97264 0 0 0
10 000 9704.0 | 0.96819 9681.9 98.40 98.51

20000 19364.2 | 0.96388 19277.6 138.85 139.16
30 000 28982.0 | 0.95970 281791.0 169.68 170.24
40 000 38558.7 0.95566 38226.4 195.51 196.36
50 000 48095.6 | 0.95173 47 586.5 218.15 219.31
60 000 57593.7 0.94791 56 874.6 23848 239.99
70 000 67054.2 | 0.94421 66094.7 257.09 2568.95
80 000 164782 | 0.94060 75248.0 274.32 276.55
90 000 85866.5 | 093709 |. 84338.1 29048 293.03
100 000 95220.3 | 0.93368 93368.0 | - 305.56 308.58

The differences are seen to be practically insignificant: they are one per mille for a
depth of the order of magnitude 1000 meters, and one per cent for the greatest attai-
nable depths of the order of magnitude of 10 000 meters. _

In looking at the amplitudes we may consider sinus waves. When in 4 (j) we

write sin 'an (x — i) for f(x — ct), L being the wave length, we find the following g;veneral

expression for the ratio between the vertical amplitude A, and the horizontal 4,

. 4, _omc
(J) A],—L g

In the special case of homogeneity and incom{;ressibility we may introduce ¢ = @, — @, =
= Dg, D being the depth expressed in length measure. We then get

A, D

which gives the well known result that in quasi-static waves in incompressible fluids, the
ratio of the vertical elevation of the surface to the horizontal amplitude is practically six
times the ratio of the depth to the wave length.

Passing to atmospheric problems, we may write p, = 0 in formula (a), not because
we know that pressure is zero at the boundary of the atmosphere, — provided that suéfi’
a boundary exists at all, — but because in sufficient heights p, would be insignificant
velatively to p,. Using at the same time the equation for gas, pa = R¢ we find for
the velocity of propagation

(e) ¢ =V py=VR%,
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a, being sp. volume, p, pressure, and J, absolute temperature at sea level. But these
are the well known expressions of the Newtonian sound wvelocity, which for 0°C or
§,— 273 amounts to 280 meters per second. We therefore get this remarkable result:

If the atmosphere forms a single barotropic stratum, quastistatic waves propagate with
the Newtonian sound velocity in the air at sea level.

It is interesting that this result comes out as a general consequence of the baro-
tropy combined with quasi static state, and not as the consequence of any special law of
compression. The quasistatic waves would propagate at the same velocity (e) in the unlimited
isothermal atmosphere by the isothermal law of compression, in the limited adiabatic atmo-
sphere of about 27 000 meters of height by the adiabatic law of compression, and ulti-
mately also in the homogeneous atmosphere of about 7 800 meters of height and specific
volume «, at all heights by compressibility zero. And in all cases we obtain the same
finite elevation of the free surface: Taking the case of sinus waves, we may apply formula
(d) to the homogeneous atmosphere to calculate this elevation. We get

4, 7800

It may at first sight seem astonishing that the transition from the lower isothermal
to the higher adiabatic elasticity, which in acoustics leads from the lower Newtonian to
the higher Laplacean sound velocity, is here irrelevant. The reason is that the energy
of propagation of quasi static waves is gravitational and not clastic. The greater changes
of volume due to the adiabatic heating and cooling are used for producing at the same
level a stronger vertical motion of the adiabatic than of the isothermal atmosphere, and
thus to produce in the limited adiabatic atmosphere the same gravitational emergy of
propagation as in the unlimited isothermal atmosphere.

1L

Fundamental equations for a stratified system,

6. When the fluid system consists of any number M of strata, we shall denote by
Roman figures I, II, IIT, ... N, ... M the strata themselves, and by Arabian figures
1,2, 3 ...m%...m-1 their bounding surfaces, 1 and 2 being those of stratum I,
2 and 3 those of stratum II, and so on. To the symbols representing our variables we
add the Roman numbers as high, and the Arabian numbers as low indices. In the case
of equilibrium the boundary surfaces are horizontal planes in the heights

(a) 2y, 2y 5 8550 By Bmiy
which may also be represented by the gravity potentials

(b) B, Dy, DBy, Puy.. Puyy

In the stratum N pressure and density are represented by p" and p", their
values at the upper boundary surface by pY and o), and at the lower boundary sur-
face by pYy, , o¥+,. The corresponding equilibrium values are p*, g%, pn, ... .
The motion within the stratum is represented by the displacements &, (™.

The kinematic boundary condition, which must be fulfilled at every boundary sur-
face, demands the equality of the normal components of displacement on the two sides of
the surface. Now within the degree of approximation we may identify the tangential
displacement with the horizontal, and the normal displacement with the vertical. At the

2
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boundary surface » we have then two different horizontal displacements £—1 and &,
but only one vertical displacement (¥—1=¢¥, The fact that the kinematical surface
condition is satisfied may therefore be symbolized simply by leaving out the indices N —1T
and N representing the strata, and retaining only the low indices n representing the sur-
face. Thus we represent the elevations of the boundary surfaces by the symbols

(U) Cl’czﬁcs;"'é-n;'-'Cm’Cm+1-

In a quite similar way we may symbolize the fact that the dynamical surface condi-
tion is fulfilled. In virtue of the principle of the equal action and reaction the pressures
pi~" and p) must be identical. For the pressure at any bounding surface we may
therefore leave out the index giving reference to the one or the other of the two strata
on the two sides of the surface. In the case of equilibrium the known pressures at the
boundary surfaces (a) are therefore represented

(d) 1’71’pz’l—?s)-"ﬁn7-°-prn»pm+l-

In the case of motion the boundary surfaces are at the variable heights

(e) Z1+Cl ’ 32"‘:2 y 2385 .0 ZotCns .o 2m 4+ Cm Emtq
and in these moving surfaces we have the varying pressures |

(f) 101;10271937---10n;--10m,177;L+1

Finally it should be remembered that we know the last member of the series (¢) and the
first of the series (f). As the bottom does not move we have

(g) Cm+1 = 0
And as both p, and 7 must be identical with the given constant exterior pressure we have

(h) Pr=p

7. In any stratum N the internal equilibrium conditions are

. op®
(a) 0'9g=— ali
(b) o' = F"(p")

We assume that the equilibrium values 7" and g" of pressure and density, which satisfy
these equations and the surface conditions (6, d), are known. »
Corresponding to (3, a—d) the equations of motion for the stratum N will be

B2 1 o
© T o
1 op”
(d 92—57 oz
e AT S
(e) =" e =0" -+ (%zj
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The formal identity of the equations (d) and (f) with (a) and (b) enables us to express
the unknown dynamical values of pressure and density by the known statical values in
the form

(&) e"e)=2¢" e+ A"
(h) " (&) =p" @+ h)

The auxiliary quantity &Y, which may be called the »dynamical elevation, is for the
highest stratum oppositely equal to the elevation {; of the free surface as in the case of
a single stratum (4, a and b). But for any other stratum it must be a function of the
elevations (y , {y .. ¢ of all overlying boundary surfaces. We shall use it provisionally
as a convenient auxiliary variable, which we shall later eliminate. In developed form
equations (g) and (h) give

. 9p"
@ ¢ () =a" (@) + "

PO =7 @+ LW

Or, using (a) in the last of these equations
) P E)=p"@—e" gl

o :
1f weé now introduce (j) in the equation of motion (c), and (i) in the equation of
continuity (e), these equations become

A L
(k) W 98z

b—N . bsN b =N CN
M —TQZ-hN=Q —b;_}_ (%Z _)

where now dynamical pressure p" and dynamical density ¢V are eliminated, and replaced
by the auxiliary variable A"

To find a first relation connecting this auxiliary variable with the fundamental
variables of our problem, we may use the dynamical surface condition at any surface .
According to (j) the pressures in the strata N — 1 and N are respectively

PR =P 1) — g @ TR
") =1"()—ga"h”
Neglecting second ovder quantities, we find as values of these pressures at the boundary

surface n
N1

0 ,
P e+ L) = P (@) + Tl — el

N =N bﬁN 7 =N LN
P+ L) =)+ G —gonh
Or, using the equilibrium equation (a) and the corresponding equation for the stratum N —1I

P e L) =0 () —g o TR G)
pN(zn + Cn) = pN (Zﬂ) — 9 @Y (hN + Cﬂ)

When we identify these pressures, we get

(m) oW+ G)—e T A L) =0
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For each boundary surface we obtain an equation of this form, connecting the auxiliary
quantitics & with the elevations of the bounding surface.

A second relation connecting the auxiliary quantity A* with the fundamental vari-
ables is obtained by integrating the equation of continuity (1) through the stratum. As
h" is independent of # we may write the equation

0 =N LN —N =N _—NBEN
— 5@ et —=¢ e

In the second member p" may expressed as a derivative of p¥ with respect to z in
N

. . . .0
virtue of the static cquation (a). Further is bi‘
tion of z, and may in the first approximation be considered as a constant within a
stratum of which the depth is small as compared with the horizontal wave length., Limi-

ting our considerations to strata of this limited depth, we may then write the equation

a quantity which varies slowly as func-

O\ wipw 4 gy O prsN)
518" (48] ——g(;al
Then integrating through the stratum from its lower boundary # + 1 to its upper boundary
n we have the equation of continuity in the form

7 oEr
(n) e (B 4 C0 ) — ot (B 4 cn)=;(pn+1—pn)§%

One such equation for each stratum gives m equations connecting the auxiliary quantities
A with ¢, and &".

(k). (m) and (n) now give 3 m equations for determining the 3m quantities h", (,,
& and thus give the solution of the problem.

8. Dynamical pressure p and dynamical density ¢ have now disappeared from our
equations, and have been completely replaced by the statical values p and 5. We there-
fore no longer need two sets of notations to distinguish between two parallel sets of
quantitics. We may simplify our notations, and write everywhere p and ¢, remembering
that thesc are now the known statical values.

We first write the complete system of equations (m) and (n) as follows, remembering
that the first equation (m) is simplified because above the free surface we have a vacuum,
and thus ¢,°— 0, while in the last of equations (n) we have a corresponding simpli-
fication because {4, — 0

1) ot (B 4-¢)) =0
1 ol
m L) el L) —T(n—p)y
@ G G) —el A L) —0
1 be
(1) o (W +g) — o (I - Ca) = E (ps— p2) Y
®) o (M4 &) — o (- 5)  —0
TIL
) R L T
(m) on (hM +Cn) — om ! (hM'—I F ln)=0

M M M M 1 bEM
(M) Qm+1 h —Qm (h +Cm) 2;(pm+l_pm)T

T
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The equations originating from (7, m), and which refer to boundary surfaces, have been
numbered with Arabian figures, and those originating from (7, n) ) and which refer to
strata, have been numbered with Latin figures.

Fortunately this system can be solved with respect to 2 and { without the calcula-
tion of determinants. We first derive a new system in the following way: The first
equation of the new system is equation (1) of the old system, divided by o.'; the second
oquation of the new system is the sum of equations (1) and (I) of the old one, divided
by o,1; the third of the new system is the sum of the equations (1), (I), (2) of the old
one, and divided by g%, and so on. When in the second members we write the specific

volumes o/, a5, ... 1r1stead of the corresponding reciprocal densities, we get
» A +h=0
I B £ — gt dEL
( ) + 2 ( pl) du
11 a9
@) WAL == )5y
I dE dEI
(I W+ =" (= p) 5+ (=)
agh! dE g I DL
() hHI—FC v (Pzﬂp)ga;—i‘%( D)o
d&T 38 I LT
(1) zm+c4=7(p2—p> = (zs ») —g»;+ e (9 = 1) 5
. _a¥ 551 a 5511 al £l
) B G (= ) 5 (= 2D ) Sy
am bEM“I
+—(Pn Pu—)
g Ox
M _ag-f-l bSI arlrvzl—}-l bEII a?:-l—l bEIII
O) B =T ) T ) S ), e
O 41 T an4y oM
+ g (Pm—Pm—1) 5 oz + g (Pm+1_l)m)a

The solution of this system is immediate. Beginning with (1), subtracting (I), adding (2),
subtracting (II), adding (3) and so on we find {;; beginning with (I), subtracting (2),
adding (II), subtracting (3) and so on, we find h!; then beginning with (2) and alternately
subtracting and adding the subsequent equations, we find {,, and so on.

The expressions for the quauntities ¢ and h, which we find in this way, may be
written very concisely if we introduce some abbreviated notations which naturally suggest
themselves.

‘We first write

a == 0yl — agT 4 qg' — o 1T 4o 0. — ooy a¥ iy
by = —alFal—aM 4ol .. —a - al g
ay = at — a0 4oL —atalf
@) by = — ag™ + a{ﬁ ...... — a% + an i
Oy — a . —a¥ 4 all
bm = a‘;f + afi— 1
Ay = a${+ 1
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It is useful to examine at once the properties of the auxiliary quantities ¢ and b
thus introduced. We first remark that stability requires that the sp. volumes always
decrease from the surface and downwards. Thus we have in the general case

(b) > al > 00>l > a0 > L >al
Equality among quantities a which have the same upper index
(c) al =af, all=qa0

indicates the special case of homogeneity and incompressibility within the different strata.
On the other hand, equality among quantities ¢ which have the same lower index

(d) al=a1, =g, ..

indicates that the different discontinuities disappear, so that we come back to the case of
a single barotropic stratum.

Now ay, a5, a3, ... and —b,, — b, , — by, .... evidently are positive quantities
which may be defined as specific volumes, we shall call them »virtualc specific volumes
to distinguish them from the real ones «!, af... For obvious reasons we may say

that there exists correspondence between a; and al, between g, and ag%, between a, and
a,M, and so on. Remembering the relations (b), (c), (d) we easily find:.
(1) Between the corr'espond/ing virbual and real sp. volumes we have the relations

(e) mza', a>all, ag>a7,. ..

the equalities corresponding to the special case of homogeneity and incompressibility.
(2) The differences between the virtual sp. volumes @ are identical with the diffe-
rences between the corresponding real sp. volumes «

6] C m—ay =o' — o', ay—a; = a1 — qJf,
(3) The virtual sp. volumes @ form a decreasing series
(2) a>a,>a;>. .. >y >0
4) The virtual sp. volumes — b form a decreasing series
(h) Sy N S

(3) In the case of homogeneity and incompressibility we have identity between
the corresponding virtual and real sp. volumes, ¢ and a, while the virtual sp. volumes
b disappear

(1) @ =y, a,= o, ay = a1
(@ by=ly—=b,—=...=by =0

(6) In the case of complete barotropy, i. e. when all discontinuities disappear, the
virtual sp. volumes a become all identical with the real sp. volume at the bottom

(k) A=y =qy==...=Qp =0l ,

If then we form the quantities  and % according to the rules given above, we get
as coefficients products of the virtual sp. volumes ¢ and — b into differences of pressure
for successive boundary surfaces. But according to (5, a) each such product represents
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the .squared velocity of propagation of quasi static waves in a single barotropic stratum
having just that difference of pressure between surface and bottom and this sp. volume

at the bottom. We agree to introduce the following symbols for these squared velocities
of propagation

= (p,— m) Yls = ay (ps — py) Ps=as(ps—py). ..
Pm—1=n—1 (s — Py Y = am (p; — py)
Oly = — by (py — v1) Y1y = ay (ps — p3) Py =az (ps—py) . .-
P — 1= — 1 (Ps — P3) 7 = G (g — D)
0y = — by (py —p) Oy = — by (ps — py) Py =as (py—ps) - -
M VHIm 1=0m—q (Ps— 173) Yo = @ (9g — D)

Ot =—bm—1(ps—p1) ot

5Hm—1——bm—1(103—192)
Y= n—1(Pn— Pm—1)

O = — b (p2 — Py Oy == — by (P5 — Py)

me1=—bpn 1 (Py— P -+
},Z—l = an (pm_pm-—l)
Oy = — b (P —P3) - - -

0=t = —bu (P —Pm—y)

Pm = G (P 4 1 — Pm)

From the inequalities (g) and (h) existing between the virtual specific volumes we
immediately derive corresponding inequalities between these squared velocities of propaga-
tion. Separately for the quantities y and the quantities § we find:

Quantltles y which have the same upper index and decreasing low indices form a
decreasing series.

Precisely the same is the case with the quantities o.

If then we calculate the quantities & according to the rule given above, and introduce
first the abbreviated notations a and then the abbreviated notations y we get

7 dE dET &I dEY dEM
T I I joig v M
b= g (71 o +72 o +73 oz +}’4 dz "I" Vm bx)
1 dE D& dEI o A Y
) | S— I I 1T
h g (72 bx +72 b(}() +73 bx + 7’4 b% + J’m bx)
1 o0&l oFL bf o&M
e (e T Y e )
1 o0&l bE b{: bt o&M
IV I 11 11
W= (74 g TV 5y et o + 7 M)
w1 - bf bEM
h —g(m bx'i“?’m b ‘l‘ Yl bx’l‘?’m '+‘ + v o

And when in the same manner we calculate the quantities { and introduce first the
abbreviated notations a and b, and then the abbreviated notations y and ¢ we find

1 ‘592—2“3”?1 y3116§_f_41v6§%_... _VBM)
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Equations (m) now allow us to eliminate the auxiliary quantities & from the diffe-
rential equations (7, k). The integration then gives the horizontal displacements &, and then
equations (n) give the vertical elevations ¢ of the boundary surfaces.

9. Substitating the values (8, m) of the auxiliary quantities & into the equation
of motion (7, k) we arrive at the following system of differential equations for the
determination of the horizontal displacements

62‘3&1 625}_-1 b?é:II bZE:III b2§IV 62§M
o T T S e o e s
) ZEII 6251 62511 b2§III 6251\7 62501
Tﬁ=72lw+72n W‘F%m 2 + »Y e + .. +7Zb‘x2
bZEIII g 6251 - b?EII m bZ’SHI v bZEIV . bE&M
(a) Tﬁ_}% T,Ez+y3 sz _I— Vs o2 + V4 bxz +"' Vm ba’,‘2
624‘:1V 6251 62511 b?EIII 62§IV b?EM

Y 74 3 + 7 el + 7 02 + 7 Y R Fye
6251"1 b?EI 625&11 b?EIH b?EIV 6251‘4
th = ymI W + an FxT _I_ YmHI S + 7mIV 52 + e + }/f:[ ‘bﬂ -

These equations will be satisficd by the following values of &
(b) g —=Af(x —ct), Sl — AU fx—oqt),. .. E'— A" f(x — ct)

provided that the amplitudes AL, AT, A™, ... satisfy the linear and homogeneous equations
(71I — 62) Al __I__ 72H AL + 73111 Aur + 74IV AW + . + yf‘nl AYM =
7ol AL (77— 6%) AT ANy VAN gy

(© ol AT AT (1 — ) ATV AN 4Y—
P AL p AN oy OUATT IV ) ATV L G AN g

J’mI Al + ymn AII __I_ ymHI ANl + ymIV AIV _I_ Ce + (yvﬂ: i 02) AM = ()
The amplitudes 4 will be different from zero only with the condition that the following
determinant is equal to zero

I 2,11 piis v M
Vi Y 73 Yoo Vm
I 11 2 T v M
Ve Yoo —C V3 Yoo Vin
1 I 11T 2 v M
(d) Vs Vs Vs € Vg .. Vm —0
1 I hins IV ___ p2 M -
V4 74 V4 V4 e VY
YmI 7 — 7mHI YmIV e 771:;[ —

The characteristic symmetry of this determinant should be observed. The high indices
of the quantities y increase along the horizontal lines from left to right, while the low
indices increase along diagonal lines. Physically, all the quantities y have just as ¢® the
significance of squares of velocities of propagation. The determinant is an equation of
the m™ degree in ¢?, and determines m values of this quantity as function of the known
quantities of the same nature y.

Substituting any of these values of ¢,® in the linear equations (c) these may be
solved in the form:

Al AU A AM

(e) E=E=Zs—= —E
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A+ An being the underdeterminants to any horizontal line of the determinant (d)
after the substitution ¢® — ¢,2. This system of values for velocity of propagation and
amplitudes makes (b) a solution of the differential equations (a). Then (b) represents
possible horizontal displacements within the different strata as functions of x and ¢
Equations (8, ¢) give the corresponding clevations of the boundary surfaces. These hori-
zontal displacements and vertical elevations will retain their values relatively to a system
of coordinates which moves with the velocity ¢, Thus we have a wave motion propaga-
ting with this velocity in all strata, and with unvariable wave profiles in each of them.
Superposing m motions of this kind corresponding to the m different values of ¢ and
propagating in the positive direction, and m other motions of the same natare propagating
with the same velocities in the negative direction, we get the most general motion of
the system.

The problem is thus formally solved. The explicit solution in every special case
will depend entirely upon the determination of the roots of the algebraic equation (d),
including the examination of whether they are always real and positive, We will give
a detailed discussion of the simple case of two strata.

III.

A system of two strata.

10. When the number of strata is reduced to two, the horizontal displacements &
and &1 within these two strata will, by wave motion propagating in the positive direction, be

(%) g Aif—cl), = AUf— )
The corresponding elevations ¢, and , of the boundary surfaces may be written
(b) [f=DB'f (& —ct), fy=B"f (& — )
The velocity of propagation will be found as a root of the equation
T 2

¢ I
() Y1 Ve

= 0
Vo yg — €

This is a quadric in ¢% which gives two roots ¢,® and ¢,2. Each defines a definite
wave motion having a definite ratio between the amplitudes A" and A, This ratio may
be found with equal right by any of the two equations

_AI AII
Vizl ot — et
(d) AI AII
¢ — 71I B ﬁ

when in it we substitute the value ¢? or ¢,% According to. (8, n) the corresponding
values of B! and BY will be

Bl — —— z (7L AT 4 p5lt AT)
g
(@ y
B o — " (— 0,1 AT - p,1L AT

All the fundamental data of the problem are thus expressed by the four symbols
7 and & which represent known quantities. Physically each of these represents the velocity
3
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of propagation in a certain single barotropic stratum. Mathematically we come back to
the primary data of the problem by the relations

7 = ay(py —py) ay = ag' — " -+ a1t

(6 7et = ay(py — py) by= —a4a,!
Ve == ay (p; — Ps) Gy = gt
Oyt = — b (py —p))

Besides the quantities y themselves, we shall in the following developments meet
with certain combinations of them. The sum of y,' and 7, may be expressed

(g) nERT=0 =)+ O ) =14 1
where

(h) I =yt —pt =(ay — a) (p2 — p;) = (2! — &) (p: — py)
(1) Iy =y 4yt = ax (ps —ps) = asnr (ps — py)

Even these quantities Iy and I may be interpreted as squared velocities of propagation.
The following three definitions should be born in mind in connection with the following
developments:

V7, — velocity of propagation in the lower stratum alone

VI, — . . . . . . . .in the upper stratum if at its lower boundary it had the
sp. volume as' — aoll.

VI: — . . . . . . . . when both strata are joined into one, retaining the total
difference of pressure p; — p, and the sp. volume at the
bottom oL

11. Developing the determinant (10, ¢) we have the quadric

@) ¢ — (75 6 o O — 73l 7 = 0

which has the two roots

(b) =3 ("4 7" EF VA ) — 4 — 7))y
which may also be written

© =T+ 1 VB 4

The last form shows' that the expression under the radical sign is always positive. Then
the first form shows that the rational term is always greater than the irrational term.
We conclude that ¢? is always real and positive, and thus gives two real and oppositely
directed velocities of propagation ¢ and — e.

When to these results we add the circumstance that the sum of the two positive
roots ¢,? and ¢,® must be the coefficient y,” -} y,/' in the equation, we see that we have

(d) ' et >t >3 A ) > 6 > 0.

We can therefore speak without ambiguity of a greater velocity of propagation ¢,
and a smaller ¢,.

That these two different velocities of propagation correspond to essentially different
motions follows from equations (10, d). The one shows that the amplitudes AT and AY
will have the same or the opposite signs according as ¢? 2 7,11, the other that the same
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will be the case according as ¢® 2 yI. And as these conditions cannot contradict each
other, they can be joined into one ¢* 2§ (y,f + /). This inequality combined with (d)
shows that the greater velocity of propagation corresponds to horizontal displacements
of the same direction in the two strata, and the smaller velocity of propagation to hori-
zontal displacements of the opposite direction in the two strata.

The corresponding vertical elevations of the boundary surfaces are found from
equations (10, e). The general result is seen intuitively. By equal direction of the hori-
zontal motion in the two strata, the places of conflux and of efflux will be the same in
both of them. Above an elevation in the internal boundary surface will then be formed
a still higher elevation in the free surface. This rapidly propagating wave is therefore
strikingly seen from without, and may be called the external wave. But by oppositely
directed horizontal motions in the two strata, the conflux in the upper stratum is mainly
used to fill the cavity formed in the internal surface by the corresponding efflux in the
lower stratum. The main vertical displacements will therefore be those in the internal
boundary surface. At the free surface the vertical elevations will only give a small
negative image of those in the internal surface. This more slowly propagating wave is
therefore not so perspicuously seen from without, and may be called the internal wave.

12. To find how the velocities of propagation vary according to the situation of
the internal boundary surface, we introduce the quantities I and I in the quadric (11, a)

(a) . t—I F )+ Iyt =0
and in the root (11, b) )
(b) Cg:%(r1+r2)i%V(F1+F2)2'—4I‘17’2H

where we have to remember that
(c) Iy = (o' — a™) (py —py) » I's = a™ (p; — p4) 5 7t = o5t (pg —py)

First let the internal boundary surface coincide with the free surface p, — p, . The
velocity of propagation for the external wave takes the well known value for a single
barotropic stratum, while that for the internal wave becomes zero, corresponding to the
fact that this wave disappears:

(d) ¢ =TIy =o' (ps — py), 6 =0

As now the internal boundary surface moves downwards, we get a stratum of less dense
masses above it. As the bottom pressure p, is constant and thus the total mass of the
system does not vary, the free surface must move upwards according as the internal
boundary surface goes downwards, and thus always more mass is transformed to the atte-
nuated form. Thus the total depth of the system increases. During this change I
remains constant, while I increases from its initial value 0, and y,7 decreases from its
initial value I5,. It follows that both the rational and the irrational part of ¢® increase,
but the rational part at the strongest rate, as it must always remain greater than the
irrational part. Thus the two velocities of propagation increase from the values (d), taking
values comprised between the limits

(e) N+I>e>1,, Ii>e2>0

As the internal boundary surface continues its motion downwards and the free surface
mounts, the value of ¢,® always goes on increasing, while ¢, passes a maximum and then
decreases again. When the internal surface has reached the bottom, p, = p,, we
again have only a single barotropic stratum, having at its bottom the specific volume
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oglt 4 (agt — a,').  But as o' and ! are the specific volumes at the upper and the
lower boundary of an infinitely thin stratum, they must be like each other so that the
sp. volume at the bottom will be e, i. e. that sp. volume which the fluid of the upper
stratum takes under the pressure p, in virtue af the equation a = jf(p). The velocity of
propagation of the external wave has then reached its maximum value, and that of the
internal wave its minimal value zero

(£) & =1+ 1y, =p, = a)' (p3 — 1) 6’ =10

These results are equally valid for liquid and for gaseous systems, for the upper
stratum may be a gas or a vapour, and the lower a liquid. The only necessary condition
is that we must have a barotropic state within each stratum.

If in case of two gaseous strata we wish to introduce absolute temperature ¢ instead
of sp. volume in the gas equation pa = R¢ we simply have for the quantities Iy, I', and 7,

I — (9] I (1_19_1) F:ﬂII<1_&>, 11:011(1_112)
(2 1 == (U4 o) p,) 9 7y Ve 3 s

9;' and 9, being the temperatures above and below the internal boundary surface, and
9,1 the temperature at the bottom.

13. In the case of homogeneity and incompressibility, when a, and a, are simply
the sp. volumes of the two strata, the quantities y defined in (10, b) may be interpreted
as differences of potential:

) . a o
I =@ — @ v le=22(P — P)= "1 (D, — P
(a) V1 1 2 Ve a1( 1 %) 92( 1 2)
7ot = Dy — D, 7ttt = b, P,

The quadric (11, a) then becomes

) ¢ (@ = ) (1= 8 ) (@, — B) (B, B)— 0

2
and its roots

(¢) =13 (P, — D)+ %l/(@1 — D) — 4 (1 "‘&) (P — D) (Dy — Dy)

Q2

which are well known formulae, though they are expressed generally in terms of geometric
height instead of in terms of dynamic height or potential, which give the simplest form.
The strata being in these formulae defined by differences of potential instead of by diffe-
rences of pressure, the discussion leads to results differing in a characteristic way from
those given in the preceding section. Keeping the pressures p, and p, at the free sur-
face and at the bottom constant, we have a system of invariable mass, but variable total
depth. But keeping constant the potentials @, and ®,, which define free surface and
bottom, we have a system with invariable total depth and variable total mass, this mass
decreasing as the internal surface of separation moves downwards, and thus a greater part
of the given space is filled with the less dense masses and a smaller part with the
denser ones.

As the variable potential @, does not occur in the rational part of the root, only
the irrational part of it will vary with &@,. In the initial state when &, = @, we have
a single barotropic stratum with the density g,. Only the external wave will exist, and
have the velocities of propagation

(d) o= o, — D, =0
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As @, decreases and the internal boundary surface moves downwards, the internal wave
motion becomes possible, and gets a velocity of propagation different from zero. Simul-
taneously the velocity of propagation of the external wave does not increase, as when the
system had invariable mass, but decrease. When ©, =} (®, -+ @,) the velocity of pro-
pagation of the external wave passes a maximum, and that of the internal wave a mini-
mum, namely

(e) ef=1(h,— O, (1 + ]/ﬁ> et =1 (0, — D, (1 — 1/&)
Q2 O3

which in the ultimate case of 21— 0 become like each other. ‘When then the internal
Q2

boundary surface continues its motion downwards, ¢,* increases and ¢,? decreases again,
both returning to the values (d) as soon as @, = @, and thus the system is again a
single barotropic stratum, now with the density g, .

14. At all atmospheric or oceanic surfaces of discontinuity the difference of specific
volume o' — o' is small compared to the values @' and o, of these volumes themselves.
This makes I small compared to I,, and using this in the formula (12, b) we easily
derive simple approximation formulae for the two roots ¢,2 and ¢,

These useful approximation formulae may also be derived directly from the equation
(12, a), a circumstance which is of some interest in connection with analogous properties
of the higher equations which determine the velocities of propagation in case of a greater
number of strata. Setting first I, — 0 in the equation (12, a) we find I, as approximate
value of the greather root. But as then the last term of the equation is the product of
Vel

2
Thus for the greater root ¢,® and the smaller root ¢, we find respectively

the two roots, we find as corresponding approximate value of the smaller root.

_ JalTR:
() ) of =TI}, 0222"11{?2

If in these formulae we introduce the expressions of the quantities I" and y in terms of
pressures and sp. volumes we find

(b) ¢ = ]/a31[ (ps — py) » g — l/(o‘zI — 1) (p3— p5) (p2— i)
: Ps— P

Introducing the values of the same quantities in terms of pressures and temperatures for
a gascous system we find

T (mh—mm(1~”j(1—fﬂ
(¢) e, =1/ RoM (1 — 1) , Cy = R bs P

P
bs

The correspondirg formulae for an incompressible liquid system in terms of potentials of
gravity and densities are

(1) @ — 0y 0, — o)
(d) 6y = Vo, — Dy, Gy == o, — o,
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From the first approximation formulae we can easily pass to second approximations.
A second approximation of the great root is found by subtracting the small root from the
coefficient of ¢* in the quadric (12, a)

, Al r,—
(d) e =1+ 2—%&:]}(1—]} Fz?’z)

Thus we find as explicit expressions of the greater root

© — Vel - [z S el

Ds—D

when we use the variables a and p, and

7 —Pi

Sl — 9 p P

f - II _pl 1 1”2 2 1’2 . 2
() l/zw( ) +3 W p |, m
Ps

if we use ¢ and p. The corresponding second approximation formula for ¢ for the
incompressible liquid systems in terms of potentials of gravity will be

® 6 =V, — 0, [1 1 ( 4 _Z_; ) (@, -—qciz!ug = 0)3)]

The corresponding second approximation formulae for the smaller velocity of propagation
call for less interest. Ividently they are obtained by multiplying the first approximation
value of ¢, by the factor

(h) 7—1 o' — " py — pi\*
gl Ds— D

or by the corresponding factor expressed in the other variables.

When we apply the formulae (¢) to calculate numerically the velocity of propagation
of atmospheric waves, we can introduce p, =0, not because we know that pressure is
zero at the limit of the atmosphere — if such a limit exists — but because a small value
of p, or the value zero will make no sensible difference numerically. We then get the
simpler formulae

{) ¢, =V RHH czzl/ 191—1911( f2)

For the external wave we get then the Newtonian velocity of sound for the temperature
#5"" existing at sea level, as if the entire atmosphere formed a single barotropic stratum
with this potential temperature &, at all levels. The second approximation formula (f)
for ¢, will for p, =0 be

. A
0 o — VRO (143 2 )
3

The formula (i) for velocity of propagation ¢, of the internal wave has been tabulated
in a previous paper?). While it may be applied with safety for finding concrete numerical
data, it is adviseable to return to the complete formula, where p, has not yet disappeared,
in all general discussions. It is seen for instance that according to (i) we find for p,—0

14

(k) oo = VR (9" — 91

') V. Bjerknes: Dynamics of the circular vortex, Geof. Publ. Vol. II, No. 4, p. 28,
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while from (¢) we get ¢,— 0 when we first introduce Py =1p: and then let p, and p,
converge to zero conjointly. Or while according to (i) ¢ decreases for decreasing values
of p, reaching the maximum value (k) when P =10, it will according to (c) reach this

maximal value when ps =7p, p,. And it will take the value ¢ when the pressures
Pz =p, conjointly converge to zero. Thus if questions connected with the existence or
non-existence of an atmospheric boundary surface of pressure zero should be discussed,
the general formulae containing the pressure p should be used.

No difficulties of this kind arise for the discussion of the internal wave motions in
the sea. To tabulate their velocity of propagation according to (d) we may first tabulate
the quantity

— (D1 — By) (D — @)
0 R

as function of the total dynamic depth @, — @, and the dynamic depth @; — @, of the
surface of discontinuity below the surface. Then the expression for ¢, may be written

, .
,=D[1—1 @
‘ ( fr02)

and this quantity may be tabulated as function of the auxiliary quantity D and the ratio

of densities 2L at the two sides of the surface.

Q2

15. The developed formulae for the case of two strata allow us to make some
general remarks on atmospheric and oceanic wave motions, and simultaneously to direct
attention to certain open questions which may be solved by the examination of wave
motions in case of three or more strata.

When the velocity of propagation ¢; of an external quasi static wave in the sea,
such as an earthquake wave, be calculated simply from the total depth @, — @, according
to the formula (14, d) we obtain a value which is slightly too high. For the sea is
always stratified, and .considering it in the first approximation as made up of two strata
we find according to formula (14, g) the corrected value in multiplying by the factor

s (g ) (@ =) (0 — 0,
2 02 Oy — (1)3

«

As the ratio 2 is always very near unity, the correction is exceedingly small. By the

Q2
same value of the difference of density the correction will be maximum when the surface
of discontinuity is just in the middle between the surface and the bottom, and it will
converge to zero as the surface of discontinuity approaches the surface or the bottom.
In the same manner the velocity of propagation ¢, of the external atmospheric waves
is underestimated if, according to the first approximation formula (14, 1), we identify it
with the Newtonian sound velocity at sea level. The stratification of the atmosphere will
increase this velocity of propagation, and if as a first approximation we consider the
atmosphere as made up of two barotropic strata, we get the corrected velocity of pro-
pagation by multiplying by the factor
14y
3 s
It is seen that in case of equal values of the temperature inversion 9! — 9,7 the influence
upon the velocity of propagation is greater the nearer the surface of discontinuity is to the
ground. But even then the influence of the stratification is remarkably moderate, thus
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only 5 per cent when we have 95 — 97 = 27° and 9,8 = 273°. And if the two barotropic

strata were compared with troposphere and stratosphere, we should have %:}% and
3

could go to a temperature inversion of 80° in order to get an influence of 5 per cent

upon the veloeity of propagation.

This will be sufficient to show that the influence of the stratification of the atmo-
sphere upon the velocity of propagation of the external wave will be very moderate. But
for a more accurate estimate the comparison of the atmosphere with a system of only
two barotropic strata would be too rough. It would especially be difficult to say what
temperature we should choose at the lower boundary of the stratosphere when this
isothermal stratum is to be replaced by an adiabatic one, giving the wave motion in the
entire system the same velocity of -propagation. But already the formulae for the case
of three barotropic strata would here give good information.

We meet with difficulties of the same kind when we apply the formula for the
velocity of propagation of the internal wave to the atmosphere and the sea. For the
two strata, which we must consider as barotropic, are in reality always more or less
stratified. Evidently we may compensate for this stratification by an artificial increase
of the discontinuity. How great this artificial exaggeration of the discontinuity should
be, however, it is difficult to say beforechand. But already the solution of the problem of
three strata would give useful hints for this question.

Another difficulty lies in the circumstance that the discontinuity is never sharp. In
reality we always have a transitional layer instead of a surface of discontinuity. This
may occasion doubt as to how we should extrapolate from the data of the transitional
layer to the equivalent surface of discontinuity. Even for the examination of this ques-
tion the formulae for the case of three barotropic strata will be useful.




