AN EXPLICIT SOLUTION OF THE PROBLEM OF WAVE
MOTION IN THREE BAROTROPIC
FLUID STRATA
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(Received 28 January, 1923)

On Professor Bjerknes’ suggestion I have taken up and given the complete solution
of the problem of wave motion in three compressible fluid strata, following the method
which he had developed in the case of two strata. He gave the solution of this problem
in his lectures at the University of Leipzig in the winter term 1914—15, and has kindly
placed his manuscript of these lectures at my disposal. After I had thus solved the
problem for the case of three strata, Professor Bjerknes has now in the preceding paper*)
of these publications given the general formulae for any number of strata and an explicit
solution for the case of two strata. It seems consequently unnecessary to repeat here
the anthor’s first complete solution, which has afterwards by Bjerknes been developed in
greater generality. We will therefore limit ourselves to give here the explicit solution,
purely algebraic, for the case of three strata using the notations of Bjerknes. This case
is of a certain interest, while it represents the highest number of strata for which an
explicit solution seems practically possible.

The horizontal displacements in the three strata I, I, IIT are (Bjerknes, p. 16)

(1) H—=Alf(r—ct), Sl — AY f(x — ct), S — AN f(x — et),
and the corresponding vertical displacements
(2) L= B'f" (& — ), Ly = BUf" (@ —ol), Ly = BUS" (@ —ct).

The problem admits three velocities of propagation ¢, , ¢,, ¢;, of which the squares ~
2 ¢?, c;® are the three roots of the cubic equation (cf. Bjerknes, p. 16)

nt—et " rs \
3) 75" yit — 6* =0.
;,31 ysﬂ 73111 — 02

The quantities y are

7= (ot — o gt — o - oM T) (py — pi) - gt = (05" — ag"t < a M) (p; — p,) -
(4) st = (" — ag™ 4 ™) (py — py) - 7t = a M (pg — p,) -
7e = a1 (py — py) - 7t = a, " (p, — p;) -

p denoting pressures and a specific volumes as in Professor Bjerknes’ paper.

V. Bjerknes: On quasi static wavemotion in barotropic fluid strata. References to this paper are
given in the form (Bjerknes . . .).
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Introducing with Professor Bjerknes (Bjerknes p. 18) the quantities I, viz:

®) Ii=(0'—a") (ps—p1), DLy=(t"—aN)(p—p), Ts=al(p,—p),

and further as p, > p, > p, > pi:

(6) gy =P3_P2<1 , g =P4_102<1 , . _]04—~p3<1

Ps—D Py—p by—D
we bring the determinant to the simpler form

I'y—¢? Fa(l—”:;s) Iy (1 — 7)
M I, Iy —¢® I (1 — 7)) | =0.
I I, I, — ¢

Or developed
(8) 06_(F1+F2+F3)C4+(”32I'1F2+n42F1F3+”43F2Fs)02_”437132F1F2T3=0'

To convert this into a form which is still more convenient for our purpose, we
introduce '

and get
O =TT +e+e)et I (g6 8+ mpe, + Tyg &) CF — gy 7gs 5% &) 8y = 0.
Writing this cubic equation in the form

2+ Ax? + Bx -+ C=0,

we have the coefficients
A=_F3(1+51+82)) B=F32(”323132 +ﬂ42€1+”4352)> ’ O:_‘”43”32 r33€182'

As usual in the solution of an equation of the third degree, we introduce the quantities

—p_2L 4 Pl g
a=2DB 3A, b= 27A —|—3.AB c,
or introducing the values of 4, B, C
1 .
az*?]?[l+£1+52)2—3("32£132+”4251+”43'32)]:

1
b =§F33 [T+ &+ &)P—9 (1 + &+ &g) (7135 &y &+ Tlyo &1 +”4382)+277‘43”32£1 &)«

1f we consider ¢ and & as small compared with I}, i. e, the differences of volumes
o' — a and o' — /" small compared with the volume a7, ¢ will be negative, and
the equation will have three real roots.

In this case we use the expressions

a® | b2 ) 27 R b 27
Rzg—,;—{—?, sm<p=l/ S0 cosp=Tg —_ .
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In the expression of B we leave out terms which are of the second order in e,
Then we get

1 .01
= — 97 I {? (a9 &+ Tys £)* — Mgy 39 & 52] ’

and further

. o7 :
gin @ = ]/Z (7249 &1 + 745 80)F — 4 745 a5 &, &) cosp=1.

As the quantities ¢ are small, we can substitute the argument for the sinus, ¢ =sin¢.
As is known, the threc roots are then

As the argument is small, we have

n 1
cos%=1, oS (—i qo)=§+

If we neglect second order terms in ¢> this gives us

‘x1=F3[1+(1—”42)51+(1—”43)52] ’

1
Z2 =9 Iy (75 80 1 7145 8 + V(”u & T Ty £g)® — £ g a5 € 85

1 i
X3 == 9 Ly 6+ 714589 — V(ﬂu &y Tyg 8 — 4 Tyy Ty £ &) -

These expressions may also be written in the following form, if instead of w, a2, 25
we introduce the squares of the velocities of propagation ¢,?, ¢?, ¢;?:

=T34 (1 —mg) Io -+ (1 —mp) [,

. o 17 I, 1 5
(11 02227%—*—727 V(”42F1+7‘43F2)2_4“43”32F1I27

oy Tl -t amaly 1 ——

3'2#_%“’9’ V(“42F1+”43F2)2—’4”43”32F1F3'

A simple transformation gives

. Tl 7y I 1 ;
(12) co’ =4—2—1’—5¢ +_~§‘ V("‘42 Iy~ nyy I3 A-4myy (g —5) [ 12,

s I 70, 1 1 :
¢’ =~ﬁ%£__2_ V(”n Iy — 5 1) + 4y (n42—”32)F1F2'
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Since the expression under the radical sign is positive, we must have |
(710 Iy A=y 1) > 4 g gy I f-"a ’
and obtain the two inequalities

Ty Iy + 70 T
(ag Iy - 7145 T) 2022>42“11_LA ’
”42F1‘;‘”43F%>63220 .
We will now determine the horizontal and the vertical amplitudes which correspond

to the different velocities of propagation ¢. For the horizontal amplitudes 4 we have

I I IIx
19 AT 4T 4

A AT Ay

/\ being underdeterminants of the determinant (3). Further, for the vertical
amplitudes B:

1
Bl = — ; [a; (ps — py) AT 4 ay (py — py) AV + as (py — pg) A,
1
(14) B" = — 7 (s — as™) (py — p,) AT+ ay (v — ps) A" + a; (p, — py) A1,
1
Bl = — ? [(a5 — ™) (p, —p) A"+ (a3 — ') (p; — py) At +ay (p, — py) A™M|

a being volume quantities defined in Professor Bjerknes” paper (p. 13):

— ot — 1T Il __ T s — I 10 uis — g I
Gy == 0 o+ oy att A a, ay=ay agt + a1, gy =all.

Eliminating A and A™ by (18) and leaving out terms of the order of magnitude ¢ we get

Bl — 7/ (e — 21 Lo+ (85— 18) Dy + (02 — p3) Ng| AT,
a1 a1l o »
W= oy Zs [(1 - EF) (P2 —p0) A+ (05— p) LNy + (02— py) AJ AL
i o
[(1 ‘ %) (pe — ) A1+
I
+(L—%ﬁym~m9Ame—maAJAm

From the matrix

(16) i[I1+(1_”32)F2+(1_ﬂ42)F3]_02 ”32F2+(“42_”43)Fs 745 1
(I — 7g9) Iy + (1 — my,) I [723 Iy - (7149 — 71,5) L) —¢ Ty

we form the three determinants:

ANy =my Iy c?,
(17) LDy =my, (*—T) T, ]
A3=C4—[E+F2+(1_”43)F3]02+F1[“732[‘2“1‘(”42_‘”43)1'3-
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Substituting the greatest root ¢?, and leaving out quantities of the magnitude ¢, we get
(18) D= La=Ng=myu [¥>0.

Thus in the greatest velocity of propagation we have motion of the same direction
in all strata. Xf we suppose AT to be positive we get under the same suppositions:

Br =—£~I'3Am<0.
9
(19) BI =— é Iy — (p: —pi) o1 A< 0, according as Iy 2 (p; — py) a2'l
B — — % [ — (ps — 1) 6™ A < 0, according as I'y 2 (p; — pi) a5

If we wish to substitute the two smaller roots (11) or (12) it will be sufficient to
consider the case when the quantity @, I; 1% is very near zero. Then ¢,® may be
written

g g L 12_

(20) o — 1y Ty g Iy — Skl
> 3 v 3
. ) A Ly + g 1

Retaining only such terms as do not contain ¢ we then get the determinants:
Ny =gy (e It g 12) 15> 0. I
(21) Na =4[5 s — (1 — 7,) I'| I’y = 0, according as T? >
. 1
Ny == T3 (T — myo) Iy (1 — 71y) Iv?] I'y<o.

1—my,

Tlyg

Thus two adjacent strata have the same horizontal motion and the third the oppo-
site motion: according to the differences of pressure, which determine the content of
mass in each strafum, the intermediate stratum will either follow the upper or the lower
stratum in its motion.

For a determination of the vertical amplitudes we must retain the quantities ¢ and
we get for both ¢ and ¢,?

1

B — Ty AT
(22) BT — 52 gy Iy 0 [ — (p2 — p1) asl| AT
23
B — e Iy (6 — 1) — (3 — ) 6 — s 1) g 40
3

If we consider the volumes g and as as large compared with the differences in
volume, this will give for the intermediate velocity ¢,:

Bt =— ng 7y Ty (g Ty + 15 1) AT >0
3
1 . . )
(23) B =:q /\ Ty 13 (7‘642 Il + Ty I2) (p2 _]71) OLgI ATl 9.
JARY:}
BT — g/ g Ly [7145 (1 — 7139) I'y 45 1) (pg — py) 0! AL <0 -
3
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For the smallest velocity

24 .2 — ._gf'_'._i‘zi_
(24) 5 ”42I1‘|‘”43[2

the horizontal amplitudes will be determined by the three determinants

Ty’ gy I3 Ty

. e Ly 7y Iy
ras Ly 7yg (1 — m155) Iy .

95 o Tty Tas s rI.<o.

(25) & s g L'y + 75 1y te

9 , .
_ Tlyg" TTgg Iy 4 75 (7149 — m) 1) I T
S ”42T1+”43F‘4 a0

=

I,>o0.

Substituting this in (22) and remembering that ¢, is very smale, we get

B =—?1A“”43I'3034Am<0
3
(26) B — g Iy (32— ) oF AT > 0
3
B —= — g IA Tyg 7z L3 Ly (g — pr) e AN < 0,
3

which shows that the upper and the lower stratum have the same direction of motion,
but the intermediate stratum the opposite direction.

It should be observed that this is demonstrated only for the case when ¢, is near
its maximum and ¢; near its minimum value- But if 47, 7, I', I'; is of the same order
of magnitude as s,y I'y + 7,, I's we have other relations between the amplitudes.

As an example of the applications of the preceding formulae to atmospheric
motions, we may introduce the gas equation

pa=RY

E being the gas constant and ¢ the absolute temperature. To simplify we put p, = 0
which gives
(27) Iy = R (@t — 9,10, 13 = R (9" — 9,10, I'y= Ry,

and introducing the pressures p instead of the auxiliary quantities 7, we get for the
three squared velocities:

6 = RO [y (03— 9J0) 4 py (9 — ),
4

(28) 64— Qip [(ps — i) (95 — 955 - (p, — py) (9,1 — B,17)] 4

I _
9, 1/[(1”4 — p2) (9 — &,10) - (194 — ps) w;[ — G2 —

— 4 (D — p3) (P5 — p2) % (@1 — 3:1) (H51 — 9,11) .
3
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Beginning with the greatest velocity ¢, and remembering that in the adiabatic temperature
distribution within each stratum we have 9,0 > 3, and @, > 9, I, we obtain

A >0, B .___gﬁ4IIIAIII<0_
(29) AT >0, B — ~§ (91— g11) AT < 0,
AIII > 0 s BIII _ %(9‘4111 — ﬁ3HI) AIH < 0.

These formulae show that both the horizontal and the vertical amplitudes have equal
direction, and the entire system practically moves like a single stratum, having at the
free surface a vertical amplitude depending only upon AT and the temperature 9,T at
the ground:

B— — £l 9,1 AT
9

For the limiting value of ¢, we have

R

(30) Gy’ == 27 [(ps — p2) (95" — ") + (py — pg) (95" — F )] —
4
_R (Ps— Ds) . (ps — pg) (F" — &,1) (9,11 — 4,11
D3 (py— o) (B — 9 - (py — pg) (1 — H,11) ’
and get
Al >0, B >o0.
(31) AT Z 0 when 7 = 90 Py BT <0
' =% Pl — P M = Ps— Dy’ : '
AN g, Bl < ¢,

When the smallest velocity ¢, ,

(32) 6.2 — B . (Ps— pg) (5 — o) (F" — 95"F) (95" — 94
Py (Da—ps) (91— 951 + (p, — pg) (B — F1)’

is very near zero, we get correspondingly:

Al >0, B <o.
(33) Al <o, BT >0,
AT > g, Bl <,

As pointed out at the end of Professor Bjerknes’ paper, it may be of considerable
interest to examine the approximation with which a system of two strata may be sub-
stituted for one of three strata. We denote by &, 7, I" etc. the symbols for the system
of two strata which is artificially introduced instead of that of three strata, and we limit
ourselves to a comparison of the intermediate velocity of propagation for three strata with
the smallest for two strata. Starting with a system of three strata and trying to deter-
mine one of two strata having the same velocity of propagation ;== ¢y, we may dis-
pose of the pressure p ’

(34) p=Dt P
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and determine the required discontinuity of volume for the system of two strata. As
we have p, — p, =p, —p, we find

(35) Rag Iy =myy Iy + 7144 F2+V(”42['1 + g 1) — 4y g 14 1
or according to (34)

. -1 = 1 . .

(36) (294 _P?,%pz) (@' — @) = s _}_743 (4 Iy + 7045 1 -

+ Vs Iy + gy Ty — 4 gy gy 11T,

which gives the solution of our problem. It is immediately seen from this formula, that
if the intermediate stratam shrinks to zero, so that p, — p,, we get the identity

A o y .l G e g I I
I=1TI,+1;, oral—a=aqa, ay™,

If vice versa we pass from three to two strata and suppose I',— I}, we get

39 1}

37) I'n=1I;,= R [— (tae + 714) + Vg + 70 + 4 gy Tgg] -
43
Disposing here again of the pressures in accordance with the condition (34) and

Ps — Pu

utting 7,, = , we find
P g 73 Jrp— ‘
(38) (Py +ps — 2 Po) (0" — ™) = (p, — p5) (a" — aylh) =
7—-[' v —_ =% | a _ = -
_5“77_4:25: Iy | — 7 +V”322 + 27y 7y, -

Retaining in this expression a suitable value of p,, i. e. a value fulfilling the condition
Py>>Ps > Py, We get a definite value of the volume differences. For p, — p, — 7, the
expression takes indeterminate form. But the regular method gives for this case

I__ 0. =111
Gy Oy =0y 05,

just as above.

The two following tables giving the velocities ¢, and ¢, are calculated from the
formula (28). As pressures defining the boundary surfaces we have chosen

Py =100 cbar, p,; =70 char, p,= 30 char, p, =0,

p, being the normal pressure at sea level, p; representing the pressure at a certain
average height of the polar front surface, and p, the pressure at the boundary between
troposphere and stratosphere. In the table for the velocity ¢, two different kinds of
type have been used: the italics are used when the two upper strata have the same direc-

tion of motion, the ordinary type when the two lower strata have the same direction
of motion.
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¢, m/sec.
321— ,'9,2II ,031[ — ,193111 C °

c* lo2lo4oslosl 1/ 2. 4] 6] s|10|15| 20
02 | 7| 7l 8| 9lz0| 125 19| 25! 26 20| 36| 42
04 | 9| 9l10! 1011|2429, 23| 26| 29| 36 | 42
06 |11 1112 12 12|25 | 79| 23 | 26 29 | 36 | 42
08 |13 1313|138 14|15 20 24| 27 30! 36 42
1 |14 14 15015 |15 | 16| 20 |24 | 2 30|57 a2

2 |20 20|20 20|21 21 28|26 | 20| 51|57 43

4 |28 28 28 2020 29|30 31|33 )a5 |59 a

6 |35 35|35 35 35135 36|37 38 39)42 46

s |40 40|40 | 40|40 ;41 |41 | 42|42 43|46 |49
10 | 45 | 45 | 45 | 45 | 45 | 45 | 46 | 46 | 47 | 47 | 49 | 52
15 |55 55 55|55 55|55 56| 56 56| 57 | 58 | 60
20 | 63|63 | 63|63 63|64 64| G& 64 65| 66| 67

¢; m/sec.
B — 1 9,1 — 10 ce°

co |o2[o4alosjos] 1] 2 4] s sj10l15 20
oo | 2] 5] 5] 5! 5/ 6] 6] 6] 6! 6] 6] 6
04 | 4| 5| 6, 61 7| 8| 8| 8| 8 8| 8| 8
06 | 4| 5| 6! 7| 7| 9 10|10 | 10| 10|10/ 10
08 | 4| 5 6| 7| s|10 1|1 1111|1111

v | 4| 5! 6| 7 s|10]12 12 12 1313|183

o {4 506 7| s|11l15!l16l17]17]18]18
s | 4| 5] 6, 7| sf12 16|19 |21 22 23/24

6 | 4, 5 6! 7| 8|12 16|19 22 24 27|28

s | 4l 5, 6| 7| s 12 16|20 |22]2 |29 |31
10 | 4] 5| 6, 7| 8|12| 16|20 |23 25| 30|33
15 | 4| 50 6! 7| 8|12/17 |20 /23| 26/|831|35
20 | 4| 5| 6| 7! 8|12 17 202326 31|36




