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Introduction. In higher latitudes currents of lighter water generally follow the
coasts, running with the land to the right on the Northern Hemisphere, to the left
on the Southern Hemisphere. The lighter water thus forms a kind of wedge along
the coast, and the lines of equal density — isopycnals — or of equal specific volume
— isosteres — will be inclined downwards and towards the coast. As a consequence,
the isobars, and the actual surface of the sea, will be inclined too, and away from
the shore, with a corresponding horizontal pressure gradient, pointing away from the
land. The lighter water has a tendency to spread in a sheet over the whole sea,
but is kept close to the shore by the deflective force due to the earth’s rotation. If
now the inclination of the isobars is ¢, and g the acceleration of gravity, then the
horizontal pressure gradient is 4g. The condition for lateral equilibrium is:

ES

19 = 2wvsin B = lv = 1.46 >< 10— sin B.»

Here v is the velocity of the current, w the angular velocity of the earth’s rotation,
and B the latitude. The friction is disregarded.

This fundamental relation was first used by Mohn (1885) in his paper on the
Norwegian Sea, and has ever since formed the base for the computation of the velo-
city of currents due to the unequal distribution of density. The theory has, however,
been greatly improved by Bjerknes, and the execution of the work has bheen made
easier in the course of time, but the computations are still rather cumbersome. First
the density or specific volume must be determined from observations of temperature,
salinity and depth, then whole series of summations are necessary in order to deter-
mine the exact distribution of pressure, or the slope of the isobaric surfaces. The
homogeneous bottom water is supposed to be at rest, with horizontal isobars, Starting
from one of these, the pressure at a certain higher level can be found by an inte-
gration of the differential equation:

dp = — godz
where o is the density, z the vertical distance. Or the height of an isobaric surface
can be determined from the equation:

gdz = — adp

where « is the specific volume. Both procedures require a considerable amount of
somewhat tedious work.

If however the density has been determined, and a set of isopycnals — or iso-
steres — has been drawn on a section across the current, it is possible to determine
the velocity from the sloppe of these curves.
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The velocity of coastal currents. We will consider a vertical section across a
coastal current. The lighter water runs along the coast; the isopycnals are inclined
towards the coast, the isobars away from the same. The density of the water is o,
the inclination of the isopycnals is j, the inclination of the isobars is ¢. At the
boundary between two layers of density g, and g.., we have: (Fig. 1.)

?n*, ) (tn+1 + J) On+1 = (ta +J) 0n
In+ or: . . .
. Tnt1 Ont1 — Q@ + (Qn+1_9n)] =0
Pn : that is:
J A (ig) + jle = 0
in [ : . If the density varies continuously, we obtain:
Fig. 1. d (i) +4do=0

This is valid for the variations along a vertical line.')
By summation we get:
i0 — ig0q = — [ jdo
34
or: 10 —1t00 = Zjle
The density allways decreases upwards. The bottom water is supposed to be at rest,
and i, = 0. Accordingly:

io = — [jdo
or: 19 = \EjAQ

In the general case the inclination j will vary with the depth. On the oceanographic
gections the mass distribution is represented by isopycnals for some constant inter-
val 8. We then have:

1o =8 Xj
The condition for lateral equilibrium is, that the horizontal pressure gradient dg is
equal to the Coriolis force:

v = 1ig
If now u = gv, the specific momentum, we obtain:
_ D5
| mT
For the bottom water, v, = u, = 0.

There is no corresponding expression for the velocity. But, as a matter of fact,
the density will not vary more than about 1/1000 in the open sea, and with suffi-
cient approximation we can put: u = g, and:

gé ..
v=1—2
Ago J
On many oceanographic sections, however, the mass distribution is represented by
isosteres, curves of equal specific volume, with interval d. From the formula:

A (i) +jle=0
we obtain: alNt = (i + §) Da

1) Applied to the atmosphere, this relations leads to well known formulas, for the stability of
motion at a surface of discontinuity (Margules) and for the change of horizontal pressure
gradient with height (Siér Napier Shaw).
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Now, the values of the inclination ¢ are very small compared with the values j;
also, the variation of the specific volume « is of order 1/1000 in the open sea;
accordingly we put:

I,
At = &;]Aa
. R B
and by summation: L= P
0
and further: v = il Y]
) Aoy,

On the oceanographic sections the isopycnals and isosteres are often arranged
in a strikingly parallel pattern, so that the vertical distance between two and the
same curves is nearly constant. If this is exactly fulfilled, the inclination j is the same
at all points along a vertical line. In this case the relation:

d (ig) + jdo — 0
can be integrated directly:
19 =J (0o —0)
or in another form:
(C 4+ e=Je
which can be found immediately from a figure. (Fig. 2). If the specific volume is
introduced, we get:

=2 "%, L
Qa, J F
In this case, the following expressions are exactly valid: !
u=2j0—0 ~
=L jla—a)
Aag \
These expressions will be of use later on. >
On the oceanographical sections, the vertical scale is always G J
greatly exaggerated, but as the inclination j is measured by its
tangent, all values j are multiplied by the same factor. If the

proportion vertical scale/horizontal scale is n, then we have:

Fig. 2.
j=dJd/n
where J is the tangent measured on the diagram. We then ultimately obtain:
_ 9% :
V= Ton " J (isopycnals)
d
or: v=29% 37 (isosteres)
ni oy

We will consider two examples.

First, let the density distribution be shown by isopycnals with interval 10-4

The vertical scale is 1:5000, the horizontal scale is 1:3 millions. The proportion n

is 600. Moreover, the latitude is 63°. — This corresponds to the Stad Sections in:
Hellond Hansen & Nansen, The Norwegian Sea. — We then have:

g9 _ 9.82 >< 10~ N

nhgy ~ 600 >< 1.46 >< 104 >< 1,028 >< sin B ~

= 1.09/2'J (cm/sec) = 1.22 ZJ (cmy/sec)
sin B

J (m/sec)
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Secondly, the mass distribution is shown by isosteres for intervals of 5>< 10 -7,
The vertical scale is 1:2500, the horizontal scale is 1:185200; the numher n ac-
cordingly will be 74.08. The latitude B is 68° 20’. This corresponds to a section
prepared at the Bureau of Fisheries, Bergen. — We obtain:

o 9% 982> 5> 10"9><1.028 SJ (m/sec)
" nla, T 74.08>< 1.56 > 10-*><sin B~
467 _ <
_sinB‘J (cm/sec) = 5.02 3J (cm/sec)
6 18 2 The inclination J of the isopycnals (or isosteres) is measured with
s a scale on a slip of transparent paper (Fig. 3), along a vertical line,

and the numbers are written in place. The velocity differences are
found by means of a slide-rule. Then the velocity differences are added
together from below, and the sums written in the spaces between the
isopycnals. These numbers are the velocities. When first the factor
before the summation sign has been determined, the rest is quickly done.
o (Fig. 7—10 and 11—14, pp. 8—9.)

Some remarks on the seetions. The Norwegian Atlantic current
might be supposed to run northwards along the coast, with minor
irregularities. Such is also the case on the 1903 sections; the 1904
sections however show quite different conditions: the current runs north-
wards and southwards in stripes. This fact has been noticed by Hel-
land-Hansen and Nansen (Norwegian Sea, pp. 118-—128, 152—170). For
the Stad and Lofoten sections, the velocities have been calculated ac-
cording to the method based upon Bjerknes’ circulation theorem. From
0 ' data given by the authors I have drawn a figure showing the distri-

Fig. 3. bution of velocity on the Lofoten section 1904. (Fig. 4). There is a
ﬁf?ﬁ;&éﬂ%ﬁi close correspondence between the results of the classical method and
tion of slope.  that presented in this paper. The cause of the peculiar arrangement
of the currents, in this sections as well as in others, has been discus-

sed at some length by the said authors. The strongly marked divide some 350 km outwards
from the Lofoten coast, between southwards and northwards currents, coincides with the
edge of the Helgeland ridge, 0
which here slopes down from ..
a dept of 2000 to a depth of 5 2
3000 metres.
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The water transport of a '.
coastal current. When the 300+
velocity has been found for ",
each point of the section, the 4001 4
total transport can be found
by numerical summation or
graphical integration. This is
rather irksome work, too but A I
the result can be found by an " Fig. 4. Lofoten 1904
easier method. Compare fig. 14.
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The current is now supposed to run along a vertical wall which shall represent
the coast. A coordinate system is introduced, with the Z-axis along the wall, and
positive downwards. The X-axis is horizontal, along the surface, and positive out-
wards. The bottom water of density o, is at rest.

Firstly, let us consider an ideal case. The whole mass of water of the current
shall be homogeneous, and the boundary against the underlying bottom water is a
straight line on the section. (Fig. 5). The den-

sity of the lighter water is o,, and the ineclina- X
tion of the boundary line, j. Then we have:
u=—-f%jAe=%(@o——91)j "

The specific momentum » is constant over the
whole area of the section of the current. The fo
total mass transport is,

U= §X2u =2 (0y—e.) jX2 Fig. 5
But now, jX = Z, and ultimately we get:

g
U =37 (00— 1) VA
The transport is accordingly only dependent upon the depth of the current, the lateral
dimensions have no influence.

Now, let the boundary be curved; the inclination j is a function of the co-
ordinate x. The water of the current is still homogeneous, with density o, (Fig. 6). At

a point at the boundary we have:
X aX

U= % (06— 01)J

and the specific momentum is the same at ail points
along the same ordinate, above the boundary
curve. The transport through a stripe with
height z and breadth Az is:

AU:uzAx:%(go—gl)jzAx

But along the boundary curve, we have:

jhx=A0Az

Fig. 6.

and then:
OHU = %(90“‘91) 2Nz
or in differential form:

dU = % (00— 1) 2dz

By integration we obtain:

Now, let the water of the current be built up of layers of density g4, 0, .. . .. . .
ete. A vertical column of the section, from the surface to the bottom water, will
then be divided into smaller elements by the various boundaries between the water
layers, crossing at depths z,, 2, ....... etc. with inclinations jq,7;,....... ete,
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Fig. 10. Lofoten 1904

Figures 7, 8, 9, 10. Sections across the Norwegian coastal current. Horizontal scale, 1:6000000;
vertical scale, 1:10000. Redrawn from Helland Hansen & Nansen, The Norwegian Sea,
Pls. XXTI A, and XXIV A.
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(Fig. 15). The specific momentum of the water in each layer is uy, u;, ...... Then
the mass transport through the column is:
AU =NAxlu (zp—2) + U (2 —2) + ... ... ]
= N [2y (Uy—%g) + 24 (Ug—uy) + .. ... .
= Az [2gAug + 2. DU + ... ]

For the bottom water w, = 0. The difference in
specific momentum between two layers in the
same vertical is:

Auz-%jllg

ZsIntroducing this, we have:
2

A . .
4 AU = gz_sv 5 AV ST VAV M N I

z
OBy a summation with respect to x we obtain

the total transport. But along each boundary
curve, we have:

jhz=0Nz

Fig. 15.

and from this we get:
AU:—‘%[ZOAzOAQO—]—zIAzlAQI—i— ...... ]

Under the summation, all the density differences are constant. Moreover,
Szl = Z*

where Z is the depth of the boundary line in question at the wall. Then:

U — 2% [Z2 Noy + Zy2 0oy 4 . ... . ] .

[7

. J — Y : 2

or: U 27 YATAN)
If now the variation of the density is continous, we obtain;

-9 2

U= S Z2deo
This expression can be transformed. as:
fZZdQ = Zy" 0 _‘[9 az:

and we ultimately get:
U= [ (o) iz

The integral represents the moment of a vertical rod with respect to its upper end
at the surface, and with a mass distribution as given by the values of the density
differences in the section along the wall.

No corresponding, exact expression can be found for the volume transport V,
but, as before, we can with a very close approximation put U = g, ¥V, and:

_ 9 r . 2
V= st (e eaz
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If the mass distribution is shown by isosteres, we can put:

Nv = YN

g

and by reasoning along the same lines as above, we obtain the expression:

= 2;’% [(a—ay) az?
which is exact to an approximation of one or two tenths of one per cent.

In the special case mentioned before, i. e when the isopycnals and isosteres are
arranged in a parallel pattern, this last expression is also strictly valid.

Thus it should be possible to compute the total quantity of water carried by
a coastal current from measurements and determinations of the density at one station
alone, near the shore. This seems rather startling, and the theory must be tested
on actual cases, where the transport has been calculated in the regular way. A
necessary theoretical condition is, that the curve ¢ = g, (or « = a,) rises to the sur-
face somewhere in the section.

As to the practical execution of the work, some remarks may here be made.
For a given distribution of density along a vertical, the moment can be easily found
by a graphical method. On a millimeter paper the density ¢ is put against the
square of the corresponding depth Z. On our diagrams, the vertical scale is so
chosen, that one unit corresponds to 10° square metres; on the horizontal scale, 1
division corresponds to a difference in density of 10—* (Fig.s 16—19).

27,50 60 /70 ,80 90 28,00 27,50-,60 ,70 ,80 ,90 28,00 2750 60 70 ,80 ,90 28,00 2750 ,60 ,<70 ,80 ,90 28,00
0 0 0

N l N, o N\ \

\ \ N N

2 \\\ 2 ‘\ 2 >\\

™
3 \\ 3 . - 3
4 4

~] &

Stad 1903 Lofoten 1903 Stad 1903 Lofoten 1904

Figures 16, 17, 18, 19. Diagrams for the determination of moments. Vertical scale, one unit
equals 10° square metres. Horizontal scale, ¢ = 1000 (¢ —1.)

The value of one square in the diagram thus represents 10°>< 10-* = 10 units.
Now, g/24g, = 3.26 >< 10*, and accordingly we get:

V= 320>< 107 > 100> 4 cub. m.
sin B
where A is the area measured on the diagram.

We shall test the theory upon concrete examples, viz. four oceanographic sections
given by Helland-Hansen & Nansen (Norwegian Sea, 1909, Pls. XXI A, May—June
1903, and XXIV A, May—June 1904.) Two of the sections are from Stad and sea-
wards, at Lat. 63°, the other two from the Lofoten Islands toward the west, at 67°
N. Lat. The amount of water with salinity above 35 %0 carried through these sec-
tions has been computed by the authors according to the common method, and also,
by the present writer, according to the method described above, from one vertical
column alone. Of course, the coast and the continental slope do not form a vertical
wall, and the isohaline for 35940 does not strictly follow any isopycnal, but corre-
sponds roughly to the line for p = 1.028. I have drawn a vertical line near the
coast, as it seemed best before beginning the measurements. The coast wather
with low salinity is practically excluded. The densities with corresponding squares
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of the depths are shown in the table, and also in figs. 16—19, which should be com-
pared with the sections, figs. 4 —7.

Stad 1903 Stad 1904 Lofoten 1903 Lofoten 1904
Density Depth Square Depth Square Depth Square Depth Square
1.0275 80 6 400 80 6 400 100 10 000 20 400
6 200 40 000 220 48 400 200 40 000 60 3 600

7 440 193 600 420 176 400 420 176 400 300 90 000
8 550 302 500 520 270 400 475 235 625 420 176 400

9 620 384 400 570 324 900 580 336 400 460 213 600
1.0280 660 435 600 600 360 000 660 435 600 510 260 100
Summation 11.4 10.0
Area 11.25 10.2 8.3 6.3
V mill. cubm. 4.1 3.7 2.9 2.2
H.H.&N. 4.0 3.8 2.7 2.3

The agreement is almost too close, and might arouse suspicion. The water
transport in the Lofoten sections has been computed by Helland-Hansen & Nansen
for the upper 500 metres; in order to get comparable values. I have cut the dia-
grams at 250 000. This is not quite exact, but the result seems to justify the method.

It is also possible to calculate the momenta numerically; the result will be
almost practically the same. The columns of the squares of the depth are summed
up, but of the numbers at top and bottom only one half is taken. We get the values
placed immediately above the «Area» in the table. This method is not directly appli-
cable to the Lofoten section, which comprises only the upper 500 metres in Helland-
Hansen and Nansen’s computation.

If the distribution of density in an oceanographical section is given by lines of
equal specific volume, the calculation of the water transport can be carried out in
precisely the same way. In our rather rough calculation, no regard has been taken
to the change in density due to the different compressibility of the water, but this
is of no great importance, as compared with so many other sources of error.

The Stream Line Funetion. The total transport of the current can thus be
found from observations at one station only. But, in the same way, we can deter-
mine the transport through the part of a section outside any vertical line from ob-
servations at one station only; and further, we can find the transport between any
two vertical lines.

If the section cuts the current obliquely, we still get the true transport by the
same procedure.

If the function U has been computed for two stations, the difference between
the two values will represent the total transport of the current per second through
the section between these stations. If two neighbouring stations have the same
value of U, then obvicusly no transport takes place across the connecting section.
It follows, that if a line can be drawn on the chart for stations with equal values
of U, then the transport of the current will follow the direction of this line.

If the function U has been determined for a great many stations scattered over
a part of the sea, it will be possible to draw such contour lines for successive values
of U. As the transport through a section between two verticals is equal to the
difference in the values of U at the two stations, the transport along a stripe be-
tween any two fixed contour lines is constant. Moreover, the momentum u = gv
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is inversely proportional to the distance between the contour lines. Here is meant
the total momentum from the surface to the bottom water. The contour lines for
equal values of U will then obviously be stream lines for the transport, integrated
from surface to the bottom water.

In a paper from 1929, V. W. Ekman came to similar results. (Uber die Strom-
menge der Konvektionsstrome im Meere. — Acta Universitatis Lundensis, II, 25.)
His line of reasoning is in short as follows. The transport S through a vertical line
has the components:

H
S = f 0 V.2
oH

Sy :fgv,,dz
0

The Z-axis is pointing downwards, and H is a depth well into the bottom water,
which is at rest. If acceleration and friction are disregarded. the equations for the
motion are:

op
a—x + ley =0

From these relations is obtained:

If now a function P is introduced, defined by:

H
P = f pdz

0

it follows that:

oP
AS,= ==
oy
P
XSy e E‘

Accordingly, P is the stream line function, well known from theoretical hydrodyna-
mics. If contours are drawn for constant values of P, the transport along a stripe
between any two of these lines is constant. Dr. Ekman has also drawn a chart,
showing the course of the Gulf Stream along the edge of the Newfoundland Bank.

To these theoretical considerations, the following may be added. If the homo-
geneous bottom water, with density g,, is supposed to reach the surface somewhere
in the open sea, the value of the function P at this place will be:

Py=tgo,H?

At a station near the coast, a value P, has been computed. Then the total
transport of the current between the two stations is

1
U:T(P1_‘Po)
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There is thus a very close connection between the functions P and U:
H H z
szdezf(fggdz)dz
0 4 [

H?

and U:zigf(@(,—g) dz?

y)

The expression U seems to be the most convenient one for numerical computation

Printed March 9, 1035.



