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Introduction.

The primary object of the present paper is to represent the results of some theoretical
investigations which were suggested by observations of the tidal phenomena on the North
Siberian shelf during the drift of the «<Maud», 1922—1924.

It is generally assumed(), that the tidal waves, observed on the continental shelves,
originate in the adjacent oceans by the action of the tidal forces, but that they proceed
across the shelves as free waves under the influence of gravitationel forces only, following
the laws which are valid for long, gravitational waves in a resting basin of water. Accor-
ding to these laws the velocity with which the wave proceeds is dependent only on the
constant of gravity, g, and the depth of the basin, A If the depth is uniform the velo-

city of progress is
c="Vgh (1)

and this formula is supposed to be approximately correct, even when the depth changes,
introducing a mean value of A. '

The motion of the particles of water is observed as the tidal current and alternates in
the direction or against the direction in which the wave proceeds. The greatest velocity
in the direction of progress occurs at high water, the greatest velocity in the opposite
direction at low water. The currents are uniform from the bottom to the surface.

The tidal phenomena on the continental shelves however, are only exceptionally in
agreement with these simple laws. The rate of progress frequently stands not in relation
to the depth which is expressed by equation (1) and the tidal currents are generally not
alternating but rotating. The deviations from the normal velocity of progress and the
occurrence of rotary tidal currents can in some cases be explained as the result of inter-
ference between two waves proceeding in different directions, but this explanation appears
not always to be possible. This applies, for instance, to the tidal phenomena observed
on the North Siberian shelf. All available observations from this region can, as will
presently be shown, be united into a picture of a single, progressive wave, entering the
shelf from the North, but this picture has little in common with that of a single wave

(1 Otto Kritmmel, Handbuch der Ozeanographie, II, p. 238, Stuttgart 1911.



4 H. U. SVERDRUP Geof. Publ.

in a resting basin of water, and cannot possibly be obtained as a result of interference
between two or more waves of this kind. If, however, we take into consideration the
effect of the forces of inertia which arise on account of the rotation of the earth, and
the effect of the resistance along the bottom which is transferred to large distances from
the bottom on account of the turbulent character of the tidal currents, all the charac-
teristic features can be accounted for.

The influence of the deflecting force of the earth’s rotation upon long waves in an
infinitely long channel was studied by Lord Kelvin(!). His results are of the highest
value to the understanding of some of the features encountered, but they are not suf-
ficient to explain all of them. It has furthermore been suggested by Lord Kelvin, Kriim-
mel(*) and Nansen(®) that rotary tidal currents may result from the action of the deflecting
force of the earth’s rotation, but an analytical investigation of the character of these cur-
rents and the modifications in wave length and wave height by which they may be
accompanied, has not been attempted.

The influence of the wiscosity of the water on the tidal currents close to the bottom
has been discussed by Lamb(*). The influence of the eddy wviscosity, which Lamb recog-
nizes as a factor of importance, has, however, not been the subject of any extensive study.

The results of the present investigations may, as indicated in one of the later
chapters, perhaps find a wider application and serve towards a better understanding of
some of the irregularities of the tides.

This paper was written and prepared for publication on board the «Maud»> during
the spring of 1925, when still in the Arctic. This circumstance may serve the author
as an excuse for lack of references, particularly to publications which have appeared
since 1921.

(*) Compare Horace Lamb: Hydrodynamics, Cambridge 1895 p. 334.

(® L c. p. 287.

(®) F. Nansen: Spitsbergen Waters, Videnskapsselskapets skrifter 1915 no. 2 p. 86.
* L c. p. 542.




Vol. IV. No. 5. DYNAMIC OF TIDES ON THE N ORTH SIBERIAN SHELF 5

I. The tidal wave on the North Siberian shelf.

1. Observations.

The region which will be dealt with in the present paper, comprises the North
Siberian shelf from Point Barrow, Alaska, to Cape Chelyuskin on the Taimir Peninsula,
one of the largest continental shelves on the earth.

The geographical distribution of the stations is shown in Fig. 1. The names of the
shore stations have been entered and also the numbers of the stations on the shelf. At
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Fig. 1. Geographical distribution of stations.

the major part of the latter only the tidal currents have been observed, at the stations
where the number is underlined, the observations have comprised also’ the range of the
tide and the tidal hour. :

Tidal observations from this shelf were previously very scarce. When R. A. Harris(")
in 1911 compiled all available tidal observations from the Arctic Regions only 3 stations
were situated within the area here mentioned, namely Bennett Island, Pitlekaj and Point
Barrow.(!) To these can be added as results from the «Maud>»-expedition 4 stations
along the Siberian coast, Cape Chelyuskin, Bear Islands, Ajon Island and Cape Serdze-
Kamen, where the tides have been registered during intervals covering 6 to 8 months.
The last named station is close to Pitlekaj and the two middle stations are not far remo-
ved from each other, but neverless give valuable information.

() Rollin A. Harris, Arctic tides. Washington 1911.

() Harris also gives the tidal hours for two stations at the North-west coast of Alaska (No. 20 p. 56
and No. 1 p. 58, both from B. A. Chart 593) but apparently attaches but little importance to
them because he does not refer to them in the text, though one of them decidedly favors his
conception of the course of the cotidal lines. Since the information from these stations seems
uncertain and is very meager, it will be omitted.
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The main data from these stations are entered in Table 1 together with the main
data from the three stations which were used by Harris. The data have been condensed
in order to make them more comparable with the results of the tidal observations on the
open shelf. The latter have to a great extent been made around spring tides, for which
reason primarily the conditions at spring will be discussed in the present paper.

The range of the spring tide and the tidal hour at spring ‘are the two quantities,
which are of the greatest interest. The tidal hour at spring is closely equal to the number
of hours between the culmination of the moon at Greenwich and the Greenwich time of
spring high water. At stations with the same tidal hour high water occurs simultaneously.
A line joining stations with the same tidal hour, a cotidal line, represents the crest of
the tidal ware at this particular hour.

The tidal wave is, however, not regarded as a simple wave but as composed of a
series of waves of various period lengths of which the most important are:

Symbol Period length
h
S, 12.00
M, 12.42
K, 23.93
0, 25.82

At all stations from which tidal observations from a sufficiently long period are
available, the semi-ranges and phase angles of these and other components are computed
by means of harmonic analysis. The semi-ranges and phase angles and not the spring
tide range and tidal hour are generally published. The quality of the tide at any station is
characterized by the ratios between the semi-ranges of the components and the differen-
ces between the phase-angles. The most important of these quantities are the half-daily
index 8;: M,, the daily index (K, 4 0,):(S; + M;) and the age of the spring tide ex-
pressed in hours, 0.984¢ (S,° — M,°), where S;, M;, K, and O, mean semi-ranges, and S;’
and M;’ mean phase angles.

From all stations in Table 1 except Bennett Island, harmonic constants are available.
At these stations the range of the spring tide has been computed as the double sum of
the semi-ranges S; and M; of the two dominant half-daily waves. This computation is of
sufficent accuracy, because the daily index is comparatively small, the tide being mainly
half-daily. At Bennett Island the spring range has been:computed in assuming the mean
semi-range, given by Harris, to correspond to M, and the ratio S;: M, equal to 0.4. The
tidal hour at spring will not deviate much from the tidal hour of the component M;,
defined by Harris(') as the phase of this component expressed in lunar hours and in-
creased by the longitude, if this is west and diminished if it is east, the longitude being
expressed in hours. The tidal hour of M, has, therefore, been entered as «tidal hour at
spring» at all stations except Bennett Island, where the mean tidal hour, given by Harris,
is used. '

The four first columns in Table 1 contain the numbers and names of the stations
and their geographical positions. The two next columns contain the spring ranges and
tidal hours derived in the described manner, and the last three columns contain a few re-
marks regarding the quality of the tide at the various stations. This information show
that the tide generally has the same character within the entire region. Regarding the
data from Bear Islands, the reservation must expressivly be taken that these are preli-
minary and may be slightly changed by the final editing of the observations.

‘M Loe
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Table 1.
No. Location Ge;’)g;?tli’:':cal i Sp.ring tide 5 X, + 0, | gg:inog
, Latitude Inngit.udevRangecm. Tidal hour M, Mz + 5 | tide, days
' North West h
a | Point Barrow . . . 71° 18|156°40’| 15 9.65 0.40 0.46 1.6
b | Cape Serdze Kamen |66° 53’ [171°49’| 14 678 | 0.70 0.44 —
¢ | Pitlekaj. . . . . . '67° 03"|173° 30/ 7 11.11 0.38 0.73 2.3
d | Ajon Island. . . . |69° 52 16%%823’ 5 1233 0.48 0.26 2.0
e | Bear Islands . . . 70° 43'|162°25 3 3.2 0.4 0.6 1.7
f | Bennett Island. . . (76° 41’|149°05"| 105 6.6 — — —
g | Cape Chelyuskin. .  77° 33"|105° 40"l 34 3.88 0.42 0.40 15

a ¢ f Rollin H. Harris; Arctic Tides, Washington 1911.
b o g J. E. Fjeldstad: Litt om tidevandet i Nordishavet. Naturen V. 47. Bergen 19138.
e Preliminary values from registrations October 1924 to April 1925.

This reservation must also be taken regarding the preliminary results of the tidal
observations on the open shelf, which were carried out during the drift of the «Maud»
along the North Siberian shelf in 1922—1924. These observations comprise several series
of hourly soundings by means of which the range of the tide and the time of highwater
were determined directly. Furthermore, they comprise a great number of current measure-
ments, partly accomplished by means of a selfrecording currentmeter, which was designed
and constructed on board the «Maud»> and kept in operation in various depths during the
major part of 14 months, from March 1923 to April 1924, partly by means of Ekman's
currentmeter, used in various depths during at least 13 hours at the stations from which
the preliminary results are published in this paper. All current measurements were car-
ried out from the drifting ice and therefore could only give the motion of the water
relatively to the motion of the ice. In order to te find the absolute currents, the drift
of the ice had to be determined independently. This was accomplished by letting a lead
run down to the bottom with so great speed that at stuck, and then noting the length
of wire which was hauled out in a sertain number of minutes, and the direction in which
the wire was running out. By means of the data an the knowledge of the depth the
velocity and the direction of the drift of the ice could be computed. This method,
which was used by Nansen(), gave, judging from the close agreement between the values
obtained by different observers, reliable results, when the ice was relatively scattered,
making it possible to observe accurately the direction, in which the wire was running out,
and could even when only a narrow hole in the ice was at hand be used to ascertain
whether a considerable tidal movement of the ice took place or not.

In Table 2 the main results of the direct soundings are compiled. By the deriva-
tion of the represented results only the soundings made around spring tide have been
utilized because they evidently must be expected to give the most reliable results, but it
has been ascertained that all observations from the same regions rendered practically the
same tidal interval. The soundings were so treated that the depth was determined for
every lunar hour, reckoned from the transit of the moon across the local meridian at full
or change, by means of graphical interpolation between the observed depths. These
values were at each station united to means, and the range of the tide and the luni-
tidal interval, expressed in lunar hours, computed by harmonic analysis. The tidal hours

® Le.
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at spring were finally obtained by subtracting the east longitudes expressed in hours from
the lunitidal intervals. The ranges and tidal hours at spring are to be found in the Table
in the 6th and 7th columns and the dates of the nearest full or new moon are entered under

Table 2. Preliminary results of soundings.

Number Ge;ggggxrilcal Spring tide
No. Date of dl;;lf' - Remark
. Latitude |Longitude| R Tidal
periods | “North” | ast Gr. | em | hour
3| Apr.30—May 4, 1923 8 74° 417)166° 25" 18 8.2 | Full moon May 1.
7| July 2—5 1924. . . 1 76° 30" | 144° 007 92 54 | New moon July 2.
8|July 18—20 1924 . . 2 76° 30" | 141° 40" 210 50 | Full moon July 16.

remarks. These results can naturally not claim a high degree of accuracy, partly be-
cause they were made, while the ship was drifting with the ice over a more or less
uneven bottom. There is neverless, an astonishing good agreement between the results
of the soundings and of the current measurements,

The current measurements can be devided into two groups, one containing measure-
ments which were made at a depth, were the strongest currents were found, and continued
during long periods and the other containing measurements made at various depths during
at least 13 hours in order to determine the variations of the tidal currents with depth
and the mean tidal currents from the bottom to the surface. The latter were generally
carried out around spring tide, when the greatest velocities could be expected.

The observed currents have been treated in a similar way as the observed depths.
The currents were decomposed into a North and an East component and for each com-
ponent the amplitude and the lunitidal interval of maximum value, expressed in lunar
hours, was computed in the way used when dealing with the soundings. The components
could always be closely represented by a single harmonic term. They were again united,
and the directions and velocities of maximum and minimum current as well as the luni-
tidal interval of maximum current, determined. By adding the west or subtracting the
east longitudes there was derived finally, what may be called «tidal hour of maximum
current». The current was found to be rotary at all stations. The direction of rotation
will at each station be described as clockwise, cl. or counter clockwise, c.cl.

The main results are compiled in Table 3. The first part of the table contains the
results from 4 stations, at which the currents were observed in one or two depths only,
the last part contains the results from 5 stations at which measurements were made in
a sufficient number of depths to allow a determination of the mean tidal currents from
the bottom to the surface. The contents of the Table are fully explained by the head-
lines and the preceding information regarding the metods by which the various values
have been derived. '

The tidal currents were never found to be uniform from the bottom to the surface.
The variations with depth were different at the various stations. One example may
in this place illustrate the complicated character of the currents. Table 4 contains the
result of registration during May 17 to 20 and May 29 to June 2, 1923. From this
Table it is seen that theé ice and the upper 30 meters of the sea took practically no part
in the tidal movement. Between 40 and 45 meters strong tidal currents were encounte-
red, rotating clockwise and running with practically the same velocity in all directions.



Vol. IV. No. 5. DYNAMIC OF TIDES ON THE NORTH SIBERIAN SHELF 9
Table 3. Preliminary results of current measurements.
: Depth in Min. .
Geographical Pt . . .
positions Dooth w;hdlc? Max tidal current tidal | Ratio Dir.| Full or
No. Date epth ) tda ¢ Aoainst c:ri; Min. | of | new
Lat. Long. | ™ ;:;‘::e a| em/ (g;zf Tidal ::.n? / | Max. |rot.| moon
North West m. 8eC. | jirection) hour sec.
1 | Aug. 8—10 1922 . 71° 20° | 175°00" | 76 0, 20 16.5 S 9.5 180 | 0.9 | cl. | Aug. 7
East
2 | March 20—21 1923 . | 74° 11’ | 169° 45’ | 50 40 20.0 | S45°W | 84 18.0 | 0.90 | cl. | March 18
5 | Nov 24—27 1923 75° 12° | 159° 40’ | 38 28 95 | S55°W | 91 75| 078 | cl. | Nov. 23
6 | Febr. 6—9 1924 . 7% 11 | 157° 407 | 38 28 95| S5°W | 89 5.0 | 058 | cl. |Febr. 5
3 | May 17—20 and 74° 40’ | 166° 10’ | 56 0—56 38 | SH55°W | 8.2 80| 079 | cl. | May 16
May 29—June 2. 1923 May 29
4 | Aug. 27—Sept. 2. 1923| 76° 10’ | 164° 00’ | 64 0—64 65| S1I5°W | Ts 42| 065 | cl. | Aug. 25
7 | June 30 and July 3.

1924 . . . . .| T76°32 | 144°000 | 35 0-35 165 | S10°E 438 5.5 | 033 | cl. |July 2

8 | July 18. 1924 , . .| 76° 28 | 141°30’ | 22 0—22 38.0 | S45°E 3.0 50| 013 | cl. [July 16
9 | August 1. 1924 . .| 76° 36’ | 138°30' | 22 0—22 22.5 | S50°E 2.2 180 | 058 | ¢l- | Aug. 1

Table 4. Preliminary results of current measurements at station 3. North. Lat. 74° 40’
East Long. 166° 10' Depth 56 m. May 17—20 and May 29 to June 2 1923.

Max tidal current Min. . . . Number
Depth Against Tidal tidal }1%20 Dxreocft 1on of Remarxs
. S 1da. : . 1f-
m cm./sec. (true) hour c‘;;’:/‘;“ct‘  Max | rotation l;)?ariggg
0—30 To weak to be
35 62 |S50°W| 89 5.4 0.87 cl. 4 observed.
42 154 [S73°W| 89 129 | 0.84 cl. 4
46 110 |S29°W 7.2 8.8 0.80 cl. 2
50 54 |NST°W 6.8 2.8 0.52 cl. 4

The velocities decreased again rapidly when approaching the bottom, and the greatest
velocities occurred there earlier than above. At the greatest depth in which the tidal
currents were registred, 50 meters, the direction of maximum velocity deviated further-
more towards the right of the corresponding direction in greater distances from the bottom,
and the ratio between minimum and maximum velocity was smaller.

Finally a few data regarding the quality of the tides may be derived from the
current observations. If the maximum velocity of the tidal current in a constant depth
is plotted as a function of time, it is found to vary regularly during 14 days. The greatest
value u, evidently occurs at spring and the smalled u, at neap tide. Assuming that the
tidal currents are proportional to the semi-range of the tidal wave, and that this at spring
tide is equal to the sum of the semi-ranges of the two most important halfday-tides M,
and S; and at neap equal to the difference between these semi-ranges, we obtain

w M+ 8,
w, M,— S,

By means of this relation the half-day-index S,: M, can be derived, if current observa-
tions from any depth are available for a sufficiently long period. The time difference
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between full (or new) moon and the occurrence of the strongest tidal currents will evi-
dently render an approximate value of the age of the spring tide.

Table 5 contains a few values of the half daily index and the age of the spring tide
which have been derived in this way. ,

No conspicous daily variation of the currents has been observed.

Table 5. Preliminary results regarding the quality of the tide.

Geographical

!
E P - Age of
| position ing-
Period | . S| s
i Lat. Long. 2 :
i North Eas% " Days
{ | ]
March 1923 . . . . 74° 10/ 169° 035 | 27
August 1923 . . . . 76° 00’ 164° 1 0.5 2.6
June 1924 . . . . . 76°.30" 144° | 04 2.7
i | |

2. Representation of results.

We shall at first turn to the results of the current measurements. In Fig. 2 the
direction of the maximum currents at spring are plotted as arrows and the corresponding
tidal hours entered. The hours are written in Roman figures, the decimal fraction of
the hours in Arabic figures. The character of the tidal currents is indicated by ellipses.
The ratio between the axes of these is equal to the ratio between minimum and maxi-
mum current, and the direction in which the current rotates is indicated by arrow heads.
At stations where the mean tidal currents from the bottom to the surface have been
determined, the ellipses are fully drawn; where the observations have been limited to
one or two depths, they are stippled.

The most striking feature in this representation is, that the tidal currents rotate
clockwise at all stations. The fact that the direction of rotation is the same at all
stations, provides the strongest evidence that these currents cannot result from interference
between two simple waves, propagating in different directions, because the phasedifference
between two such waves must vary from place to place and according to the phasediffe-
rence under which the waves meet, regions with clockwise rotating currents must
alternate with regions with counterclockwise rotating currents. In order to demonstrate
this by an example Fig. 3 has been prepared. It is here supposed, that the rotary cur-
rents in latitude 75° North and longitude 165° East are produced by interference between
two waves of equal height but with a phase difference of 3 hours, one proceeding from
NE towards SW with tidal hour VIII at the place mentioned. and one proceeding from
NW towards SE with tidal hour V. The depth of the sea for sake of simplicity is
supposed to be uniform and equal to 50 meters according to which both waves progress
with a velocity of 22 m./sec. The coastline has been drawn as a fine dotted line to
facilitate comparison with Fig. 2, and simultaneously to indicate that Fig. 3 does not
represent an actual map of the regions in question. The fine lines runing NW—SE and
NE—SW marked in the Roman figures, represent the cotidal lines of the two waves
corresponding to the supposed velocity of progress. The directions are here referred
to meridian 165° E. From the cotidal lines it is seen, that the phasedifference between
the two waves is zero along the vertical lines marked N. Along these lines, therefore,
the tidal currents must run alternately South or North. Along the lines marked E the
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Fig 2. Tidal currents on the North-Siberian shelf.

Fig. 3. System of tidal-currents resulting from interference between two waves.
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difference in phase is 6 hours, and the currents run alternately West or East. In the
regions between the lines N and E the currents rotate counter clockwise, in the regions
between E and N clockwise, as indicated by the arrow heads on the circles which repre-
sent the character of the tidal currents in the central parts of these regions. The direc-
tion of the maximum tidal current changes within the regions between the lines N and
E, from South over SW to West and turns between E and N back again from West to South.

A comparison between the two figures shows that the constructed currents are far
more complicated than those observed. Attention may for instance be drawn to the cen-
tral parts of the figures, where the actual depth varies between 60 and 40 meters,
thus corresponding well to the supposed depth of 50 meters. If the clockwise
rotating currents in latitude 75° N and long. 165° E resulted from the supposed
interference, we should according to Fig. 3 have observed alternating currents running
North—South for a distance of 165 km. to the east of the place mentioned, and
alternating currents running East—West proceeding 165 km. to the west but we have
in both distances observed currents which rotated clockwise with maximum current to-
wards practically the same direction. Other attempts to explain the rotary currents by
interference have failed in the same way, eéven if the progressions of the asumed waves
have been brought in accordance with the actual depths. It is always possible to choose
one pair of interfering waves so that the observed conditions at one station can be ex-
plained, but every selection of waves involves consequenses which are in striking dis-
agreement with the conditions at other stations. From this inspection of the tidal cur-
rents alone we are therefore led to snppose that the tidal phenomena on the North Si-
berian shelf are created by one tidal wave. It will be shown later that the rotary cha-
racter of the currents can be explained in a satisfactory way as the result of the
action of the deflecting force of the earth’s rotation.

The simplest assumptions which in this place can be made regarding the relations
between the rotary tidal currents and the tidal wave, appear to be, that the tidal cur-
rents reach their greatest velocity at high-water and that at that time they run in the
direction in which the wave proceeds. The cotidal lines of the wave must be based
upon all available observations and according to the above assumptions be so drawn
that they:

1. agree with the observed tidal hours and «tidal hours of maximum currents»

2. run perpendicularly to the directions of the maximum currents.

In Fig. 4 all the main data contained in Tables 1 to 3 have been entered. The
depth of the sea is indicated by stippled isobaths for 25, 50, 75 and 100 meters, which
are based upon the soundings entered on the hydrographic charts of the Arctic Sea, publis-
hed by the United States Coast and Geodetic Survey and the Russian Hydrographic Office,
the latter containing the results from the expeditions with the ice-breakers «Taimir»> and
«Vaigach», 1912 and 1913, and the soundings taken during the drift of the «Maud» The
lines marked with Roman figures represent the cotidal lines which have been drawn
according to the stated principles. An inspection shows, that these lines unite all obser-
vations into a simple and consistent picture. In the region North of the New-Siberian
Islands there is a discrepancy between the time of maximum current and the time of
high-water and the cotidal lines have here been made to agree with the time of high-
water. Otherwise the mutual agreement between the various observations is evidently
very good.

The cotidal lines have a marked tendency to run parallel to the isobaths. The tidal
wave appears to enter the shelf from the North and to reach the region, northeast of
Cape Chelyuskin and north of the New-Siberian Islands at first. The observations from
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the latter region can hardly be united with the observation at Cape Chelyuskin otherwise
than by drawing the cotidal line IV in a great curve towards the south. This curve
seems to, correspond closely to the bay which the deep ocean forms in the northern part
of Nordenskiold Sea, indicating that the wave travals so rapidly in this deep water, that
it reaches the most northerly part of the shelf and the bottom of the deep-water bay
almost simultaneously. The 100 meters isobath actually represents in this region accor-
ding to the soundings made by the «Taimir» and «Vaigach» the border of the continental
shelf. In the regions northwest and east of Wrangell Island the cotidal lines have the
same tendency to follow the isobaths, indicating that the wave proceeds with a greater
speed due north of Wrangell Island than on the shelf northwest of this island. The
available soundings in this region show a marked increase in the depth towards north,
but whether this increase indicates the border of the continental shelf or not is an
open question. '

The observations at Cape Serdze Kamen have been disregarded, because the con-
ditions there are evidently complicated by a tidal wave entering through Bering Strait.

The course of the cotidal lines to which we here have arrived, differs entirely from
the course of the cotidal lines on the same shelf that were plotted by Rollin A. Harris
in 1911(%). Harris, however, based his result for this region mainly on three stations
Bennett Island, Pitlekaj and Point Barrow. He was led to the conclusion that the tidal
wave proceeds from Bennett Island to Point Barrow in a practically East— Westerly
direction, and that this course was necessitated by the existence of extensive masses of
land or shoals within the still unknown region of the Arctic territory.

J. E. Fjeldstad(®) in 1923 drew new cotidal lines for the Arctic Region, utilizing
the registrations from the stations Cape Chelyuskin and Ajon Island of the «Maud»-
Expedition. He finds, in agreement with the results represented in this paper, that the tidal
wave enters the North-Siberian shelf from the North, and concludes that the wave travels

* L.ec :
(* Litt om tidevandet i Nordishavet, Naturen V. 47. 1923 p. 161—175.
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directly across the Arctic Sea from the Spitsbergen—Greenland opening to Alaska,
without meeting obstructions formed by extensive masses of land. That the tidal wave
enters the shelf from the North is in agreement with the results represented in this
paper. It seems therefore, justifiable to conclude that the tidal phenomena do not indi-
cate the existence of land within the unexplored area. Fjeldstads cotidal lines on the
shelf itself differ, however, considerably from the lines drawn in Fig. 4. It seems
unnecessary to enter upon the differences, because the new cotidal lines are based upon
far more extensive observations than those previously available. Particular attention may
be drawn to the observations from Ajon Island and Bear Islands, because the circur-
stance that the tidal wave arrives 3 hours later at the Bear Islands than at Ajon Island
agrees perfectly with the conclusions regarding the direction of progress of the wave in
this region which were actually drawn from the current observations on the shelf before
the registrations at the Bear Islands had been carried out(').

The picture of the tidal wave on the North-Siberian shelf to which we have here
arrived, is comparatively simple -and unites as already emphasized all observations in a
satisfactory way. It may in this connection be mentioned, that the practically uniform
quality of the tide within the whole region (Tables 1 and 5) supports the conception,
that we have a single tidal wave before us. The result has, however, very little in com-
mon with the picture of a long wave which proceeds in a non-viscous fluid on a resting
basin under the influence of gravitational forces only. We shall draw attention to the
main points on which the observed conditions disagree with those which should have
been expected, if the wave had been of the above mentioned, simple kind.

1. The tidal currents do not run alternately in the direction in which the wave
proceeds or against this direction, but within the whole region rotate clockwise. At great
distances from the shores the difference between the strongest and weakest currents is
very small, but directly north of the New-Siberian Islands approximately alternating
currents are found at the stations which are nearest to these islands.

2. The tidal currents are not uniform from the bottom to the surface but the
phase and the direction of maximum current as well as the ratio between the minimum
and maximum velocities vary with the depth.

3. The time of maximum current does not correspond exactly to the time of high
water. This applies particularly to the region north of the New-Siberian Islands, where
the tidal currents reach their greatest velocities 1 to 2 hours before high water.

4. The velocity with which the wave proceeds differs considerably from the value
computed by means of the simple equation:

c=Vgh.

Where the currents run with approximately the same velocity on all directions the wave
proceeds too fast, and where the currents are approximately alternating, too slowly. South
of Station 1, for instance, the average depth is approximately 55 meters, giving a
computed velocity of progress :

¢ =Vgh =232 m./sec. as compared with 65 m./sec observed and south of Station
3 the average depts is about 50 meters giving:

¢ =V gh = 22.1 m./sec. as compared to 27 m./sec. observed. At Station 8 on the
other hand the velocity of progress corresponding to a depth of 22 meters is

¢ =V gh = 147 m./sec. as compared with 10 m./sec. observed.

() Radiogram to Norwegian Newspapers, f. i. Aftenposten. Dec. 4. 1923,
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5. The range of the tides varies within wide limits, from 210 cm. at Station 8 to
only 3 cm. at Bear Islands. A closer inspection reveals that the range decreases both
along the wave front, represented by the cotidal lines, and in the direction in which the
wave proceeds. The decrease of the range along the wave front is particularly conspicous
between the New-Siberian Islands and Point Barrow, where the observed values are
210 cm. and 14 cm. respectively. Referred to the direction in which the wave proceeds
the decrease takes place from the right side of the wave to the left side. The decrease
in the direction of progress is evident from the observations at Station 3, Ajon Island
and Bear Island, where the respective ranges are 18, 5 and 3 em., and from the obser-
vations at Point Barrow and Pitlekaj where the ranges are 14-and 7 cm. These varia-
tions cannot be accounted for if the above mentioned simple assumptions regarding the
character of the wave are maintained.

6. The quality of the tide shows small, but irregular variations ‘within the region

All these characteristic features lead to the conclusion, that it is not sufficient to
assume, that the tidal wave proceeds under the influence of gravitational forces only. It
seems necessary to take into account the effect of the deflecting force of the earth’s
rotation as well as the effect of the resistance, which is magnified by the turbulent
character of the tidal currents. This consideration suggested the investigation of long
gravitational waves on a rotating disc and of the influence of the eddy-viscosity on such
waves. The results show that all the characteristic features which have been pointed
out here, can be satisfactory explained, and confirm the view that the cotidal lines,
ranges and tidal currents, which are represented in Fig. 4, together give an approximately
correct picture of the tidal phenomena on the North-Siberian shelf at spring tide.

The reader who does not wish to enter upon the mathematical developments of
the following chapters may turn to Chapter 15 p. 55 where the theoretical results have
been summarized. '
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‘II. Long gravitational waves in a non-viscous, homogeneous fluid.

3. Waves in a resting basin.

In the following only long, proceeding, gravitational, plane waves will be dealt with,
meaning long waves proceeding under the influence of gravitational and inertia forces
only and with a straight wave front. We shall at first suppose the fluid to be non-viscous
and the motion free of turbulence, and may, therefore, base the considerations upon the
treatment of long waves in a rotating fluid which is given by Lamb(!). It may, however,
be of advantage to remember the equations for long, plane waves in a fluid in a resting
basin(®). '

We shall suppose the fluid layer to be unlimited and of even depth. The x-axis
shall be horizontal, coincide with the direction in which the wave proceeds, the z-axis
vertical and positive upwards. The ordinate of the free surface, which at the time ¢
corresponds to the abscissa 2 will be denoted by.

2+ ¢

where 2z, means the ordinate, when the conditions are undisturbed.

Since we are dealing with long waves only, we can place the vertical accelerations
out of consideration and regard the pressure at any point x, z as identical with the
statical pressure corresponding to the distance from the free surface, or:

P—DPo=90 (2 + {—2), (n

where p, is the constant pressure at the free surface, g the acceleration of gravity and g
the constant density.
Of (1) we find:

pre @)
The equation for the horizontal motion of fluid particles, since external forces are excluded,
has the form: '

: Du  ou ou 1 op

= il ol 4 3
Dt ot " "o 0 oz’ ®)
where u is the velocity in the direction of the z-axis. This equation in the present case
is simplified, because the term uz—z, when dealing with long waves, is small of second

order, and can.be omitted. We, therefore, find:

ou ila

B_t__—g e “)

The equation of continuity can be written:

ouw , ow

ox Vo (5)
(" L. c. p. 331.
(*) Lamb, L c. p. 271,
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where % means the velocity along the z-axis. From this equation, since the depth is
supposed to be constant, we obtain:

w=— | —de=—h—, (6)

where & denotes the depth. At the free surface:

o
z=h+¢ and W=,
and we therefore find:
ot ou
3 =t @

The equations (4) and (7) determine the motion of the fluid particles and the velo-
city of progress of the wave.
The deformation of the free surface may be represented by the equation

. l z
{=1{_,sin 2n (T_f) ®)
If the deformation is of a more complicated character, it can always be represented by a.
sum of terms of this form, but for sake of simplicity we will suppose that a single term

in sufficient. Equation (8) represents a wave proceeding an the direction of the positive
x-axis with the velocity:

[+}
[
SIS

) ’ (9) ’

where T' is the period length and L the wave length. We shall introduce:

on on
o= and H="F, (10)

where ¢ is the frequens of the wave. Equation (8) can then be written:
| { =1, sin (ot — ux) (11)
Introducing the value of £ in (4) and integrating we find:
u=gyg % sin (of — ux). (12)
From equations (7) and (12) we get: |
£ = 9"%0sin (ot — )

but this equation must be identical with (11), giving:

e—Vah. (13)

The velocity of progress thus depends only upon the depth, h.
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A comparison between equations (11) and (12) shows that the velocity reaches the
greatest positive value, i. e. the greatest value in the direction of progress, when the
wave height is greatest and the max. velocity is:

u’mu=g% c- —~—‘/v Co . (14)

The horizontal motion of the fluidparticles is furthermore independent of z; uniform from
the bottom to the free surface. ~ ,

Finally we shall compute the mean energy during one period of a column of fluid
with square section equal to the square unit. The potential energy due to an upheaval
or lowering of the free surface above or below the mean level is for x =, and ¢ = {,:

¢
E,= yefzdz = —gQC’

o

and the mean during one period is:

The corresponding mean kinetic energy is:

h T
o— oL LI _1 2
Ek—ngf‘?u dzdt—4ggé'o. (16)
o 0
The total mean energy is
— =1
E=FE,+ E =?99502 ‘ (17)

of which one half is potential and the other half kinetic. Since the mean energy depends
only upon the amplitude of the wave it seems justifiable to conclude that the amplitude
remains unchanged, if the depth changes in'the direction of progress, but the conclusion
is evidently only an approximation because all equations are based upon the assumption
that the depth is constant.

4. Long, gravitational waves in a rotating fluid.

We will next turn to waves in a fluid layer of even depth, rotating around a vertical
axis. The results may without great restrictions be applied to waves within a region of
not too large dimension on a rotating sphere.

The axis of rotation shall be taken as z-axis, and the x- and y-axes are supposed
to rotate in their plane with the given angular velocity w. The velocities of the fluid
particles relatively to these axes will be called u, v and w. The real velocities parallel
to the same axes are then:

u—owy , v+oxr , w

and the accelerations:

Du s Dv g Dw
jt——,?wv—wx , ﬁ—i—,?wu—wy ' D
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The ordinate of the free surface, when the latter is in equilibrium under the influence of
the gravitational and centrifugal forces, may be called z, We then have:

2y = % %z (#* + y*) + const. 1)

It shall be supposed, that the inclination of this surface is small, which means that
2
%r is a small quantity, where r is the distance from the axis of rotation.
If the ordinate of the deformed surface is called z, -} {, the pressure in any point
x, y, z is defined by:

P—Dpo=g90 (2 +(—2), &)

supposing as previously that the vertical accelerations can be omitted. From (2) we find:

19 or
TewT Y g
1 0p . s
——=—o —=.
e % Y= %%
. . D 0 . .
Assuming as previously, that g o be replaced by e finally get the equations

for the horizontal velocities in the form:

ou oc
—at—,Qwv——g——aac 8
@_{_2 — a_:
T w % —gay.

If w represents the velocity of rotation of the earth equations (3) can be applied to
waves in a basin of not too great dimensions at the poles. If the equations are to be
applied to waves in a basin in the latitude ¢ the vertical component of the velocity of
rotation :

o' = wsin ¢

must be introduced in equations (3). We shall therefore, with future applications in view,
write equations (3) in the form:

W
ot ox )
ﬁ)—}—lu;— —‘ga—c
ot oy’

where 2 now means the double angular velocity of rotation of the disc, but where we
shall later.introduce:
A=2wsin ¢,

where w means the angular velocity of rotation of the earth.
The equation of continuity can be written (eq. (5) to (7) of Chapter 3):

o _ Lm0t

= Ty ©)
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where % means the constant depth. This is evidently constant only when the bottom has
the same curvature as the free surface, defined by equation (1).

The following investigation is based upon equations (4) and (5), which can be inte-
grated in a few special cases.

5. Waves in an infinitely long, straight rotating channel.

Lord Kelvin has shown, that in an infinitely long, straight channel the equations (4)

and (5) are satisfied by the values:
2

= oe_Ty sin (ot — px)
v=20 ()
- )
when the z-axis is parallel to the direction of the channel. Substituting these values in (4)
Chapter 4 we find:

&y —*
u=g7°e < sin (ot — ) 2

and from the equation of continuity:
C == V gh, . (3)

According to the last equation the velocity of progress is not influenced by the rotation.
The exponential factor in equations (1) and (2) shows, that the amplitude of the
wave and the horizontal velocities decrease from one side of the channel to the other.
If the rotation is positive, i. e. takes places from the positive z-axis to the positive
y-axis, the amplitude decreases from right to left referred to an observer looking in the
direction of progress, if negative from left to right. If the breadth of the channel is
‘called b the amplitudes at both sides are respectively:
_ 4,
¢, and (ge ©
For a numerical example we may select 4 = 1.456.10 —* — the double angular velo-
city of the earth’s rotation, g =9.82 m. sec.—%, h=>50 m. giving ¢— 221 m. sec.™.
We then find the following relative values for varions values of b:

_t,
b o , Loe °©
km.
10 1.0 0.94
100 1.0 0.51
1000 1.0 0.002

The maximum horizontal velocities along the two sides of the channel stand in the same
ratio as the amplitudes. For an increasing breadth of the channel the wave seems to
proceed practically along only oné side of the channel.

6. Waves on an unlimited, rotating disec.

On an unlimited rotating disc the equations (4) and (5) of Chapter 4 are satisfied by:

¢ =={,sin (ot — ux)
ov 1)

=0

%y
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Equations (4) and (5) are reduced to:

%’tf—lv—gcocos(ot—,ux)
@)
a—t + Au=— 0
and
ot ou
F h P (3)
Of (2) we find:
g 2
Co = S sin (of — px)
I @
V=" o pe Pcos(ot—,ux),
and of (3)
h o .
C=%_—o’ 73 bo sin (of — ux)

If the last equation is identified with (1) the velocity of progress is found:

C—V-]/ =V ]/— | ‘(5)

where §=— (6)

Introducing this value of ¢ in equations (4) these can be written:

—1/9%v L ¢ in(ot—
m l/—l/ 25051 (ot — px) 0
U—fl/ Cocos (ot — px)

According to (5) the velocity of progress now depends not only upon the depth, &, but
also, supposing 4 to be given, upon the frequence of the wave, o, increasing, when the
frequence decreases or the period length increases. When, however, 6 becomes smaller
than 4, the velocity of progress becomes imaginary. This means, that waves of the kind
here considered cannot exist on a rotating disc, if the frequence of the wave is smaller
than the double angular velocity with which the disc rotates.

The wave motion which is characterized by equations (1) and (7) deviates essentially
from the waves previously treated. In them the motion of the fluid particles alternated
in or against the direction of progress, but equation (7) define a rotary motion. To the
motion in the direction of progress which may be called the longitudinal is now added a
motion along the wavefront which may be called transversal, and there is a phase diffe-
rence of } periodlength between the longitudinal and the transversal motion. If the
velocities of the fluid particles are represented by a central vectordiagram, the end points
of the vectors lie on an ellipse. We shall express this by saying, that the configuration
of the motion is an ellipse. The ratio between the axes of the ellipse, i. e. the ratio
between the min. and max. velocity, is
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and the major axis, i. e. the max. velocity, coincides with the direction of progress and
is reached when the wave reaches its max. height. The scalar value of the max. velocity
is now great compared with the amplitude of the wave and the depth. viz.:

_1/9v/_1 ¢, 8
um._]/hl/l_szco ®

approaching infinite values, when o approaches 4, if {, remaivs finite. The direction in
which the velocities rotate is negative or clockwise, if the rotation of the disc is positiv,
and vice versa. , .

The velocity with which the wave proceeds is finally great compared with the velo-
city of a wave of the same period length on a resting disc.

The mean energy during one period of a column of fluid with transversal section
equal to the square unit can be computed in the same way as previously (Chapter 3).

We find:
tr
B -1 dedt—"1 goty? 9)
p=-p9¢ | | zdzdt="F9geL’, ~
0 0
and
AT
= 1 1, . 1 148,
Ei= Tgf ~2—(u + v¥)dz dt = v, 991_8250 (10)
o 0
and the total energy:
= 1 ., 1
E—gyeio 1 _s* (11)

According to equations (9) and (10) the potential energy is no longer equal to the
kinetic, but the major part of the energy is present as kinetic.

It is of interest to determine the amplitude of the wave on the rotating disc such,
that the mean energy of this wave is the same as the mean energy of a corresponding
wave on a resting disc. According to equation (11) and to equation (17) of Chapter 3
we then have:

1 1 1
G907 gt =g 9Ly (12)

denoting the amplitude on the resting disc with . Of (12) we find:

N/ 1 |
Co=Co l/i—:s—z. . (13)

If the mean energy is to remain constant the amplitude must decrease with increa-
sing velocity of rotation until the wave degenerates, when 1=o.
Introducing the value of , in the equations for the horizontal motion we find:

*= V—Z— ¢, sin (ot — ux)

v=sl/%§o’ cos (ot — ux) ,

where it must be remembered that {, means the amplitude of a wave with the same
mean energy for A= 0.

(14)
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Comparing equations (14) with the equation for the horizontal motion in a wave
of the same period length on a resting plane ((14) Chapter 3) it is found, that the longi-
tudinal velocities remain unchanged when A increases from zero to any value smaller
than o, but as soon as A is different from zero transversal velocities are developed.
Simultaneously the velocity of progress increases and the amplitude decreases.

The following considerations may illustrate the physical meaning of the results which
are derived in this and the preceding chapter. The equations for the horizontal motion
on a rotating disc differ from the corresponding equations on a resting disc by the terms:

—Av and +4iu

These terms represent the force of inertia, which is generally known as the Coriolis force
or if geophysical problems are dealt with as the deflecting force of the earth’s rotation.
This force is directed perpendicularly to the direction of the motion. If all other forces
acting upon a body that was moving with a horizontal velocity v referred to the rotating
coordinate system, suddenly ceased to act, the body ‘would under the influence of this
force of inertia continue in an orbit which in the rotating coordinat system would be a
circle with radius:

v

R=-=.

The time required for one complete revolution in the inertia circle would be

on
’Q’ = —7 .
From the last equation we find:
on

i. e. that the frequence of the inertia-oscillation is equal to the double angular velocity
of the coordinate system. If the rotation is positive the direction of revolution in the
inertia circle is negative and vice versa.

The forces of inertia tend generally to preserve the kinetic energy. On an unlimited
disc this tendency is not prevented by any rigid boundaries for which reason the major
part of the energy in a progressive wave on a rotating disc remains kinetic. Since the
force of inertia is directed perpendicularly to the velocity the transversal velocities are
developed, and the particles of fluid describe ellipses. The smaller the difference between
the frequence of the wave and the frequence of the inertia-oscillation, the greater is the
part of the energy which remains Kkinetic, and the more the orbits of the fluid particles
approach circles. We here meet a kind of resonance phenomenon.

In a narrow channel the vertical walls must prevent a preservation of the kinetic
energy by the development of transversal motion. The force of inertia must here be
balanced by a transversal slope of the wave crest, resulting in a decrease of the ampli-
tude from one sich of the channel to the other. This may be expressed by saying, that
the effect of the inertia forces is to press the wave towards one side of the channel.
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7. Formal solution.

In a very wide, rotating channel a wave might perhaps be expected to be charac-
terized by a rotary motion of the fluid particles in the middle of the channel and alter-
ning along the walls. A wave of this kind, however, could. not exist in an infinitely long
channel, because the velocity of progress would vary with the distance from the walls
according to the development of the rotary motion, but it seems possible, that such a
wave could exist on a short stretch. A solution of the fundamental equations which
satisfies the boundary conditions in this case, seems impossible, but a formal solution,
which does not agree with any fixed boundary conditions may nevertheless. be of value
in future applications, because it represents a wave of an intermediate character compared
with the waves treated in the two preceding chapters.

The equations:

Wy — g
aa = T T I "
LW
at T T,
are satisfied by:
E—=tye” =" sin (ot — pua) )

x

u="9_297 Coe—_?ysin (ot — ux)

¢ o—
g _zy (3)
v=r- co——lrc" cos (ot — ux)
where
A—x
r_aoz——lx' )

and x a constant. Of the equation of continuity the velocity of progress is found,

R Ve %)

where as previously §=—

Introducing the value in (3) we find:

1 -2y .
i_—rgfoe s sin (0t — ux)

(6)
v—l/ I/ r’c° 7cosot—,ux)

These equations have the same form as equations (7) Chapter 6 except that s in replaced
by r. According to equation (6) the configuration of the motion is an ellipse with the
ratio » between the axises. If particularly » = 1, we find according to equation (4) and (5):

=0 and c¢=YVgh



Vol. IV. No. 5. DYNAMIC OF TIDES ON THE NORTH SIBERIAN SHELF 25

and the conditions correspond to a wave in a narrow channel;. if on the other hand

% = 0, we find:
r———l— d =7V gh ~————1
0-_8 an C = g 1 82

i. e. we find the conditions prevailing on an unlimited disc. If generally

0>x>4

the wave is of an intermediate character; the motion is rotary, but the ratio between min.
and max, velocity is smaller than on an unlimited disc. The amplitude decreases along
the wave front but less rapidly than in a channel, and the velocity of progress is greater
than in a channel but smaller than on an unlimited disc. The forces of inertia in this
case partly preserve the kinetic energy, and are partly balanced by a transversal slope
of the wavecrest. :

It may be of interest to draw attention to the fact that the wave according to
eq. (5) degenerates, when r —- 1. Negative values of 7, supposing 1 to be positive,
mean that the velocities of the fluid particles rotate counter clockwise. Kurthermore, the
slope of the wave crest is reversed both when r is negative and when r is greater than s.
It is difficult to understand that such conditions can be developed, and we shall not find
any applications to these cases later on.

The other results in these chapters, however, appear to be of importance for the
understanding of the tidal phenomena on the continental shelves, but before turning to
the applications we shall have to study the influence of resistance on the velocities of
the fluid particles, the velocity of progress and the amplitude of the wave.
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I[II. The influence of the eddy viscosity on long, gravitational waves.

8. Viscosity and eddy viscosity.

The equations for the velocities in a long, free wave, proceeding in the direction
of the positive x-axis in a viscous fluid on a resting disc, has the form:

ou __ 49 (1)
= "r Yo

where » is the coefficient of viscosity(). To this equation the equation of continuity
has to be added: .

h
oC- ou
= Jw® ®)
[
The corresponding equations for a long wave, proceeding in a fluid of uniform
depth on a disc which rotates with an angular velocity w = 1/2, are:

ou *u ot
T T 9%
_ \ ; 3)
ov *v Vi)
52=—lu+va—zg—g@
and a
ot ou , o
eyl
/]

A study of the influence of viscosity on long, free waves in a fluid on a resting
or rotating disc, has to be based on these equations.

Lamb has shown, that the direct influence of the viscosity on tidal waves is
extremely small. He considers a case in which a horizontal force

X = fcos (of + &) ®)

is assumed to act uniformly on an unlimited layer of water of constant depth % on a
resting disc. The equation for the horizontal velocities is then:

6u_

0%
a—t‘—”EQ'FX ' (6)

and the boundary conditions are
@ % =0 when z=0 and (2) Z—:=0 when z=h

The first condition expresses that there is no slipping motion along the bottom, the second
that no tangential forces are acting on the free surface. Writing (5) in the form:

X = fei(o+o (7
we obtain

(» Lamb 1. c. 542.
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__i_f' _cosh(l-{—z)ﬂ(h-—z)} ‘o4 o) )
U= {1 cosh(Z ) ph J°© ®)
where
¢

b=V 3, ®

When gh is a large quantity, equation (8) is reduced to:
we— (1 — e—U+Dpe) gitor+o)
¢

or, when the imaginary part is omitted:

u=—{—{sin(d+s)—e—ﬁ’sin(ot—ﬂz+e)} (10)

In equation (9)
» =0.0178 gr. cm.~! sec.”!,

the value determined for water by experiment, and

2 _ 12 hours

o
are introduced, giving f—! — 15.6. The last term in equation (10) disappears practically, when
pz = 2, which with the numerical value for g computed above, gives z = 31.2 cm. This
shows how imperceptible the direct influence of viscosity is upon the tidal wave. Lamb
adds, however, that it cannot be doubted, that the dissipation of energy through «tidal
frictions, which may take place, is caused by the irregular eddies, which are formed when
the velocity of the tidal currents increases in shallow water.

A motion, which is characterized by the presence of irregular eddies, is generally
called turbulent. When the motion of a fluid is turbulent, it then may be conceived that
every particle is moving with a certain average velocity to which the irregular velocities
which characterize the state of turbulence are added. As a measure for the turbulence
the mass of fluid which pr. square and time unit is exchanged between two neighbouring
units of volume may be introduced. This quantity has been called by W. Schmidt of
Vienna «die Austauschgrosse» and by L. F. Richardson the «eddy viscositys(*). The
eddy viscosity has the same dimensions as the coefficient of viscosity and is of the
greatest importance, when only the average velocities mentioned above are to be considered,
for it can be shown, that the dynamical equations for the average velocities of a fluid
in turbulent motion are formally identical with the equations for the instantaneous velocities,
but that the coefficient of viscosity which enters in the last case has to be replaced by the
eddy viscosity in order to make the equations valid for the average velocities.

If the laws of hydrodynamics are to be applied to problems concerning the motion
of the atmosphere or the hydrosphere, we pratically always encounter the case, that only
the average velocities are observed; the instantaneous velocities in the numerous eddies
being unknown and of little or no interest. In all such cases the coefficient of viscosity
must be replaced by the eddy viscosity in order to obtain agreement between observed
and theoretical conditions. This was done by W. Ekman, when developing the ideas of
F. Nansen, he advanced his theory of the drift-currents.

Ekman named the quantity which has here been called the eddy viscosity the
coefficient of virtual viscosity. This coefficient in the oceanic drift currents is according to
him and later investigators 1000 to 100 000 times greater than the coefficient of viscosity

) Weather prediction by numerical process. Cambridge 1922, where compilation of literature.
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for water. This shows, that the average velocities of the drift currents are very much
affected by the enormous value of the eddy viscosity.

There is no reason why the tidal currents should be less turbulent than the drift
currents. It seems judging from the results of the investigations of the drift-currents,
that a study of the influence of the eddy-viscosity on the tidal phenomena can be under-
taken by means of the ordinary hydrodynamical equation replacing » with the eddy viscosity
which we shall denote 7. In order to see how great influence may be expected we may
introduce :

7 =10 000 » = 178 gr. cm.~* sec.™*

in equation (9) and obtain then, making as previously '—%’«t= 12 hours, g~ =1560. From

this result it is evident that the last term in equation (10) is perceptible even at a distance
of 2=3000 cm. — 30 m. from the bottom. It may, therefore, be expected that the
velocities of the tidal currents and furthermore the height and the rate of progress of
the tidal wave in shallow water are modified on account of the resistance arising
from the irregular eddies.

A study of these modifications may be based on the equations (1) to (4) or if restricted
to the conditions on a resting plane on the equations (5) and (6) used by Lamb combined
with the equation of contipuity. The latter are, however, less adapted for the purpose
because the the height and length of the wave do not appear explicitly. We shall for
this reason make use of the first named only. The intention is, as emphasized, to investigate
the influence of the eddy viscosity on the average velocities and on the height and wave length
but since the equations are formally identical with the dynamical equations for a viscous
fluid, all results can be applied to long waves in a viscous fluid by absence of turbulence
by replacing the eddy viscosity with the ordinary viscosity.

It may be of advantage before proceeding further to discuss the eddy-viscosity
briefly. The main difficulty that we shall meet, is that the eddy viscosity is far from
being constant. The variations of the eddy viscosity in the sea have not been much
studied but the corresponding variations of the eddy viscosity in the air have been made
subject to extensive investigations. The conditions in the sea and the air are closely rela-
ted, for which reason it is justifiable to assume that the rules for the variation of the
eddy viscosity in the air are valid for the corresponding variations in the sea. On the
ground itself the turbulence must be zero and observations show, that the eddy viscosity
directly above the ground is very small. The eddy viscosity increases very rapidly when
ascending from the ground, and even from a distance of about 10 meters and upwards
attains an amount, which on an average seems to be constant but which in single cases
mainly depends upon the stability of the atmosphere towards vertical displacements. The
eddy viscosity is very small if the stability is great, when for instance the temperature
increases with altitude, because the stability then is a direct hindrance against the
exchange of air between different horizontal layers. On the other hand, the eddy viscosity
is very large in unstable equilibrium.

An introduction of an eddy-viscosity which varies with altitude gives the equations
which are to be integrated, a form which cannot be solved unless very special assump-
tions regarding the variation with altitude are made. This introduction, therefore, is of
small value, but by assuming a constant eddy viscosity valuable results have been
derived, e. g. regarding the variation of the wind with altitude. If it is supposed, that
no slipping motion exists along the ground, a qualitative agreement between the theoretical
and the observed change of the wind is found, but the quantitative agreement is poor,
particularly because the velocity of the wind increases far more in the lowest meters
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above the ground than required by the theory. This is evidently caused by the rapid
increase in the eddy viscosity directly above the ground. It is possible to obtain a better
agreement, except for the lowest layer by introducing an emperical law for the resistance
against the motion of the layer immediately above the ground and, as previously, regard
the eddy viscosity as constant above this layer. The main point is, however, in this
connection that valuable results are obtained when the eddy viscosity is regarded as
constant in spite of the great variations which this quantity may show in single cases.

Applying these results to the present problem, we may expect to obtain results
which give qualitative agreement with the observed values by assuming no slipping
motion along the bottom, and a constant eddy-viscosity from the bottom and upward,
but it is not unlikely, that better quantitative agreement can be obtained by assuming that
a layer close to the bottom glides along the latter. We shall try to solve the equations
in both cases. Furthermore we shall consider a wave, which is propagating between two
boundaries, the lower rigid and the upper of such a nature, that it makes no resistance
towards vertical, but a great resistance against horizontal diplacements. This case is of
particular interest for the study of the progress of the tidal wave in a shallow, ice-
covered sea like that on the North Siberian shelf.

9. General solution for waves in an unlimited layer.

The general equations on page 26 have been solved only for waves proceeding on
an unlimited disc in a layer of homogeneous fluid of constant depth. We shall, therefore,
at once turn to this case. We shall as previously (Chapter 6) assume, that the wave
varies in the direction perpendicular to the wave front only. This direction will be
chosen as x-axis. The equation (3) and (4), Chapter 8, in which we have now to replace
v by 7, then take the form:

a_“_1 Pu__ 0L
a TG T T Iy
1
w o o i)
. ot ‘u Urr
and
3 o
0 u

In these equations w and v designate average velocities as defined above. It is
evident that only these average velocities enter in the equation of continuity, because the
convergences or divergences in the numerous eddies are of no account for the height of
the wave.

We have previously seen that equations (1) and (2), omitting the terms representing
the influence of the eddy viscosity, are satisfied by

¢ =2¢, sin (ot — ux) ' 3)

According to this equation the maximum height of the wave is independent of z.
This involves, as we have seen, the circumstances that the energy of the wave is constant
and independent of x. This solution can no longer be valid, because the energy of the
wave is dissipated through the turbulent motions and consequently the energy and the
height of the wave must decrease in the direction in which the wave proceeds. As an
assumption we shall therefore introduce:
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{ =/f(x) sin (ot — px), 4
where f(x) represents an unknown function. Writing:
£ = — i f(a) esor=s )
we obtain
ot —n =g {uf@ +if @) e ©

ov v

Eliminating v we obtain an equation with % only that is satisfied by the value:

"= Z;TiT g {1, wf@) — () }{Cleu+aﬁlz - Cye—UHBe |- Clgi-Hope) | Ce—U+0bri— ,,} gilot—p2)

W)
where C,, C;, C; and C, are constants which are to be determined by the boundary
conditions and where:

s -1 o —1

The function f(x) can now be determined by means of the equation of continuity
which leads to

— 0t lr@ + i2ure — @) [rei—otw ©)

where ¢ (¢) represents the term in the last brackets in equation (7).
Equation (9) is evidently satisfied by

fla)={oer= (10)

provided that u and y are roots in the equation:
h
g fwr— ity — ) 9@ de =0 (11)
95— @ uy — 7%y | @
0

The exponent y will be called the exponent of damping. We thus arrive to the
result, that the amplitude of the wave changes in the direction of progress according to
the exponential law expressed by (10).

Of equation (11) we shall not seek the quantities 4 and y, but instead the velocity
with which the wave proceeds:
¢— “LT“ _° (12)

and the ratio p, which later will be referred to as the coefficient of damping,

(13)

e
P=u
Equation (11) can then be written.

h

a0+ i)’ffp (e) dz = 1. (14)

0
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Introducing the value of f(z) in the equation for u, and computing v by means of
(6), we finally get:
o

4= g Lo (P O Cuet g Qo (It ey Cgmti e — geilon—se -

v = ;%1,% Loe 7= (p F-o)| — Cie™ B Cre— B |- Cyet+) B O e —+H0Br— 1]e*'<‘"—m=>
These equations are valid for all values of o, which are greater than 1. If the ori-

ginal wave is composed of several waves
" — — il elont—pnd)

where o, > 4 the velocities can be represented by a corresponding number of equations
of the same form as (15).

The equations (14) and (15) will now be further discussed by determining the con-
stants () to C, by means of varying boundary conditions.

10. Free surface and no slipping motion along the bottom.

We will at first suppose that no slipping motions take place along the bottom.
The boundary conditions are then

Z2=0,u=v=20
ov

and z—h,az F

=0
where the last condition again means that no tangential forces are acting upon the free
surface. Determining the constants C; to U, by means of these conditions we obtain:

o’- e o—Acosh(I+9) B (h—2)
¥==3 pg—ei’(p—l-i)[l——é ¢ cosh (14 4) B, h
106—2cosh(1+472)p,(h—2)
T2 o cosh (1 4 2) By h
. 0’ e 10— 4 cosh(Z+412)Bi(h—2)
= Py—e"(p-{—')[ +2 c cosh (1 + 9B,k
1o+ 2cosh(7+9)B,(h—2) i (0t — )
2 o cosh (1 4 2) 8, h }e

] e (ot—pz)

1)

and:
—%ﬁ(p+i)’[1—; oléﬂ htgh(1+z)ffl
10—{—/11 )
— g T e a s =1 @

Omitting the imaginary parts of (1) we get:

o* g¢ .
U= _z -q_coe—yz [(1_qa1—7”2+qu1 =+ prd,) sin (ot — px) —

—p(l—qa‘—ra,—ibl—i b,) cos(ot—,uw)J
gt ; e ®)
v=a_5 7" e~rx [(7 + ga, — ra; — pq b, +prbs) cos (ot — px) +

+p(%+qal—ra, +%b,—% bg) sin (ot —— ,ux)]
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where :
_16—1 _1o+414
=7 o "T2 ®
0 — cosh B, (2h — 2) cos B, z - cosh B, z cos B, (2h — 2) (5)
1 cosh2B, h+ cos2p, h
and
b — sinh B, (2h — 2) sin B, z 4 sinh B, z sin B, (h —2) (6)
L=

cosh 2 8, h + cos 28, h

and where the expressions for @, and b, are similar those for @, and b, except that f,
is replaced by ;. Separating the real and imaginary parts of (2) we find:

d 2p(1—qd,—rd)+(p*— (B, +rBy) =0 @)
an ‘

(,1!%2;_296_;:[(1—p2)(1—qu-—rA,)—]—,?p(qu +rBB)]=1 (8)
where:

k
A —-z-fad 1 sinh28h +sin28,
2 =% ) M% = 9B hcosh 28, I + cos2B, h
o

h
Bl=ifb1dz _ 1 sinh 28, b —sin 28, h
h 2B, hcosh 28, h + cos 2, h
0
and where 4, and B, are expressed similarly to 4, and B, replacing 3, by f;.

We shall at first discuss equations (7) and (8). These are not well adapted for an
analytical discussion, and it is therefore necessary to compute numerical values of p and

¢ for various values of gh and %. The coefficients A, B, A, and B, can in fact be

regarded as functions of gh and s because according to (8) Chapter 9 and (9) Chapter 8
we have

B — "_2_47‘7_1=]/1+sﬂ and ﬁ2=]/£2_7_l=1/1—85 (11)

= . 12
where s =— (12)

The coefficients ¢ and » are functions of s only.
Instead of tabulating ¢ we shall tabulate the ratio

2
where ¢ =Vgh I/&Tg_ﬂ (14)

the velocity which the wave should have by absence of turbulence.

The result of the numerical computations is given in Tables 6 and 7. From these
Tables new values have to be derived in order to be interpreted, because we are not
concerned with the quantitatives p and w but have to discuss how the exponent of damp-
ing y, and the actual velocity of progress ¢, vary under different conditions. Before
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doing this it may be of advantage to repeat the relations between these different quanti-
ties. According to (13) and (14) we have

c=wBh,s)V gh l/li—s’ (15)

where by writing w (Bh,s) we indicate that w is a function of gk and s.

Table 6. Table 7.
The ratio p = % as function of gk and s. The ratio 76 as function of gh and s.
0
2 )
8§ = — § = —
8h ¢ gh ¢
00 | 03 0.6 0.9 0.0 0.3 06 0.9
0.2 0.97 0.97 0.98 0.98 0.2 0.22 0.22 0.19 0.09
0.4 0.88 0.88 0.89 0.90 0.4 0.43 0.41 0.36 0.18
0.6 0.75 0.76 0.77 0.78 0.6 0.60 0.57 0.48 0.26
0.8 0.61 0.63 0.65 0.69 0.8 0.72 0.70 0.58 0.30
1.0 0.48 0.51 0.57 0.68 1.0 0.79 0.77 0.65 0-35
1.2 0.38 0.40 0.50 0.67 1.2 0.84 0.82 0.71 0.40
14 030 | 0.33 0.44 0.67 14 0.86 0.84 0.76 0.46
1.6 0.24 0.27 0.39 0.67 1.6 0.88 0.87 0.80 0.51
1.8 0.20 0.23 0.34 0.66 1.8 0.89 0.88 0.84 0.56
2.0 0.16 0.19 0.29 | 0.63 2.0 0.90 0.89 0.86 0.61
2.5 0.124 | 0.140 | 0.212| 0.57 2.5 0.92 0.91 0.88 0.72
3.0 0.099, 0.105| 0.162| 0.48 3.0 0.93 0.92 0.90 0.78
4.0 0.071| 0.080| 0.100| 0.34 4.0 0.94 0.93 0.92 0.84
5.0 0.055| 0.061| 0.084| 0.23 5.0 0.95 0.95 0.93 0.88
oo 0.000 | 0.000| 0.000| 0.000 00 1.00 1.00 1.00 1.00
Correspondingly, we write.
v =p (Bh, s) 1 (16)
Introducing
on
- 7 17
cT a7)

where 7' means the period length of the wave, we obtain from (16) and (15):

1 % pifhs)
r= 1y VT e 9 s

We may now discuss the velocity of progress under various conditions. We have
then to remind ourselves of the definition of 8

showing that $h depends not only on # and h but also on 7. From this it may at once
be concluded that the velocity of progress is no longer the same for waves of different

periods, even on a resting disc, assuming % and h to be constant, but that it varies with
5
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the length of the period. We shall, however, at first regard 7T as constant in order to
find how ¢ varies with gh and 4, For this purpose we write

e = Vagh-w(Bhs) f(9) (20)

By means of the tabulated values of w we can derive the relative values of ¢ that are
compiled in Table 8.

Table 8.

as function of gh and s assuming 7' constant.

gh

Bh
0.0 0.3 0.6 09

0.5 052 | 0.52 0.52 0.50
1.0 0.79 0.81 0.81-| 081
2.0 0.90 0.93 1.06 | 1.41
3.0 0.93 0.96 1.12 1.78
4.0 0.94 0.98 1.15 1.92
5.0 0.95 0.99 1.16 2.01
0o 1.00 1.05 1.25 2.29

The first striking feature is that the velocity of progress by presence of eddy-
viscosity is always smaller than the corresponding velocity for 5 = 0 (8h = o0), the next,
that the reduction of the velocity is much greater on a rotating than on ‘a resting disc.
This leads us to the circumstance that the velocity for very small values of ph decreases
in increasing speed of rotation, but for greater values of ph the normal increase is found
though smaller than in absence of turbulence. Small values of Bh correspond by given
values of h to great values of # and vice versa.

We will next turn to the velocity of progress for waves of various period lengths.
The conditions, however, are essentially different on a rotating and a resting disc for
which reason it is necessary to treat the two cases separately.

We will first regard the conditions on a resting plane (s = 0) where

¢ =Vghw (8h) (21)

We may select a wave of a given period length T, and compare the velocity of this
wave with the corresponding velocities of waves of the period lengths T =n T, where n
may have any value between 0 and oo. ‘

For this purpose we write

1/ # _ 1 22)
ﬂ n 11117 V}T ﬂl

where B, evidently means the value of B corresponding to the assumed values of 7

and 5. Introducing 22) in (21) we obtain

c=]/g_hw(

1
_— (23)
Vn, B, h)
and can tabulate ¢ as a function of # for various values of g, h. The result is compiled in

Table 9.
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Table 9.
—°_ for waves of various relative period lengths on a resting disc.
Voh
n
Ak 1 |- 2 3 4

0.5 0.52 0.38 0.32 0.28
1.0 0.79 0.68 0.59 0.52
2.0 0.90 0.87 0.83 0.79
3.0 0.93 0.91 0.89 0.87
4.0 0.94 0.92 0.91 0.90
5.0 0.95 0.94 0.92 0.92
00 1.00 1.00 1.00 1.00

We are only here concerned with the variation withen the rows because the
variations within the columns which depend upon variations of g,k by constant value of
T have already been discussed. The table shows that the velocity in given values of
and h decreases with the length of the period. The shorter waves travel faster than the
longer on a resting disc.

On a rotating disc the conditions are far more complicated. We may again introduce

T=nT,
and obtain
s=i=n-i=ns1 (24)
o 0y
Equation (15) may then be written:
c=Vgh-wB h,s,,n) 1 (25)

1 — n?s?

We may, therefore, proceed in such a manner, that we select a value of s; and tabulate
¢ for various values of 8,k and n, but we have to consider that no values of » are
allowed that make s =ms, > 1. It does not matter what value we choose for s. 1f
we make s; small we may study all possible cases with the above mentioned restriction
by giving n values larger than 1, if we choose s; close to 1 we may give n values
smaller than 1. We may chose s, = 0.3 and give n the values 1, 2 and 3. The result
of the computation is represented in Table 10. ‘

Table 10.

]/L—h for waves of various length of period on a rotating plane.
9

Bih n=1 2 3

0.5 0.52 | 0.40 0.31
1.0 0.81 0.67 0.57
20 0.93 0.96 0.90
3.0 0.96 1.08 1.25
4.0 | 098 1.11 1.57
5.0 0.99 1.14 1.76
00 1.05 1.25 2.29
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We are again concerned with the variations within the rows only. These show that
the law already stated for waves on a resting disc only holds good for small values of
B.h, only then do the shorter waves travel fastest. When Sh is large the conditions are
reversed, the longest waves have the greatest velocities. In intermediate values of fh
a maximum of velocity is found in a certain period length, both shorter and longer waves
proceed with smaller velocities. ’

A numerical example may illustrate the content of the tables. Assuming T, =12

; __Rn — —3103% — —1gpe.—1
hours viz. 0—12-3600—1.45-10 , h=30 m. —3.10% cm. and 5 = 163 gr.cm.~"sec.”", we

find g = 0.667 .10~ and gh = 2.0. From Table 8 we learn, that this wave proceeds on
a resting dise (s = 0) with a velocity ¢ =V gh - 0.90 — 15.4 m/sec. 1f the disc rotates

with an angular velocity o =%= 0.22 .10-* making s = 0.3 we find

¢ = Vgh-0.93 = 15.9 m/sec.

If o increases to 0.435.10—* or 0.655-10—4 we find the corresponding velocities to be

respectively -
¢ = Vgh-1.00 =182 m/sec. and ¢ = Vgh- 141 = 24.1 m/sec.

From Table 9 we find that a wave with the double period length, 7'= 24 hours,
on a resling disc proceeds with the velocity ‘

¢ = Vgh-0.87 =149 m/sec.

If the period length increases to 36 or 48 hours we find the corresponding velocities
¢ — Vgh-0.83 = 14.2 m/sec. and ¢ = Vgh-0.19 = 13.5 m/sec.

From Table 10 we find that a wave with the double period length, T'= 24 hours on a
disc which rotates with an angular velocity o = 0.22-10~* proceeds with a velocity

¢ = Vgh-0.96 — 16.5 m/sec.
and that the velocity of a wave with a period length of 36 hours is

¢ = Vgh-0.90 — 15.4 m/sec.

The relative values of the exponent of damping, y, can be represented by a set
of similar tables. The considerations which lead to the various forms of the tables are
the same and a repetition of these is unnecessary.

Table 11 corresponds to Table 8 and shows the relative variations of y with gh
and s, assuming 7' to be constant.

Table 11.
y YV 9h a5 function of gh and s, assuming T' constant.
o
—— =
h
i 0.0 0.3 0.6 0.9

0.5 1.57 1.58 1.60 1.66
1.0 0.61 0.63 0.70 0.84
2.0 0.18 0.20 0.28 0.45
3.0 0.11 0.12 0.14 0.27
4.0 0.07 0.08 0.09 0.18
5.0 0.06 0.06 0.07 0.12
00 0.00 0.00 0.00 0.00
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The damping increases by increasing velocity of rotation, and the increase is much
greater in larger values of gh than in smaller. The ratio between the exponents for
s— 0.9 and s — 0.0 has for ph = 0.5 the value 1.06 for Sk —=5.0 the value 2.0.

Table 12 corresponds to Table 9 and shows how waves of various period lengths
are damped on a resting disc.

Table 12.

y V—fh for waves of various period lengths on a resting disc.

Aih T
1 2 3 4

0.5 1.57 1.06 0.93 0.82
1.0 0.61 0.50 0.43 0.39
2.0 0.18 0.17 0.16 0.15
3.0 0.11 0.085 | 0.078| 0.076
4.0 0.075| 0.060| 0.050 | 0.045
5.0 0.058 | 0.047 | 0.038 | 0.033
oo 0.000 | 0.000 | 0.000 | 0.000

The main result of this table is, that the shorter waves are damped more rapidly
than the longer. The difference in the damping is greatest for very small values of gh
and considerable for large values, but has a marked minimum for intermediate values.

On a rotating disc the conditions are far more complicated. This is evident from
Table 13, which corresponds to Table 10, and contains the relative values of y for waves
of various period lengths assuming s = 0.3 for the shortest wave.

Table 13.

gh : o :
7 Kog— for waves of various period lengths on a rotating disc assuming s, = 0.3
1
for the sbortest wave.

h
B 1 2 3

0.5 1.58 1.14 1.14
1.0 0.63 0.53 0.46
2.0 0.20 0.23 0.25
3.0 0.118| 0.125| 0.18
4.0 0.082 | 0.078| 0.127
5.0 0.063 | 0.054 | 0.095
oo 0.000| 0.000| 0.000

We find for small values of 8, k the rule which was stated for waves on a resting
plane; the shorter waves are damped more rapidly than the longer. The same rule is
also valid for larger values of B, &, if the value of s=ns for the waves which are
regarded is considerably smaller than 1. For intermediate values of B, h we find the
rule reversed; the longer waves are damped most rapidly and the same is true even for
greater values of B, h if s=mns, approaches 1,
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As a numerical example we may introduce the same values for 7', h and 5 as pre-
viously, obtaining gh = 2.0. From Table 11 we learn that the exponent of damping for
this wave on a resting disc (s = 0) is

o
}’ _ —. 0.18 = 0,15 . 10—7 Cm.—l
Vh

The amplitude of the wave can therefore be expressed by the equation

£ =1, 01510

where x is measured in cms.. Expressing x in kilometers we find

L =1¢,e015.10%=

The amplitude consequently decreases over a distance of 100 km. t»

¢t = 0.86 ¢,

and over a distance of 1000 km. to

[ =0.23¢,

An extension of the example along the lines followed on page 36 seems unneces-
sary. The preceding discussion shows that the waves are greatly influenced by the eddy-
viscosity and shows the lines along which these modifications take place.

We will next turn to a brief discussion of the velocities of the particles of fluid.
These are still more complicated than the rate of progress and the damping of the wave
because they depend on all the variables already dealt with, and furthermore upon ¢,
x, z and (. v

From equations (3) it is evident that the variations with ¢,  and {, are simple.
The amplitudes of the velocity components are proportional to { and the amplitudes and
the phase angles decrease, when x increases from x, to x,, the first in the ratio e =7%::e—7%,
the latter with the amount u (z, — x,) where y and u under the given conditions have to
be determined by means of the equations (7) and (8), or the preceding tables.

The equations (3) are else not adapted to analytical discussion, for which reason it
again is necessary to compute numerical values in order to demonstrate how the character
of the motion varies with the distance from the boundary surface, z, under different
ccnditions. Making z = 0, equations (3) can be written in the form:

. . 2
u = (M cos ot 4 N sin ot)as—o_Tgy%
’ . O'2 Co (26)
v = (P cos ot + QSXDOt)O.g—_z—gg—c—’

where the meaning of the letters M, N, P and @ is evident by comparison with (3).

~ These equations define the curve, which during one period is described by the end
point of the vector which represents the velocity, previously called the configuration of
the motion. It can easily be shown that any set of equations of the form (26) represents.
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an ellipse and consequently we learn from (26) that the configuration of the motion is
elliptical in all depths and under all conditions. The motion in any depth can therefore
be fully described by means of the following four quantities (see Fig. 5).

Y

o X

v V™ et-6t+t

Fig. 5.

The scalar value of maximum velocity, V.

The ratio between the scalar values of minimum and maximum velocity, .

The angle of orientation which the major axis of the ellipse forms with the positive
x-axis, a. -

4, The phase difference expressed in degrees between time of maximum velocity and
time of maximum wave-height, z.

w o=

These four quantities can be computed from the coefficients 3, N, P and @ by
means of the following formula, which can be derived by simple reckoning(*):

Do
-1

2V =L M T O N — PPV — @ F P D

o — 12

oV O YO P F N — PY -V — QF F (N PF (29

- MP4NQ
&= A N — (P Q)

(29)

_MN + PQ

P (@ 9

tg 2r

The sign of the minimum velocity, »V, indicates the direction in which the velocity
rotates. In positive, or counter-clockwise rotation of the velocity, the sign is positive, in
clockwise rotation, it is negative.

The sign of the angle a is positive if the maximum velocity, corresponding to maxi-
mum height of the wave, lies to the left of the x-axis, negative if it lies to the right. The
maximum velocity is reached before the wave reaches maximum height if 7 is negative,
and after if v is positive.

The maximum velocity itself will be expressed in fractions of the velocity which
would be found on a resting plane with absence of eddy viscosity, supposing the ampli-

(') W. Werenskiold: An analysis of current-measurements in the open sea. Det 16de skand. natur-
forskermote, 1916 p. 360—383.



40 H. U. SVERDRUP Geof. Publ.

tude to be {,, This maximum velocity which will be called normal according to (14)
Chapter 3 is:

__ co
Vo—=Voh-22 (31)

Introducing (31) and (15) p. 33 in equation (27) we find:

1=]/ ¢ 1 VM+Q'+ N —P;P+VIM—QF + N+ Py (32)
¥, o*— 12 2 w (Bh, s) :
The square roots have to be computed by means of equation (3) and the value of w to
be introduced from Table 8.

If s= 0 we have v.—=0 and the ellipse is degenerated to a straight line, coinciding
with the direction of the z-axis. In any depth the motion can then be characterized by
the two quantities ; and =

)

Tables 14 and 15 contain the computed values of these quantities for various values

of ph and Be. '

Table 14. Table 15.

71{ as function of Sk and gz; s = 0. 7 as function of Bh and Bz; s = 0.
0
ph ' ph

T os 20 | 50 oo o 20 5.0 oo
05| 0.60 0.63 0.57 0.54 05| —38° | —22°| —28° | —28°
1.0 1.06 0.90 0.86 1.0 —12° | —18° | —18°
2.0 1.32 1.12 1.06 2.0 — 3| — £ — &
5.0 1.05 1.00 5.0 0° 0°
2 1.00 oo 0°

The content of these tables is perhaps best illustrated by an example. Assuming
fh=250 we find from Table 14 that the max. velocity at the -surface, fz — 8h, is
1.05 times greater than it would have been with absence of turbulence, and from Table 15,
that it occurs when the wave reaches the maximum height. At a distance from the
bottom z = 0.1 h corresponding to fz = 0.5 the maximum velocity is 0.57 of the normal
and occurs 28° earlier than at the surfaces. The result that the velocities at the surface
with presence of turbulence can exceed the normal values considerably, is accounted for
by the fact that the gradients of the wave are increased because the velocity of progress
has been reduced. .

The main result which will be emphasized is, that the max. velocities decrease towards
the bottom and here occur at an earlier moment than at the surface.

We shall next assume

—=8=0.9.
o

In this case the velocities are rotary and we have to compute the ratio between the axes
and the angle of orientation of the ellipse that represents the configuration of the motion
in order to describe this in an exhaustive way. The four quantities which characterize
the motion have been compiled in Tables 16 to 19 for various values of Sk and pz. We
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may again take a numerical example. Assuming ph = 5.0, we find, that the maximum
velocity at the surface, 8z — ph, is 2.92 times greater than it had been on a resting plane
with absence of eddy viscosity, it is reached 2° after the wave has attained the maximum
height, and is directed 12° to the right of the direction in which the wave propagates.
The ratio between the minimum and maximum velocities is — 0.91, where the sign —
indicates that the velocity rotates clockwise. In the distance z = 0.1 h from the boundary
surface the maximum velocity is only 0.69 times the normal; it occurs 24° earlier than
at the surface, is deviated slightly less from the z-axes, and the ratio between minimum
and maximum velocity has decreased to — 0.69.

Table 16. . Table 17.
?V as function of gh and fz; s =0.9. 7 as function of ph and fz; s = 0.9.
0
B8h Bh
1705 | 20 5.0 o< # o5 20 5.0 o0
0.5 | 0.62 0.90 0.69 0.54 05| —37 | —16° | —22° | —29°
1.0 1.50 1.10 0.96 1.0 —10° | —10° | —25°
2.0 1.94 1.76 1.54 2.0 — 5| — 3| —18°
5.0 292 2.35 5.0 2° | — 10°
oo 229 oc 0°
Table 18. Table 19.
r as function of ph and gz; s = 0.9. a as function of ph and Bz; s=109.
Bh - Bh
2 05 20 50 o 1 05 20 50 o
0.5 | — 0.03 | — 0.65| — 0.69 | — 0.68 05| —9° | —22° | —11° | —10°
1.0 —0.71 | — 0.78 | — 0.75 1.0 —31° | —15° | —11°
2.0 —0.74| — 0.87| — 0.84 2.0 —35° | —16° | —12°
5.0 — 091 — 0.90 5.0 —12° | — 2°
oc : — 0.90 oc 0°

A comparison with Tables 14 and 15 shows that the effect of the turbulence is much
greater for s — 0.9 than for s —0; in Table 12 we thus find the greatest velocity for
Bh = Bz =2.0; in Table 16 for ph = pfz=1>5.0.

Complete tables have not been computed for values of s between 0 and 0.9 but it
is evident that for any allowed value of s we find, that the motion varies in generally
the same way as for s— 0.9. The most important result regarding this variation is that
the maximum velocity decreases towards the bottom where it occurs at an earlier moment.
Furthermore, that the configuration of the motion compared with the configuration with
absence of eddy viscosity is changed in such a way, that the ellipse which represents this
configuration at a short distance from the boundary surface is narrower and turned to
the right of the direction of propagation instead of coinciding with that direction. If parti-
cularly Bh is large the effect of the eddy viscosity is imperceptible in large distances
(last columns of tables) and we find that the configuration of the motion changes in the

stated, characteristic way, when approaching the bottom.
6
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We will here confine ourselves to the statement of these results. The tables show
several peculiarities which are evidently closely connected with the laws for the progress
and damping of the wave but it seems unnecessary to enter upon them.

A study of the variations of the velocities within waves of different period lengths
might be of interest, but would require a great amount of numerical computations and
the results could at present not be applied to any observed conditions.

The mean velocity from the boundary surface to the free surface in the direction in
which the wave proceeds can be expressed simply. This mean velocity is:

h
ﬂ=%fudz. - (33)
/]
We find:
ﬁ=c—cﬂ——sin(nt+a—,ux) (34)
WVitr
where
tga=p. (35)

There is consequently a phase difference between the height of the wave,
¢ =y e~ 7% sin (ot — ux)

and the mean velocity in the direction of progress. Since p is always positive, the
maximum mean velocity always occurs before the maximum height is reached. -
The equation: '

(36)

P S—
hV1+p
gives the relation between maximum mean velocity, velocity of progress, wave height and
depth if the wave is damped. By absence of eddy viscosity we have ey == Umae PECAUSE

u is then independent of z, furthermore, ¢ =Vg7171it; and p =0 and when parti-
—

cularly s = 0 the equation (36) is reduced to the well known term:

u=1/%§ . ’ (37)

It can be proved by means of the general equations in Chapter 8 that the expres-
sion for the mean velocity in the direction of progress is valid for any value of the
constants of integration C to C, and furthermore, that it is correct even if the terms for
the forces of resistance, which in vector form may be written:

il 4

B=n—>s (38)
are replaced by a general function of the form
. oV vV
R=f(V’8—z’7z?"'>' (39)

The equation (34) has,. therefore, a far more general character than the equations
which have elsewhere been discussed in this chapter.
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11. Influence of eddy viseosity on rotary motion due to interference.

Before proceeding further, we will study the influence of the eddy viscosity on the
motion in the vicinity of the bottom in the case, where the rotary character of the
motion is due to interference between two waves on a resting disc. For the sake of
simplicity we will assume that the waves in the point with which we deal meet at right
angles and with a phase difference of } period length. Furthermore, we shall suppose the
depth to be so great that e—#* can be regarded as a small quantity. Placing the x- and
y-axes parallel to the directions in which the waves are supposed to proceed, we then
find (equations (1) Chapter 10):

u=%§o e—r® [(1 — e~ cos Bz + p e — #*sin Bz) sin (ot — uzx)

—p (1~— e~ # cos z—%e—f"‘ sin ﬂz) cos (ot——,uoc)]
_ (1)
v =%Cole—)’” [(1 — e~ F% cos Bz + p e~ sin B2) cos (ot — ux)

—p (1— e—f"zcosﬂz—%c—ﬂzsin /33) sin (at——,u:c)]

where £, and {,! are the amplifudes of the two waves and all other letters have their
previous meaning. The equations (1) represent an ellipse for which the ratio between
the axes is {,:(,' independent of z and which for any value of z is orientated with the
major axis along the z-axis or the y-axis according to the relative values of {, and ('
The time of maximum velocity changes, however, when approaching the bottom, occurring
before the corresponding velocity in great distances.

In this special case it is thus found, that the phase of maximum current is influenced
in the same way as in the preceding case, when the rotary character of the motion was
due to the rotation of the disc, but the configuration of the motion now remains un-
changed, when approaching the bottom. This result is evidently independent of the
special assumptions regarding the angle of intersection, the phase difference between the
waves and the depth, because the motion must, within each wave, be modified in exactly
the same way, when approaching the bottom, and the configuration of the combined motion
due to both waves must, therefore, remain unchanged.

12. Free surface and slipping motion along the bottom.

We shall next introduce a slipping motion along the bottom, supposing that the
resultant force of the resistance close to the bottom is directed against the velocity and
proportional to the scalar value of the same('). Whether this supposition is correct or not

(") The assumption regarding the character of the resistance close to the bottom might perhaps be

brought in better agreement with the actual conditions by introducing:
nu—ry% and xv—r;g—:—

instead of k» and kv on the left side in equations (1). The terms x»u and »v would then represent
the direct effect of the boundary surface, the second terms the effect of the viscosity on the bottom
layer. This assumption would, however, lead to complicated equations, but the character of the
motion would probably not be materially altered. The terms ku and kv have been introduced
with a view to future application to the tidal motion of the ice, because there are strong reasons
for assuming, that the motion of the ice is subject to a resistance which is directed against the
motion and proportional to the scalar value of the velocity.



44 H. U. SVERDRUP Geof. Publ.

has to be tested by comparing observed and theoretical results. The boundary condition
for 2= 0 now takes the form:

0
2'f—,lv—{—ku———g—c
ot ox
Z=0’ av (1)
—a—t—+lu+kv=—0

where & means the coefficient of resistance at the bottom. To this condition we add as
previously : :
ou v
3 —_——— == 2
e=h, =" @)
By means of the equations (1) and (2) the constants C; to C, in the equations for
u and v ((15) Chapter 9) can be determined. We obtain:

N T 1 — incosh (1 + 9) B,(h—2)
p T P ’(p+’)(1—41+n2 cosh (Z 4-1) Bih
1—14mcosh (1 + 7) ﬂ,(h——z)) i (0t — 1)
T "I m® cosh(Z+0)Byh

U= —

(3)
. e (A , - 14 incosh (1 ?)pB,(h—2)
p= gy T AP ! (p-i_z)(?—l_ql—}-n2 cosh (1 +¢) 8,k
. 1—14mcosh (1 4 7) ﬂ,(h—z)) g0t — w2
— "1 Fm cosh(1+1i)Bsh

where

o+ and m=a—/1

k k

(4)

and the other letters have the same meaning as previously.
The quantities ¢ and p are to be determined by means of the equation of continuity
which leads to:

a? 1—inl—1

gh g .
—;z_—}_z'?(l"l' ?) (I—Q'mg—mtgh(l +9) Bk

1—tm 1

(5)
_r—1+m2mtgh(1+i)ﬂ2h>=1.

We shall not enter upon a general discussion of these equations because no use
will be made of them in the present paper. It may be sufficient to mention that the
results set forth in Chapter 10 in the main are unchanged by the introduction of a slip
along the bottom in this form. As previously we find, that the wave is damped and that
the velocity of the wave decreases, but with a value of gh both damping and decrease
of velocity are smaller than in the case we have discussed. This is evidently correct,
because the assumption that no slipping motion takes place along the bottom is identical
with supposing an infinite great resistance against slip, and a smaller resistance against
slip now supposed must affect the wave less than an infinitely large one.

The rules for the change of the configuration of the velocities, when approaching
the bottom, are in the main unaltered but modified in a way which can be shown by dis-
cussing the velocities along the bottom under various conditions.
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From equations (3) we obtain for z=0:

“o=0To_—Z,!I %e 7*[(4 + p B) sin (ot — px) + (— p A + B) cos (ot — )]

5 (6)
v°=87f_—pgc°8 7= [(C + p D) cos (6t — ux) + (p C — D)sin (ot — ux)]
where
1 7 1 n m .
A=1—g 3o T"1qm B=Cigat itw 7
o— j1 1 1 . D— n m ()
= tegm— i PGt i

The four coefficients 4, B, C and D, according to the definition of ¢, », n and m are

. A . .
functions of s=— and * only. For any value of s can, therefore, assuming x = 0, the
°

. u v
relative values 53 and N where

2
F=_.___o .g-—ci (8)

o — 12 ¢

be regarded as functions of p, ﬁ and £, and we can represent the configuration of

the motion at the bottom by means of a set of tables similar to Tables 14 to 19.
We must, however, draw attention to the fact, that not all combinations of p and %

are allowed. This is evident from the following considerations. By given values of %
and the depth h, the damping which is proportional to p must reach the greatest pos-
sible value, when the eddy viscosity is infinitely large because then the velocities at any
distance from the bottom are mostly reduced. Introducing:

p=oc

we get
ph=0

and the equation of continuity (5) leads to a simple expression for p by means of which
the greatest possible values of p corresponding to any combination of % and s can be
computed. We thus find:

Table 20.
Pmaz
k
$=0.0 s=0.9
05 ¢ 0.24 0.66
1.0 o 0.42 0.66
20 o 0.62 0.67

From this it may be concluded that when assuming s =0 and % = 0.5 ¢ wé must assume
p < 0.24, and so forth.

Returning to the equations (6) for the velocities along the bottom, it is seen that

the motion for s =0 is degenerated to an oscillation along a straight line, which may be
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fully represented by means of the relative values of the maximum velocities and the phase
difference expressed in degrees between these and the phase of the maximum wave height.
In Tables 21 and 22 the computed values are compiled.

Table 21. Table 22.
Relative values “on for various values Phase differense 7, for various values
of p and %. of p and .
s=20.
s=0.
i : p ' k V4
o 0.0 03 0.6 o 00 | o3 0.6
. |
0.5 0.90 0.5 —27° |
1.0 0.70 0.74 1.0 —45° | —29°
2.0 0.45 0.47 0.52 2.0 —64° | —47° | —33°

It may at first be noted that the tables contain no values for the combinations
k=050, p=03 and ¥k =0.50, 1.0 6, p = 0.6, because these combinations according to
the previous results are self-contradictory. Furthermore, it must be emphasized, that the
values within the different rows of Table 21 cannot be compared with each other, because
the factor F is a function of ¢ and dependent upon p. This does not apply to Table 22
because the factor F' does not enter into the equation for v.

The variations of 1—‘%,—"’ within the columns simply show that the velocities decrease with

increasing resistance. From Table 22 is evident that the maximum velocity always occurs
before the wave reaches its maximum -height. The variation within the columns shows
that the phase difference increases with increasing resistance but the variation within
rows shows that the phase difference decreases with increasing values of p. If we
especially seek the limiting values we find:

p=0 ; limz— — 90° (9)
k— oo

p=1 ; limt——45° (10)
k— oc

The first represents the case that the depth is very great, making fh —oco. In
this case the phase of the acting force:

U9

e

is 90° different from the phase of the wave, and equation (9) tells us that the phase of
the velocity at the bottom coincides with the phase of the force with very great vesi-
stance. The second, on the other hand, represents the case where the damping of the
wave approaches an infinitesimal large value, and then we obtain from (4) and (10),

Chapter 9, that the phase difference between force and wave is —%=—_—45°, which

means :that from equation. (10) we obtain again: that the phase of the velocity coincides
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with the phase of the force. These results are in full accordance with what might have

been expected(').
We shall next assume

s=09

in which case the configuration of the motion is an ellipse, and we have in addition to

the ratio 1‘% and the phase angle 7, to compute the ratio between the axes of the ellipse,
r and the angle of orientation a. '

The numerical values of the four quantities which characterize the motion are com-
piled in Tables 23 to 26. The restriction has again to be put on the values in Table 23

that the number in the rows are not comparable.

Table 23. Table 24.
“% as function of p and k. 7 as function of p and £,
§=09. s=09. .
k - p - i p
d 0.0 03 0.6 ¢ 0.0 0.3 0.6
0.5 0.22 024 0.27 0.5 —47° | —25° | —17°
1.0 014 0.15 0.16 1.0 — 56° | — 38° | —25°
2.0 0.09 0.09 0.10 2.0 —15° | —48° | —34°
Table 25. Table 26.
r as function of p and £. a as function of p and £.
s =0.9. s=10.9.

k r ok )
¢ 00 0.3 0.6 00 | 03 0.6
0.5 |—0.57—0.59—0.62 0.5 —33° | —33° | —383°
1.0 |—036|—0.39|—0.36 1.0 —29° | —28° | —28°
20 |—012|—013| —0.11 2.0 —24° | —23° | —24°

The first two tables when compared with Tables 21 and 22 show that the velocities
are more modified through the resistance on a rotating than on a resting disc, but the
modifications are of the same character. ’

Table 25 shows that the ellipse becomes very narrow when k increases, and from
Table 26 it is evident that the ellipse is turned very much to the right of the direction
of progress. The greatest turning is found with the smallest value of %, but actually the
turning has a maximum for a value of % between 0.3 and 0.4, and decreases towards zero
when % approaches zero. It is of interest to note that both the ratio between the axes
and the angle of orientation are practically independent of p, and depend upon % only
within the interval here considered.

() Lamb, 1. c. p. 544.
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A comparison between Tables 23—26 and Tables 16—19 leads to the interesting
result, that if the resistance close to the bottom has the character here assumed, than
the configuration of the motion close to the bottom must be more changed, the ratio
between the axes of the ellipse more reduced and the ellipse more turned to the right
than found, assuming no slip along the bottom.

A computation of corresponding values for s between 0.0 and 0.9 gives results of
the same character. A study of the variations of the configuration of the motion within
waves of different period lengths will not be attempted.

The main result of the preceding discussion is, that the features which characterize
the configuration of the motion in vicinity of the bottom with the presence of eddy viscosity
compared with the configuration with absence of eddy viscosity, viz., the reduction of
the ratio between the axes and the turning to the right of the ellipse, are intensified if
it is assumed that there is a slip along the bottom, and that the resulting resistance at
the bottom is directed against the velocity and proportional to the scalar value of the
same. How far this supposition is correct must be tested by comparison with actually
observed conditions.

13. Waves between two boundary surfaces.

Finally, we will turn to the case in which the wave proceeds between two
boundaries of which the lower is supposed to be rigid and the upper of such a nature
that it offers no resistance to small vertical displacements, but a considerable resistance
to horizontal displacements. This case, as already mentioned, is of particular interest,
because the results can be applied to the tidal wave in an ice covered, shallow sea, like
the sea on the North Siberian shelf.

Regarding the law for the resistance which the upper boundary surface offers to
horizontial motion, we will suppose that it is directed against the velocity and propor-
tional to the scalar value of the same. We will, furthermore, assume that no slipping
motion takes place along the upper boundary-surface, which means that the law for the
motion of this surface must be valid also for the upper limit of fluid. We conse-
quently obtain: :

git‘—zv+k2u=—};%
z=h ) (1)

%+lu+kzv=0

where k, means the coefficient of resistance for the upper surface.
To this condition we have to add the boundary condition at the bottom :

a—“—lv—|—k1u=—~——g,a—c
ot ox .
z2=20 v (2)
a—t—l—lu—i—klv:—-——O
which when
ky=o00
has the form
Z:O, u=v=20 (3)

By means of equations (1) and (2) or (1) and (3) we can now determine the constants C;
to C, in the general equations for % and v, (15) Chapter 9) but we will make no attempt
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in this direction, because the process leads to extremely complicated equations of which
no practical use can be made.

We will, however, consider one special case, which at first may seem of an intricate
nature, but which really is comparatively simple and represents conditions which approxi-
mately are met with in the sea.

Let us suppose that the fluid between the two surfaces consists of two distinct
layers of slightly different density. The difference in density shall be so small, that we
can place it out of account when developing the fundamental equations for the motion
(Chapter 3), thus retaining the form of these equations unchanged, but, on the other hand,
it shall be large enough to prevent any exchange of mass between the two layers of fluid-
This means that the eddy viscosity is zero along the surface of discontinuity that sepa-
rates the two layers. Disregarding the infinite small effect of the viscosity, we conse-
quently find, that no tangential forces can act along this surface of discontinuity, and this
leads to the condition:

z=h, A=A T1_y . 4)

where h, denotes the distance of the surface of discontinuity from the bottom and the
index 1 refers to the lower, the index 2 to the upper layer of the fluid.

We shall now go still one step further, and suppose that the fluid consists of 3
layers of slightly different densities. In this case we find two surfaces of discontinuity
in the distances 1, and h, from the bottom and at these surfaces the conditions:

v, _ouy_ vy _
1 %9z 0z 0z 0z
uy vy,  Ouy  0vy

=h = =% = ¢

z=nh 0

()

must be satisfied, where the indices 1, 2 and 3 refer to the 3 layers. The equation of
continuity takes the form:

ky hy k
ou, Oug ouy , oL
—f%dz—f%dz"fadz— ot (6)
0 h, hy

The eddy viscosity may have different but constant values within each layer.

The velocities can then in each layer be represented by the general equations (14),
Chapter 9 in which the constants C, to C, must now be determined by means of the
boundary conditions for each layer. For the middle layer we obtain directly by means
of (5):

which gives:

2
Us =ﬁ g % e~ 7% [sin (ot — ux) — p cos (ot — ux)|
(7
i Co .
n=——7 g?°e 7= [p sin (ot — px) 4+ cos (ot — ux)].
As conditions which are to be fulfilled at the boundaries, we shall introduce:
ky=1Fy=o00
or
2=0 , wy=v,=0 ; z=h , uy=0v,=20 (8)
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The velocities in the lower and upper layer can then be represented by equations of the
same form as equations (3), Chapter 10:

”, =aTi-_}.’%C° e—7%[M, cos (6t — px) + N, sin (ot — px)]
(9)
A 2 .
m=»;;§7?%geﬂqnamwh—WW+Qﬁmwr~ym]
and
. .
>y — ﬁ % £, e~ 7% [ M, cos (6t — ux) + N; sin (ot — ux)]
(10)
2
vy = Ao g Lo e~ 7% [Py cos (ot — px) + @, sin (ot — ux)]

st — ¢

where the significance of M, to Qs is evident by comparison with equations (3), Chapter 10.
Writing the equations thus, we have in the last equations, referring to the upper layer,
transferred the origin to the upper surface and inverted the direction of the positive z-axis.

Expressing the thickness of the different layers in fractions of the total depth, A,

hi—d,h , hy=dyh , hy—d;h

we obtain from the equation of continuity (6):

2p(d, 8, +dy+ ds Sy) + (p* —1)(d, Ty + d Ty)=0 (11)
2 h
G or [ — ) (@ S, + dy + dy )+ 2p (d, Ty + dy T)| =1 (12)

where the meaning of the terms S, to 7, is evident by a comparison with equations (7)
to (10), Chapter 10.

The equations (7) and (9) to (12) represent a complete solution of the present
problem.

Before illustrating the content of the equations (7) to (12) by means of an numerical
example, we may draw a few general conclusions from them.

The motion of the middle layer is always very simple. The velocities are inde-
pendent of z and can be expressed in the form: '

ug = FVY1 + p*sin (ot + a — ux)

vz=—(};‘ chos(ot—i—a—yx) (13)
where _
tga=p (14)

From these equations is evident that the configuration of the motion is represented by
an ellipse with the major axis

T o? Ll L —
umaz=FV1+p2=02—12y °c Vi+p? (15)

This maximum velocity is always greater than the maximum velocities in a wave of the
same height with absence of eddy viscosity because ¢ is always smaller than ¢, the velo-

city of progress of an undisturbed wave, and because the factor J/7 -+ p? always is greater
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than 1. Furthermore, it is seen that the ratio between the axes of the ellipse is normal
r=— and that the ellipse is orientated with the major axis coinciding with the direc-

tion of progress of the wave, but the maximum current occurs after the wave has passed
the maximum height, the difference expressed in degrees is:

T = arctga.

We have here assumed p to be different from zero.
If, however, (8h), = (Bh); = 0, which may take place when 7, = 5, — oo, we have

8, =8=T=T,=0 (16)
and equation (11) and (12) are reduced to
p=20
cz=ghd2-5§% : (17
Equations (7) can then be written

—
u=‘/ hd 9% e— 7% sin (ot — ux)

o — 1* Vgh ds . (18)
—_ i o 9 CO —yz —
V== po “/m' ng ds e~ 7*cos (Ot ,uac)

These equations evidently express that the wave now proceeds within the middle layer
as if the two other layers did not exist.
As numerical values, with future application in view, we will introduce

9 B (Bh), = 3.0 ’ (ﬂh):, =10 (19)
.245 d, = 0.090 , d, = 0.665

The equation of continuity then gives
p=2035 , ¢c=Vgh 120 (20)

. A . . .
Introducing the values for — and ¢ in the equations for » and v, these can be written:
o ,

=439 £ [M cos (ot — ux) + N sin (ot — px))

Vb

v=3.95 £ [P cos (ot — ux) + @ sin (of — ux)]

Voh
and we can consequently compute relative values of the velocities in various depths
without any assumption regarding % and (.

We can again characterize the motion in various depths by means of the relative
Vh,
¢

the phase difference between maximum velocity

values of the maximum velocities, V. y

and wave height, the ratio between the minimum and maximum velocities indicating the
direction in which the velocities rotate by the sign, and the angle between the direction
of maximum velocity and direction of progress.
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In Table 27 the values for 5 depths are compiled. The two upper rows refer to
the motion of the upper layer; the middle row to the middle layer, and the two lowest
rows to the motion of the bottom layer.

Table 27. Example of velocities in a wave propagating between
two boundaries in a fluid of varying density.

: | yve

‘F 'T T r a
0.7 055 | —39° | —0.11| —25°
0.5 061 | —37° | —0.27| —27°

0.3 466 | 4+20° | —0.90 0°

0.2 332 | — 7°|—0.86] —30°
0.1 232 | —17° | —0.80| —22°

In the upper layer, the maximum velocities are very small, they occur before the
wave reaches its maximum height, and the configuration of the motion is represented by
a narrow ellipse, turned to the right.

In the middle layer, we find very large velocities but the maximum velocity is here
reached after the wave height has passed the greatest value. It is of interest to note
that the maximum velocities in a wave of the same height propagating in a layer of fluid

of the same depth by absence of eddy-viscosity had been only 2.29-1—/5_;, less than half
g

of the value met with in the middle layer. The form and the orientation of the ellipse
representing the configuration of the motion had, however, been the same.

In the bottom layer, we finally find smaller velocities occurring too early and con-
figurations represented by ellipses which are too narrow and turned to the right relative
to the ellipse of the middle layer. '

The example here discussed may be regarded as a step towards a study of the
motion, when the eddy viscosity varies with the depth. From the results we may con-
clude that in this case we may encounter very complicated motions, but that the rules
we have previously found for the modification of the motion in the vicinity of a boundary-
surface remain unaltered.

14. The energy of the wave.

We may, as previously, define the mean energy of a column of water during one

period as
R T

h T .
= 1 1 ,
E—=+ fE,,dedt+T fEkdzdt - @)
0 0 0o 0

where E, denotes the potential and Ej the kinetic energy of a unit of volume. By
absence of turbulense and viscosity is

= 1 = 1 s

Ey= 908 Ek=?geé‘2———° + )

of — 12
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On a resting plane, 1 = 0, the mean kinetic energy is equal to the mean potential
energy, on a rotating disc it is always greater. Only the kinetic energy is subject to
dissipation through the eddy viscosity, and accordingly we have found that the effect of the
eddy viscosity on the velocity of progress and the damping of the wave and on the velo-
cities of the particles of fluid is much greater on a rotating than on a resting disc.

The expression for the potential energy remains unchanged with the presence of
eddy viscosity but the expression for the kinetic energy is evidently changed because
the velocities are function of the distance from the boundary surface.

The simple relation between the mean kinetic and the mean potential energy

B—E, 2T~ ®)

4 02__12

is, therefore, no longer valid with the presence of eddy viscosity but a derivation of the
exact equations for this relation leads to very complicated equations. Only in one case
is a simple relation found.

Assuming

and
=0 , u=0 , e =g

where ¢ is a small quantity which may be omitted, we obtain by means of equations (3) p. 14:

h T
_—ii . 3 1_p2
Ek——2 Tffgu dz—-E,,-1+p2 4)
0 0

where p has the same meaning as previously.

From equation (4) it is seen, that the mean kinetic energy of a wave on a resting
disc with presence of eddy-viscosity is always smaller than the potential, assuming ph
to be great. The same rule is evidently correct even with small values of Sh. In the
case fh= 0., we find, for instance by means of the numerical values upon which
Table 14 is based, that:

F=021E,.

On a rotating disc it is correspondingly found, that the mean kinetic energy with
presence of eddy viscosity is smaller than with its absence, but it may nevertheless be
greater than the potential energy. We may compute numerical values of E; for

%: 0.9 and the values of gh used in Tables 16 to 19. We have

R T )
= 11
E;,=§Tffg(u”+v’)dzdt
) 0o 0

and obtain by introducfng u and v from equation (26), Chapter 10, and the value of ¢
from (20): '
h
7 7 1 o? 1 2 2 2 2
p= Byt [ Nt P Q) e )

0
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Using the values of M, N, P and @ upon which Tables 16 to 19 have been based, we find

Table 28. —ﬁ— =0.9.
: 2 98
N
E, E, 62+ 2
oo 9.5 1.00
5.0 8.55 0.90
2.0 3.0 0.31
0.5 0.20 0.02

The first row in the table, fh = co, corresponds to # = 0 or absence of eddy visco-
sity. The first column contains the ratio between the kinetic and potential energy, the
second contains the kinetic energy expressed in fractions of the corresponding kinetic
energy with absence of eddy viscosity, which we may call the normal value.

We find that in the special cases here considered the kinetic energy with presence
of eddy viscosity is always smaller than normal.

It is probably possible to show that this rule has a general character, independent
of the special assumptions regarding the nature of the eddy viscosity on which the nume-
rical values in the table are based. The writer has, however, not succeeded in formulating
the general considerations in clear words and will, therefore, refrain from entering upon them.

When the velocities and the boundary conditions are known the mean dissipation of
the energy in a column of fluid can be computed by means of the function of dissipation
which when all terms of small order are omitted is reduced to

g ol() () e

ou .
In case 1=0, ¢~ Ff=¢and 2=0, u=0, 2=, F—O is:

F=2C Voo )

02

In the general case is the corresponding expression very complicated.
A formula which may be of value for numerical computations can be derived from
“the equations for « and v (26), Chapter 10. We find

e T R GO R R

4

This formula may be useful if the dissipation of the energy due to «tidal friction»
shall be computed from current observations, but no attempts in this direction will be
made in the present paper.
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IV. Application of theoretical Results.

15. Summary of Results.

In the preceding chapters long, gravitational waves in a homogeneous, non-viscous,
rotating fluid have been studied in two cases, namely, in a layer of even depth, in an
infinitely long rotating channel (Lord Kelvin), and on an unlimited, rotating disc.

Tn a channel, long waves of all period lengths are possible. The laws for the motion
of the particles of fluid and the velocity of progress of the wave are the same as for
waves in a non-rotating channel (Fig. 6). The motion of the particles of fluid alternates

S=0
7 Velocity- scale
-0 0 10 -
X
t=%) 3% %, % 4P I
1 [M12[%2 "2 g 5(1 % T e « Y2, k2 X
6,?2
|
7

\ ]

Fig. 6.

in the direction or against the direction of progress. The maximum velocity occurs when
the wave reaches maximum height, and supposing the constant of gravity to be invariable,
depends solely upon the amplitude of the wave and the depth. The motion is uniform
from the bottom to the surface. The velocity with which the wave proceeds depends
only upon the depth. Half the energy of wave is present as kinetic, half as potential
energy. The wave differs, however, from a corresponding wave in a non-rotating channel
by the circumstance, that the amplitude of the wave varies across a section of the channel,
decreasing from right to left, referred to the direction in which the wave proceeds if the
rotation is counter-clockwise and from left to right if clockwise. The effect of the
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forces of inertia arising from the rotation is to press the wave to the right of the channel
by counter-clockwise rotation, to the left by clockwise.

In a layer of fluid of constant depth on an unlimited, rotating disc progressive:
wave of the kind here studied are possible only when the period length of the wave is
shorter than half the time required by the disc for one revolution. This condition can
conveniently be written s< 1 where s is the ratio between the named quantities (Fig. 7).

$=0.6

X

Fig. 7.

The motion of the particles of fluid is not alternating but rotates clockwise if the disc
rotates counter-clockwise, and vice versa. If the velocities during one period are repre-
sented by a central vector diagram the end points of the vectors describe an ellipse. The
maximum velocity occurs when the wave reaches its maximum height, and is large compared
with the amplitude of the wave. It now depends not only upon the amplitude of the
wave and the depth, but also upon the ratio s, approaching infinite values, when s
approaches 1, provided the amplitude remains finite. The direction of the maximum
velocity coincides with the direction in which the wave proceeds. The ratio between
minimum and maximum velocity and the motion is uniform from the bottom to the
surface and is equal to s. The wave proceeds with a velocity which depends not only upon
the depth, but also upon the ratio s, increasing towards infinite values, when s approaches 1.
The amplitude of the wave is constant along the wave front, but must, if the energy of
the wave shall remain constant, decrease by increasing .velocity of rotation. The effect
of the forces of inertia is now to preserve the major part of the energy of the wave
as kinetic energy.

A formal solution, which refers to no defined boundary-conditions, represents an
intermediate case in which the motion is rotary but the ratio between minimum and
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maximum velocity is smaller than s and the amplitude of the wave decreases from right
to left if the disc rotates counter-clockwise.

The resistance modifies these laws to a great extent. The resistance influences pri-
marily the layer close to the bottom, but by the eddy viscosity is transferred to a great
distance from the latter. Supposing the eddy viscosity to be constant the dynamic equations
have been solved for waves on an unlimited, rotating disc, but not for waves in a rotating
channel. All the following rules apply, therefore, to waves on an unlimited dise. (Fig. 8).

sl

A

t=%2T s

G

Fig. 8.

Where the influence of the resistance is perceptible the motion of the particles of fluid
is generally so modified that the maximum velocity occurs before the wave reaches its
maximum height and is directed to the right, when referred to the direction in which the
wave proceeds if the disc rotates counter-clockwise, to the left if clockwise. The motion
is still rotary, but the ratio between minimum and maximum velocity is smaller than with
absence of resistance. In a wave proceeding in a fluid with a free upper surface and
of sufficient depth, the laws for the motion of the particles of fluid at the surface are
practically the same as with absence of resistance. In this case it is found, that the
character of the motions changes in a marked way when approaching the bottom. The
maximum velocity occurs earlier, and supposing the rotation of the disc to be counter-
clockwise, is turned to the right referred to the corresponding velocity in the upper
layer, and the ratio between minimum and maximum velocity decreases.

If, on the other hand, the rotary motion is due to interference between two waves on
a resting disc, it is found that the maximum velocity close to the bottom occurs earlier

8
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than in the upper layer, but that the direction is the same, and the ratio between mini-
mum and maximum velocity remains unchanged.

The modifications of the velocities of the particles of fluid within a wave
which proceeds between two boundary surfaces of which the upper offers no resistance
to vertical displacements has been studied in one case. We shall later return to the
results of the investigation which find application under special conditions.

The velocity of progress is diminished by the resistance. The reduction depends,
supposing the rotation of the disc, the depth and the eddy viscosity to be constant, on
the period length of the wave. Generally the velocity of progress of the longest waves is
mostly reduced, but the laws are too complicated to be entered upon in detail.

The amplitude of the wave decreases in the direction in which the wave proceeds.
This damping of the wave depends upon the period length of the wave, and generally
the shorter waves are more reduced on a given distance than the longer, but this rule
is not valid under all conditions.

16. General applications to the tidal phenomena.

The above results refer to free, progressive waves, and can, therefore, only be
applied to the tidal phenomena within regions where the tidal waves, which are produced
directly by the action of the tidal forces, are negligible compared with the waves entering
these regions, and proceeding across them. As such regions particularly the continental
shelves come into consideration(!), in the application it must, however, be remembered,
that the actual conditions deviate more or less from the conditions which were supposed
when deriving the theoretical results. We shall briefly discuss the restrictions which arise
from the discrepancies. ,

1. The fluid has been supposed to be homogeneous. The non-homogeneity of the
seawater is of no importance, because the variations of the density are small when com-
pared with the density itself. It is generally assumed that the non-homogeneity can be
disregarded when dealing with waves of the kind here treated.

2. The depth is supposed to be constant. The deviations from constant depth
may modify the wave, but it is generally assumed that it is permissible to introduce an
average depth and regard this as constant. ’

3. Our results refer to waves on a rotating disc, but we wish to apply them to
waves on a rotating sphere. This is approximately correct, if the applications are
confined to regions within which

A= 2 w sing
may be regarded as constant. Here ® means the angular velocity of the earth’s rotation
and ¢ the geographical latitude.

4. The waves have been supposed to proceed in an infinite long channel or on an
unlimited dise, but the continental shelves represent limited regions. The modifications
which arise from the boundary conditions are undoubtedly of great importance and will
be more fully discussed later.

5. The eddy viscosity has supposed to be constant. This supposition represents a
very rough approximation to the actual conditions, but variations of the eddy viscosity
cannot be expected to change the character of the modifications due to the resistance.

In view of the great differences between the supposed and the actual conditions,
we cannot expect that. the theoretical results indicate more than the general lines which
the modifications due to the rotations of the earth and the resistance follow, The

" Kriimmel 1. c.
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deflecting force of the earth’s rotation is zero at the equator and greatest-at the poles,
for which reason the effect of the rotation must increase towards the poles. The resistance
is evidently of importance in any latitude, but we have found that waves on a rotating
disc are more affected by the resistance, than corresponding waves on a resting disc,
and must therefore expect the effect of the resistance to increase from the equator to
the poles.

We will at first regard the tidal wave as a simple wave, e. g. a wave which can
be represented by a single harmonic function, with a period length of 12.4 hours and discuss
the modifications of the tidal currents, the rate of progress, and the range of the tide.

1. Tidal currents. We must expect that the tidal currents on an open continental
shelf, across which the wave proceeds towards the coast, rotate clockwise on the northern
and counter-clockwise on the southern hemisphere, and alternate in the equatorial regions.
The current measurements, which at present are known to the writer, are all from the
northern hemisphere, where it is generally found that the tidal currents off the coasts
rotate clockwise. In a few regions counter-clockwise rotating currents have been en-
countered and explained by interference, but the circumstance that the clockwise rotating
currents are by far the more frequent, indicates that the rotary character must generally
be due to the deflecting force of the earth’s rotation and not to interference. In order
to decide whether the rotary currents within a certain region are caused by interference
or are due to the rotation of the earth, extensive current observation are necessary, but
important conclusions can also be drawn from observations of the tidal currents in various
depths at a single station because the currents must change in different ways, when
approaching the bottom according to the circumstances which are responsible for the
rotating character. An example from the North Sea, that may be used to illustrate this,
is found in Helland-Hansen’s paper «Current-measurements in 1906»('), containing cur-
rent observations during 13 hours at Ling Bank, Lat. 58° 17" North, Long. 2° 27" East,
taken August 7 and 8, 1906, in the depths 2, 5, 10, 20, 50 and 75 meters. The depth
was at this station 80 meters. Helland-Hansen found that the tidal currents in the two
lowest depths, 50 and 75 meters were characterized by being weaker and reaching
their maximum values an hour earlier than the tidal currents in the upper strata. Fur-
thermore, that the direction of the maximum velocity was turned to the right referred
to the corresponding direction in the upper strata, and that the ratio between minimum
and maximum current was decreasing towards the bottom. These features are clearly
evident from the central vector diagrams in Fig. 9 which are copies of the represen-
tations of the original observations, published in Helland-Hansen’s paper. Helland-Hansen
draws attention to them and suggests that they may be due to a tidal wave reflected
from the West Coast of Norway and proceeding into the North Sea into the deeper
strata. The observed changes are, however, in agreement with the results which were
summarized in the preceding chapter, for which reason it seems more probable that
they simply indicate the influence of the resistance along the bottom on the tidal cur-
rents, in a single wave which has been modified by the earth’s rotation. This isolated
example can, however, hardly be regarded as a sufficient proof for this conception.

If the rotary currents are fully developed the ratio between minimum and maxi-
mum velocity according to the theory is to be

i_?w sing 7

S —
o 2n

(" Bergens museums aarbog 1907, No. 15.
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where T' is the period length of the wave. Introducing T = 12.4 hours and w = 2n: 24,
expressing the time which the earth uses for one revolution in hours, we find

s=sing- 1'19—24 -1.033 sin ¢
We must expect, however, that the observed ratio between the minimum and maximum
current is generally smaller because the coasts in
most cases prevent the full development of the ro-
2 m. tarycurrents. Inabove example is ¢ = 58°.3, making

0 10 20 30 40 CMgee.

3 s = 0.88
9
. R but the observations from 2 meters give a consi-
N~ A5 derably smaller value, which shall be called 7,
8« namely

r = 0.55.

_ 2.  Rate of progress. When the tidal cur-
W rents are rotary the wave must be expected to pro-
gress with a velocity, which is greater than the ¢nor-
mal> velocity ¢ =} gh. On an unlimited, rotating
disc a wave with absence of resistance proceeds
with the velocity

— 1
[ Vgh.“/l———s_i

but this equation, when applied to conditions on
the earth, can only then be approximately correct,
when the rotary currents are fully developed so
that the ratio between the minimum and wmaximum current is equal to s. If the full
development is prevented by coasts, the velocity of progress must be smaller. In this
case it seems reasonable to assume, that the conditions approximately correspond to the
intermediate case, dealt with in Chapter 7 according to which the velocity of progress is

Fig. 9. Currents on Ling Bank, Aug. 7
and 8, 1906.

— 1—
=V G=mp

where s means the theoretical ratio between the minimum and maximum current, in this
case s = 1.033 sing, and » denotes the observed ratio.
The resistance must diminish the velocity of progress. This may nevertheless exceed

the normal value )/gh if the rotary currents are well developed, but may decrease beyond
this value if the currents are practically alternating.

3. The range of the tide. Regarding the range of the tidal wave within a given
region a few general conclusions can be drawn. If the tidal currents are rotary the range
must be expected to be small compared with the velocity of the tidal currents. If the
rotary character is fully developed the range must remain constant along the wave front
(along the cotidal lines), but if the full development is prevented by coasts the range
must decrease from right to left on the northern hemisphere referred to an observer
looking in the direction in which the wave proceeds, from left to right on the southern
hemisphere. ' ’
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The resistance must cause the range to decrease in the diréction in which  the
wave proceeds, but this decrease may be entirely eliminated by convergencies due to the
form of the coast. One consequence of the damping, however, is that the range of the tide
at the inner part of a basin must be smaller than computed frorm the range at the outer
part of the basin, considering the form and depth of the basin.

4. Influence of coasts. The coasts must modify the tidal wave very much, because,
as frequently mentioned, they prevent the free development of the rotary currents. 1t is
impossible to discuss the influence of the coasts in any exhaustive way, but a few
examples may indicate the general lines which these modifications may be expected to
follow. These examples refer to conditions on the northern hemisphere, and if they are
to be applied to conditions on the southern hemisphere must «right> be replaced by
<left», and vice versa,

We shall at first assume that the coast line runs perpendicular to the direction in.
which the wave proceeds (Fig. 10). In this case no great modifications are to be expected.
The rotary currents can be developed close to the coast,

with the consequense that the tidal currents off the coast Coast

must be expected to run not only towards but also parallel

to the latter. The range of the tide must be small com- @ @ VI

pared with the velocity of the tidal currents at some distance

from the coast, and the wave must approach the coast with

a speed which exceeds the normal value Vgh. The latter P\ M

rules may, however, be modified by the influence of the U/ U/ Y

resistance. Fig. 10. Wave proceeding towards
a coast.

We will next assume that a coast line runs in the
direction in which the wave proceeds, and on the right hand of an observer, looking in
that direction. For the sake of simplicity the depth shall be supposed to be constant.
In this case the development of the rotary currents is prevented along the coast but
they may exist at greater distances, as indicated in Fig. 11. At the coast, where the
il ' tidal currents are alternating, the deflecting force of

the earth’s rotation must be counter-balanced by a
slope of the wave crest which at highwater is directed
Vil towards the coast, at low-water from the coast. This
Coast implies, that the range of the tide must decrease
when departing from the coast, in other words, the
deflecting force presses the wave towards the coast.
Close to the latter the range must be expected to

Fig. 11. Wave with a coast on the Gecrease approximately according to the law which
right side. Lord Kelvin found for the change in range across
a channel, because the tidal currents have the same character as in a channel.

In addition to this primary effect of the deflecting force a secondary comes, which
has the result, that the time of highwater at the coast does not correspond exactly to
the time of max. current. Fet us assume that the maximum tidal currents occur simul-
taneously at for instance V hours, Gr. lunar time at a series of stations lying on a
straight line perpendicular to the coast, the stippled line in Fig. 11. The outer station
is supposed to be so far removed from the coast, that the rotary currents here are fully
developed. At this station, therefore, the conditions must be regarded as undisturbed
and the time of highwater must coincide with the time of maximum current. The cotidal
line V consequently passes through this station. Between high and lowwater at this
stations, as indicated on the figure, the currents now run towards the coast. These
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currents must continue to press the water towards the coast after bighwater should have
been passed, making the highwater at the coast occur after highwater at the outer station
in spite of the max. currents occurring simultaneously. The cotidal line V must, therefore,
have a course as shown in the figure. The rate with which the wave proceeds, increases
when departing from the coast, corresponding to the development of the rotary currents,
giving the cotidal lines the curved forms which are indicated by the lines VI and VII
in the figure. The conditions which are here supposed can evidently exist only along a
coast line, which is short compared with the wave length because the direction of the
wave front is changing.

The effect of a coast on the left side of the wave is more difficult to overlook
(Fig. 12). The primary effect is evidently to press the wave away from the coast, but
the secondary effect, due to the convergence towards the coast of the transversal currents,
is to press the wave against the coast before highwater is reached at the outer station,
because the currents run towards the coast between low and highwater at the outer
station. Whether the effect of the convergence is large enough to convert the increase

Wil of the range which should otherwise be expected

when departing from the coast, cannot be decided,

/’— but it must have the result that highwater at the

Y[ coast now oceurs before the time of wmaximum

Coast L\ — current under the conditions supposed in Fig, 12.

The cotidal line V must be curved as shown in the

,_I _____ YW 4 y Fig. 12, and since the rate of progress increases

when departing from the coast, the next cotidal lines

A .

Fig. 12. Wave with a coast on the VI and VII must approximately appear as indicated.

left side. These examples can only serve to show the

modifications, which may be expected under the particular conditions supposed. If corre-

sponding considerations are to be applied in a special case, the supposed conditions must

be made to agree approximately with the actual ones. From the examples, however, the

general conclusion can be drawn, that the range of the tide must be expected to be great along

a coast lying on the right side of the wave, but small along a coast on the left side.

This conclusion is in agreement with the experience which Kriimmel(!) emphasizes in the

words: «When two or more waves, proceeding in different directions, meet, the rotation

of the earth enters in a very remarkable way by always favouring amongst the competitors

the wave which has the coast line to the right and making this wave dominating for the
highwater intervals».

In a channel where no rotary currents can be developed the conditions are simpler.
According to Lord Kelvin's results the wave must proceed with normal velocity, but the
range must decrease from the right to the left side. Lord Kelvin’s results have already
“found applications in so many well known cases, that it seems unnecessary to enter upon
them here.

We shall presently, when returning to the tidal wave on the North-Siberian shelf,
find applications for all the above conclusions regarding the modifications of the tidal
currents, the velocity of progress, and the range of the tidal wave, which appear as the
combined effect of the deflecting force, the resistance, and the coasts. Whether other
applications can be found remains to be examined.

We have up to now regarded the tidal wave as a simple wave with a period length
of 12.4 hours. Actually, however, the tidal wave is regarded as composed of a number
of partial waves of various period length, of which the most important are

() L c
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Period length

Bymbol hours
A 12.00
M, 12.42
N, 12.66
K, 23.93
0, 25.82

The quality of the tide is at any station characterized by the ratios between the
amplitudes of the different partial waves and the phase differences between them. We
have found that the effects of the deflecting force and the resistance depend upon the
period length of the wave and must therefore expect that the different partial waves are
modified in different ways. This evidently leads to the conclusion that the quality of the
tide must change within every region. Within the known regions, the quality of the
tides is actually subject to numerous changes which have only partly been explained.
Whether some of these changes can be referred to the influence of the earth’s rotation
and the resistance, can only be decided by a close inspection of extensive observations,
and in this place, therefore, only a single feature will be mentioned.

We have found, that the shorter waves are generally more rapidly damped by the
resistance than the longer. One consequence of this is that in the inner parts of shelves
and shallow bays the longperiodic waves must be expected to be more dominating than
in the outer parts. An examination of the informations compiled by Kriimmel seems to
confirm this conclusion. The ratio between the amplitudes of the daily and the half-
daily tidal waves increases frequently towards the inner parts of bays and shelves, indi-
cating that the longer waves are relatively higher in these parts. The most marked
increase of the daily index is found in the Java Sea, but seems there to be far to great
to be explained as resulting from the selective action of the resistance, but in several
other cases this action may perhaps have to be considered. As examples the values in
Table 29 have been compiled. A thorough examination of all available data from these
regions would, however, be required in order to decide the question.

Table 29.

K, + 0,
Sy + M,

Region Station

Montevideo 0.30
Buenos Aires 0.71

South American shelf {
{ Maskat 0.67

Persian Gulf .

Abushehr 1.14
_ Pigumdo 0.39
Chinese Gulf . Taku 0.57
Korser 0.17
Baltic Sea . Copenhagen 0.29
Gedser 0.77

The following considerations may perhaps also be of interest. We have found that
on a rotating disc waves of the kind here considered, must have a period length shorter
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than half the time used by the disc for one revolution. Using our previous notations,
this is expressed by

c>1
or, introducing A= 2w sin ¢

6 > 2w sin ¢

If the theoretical results could be applied to the conditions on the rotating earth without
any restrictions they would envolve that for each partial wave of period length T' hours
we could compute a maximum value of ¢ defined by
sin _o_ 12
P =2 =T
which would represent the greatest value of the geographic latitude, where the partial
wave in question could exist. We should thus find

Prmaz
S, 90°
M, 75°
N, N P
K, 30°
0, 28°

It is, however, not permissible to conclude that diurnal tidal waves cannot possibly exist
on a continental shelf north or south of a latitude of about 30°, because we always deal
with limited regions on a rotating sphere. Nevertheless it seems worth while mentioning
that all the large regions with diurnal tides are found in the equatorial zone, and that
diurnal tides only exceptionally are met with in higher latitudes.

The preceding considerations are sufficient to show that complicated tidal pheno-
mena may be expected on the continental shelves even when originating from a single
wave. This is best illustrated by the tidal phenomena observed on the North Siberian
shelf, to which we now shall return. :

17. Applications to the tidal wave on the North Siberian shelf.

We have previously arrived to the result, that all tidal observations from the North
Siberian shelf could be united into a consistent picture of a single wave, entering the
shelf from the North, but representing a wave which has little in common with a long
wave, praceeding in a non-viscous fluid in a resting basin. Attention was drawn to the
main points on which the tidal wave on the North Siberian shelf differs from an ordi-
nary long wave. We can now explain the characteristic features one by one as the com-
bined results of the deflecting force and the resistance, modified by the coasts. We will,
however, not enter upon the variations in the quality of the tide because the observa-
tions are insufficient for a discussion of these variations.

1. The rotary character of the tidal currents. A glance at Fig. 4 shows that the
currents rotate clockwise within the whale region, but that the ratio between minimum
and maximum current, indicated by the ratios of the axes of the ellipses, varies from
practically zero north of the New-Siberian Islands, where the wave proceeds along the
coast, to 0.8 or 0.9 in the regions where the distances to the coasts are great. This is
in perfect agreement with the preceding results. Where no hindrances prevent the develop-
ment of the rotary currents, these are dominating; where the wave proceeds along a coast,
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the currents are alternating. Regarding the tidal currents off point Barrow Harris states,
that the flood current, defined as the current whose maximum falls on the rising tide,
sets towards east, and that the maximum according to observations taken by Collinson on
July 25 and July 26, 1851, occurs 2.5 hours before highwater at the coast. He also
quotes Simpson, who regarding the strength of the current writes: «I could not help
remarking that the velocity of both ebb and flow (current) was far greater than the
inconsiderable rise and fall would led me to expects. These observations are in agree-
ment with the conception that the tidal wave approaches the coast from the north.
According to Fig. 4 the conditions at point Barrow correspond.to those illustrated in Fig. 10,
p- 61. By the discussion of this example it was found that the transversal currents
should be expected close to the coast and reach great velocities relative to the range.

Using ¢ =175 as a mean value of the geographic latitude for the region and
introducing 7'= 12.4 -hours as the period length of the wave, we find:

s=1.0.

According to this the wave should be on the verge of degenerating and the currents
should run with the same velocity in all directions. These conditions are actually appro-
ached, particularly in the region between Wrangell Island and Bennett Island where,
for instance at station 2, the ratio between minimum and maximum current was found
to be 0.9.

2. The variations of the tidal currents with depth. The variations of the tidal
currents with depth are very complicated. The tidal wave proceeds between two boun-
dary surfaces of which the upper, the ice, offers no resistance to vertical displacements,
but a considerable resistance to horizontal displacements. The latter varies with the
seasons, being small in the summer, when lanes and spaces of open water give the ice a
limited freedom of motion, and very large in winter, when every opening is immediately
covered with new ice. Furthermore, the eddy viscosity is far from being constant, because
the density varies with the depth. We shall here illustrate the most typical conditions
by examples from the 3 stations at which the range of the tide and the tidal hour were
determined practically simultaneously by soundings.

Station 8. At Station 8 (see Fig. 1, p. 5) the tidal currents were observed in two
depths, 0 and 12 meters. The result of the harmonic analysis of the observations is
given in Table 30, using the same quantities for representation as previously (see p. 19).
The values for the mean current have been derived by assuming the currents 3 meters
above the bottom, not measured at Station 8, to have the same character as at two
adjacent stations. From the table it is seen that the velocity of the maximum current is
practically unchanged in the upper 12 meters but occurs slightly earlier in 12 than in
0 meters. In O meters the currents are practically alternating, in 12 meters rotate clock-
wise, but the minimum current is weak.

Table 30. Tidal currents at Station 8; July 18,1925, 9" to 20". Lat. 76° 28'N;
Long. 141° 30" E; Depth 22 m.

Max. tidal current . R
Depth. Min. Min. Dir. of
m. Cm/sec. Against Tidal current Max. | rotation
true hour
0 41.5 |SH0°E 3.1 1.0 0.02 c. cl.
12 425 |(S44°E 2.8 10.5 0.25 cl.
Mean 0 —12 38.0 |S45°E 3.0 5.0 0.13 cl.
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Fig. 13 A contains a vertical section which has been laid NW — SE, in the direc-
tion in which the wave is supposed to proceed according to the cotidal lines in Fig. 4.
The component of the current in the direction of progress is here represented for every
Greenwich lunar hour. The curvature to the left of the lines indicates that the current
turns at an earlier moment when approaching the bottom. Fig. 13 B contains two hori-
zontal sections in which the currents in 0 and 12 meters have been represented by
central vector diagrams,

Two circumstances show that the wave is meeting a great resistance; the maximum
tidal current is reached about 2 hours before highwater (see Fig. 4), and the wave pro-

ceeds with a velocity of only 10 m/sec., but the formula }gh gives with =22 m.
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Fig. 13. Tidal currents at station 8, July 18, 1924.

14.7 m/sec. We may obtain an idea of the character of the resistance by comparing the
observed currents with currents which may be computed from equations 3, Chapter 10,
introducing simple assumptions. Since the currents are practically alternating we shall
assume that the deflecting force can be left out of account, being balanced by a trans- .
versal slope of the wave crest. We shall, therefore, introduce

s ==0.

Furthermore, we will suppose the upper surface to be free, the velocities at the bottom
to be zero, and the eddy viscosity to be constant. The value of the latter will be so
selected that the computed velocity of progress agrees with that observed. The observed

velocity is, expressed in fractions of }/gh:

10 m/sec. = 0.68 Vgh .

We find, therefore, the value of 7, which is to be used by entering Table 7, in the
column s = 0 and to the left seek the value of Sh, which corresponds to ¢: ¢, = 0.68.
We find:

Bh = 0.7
Introducing

w1
,3=]/—=—-0.84.10"2 and h=2200 cm.
Tn Yy
we get
7 ==690 gr. cm.—!sec.— L

Finally, we shall assume that highwater occurs at the observed time, 5 Gr. lunar hours,
and choose the range such that the computed mean velocity of the currents agrees with
the observed.
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The result of the computation is represented graphically in Fig. 14 which corre-
sponds to Fig. 13 A. In order to. facilitate a comparison, the outline of the latter has
been entered as a stippled line on Fig. 14. We find at first, that the computed currents
reach a maximum velocity about 1.1 hours before
highwater, but the correspondingly observed difference A2 0 20 A0 "Ddee.
is 2 hours. This discrepancy can hardly be due to 9 :
errors of observation, because a close inspection of
all available data from this region resulted in no
reduction in the observed difference in time. It
appears that this only partly can be explained as an
effect of the resistance, for which reason we shall
return later to the subject. Continuing the comparison,
we find, that the observed currents in the upper Fig. 14. Computed tidal currents.
layers change more slowly with depth than those
computed, but more rapidly close to the bottom. These features can be ascribed to:

10

1. That the ice offers a resistance which reduces the velocities of the upper layers.

2. That the eddy viscosity is smaller than assumed. This applies particularly to
the layers above the bottom, where the velocities change rapidly.

The resistance thus seems to have another character than that assumed when com-
puting the currents, but the differences can be accounted for. The variation of density
with depth at this station showed no remarkable features.

Finally, we may assume that the damping of the wave takes place at the same rate
as it would under the conditions upon which the computation of the currents were based,
in spite of the different character of the resistance. From Table 6 we then find

p=0.68

corresponding to fh=0.7 and s =0. By means of this value, the maximum velocity of
the mean tidal current and the rate of progress of the wave the range of the tide can
be computed by means of the formula (p. 42):

2¢=2h%_1/1 T pt

We find
2L =203 cm.

which value accidentally agrees almost exactly with the observed range, 210 em. No
great weight can be attached to this agreement, but it shows that the various observations
are in mutual concordance.

Station 7. At Station 7 the tidal currents were more complicated. In Table 3,
p. 9, the mean tidal current according to observations on June 30 and July 3, 1924, has
been entered, but we shall here deal with the observations from June 30 only, because
these are most complete. The tidal currents on that day were determined at 4 depths,
0, 15, 23, and 31 meters; the depth to the bottom was 35 meters. The results of the
harmonic analyses are contained in Table 31 and represented graphically in Fig. 15.
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Table 31. Tidal currents at Station 7. June 30, 1924, 8" 30™ to 21" 30™.
Lat. 76°32’N. Long. 144° 00’ E. Depth 35 m.

Max. tidal t Min. tidal
Depth x. Hda’ curren 18- UGB Min, | Dir. of

: . urrent P
m. Cm/sec. Against Tidal Zn: Jsec Max. | rotation
(True) hour .

0 16.2 |S 5°W| 4.2 7.0 0.43 cl.
15 152 |S29°E| 39 9.0 0.59 cl.
23 148 |S30°E| 54 6.5 0.44 cl.
31 10.1 |[S30°E| 49 0.0 0.00 —

0—35 | 124 |S14°E| 44 4.5 0.3 cl.

H <10 -5 0 5 0 15 Csee
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B

Fig. 15. A. St. 7. Vertical section showing component of tidal current in the
supposed direction of progress of the wave.
Fig. 15. B. Horizontal sections showing tidal currents in 0 and 23 m.

The conditions at this station are too complicated to permit a computation of an
approximately adequate example by means of the previously developed equations. The
influence of the resistance, however, is plainly visible in the main features of the cur-
rents. The tidal hour at spring at this station is about 5.5 hours. A glance on the table
shows that the maximum current occurs before highwater, both at the surface and close to
the bottom, indicating the influence of the resistance. In Fig. 15 A this effect is visible
in the double curvature to the left of the lines, representing the component of the cur-
rent in the direction in which the wave is supposed to proceed, N 30°W to S 30° E.
The direction of the maximum current at the surface deviates considerable to the right of
the direction of progress, in which the combined influence of the resistance and the deflec-
ting force are recognized. A corresponding deviation should be expected close to the
bottom, but was not observed on that day. It might, furthermore, have been expected that
the greatest velocities would have been found in the medium depths, but the fact that
the velocities are relatively small seems to indicate that the eddy viscosity prevents the
development of the velocities even at the greatest possible distances from the boundary
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surfaces. The time difference between highwater and the mean maximum current at this
station is not greater than that it can be referred to the influence of the resistance.

We may again compute the range of the tide by means of formula (36), Chapter 10,
assuming that the exponent of damping at this station is somewhat smaller than at Sta-
tion 8. Introducing the value of # derived from the observations on June 30 and July 3,
# =16 5, furthermore ¢ — 12 m/sec., h = 35 m., and p = 0.6, we find:

20 =112 cm.

in fair agreement with the observed range of 92 cm.

0 5 10 15 “heo

Ice

=z
m

20 "

Fig. 16. A. St. 8. Vertical section showing component of tidal current in the
supposed direction of progress of the wave.
Fig. 16. B. Horizontal sections showing tidal currents in 42 and 50 m.

Station 3. The results of the observations at this station were given in Table 4,
p. 9, and are here represented graphically in Fig. 16, which clearly shows the peculiar
character of the currents. The vertical section has been laid in the direction in which
the wave proceeds according to the cotidal lines, NE — SW, and the two horizontal sec-
tions represent the currents in 42 meters and 50 meters respectively.

The ice at this station as ascertained by numerous measurements, took no part in
the tidal movement, and the currents were too weak to be recorded in all depths down
to 30 meters. This has been indicated by drawing the lines in Fig. 16 A as straight,
stippled lines from the surface to 30 meters. From 35 to 40 meters the velocities of
the currents increased rapidly, and between 40 and 45 meters strong tidal currents were
encountered. Approaching the bottom, the velocities again decreased, though more slowly,
and simultaneously the maximum current occurred at an earlier time and was directed to
the right, referred to the corresponding direction in 42 meters. We recognize the well-
known influence of the resistance along the bottom, transferred by the eddy viscosity to
considerable distances.

The variation of the density with depth gives the clue to the understanding of
these tidal currents. The heavy curve in Fig. 16 A represents o, as function of the
depth. It is seen that the density is constant from the surface and down to a depth of
about 37 meters, increases very rapidly between 37 and 42 meters, less rapidly from 42
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to 48 meters, and finally, comparatively slowly from 48 meters to the bottom in 56 meters.
According to this variation the upper layer is practically in indifferent equilibrium, the
stability is here very small. In the middle-layer, on the other hand, the stability is very
large, but decreases from 42 meters towards the bottom. The eddy-viscosity, as pre-
viously mentioned (p. 28), must be expected to be approximately inversely proportional
to the stability. In the upper layer the eddy viscosity must be very great, in the middle .
layer very small, and in the bottom layer again considerable. As a rough approximation
the wave can be regarded as proceeding between two boundary surfaces, of which the
upper offers no resistance to vertical displacements, and in a fluid consisting of 3 layers
of slightly different densities, such that no exchange of mass takes place between these
layers. We have previously (Chapter 13) developed the equations for the currents in
this case, and have there computed an numeric example, Table 27, selecting the numerical
values to suit the conditions at the station, with which. we now are dealing. The fluid
at that time was devided into 3 layers of the relative thicknesses

hy=0665h , hy=009 h , hy—0.245 h

where h means the depth which is now equal to 56 meters, and where the index 1
refers to the upper layer. These thicknesses were selected to represent the layers that
we here have called the upper, the middle, and the bottom layer. The value of s was
supposed to be 0.9. The eddy viscosities in the upper and the bottom layers should satisfy
the equations

(Bh)y = 1.0 , (Bh);=30.

Introducing the expression for B, and 7= 12.4 hours, h =56 meters, we find in the

present case
7, =980 g.em.—'sec.-! , 5,=14.7 g.cm.~!sec.” %

The eddy viscosity of the middle layer is of no importance under the supposed conditions,
The above values of 5 were introduced in order to:

1. Reduce the computed velocities in the upper layer so far that they would be
too small to be observed.

2. Make the computed velocity of progress agree with that observed. The latter

is 27 m/sec. As computed value we found ¢ = }gh-1.20 which with 2 = 56 m. gives
c=281 m/sec.

We shall now, furthermore, make the computed velocity in 42 meters agree with that
observed, and as time for highwater introduce the observed tidal hour 8"

It may seem that so many assumptions. have been made that the computed currents
must agree with those observed. The point is, however, that it is possible to assume
such values, particularly of the eddy viscosity, that it is possible to compute currents
which approximately agree with those observed, because this enables us to understand the
character of the eddy viscosity.

The computed currents have been represented in Fig. 17 in the same scale as those
observed, and to facilitate the comparison the outline of Fig. 16 A and the density
curve have been entered as stippled lines. There is evidently a great similarity between
the computed and the observed currents. The general characters of the curves in the
vertical section, representing the component in the supposed direction of progress, is the
same, and comparing the horizontal sections, we find in both cases that the currents in
42 meters attain a maximum velocity before highwater, but in 50 m. after highwater, that
the direction of the latter is turned to the right referred to the corresponding direction
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in 42 meter, and that the ratio between minimum and maximum current decreases from
42 to 50 meters. According to the observations, even the maximum current in 42 meters
is turned to the right referred to the direction of progress, perhaps indicating that the
wave proceeds in a more westerly direction than supposed. A more westerly direction of
progress can, however, hardly be brought in concordance with the course of the cotidal
lines. Another discrepancy, which is not evident from the figures but from Table 4, is
that the observed direction of maximum current in 46 meters does not fall between the
corresponding directions in 42 and 50 meters, but to the left of both of them.

SE_ 42m.

NW

A B

Fig. 17. A. Vertical section showing component of computed tidal currents
) in the direction of progress.
Fig. 17. B. Horizontal sections showing computed tidal currents in 42 and 50 m.

Turning again to Figures 16 A and 17 A, we may at first draw attention to the
phase difference between the observed.and computed currents. In Fig. 16 A the curve
farthest to the right is marked VIII, in Fig. 17 A marked IX. This phase difference
would dissapear if the wave had been assumed to proceed towards S70° W, but this does
not appear to be permissible.

The greatest and most interesting discrepancy between the observed and the com-
puted currents, is the difference in the rate with which they change with depth. We do
not know anything about the character of the tidal currents in the upper layer, because
they were too weak to be observed, but the very fact that they were so weak is evidence
that the eddy viscosity actually had a value of the assumed order of magnitude, about
1000 c.g.s. The very rapid increase in the currents between 35 and 40 meters is in close
agreement with the supposed condition, showing that the eddy-viscosity in this depth
must be small. This is confirmed by the sharp bend of the density-curve between 37
and 38 meters. The great velocities .observed in 46 meters indicate, on the other hand,
that the eddy-viscosity is not zero at the boundary between the middle and the bottom
layer. This boundary is actually very undefined; the density curve is smoothly curved,
showing a continuous transition. Close to the bottom the computed current decreases
more rapidly than that computed, indicating that the eddy viscosity here has a con-
siderably higher value than 14.7, which was assumed for the whole bottom layer.
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Generally, the variations of the currents with depth must be regarded as in good
agreement with the supposed character of the eddy-viscosity, the differences being accoun-
ted for by the circumstance that the density changes continuously, and not, as supposed,
discontinuously. ’

The exponent of damping at this station was under the supposed conditions found
to be (p. 51) p —0.35. Introducing this value, # = 3.8 cm/sec., ¢ =27 m/sec., and
h =56 m. in equation (36), Chapter 10, we find the range

20 =17 cm.

in excellent agreement with the observed range of 18 cm.

Finally, we may compare the values of the eddy-viscosity which have been intro-
duced here with the values which previously have been derived mainly from the change
of the drift-currents with depth. (Compare p. 27). Ekman(') has found a value of %
of about 200, Krimmel finds in an example n =297 and 237(%), and W. Schmidt(*)
adopts » = 100 as an average value for the sea. The values here used are respectively

=690 , =14.6 and = 980 gr. ecm.—lsec.” !
n n n gr

but the first was found to be too large and the second too small. The third was found
approximately correct, but in a layer in indifferent equilibrium, representing extreme
conditions. Considering these circumstances, the values here introduced of the eddy
viscosity must be regarded as in fair agreement with the previous ones which were derived
in entirely different ways.

3. Discrepancy between time of highwater and time of maximum current. On p. 14
attention was drawn to the circumstance that the maximum tidal currents north of the
New-Siberian Islands appears to be reached a considerable time before highwater. In the
preceding section it was shown, that this time difference can partly be explained as the
effect of the resistance, but that it seems too great to be entirely the result of the latter.
If, however, we compare the picture of the tidal wave in this region (Fig. 4) with the
formal example in Fig. 11, we find a striking similarity. In the discussion of this example
we came to the result, that when a wave runs along a coast lying on the right hand,
highwater must occur after the maximum current. The observed conditions seem to
illustrate this example. :

4. The rate of progress. From Fig. 4, it will be seen that the wave proceeds
with a great velocity where the currents are rotating, and with a small velocity where
they are practically alternating, in agreement with the conclusions in the preceding chapter.

We may compare the observed velocities of progress with these computed from the

“equation (p. 24):
g
=

This equation should be approximately correct if the wave met no resistance, but as we
have seen that this condition is not fulfilled, we must expect the observed velocities to
be smaller. We select 4 representative stations, of which the two first are situated north
of the New-Siberian Islands, and the two last west and east of Wrangell Island respec-
tively. At the last station, the actual depth was 76 meters, but as this value represents

() On the influence of the earth’s rotation etc. Arkiv for mat., astr. och fysik V. 2. No. 11.

() L. c. p. 461. The values there given are 10 times smaller, probably on account of an error in
calculation.

(*) Der Verbrauch an Strémungsenergie im Meere. Ann. d. Hydr. u. Mar. Met. XLVII, 1919, p. 11,
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a local indentation we shall introduce the value 60 meters, which is in better agreement
with the average depth of the surroundings (see Fig. 4). In Table 32, the computed and
observed velocities of progress are compiled. '

Table 32.

- ¢ ¢
St. No. D:fth s r Vgh comp. obsv.
’ m/sec m/sec.

8 22 1.0 0.1 14.7 16.2 10

7 35 1.0 0.3 18.5 25.1 12

3 56 1.0 0.8 23.4 70.1 27

1 60 1.0 0.8 - 24.2 725 65

The observed velocities are at all station smaller than those computed, at the two
first where the currents are approximately alternating, even smaller than }/gh, but at the

last two greater than J/gh.

The difference between Stations 1 and 3, east and west of Wrangell Island, is
remarkably great. We have seen that the peculiar tidal currents at Station 3 were the
result of the character of the eddy viscosity, which again was explained by the hydro-
graphic conditions at this station. The same applies to the velocity of progress. The
wave proceeds actually as if the upper layer did not exist, and the wave were proceeding
in a sea with a depth of 16 meters only and not 56 meters (p. 51). This clearly shows
the importance of the hydrographical conditions, in this case the stratification of the water,
for the velocity of progress. The difference in this velocity east and west of Wrangell
Island may therefore be due to different hydrographical conditions within the two regions.
The oceanographical observations from August and September, 1922, at stations east of
Wrangell Island confirm this view in so far, as no stratification was found there. This
may be due to the season, but the oceanographical observations from the region north-
west of Wrangell Island, on the other hand, show that the conditions, which were illu-
strated by the density curve at Station 3, prevail there through the whole year. More
extensive observations, however, are required from the region east of Wrangell Island, in
order to examine the value of the suggested explanation. '

5. The variation of the range of the tide. Attention has previously been drawn
to the fact, that the range of the tide varies both along the cotidal lines, and in the
direction of progress. In the following we shall disregard the range observed at Cape
Chelyuskin, because on account of the divergent character of the tidal wave in the Norden-
skiold Sea this cannot be brought directly in connection with the other ranges. We then
find, that the range generally decreases from west to east at the most northerly stations,
or referred to the direction of progress from right to left, in agreement with the con-
clusions on page 61. Arranging these stations according to longitude, we find:

Station 8 7 Bennett Isl. 3 Point Barrow
Longitude 141.5 144,0 149 166.2 E. Gr. 156°.7 W. Gr.
Range, cm. 210 92 105 18 14

The decrease is evidently more rapid off the New-Siberian Islands where the currents
are alternating, than further east where they are rotary, again in agreement with our
conclusions,

10
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Supposing that the range in the region where the currents are alternating decrease
approximately according to the law
2
C = Co e ° !
(p- 20) we can compute the ranges at St. 7 and at Bennett Island from the range obser-
ved at Station 8. We find, introducing 1 = 2w sin 76° = 1.32.10—4:

St. 7 Bennett Isl.
y = Distance from Station 8 along cotidal lines  50.10° m 150.10% m.
Meanoc¢ ... .............. 10m/sec 12 ‘m/sec.
Computed range, cm. . . . . . . . . .. . . 108 41
Observed range, cm. . . . . . . . . . . . . 92 105

According to this the observed range at Station 7 is in good agreement with the
supposed conditions, but the range at Bennett Island is considerably too great. This may
be due to local convergence caused by the Island. The decrease from right to left,
however, mainly seems to be the effect of the rotation of the earth.

The decrease in the direction of progress, on the other hand, is due to the resi-
stance. In the region north of Ajon Island and Bear Islands the wave seems to pro-
ceed with an almost straight front, and it should, therefore, be possible to compute
approximately the values of the coefficient of damping, p, by means of the observed ranges
at Station 3, Ajon Island and Bear Islands, using the formula

2

—p—=z
C=Coe—}""=.—_coe L

We assume, however, by adopting this equation, that the currents off the coast have the
same character as at Station 3, and since information is lacking, we cannot expect to find
very reliable results.

In the above equation we can conveniently introduce

b
T —

NIE

where ¢ means the difference in lunar hours between the time of highwater at the stations
and 7" the period length in lunar hours, viz. 12 hours. We then find from Stations 3
and Ajon Island '

18.e—?2 27 =5 ; p=0.62
and from Stations 3 and Bear Islands:
18.e—?2r - =3 ; p=054

Both values are in fair agreement with the value p = 0.35, which was found from the
current observations at Station 3, far off the coast.

Observations of the range of the tide and the tidal hours along the northern coast
of the New-Siberian Islands would have been of great interest, because on account of.
the course of the cotidal lines and the shallow water we may there expect rapid changes,
but such observations are still lacking.
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In the preceding section the importance of the hydrographical conditions for the
velocity of progress was mentioned. We might also have there included the importance
of the resistance offered by the ice. Both these factors are evidently of importance for
the damping of the wave. Considering this, numerous variations of tidal hours and
ranges along the Siberian coast must be expected. Particularly a yearly period in tidal
hour and range seems probable, because the resistance of the ice has a marked yearly
period, and in addition the sea off the coast is generally more or less free of ice in the
summer. The available observations, however, are from too limited periods to permit a
study of these relations.

Summing up the results of the preceding discussion, it seems justifiable to say
that the tidal phenomena .on the North-Siberian shelf on every point confirm the results
of the theoretical investigations which, on the other hand, were suggested by the observa-
tion of these phenomena.




