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INTRODUCTION

In the succeeding chapters we shall endeavour to develop, partly on kinematical
and partly on dynamical principles, the inter-relations between the field of pressure on
one hand, and the various changes in the future pressure distribution on the other, and
show how these relations may be applied to the problems of weather chart analysis and
weather forecasting.

The so-called Norwegian methods of weather chart analysis are well-known from

numerous papers of Bjerknes, Bergeron and Solberg. These methods which
have been developed to a rather high degree of perfection, chiefly aim at a physical ana-
lysis of the weather charts. A systematic treatise on this subject has recently been
rendered by Bergeron in his: Die dreidimensional verkniipfende Wetteranalyse, the
second part of which is not yet published. In the present paper the writer has endeavoured
not to discuss things which are likely to be treated by Bergeron. There is, therefore,
very little said about physical weather chart analysis.
) The physical analysis, naturally, forms the basis of rational weather forecasting. The
step from the completed physical analysis to the forecast is, however, a difficult one. It
is this step that the writer has endeavoured to facilitate in the present memoir. The
leading idea is: to develop methods for evaluating the instantaneous velocity and acce-
leration of the various pressure formations, such as: cyclones, anticyclones, troughs,
wedges, fronts etc. Furthermore, to evaluate the displacement and variation in intensity
during the forecasting period. These questions are discussed in chapters 1 to IV and VI.
Chapter V deals with the properties of fronts, convergence in the air masses, and vertical
velocity.  Finally, chapter VII gives numerous examples of the application to the
weather charts.

Throughout, it has been a leading idea to express the forecasting equations in terms
of pressure only, because atmospheric pressure is the only element for which no question
of representativeness arises.

The preliminary investigations, which form the basis of this paper, have been
extended to many problems which are not contained in this publication. For several
reasons it was necessary to limit the purview to problems which are so closely connected
to weather chart work, that their solutions can be applied directly in the daily weather
service. For this reason, the paper has no pretentions of being a complete treatise on
the subject advertised in the title. It is, however, hoped that clarity and applicability
are gained by limiting the scope. In fact, practical applicability is the one thing aimed
at in the present memoir. Questions of purely theoretical value have persistently been
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left out. Amongst such questions are: (1) the connection between the distribution of
pressure and pressure changes on one hand, and the transfer of energy on the other,
(2) the connection between the vertical distribution of solenoids and the horizontal distri-
bution of pressure, and (3) vertical velocity and transformation of energy. It is intended
to return to these problems in a later communication.

CHAPTERI.
DEFINITIONS AND GENERAL EQUATIONS.

1. Characteristic Curves in the Field of Pressure. The field of atmospheric pres-
sure in a level surface at an instant { = ¢, may be represented by means of equiscalar
curves for unit values of pressure.

During an interval of time A ¢ the pressure may vary by the amount A p. This
variation is uniquely determined by the new position of the equiscalar curves, or isobars.
When, on the other hand, the instantaneous distribution of pressure and the instantencous
pressure variation are known, it is possible to compute the displacement of the isobars.

Let p = p (z, y, ) represent the distribution of pressure (p) at (say) sea level. For
any instant ¢ = ¢,, the isobars are given by

P =Dos P1> P, etc.
where p,, p,, etc. are constant values. The isobars may be called curves for characteristic
pressure values.
The field of pressure frequently exhibits characteristic curves of higher order. Let

0
F=T@y

represent the distribution of pressure variation (or barometric tendencies). The equiscalar

curves for %’— (or isallobars), are then given by

0
6—1; = T, T, T,, etc.

where T, T, etc. are characteristic constant values.

Furthermore, the pressure distribution may exhibit more complicated characteristic
curves, such as trough lines, wedge lines, symmetry lines etc., which are characterized by
constant values of certain derivatives of the pressure function,

A pressure center (high, low or neutral point) may be defined by the intersection
of characteristic curves derived from the pressure function.

It is, therefore, convenient to deduce general equations for the displacement of such
curves. In the succeeding chapters we shall specialize these equations, and demonstrate
how the instantaneous displacement of the entire pressure field may be diagnosed, and
how the future distribution of atmospheric pressure may be forecasted.

2. Definition of Velocity and Acceleration of Charaeteristic Curves. Let p —p(x,, )
be the pressure function in a system of co-ordinates (x,%). We introduce the symbol

al+m+np
1 mn ~— N o m *
( ) ¥ axlaymatn
A characteristic curve in the pressure field may then be defined by?!)
(2) Pimn = constant,

!) The definition may be extended to any function f (%, y,t), and therefore, also to f(p (x, ¥, t)).
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. op .
Thus pgyy = p == constant, represents an isobar, p,,, = % = constant, represents an is-

allobar, etc. _

The characteristic curves themselves may be identified by means of numbers which
denote the constant values of pyu,.

In order to be able to define the movement of such characteristic curves, we must
’label’ the curve elements in such a way that they become autonomous, and thus may
be recognized from one chart to the other.

The curve elements may be individualized in different ways. Let us consider the
isochrones (8) (see fig. 1) of an individual characteristic curve, and draw the normal
curves (C) to these isochrones. A curve element (e) may then S
be individualized in such a way, that it is always to be found
on the initial characteristic curve and on the initial normal
curve. An imaginary particle, which is forced to remain on
the curve element, would have an instantaneous velocity which
is perpendicular to the isochrone, If the isochrones be cur-
ved lines, the acceleration of such a particle would have one
component perpendicular to the isochrone and one component
tangential to it.

The displacement of a curve element tangential to the Fig. 1.
curve itself is of no consequence for the future distribution
of the scalar function. We shall, therefore, choose to work with another notation for
individual curve elements.

Let us again consider the isochrones of a characteristic curve and the normals (straight
lines) to the isochrones. The curve elements may now be identified as being always on
the initial characteristic curve and on the initial normal. With this notation, the velocity and
the acceleration of an imaginary particle that remains on the line element, would always
be directed along the initial normal.

Let AN be the displacement along the normal during the time interval A¢. We
then define the velocity (C) of the element of the characteristic curve as:

(3) ‘ C = lim

Nt 0

AN
At

The acceleration A of the line element may be defined as the change in velocity
per unit time. Or

ac

4 A= —
(4) i
The velocity, which is equal to the velocity of an imaginary particle that, during its
motion, is forced to remain on the curve element, is a function of ¢ and N only. Choosing
a system of co-ordinates whose z-axis coincides with N, we may write

ac aC 20
%~ ut

()

The acceleration of a curve element thus has no component perpendicular to the s axis.

It is sometimes convenient to have a wider definition of the velocity and accelera-
tion of a curve element. Let again S (see fig. 2) be the position of the curve in
question. Draw an arbitrary line L through P. The welocity of the curve element at
P along the line L, may then be defined as
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S, 5 . [AL
o = | ==
L o= tim (&
P L7 Analogously we may define the acceleration as
AL (lCL
(D A = T
Fig. 2. and in analogy with (5) we may write:
. 30 9C;
(9) Ag %+@

when the x-axis coincides with the line L.

3. Choice of Systems of Co-ordinates. In order to obtain analytical expressions
for the velocity and the acceleration of moving characteristic curves, it is convenient
to consider the phenomenon in question relative to two systems of co-ordinates. In
this paragraph we propose to develop general equations for the transformation from one
system of co-ordinates to another.

Let

p=p, 91
be the pressure function in a system of co-ordinates (xy) which is fixed to the earth (£ = time).
Let
P= P(x,7 ?/’7 8
be the pressure function in a moving system of co-ordinates (z'¢’), and let the vector
symbol <7 denote the ascendant of a scalar function. We then have for the same indi-
vidual particle:

dp dP
ey 2 A
and
&) vr=vP
The substantial derivatives with regard to ¢ may be written:
dp _op
(3) w = T Vvp

where ¥V is the velocity of the particle in the fixced system of co-ordinates. Likewise

we have:
dP a P

€9 T TVVP
where ¥ is the velocity of the particle relatlve to the moving system of co-ordinates.
Subtracting (4) from (3), and substituting (1) and (2), we get:
0= _0°F

=5 +V—=V)-vp
Putting (V' — V') = C = the velocity of the moving system of co-ordinates, we may write:
oP - o
) %= TC T

S . . 6P .
which is the equation of transformation. e then stands for the local pressure variation

in the moving system of co-ordinates, and 3—1?515 the local variation (or the pressure ten-

dency) observed at a fixed station.
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A ship furnished with a barograph, and sailing with the velocity €' in a pressure
. 0p
field whose ascendant is <7 p, where the barometric tendency is 5]}, would record a

- oP
pressure variation cqual to Pl

Instead of choosing different notations for the pressure functions in the two systems
of co-ordinates, it is admissible to choose different symbols for the differentiations with
respect to the two sets of variables. Choosing the symbol 2 for differentiation in the
fixed system, and & in the moving one, and realizing that the transformation is valid for

any function, we may write symbolically :
é ?
(6) Fral s + €y

and this equation multiplied symbolically by any scalar function ¢, gives the general
equation of transformation.

The second derivative with respect to time in the moving system of co-ordinates is
found by applying the operator defined by (6) once more, viz:

b}
s Pt €9
o ot

+0v( + €-v)

which developed gives:
6% 0®
(7) 57 =g TR0 v + C.v+ oy
which is the general formula for the transformation of the sccond derivative in a moving
system of co-ordinates.
Interpreting C as the velocity of an element of a characteristic curve, it follows
that C is permanently directed along the z-axis. We, therefore. have:

C-v_—_ Ca—
0
20V = 8m8t
oC - 200
WY T
9 ] a0 o ,0°
C-v(C-v)= ‘ (O%) Cozdat Ul
Substituting in (6), we get
d 0 0
8 = i
(®) ot ot T Oax
Equation (7) now becomes
2 o o 2C . 00 0 | .0
T 8x6t+(t T C%) T Vo
Substituting again from 2 (5) we get
() =0 + 207 A%
‘ o= T T

which is the most convenient equation for the transformatlon. The particular choice of
system of co-ordinates, naturally, does not encroach on the generality of the equations

(8) and (9).
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2

" ) . . .
The term 6%2_’ when applied to pressure, may be interpreted as the ‘curvature‘ of

the barogram recorded on a ship that sails with the velocity C and acceleration 4 along
%p 2%p o% nd op

a li here th iati t a fixed stati definedby —&, =, -* .
a line where the pressure variations at a fixed station are definedby 32 Taat py

4. Velocity and Aecceleration of a Characteristic Curve. According to the defini-
tion of a characteristic curve, we have:

1) Pimn = constant.

In a system of co-ordinates that moves with the curve element in question, we must have:

6 mn
e e
or more generally: '

di mn
3) Do 0

Applying the operator defined by 3 (8), we get from (2):

aplmn a_plmn

® ot 0 =0
Putting

ag;nm = Pimnty
and

ag%. = Pitymn
we get from (4)

Dymn

(5) C=— ﬁ

which is the general formula for the instantaneous velocity along the x-axis of an element
of a characteristic curve. '

The acceleration of the curve element is obtained from (8) by putting ¢ = 2 and
applying the operator defined by 3 (9), to puw, viz:

— azplmn 9 azplnm 23’plm aplmn
0= ot> +20C oxot + O 21t +A-a‘x*
Writing
82plmn .
2 Pmnyy ete., we get
(6) A._______.plm”+2 +20p1+1mn+1+ Czpl_,_?”m

Pryymn

which is the general formula for the acceleration along the x-axis of an element of a
characteristic curve defined by pim, = constant,
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CHAPTER IL
THE DISPLACEMENT OF ISOBARS AND ISALLOBARS.

5. Velocity of the Isobars. The equations developed in Chapter I, may be used
for deducing equations for the displacement of the isobars. With the symbols defined
by 2 (1), we have for an individual isobar:

Poge = P = constant.

The velocity of the isobar is obtained by substituting pum == pee in the general
equation 4 (5), viz: '

. P»

Ponr ot

1 C = fm____ "7
@ D1 o
ox

It is convenient to choose the w-axis normal to the isobar at the point in question,

o . 9, .
the positive direction of the z-axis pointing towards high pressure. 671;; then is the total

pressure ascendant. For unit isobars we may then put
oy L

where } is the distance beiween two neighbouring unit isobars. Formula (1) then becomes

2 A &
(2) G by h
or, when we put ;;i = TI'= barometric tendency:
(3) Ci=—1Th

Thus, the normal velocity of the isobar is equal to minus the tendency multiplied by the
distance between unit isobars. The velocity is positive when the tendency is negative
and vice versa.

By means of formula (3) it is possible to evaluate the instantaneous velocity of dis-
placement of the entire field of pressure. The formula may also be used for extrapolat-
ing the pressure distribution after a moderate interval of time. As the time unit in
barometric tendencies is 3 hours, the extrapolated displacement of the isobar is equal to
the instantaneous velocity multiplied by the number of 3-hour intervals. It is most con-
venient to use the distance between two 5 to 5 isobars and one fifth of the barometric
tendency, one fifth being the tendency unit in the international code.

How far the displacement can be extrapolated depends on the acceleration, and in
paragraph 7 we shall find a formula for the instantaneous acceleration. By discussing
this formula we can estimate the constancy of the isobar velocity. In this connection
we may note, that whereas both tendencies and pressure gradients may vary rather
rapidly at a fixed station, the variations in a system of co-ordinates that follows the
pressure system, generally are very small. This especially applies to the parts of the
isobars which intersect the path of the pressure center.

From formula (3) we can also compute the variation in pressure gradient in the
moving pressure system. Let p, and p, be two neighbouring isobars, whose velocities
are Oy and C, respectively. The instantaneous variation in % between these two isobars
is (C;— C). After an interval of time ¢, the distance % is given by

4) hh=hy + (C;— ODt
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. . 1 . . .
and the pressure gradient is equal to —-. Assuming the wind velocity to be propor-

h
tional to the pressure gradient, a quantitative wind forecast can be obtained from
equation (4).
The field of isallobars not only causes variations in the wind force, but also alters
the wind direction.
The translation of the isobar is given by formula (3). The rotation is expressed by

1 oh
oy _(I”h + T@)

®

where I, is the ecomponent of the isallobaric ascendant along the isobar, and 7 is the
barometric tendency.
When the isallobars are parallel to the isobars, we have I, = 0, and therefore
0C; oh
© oy
and the isobars veer for falling pressure when the isobars diverge.

When the isobars are parallel, we have % = 0, and hence

26 _

© oy — —

and % has sign opposite to I,

For the estimation of the change in pressure distribution, it is important to note
the position of the isallobars rclative to the isobars.

6. Velocity of Isallobars. An isallobar is given by the equation

op
T= o = constant.

The velocity Cr of an isallobar is obtained from 4 (5) by substituting pj, =
Poor = T, viz:

oT
at
1 Cp— —Do02 OV
@) ! Dinn 9_T
ox

In a system of co-ordinates whose x-axis is perpendicular to the isallobar we have

oT . . . ..
that 7 18 equal to the total isallobaric ascendant, when the positive direction of the
x

x-axis points from low to high values of tendency. For unit isallobars we may write
oT 1

@ZIVZW:E’

where H is the distance between two neighbouring unit isallobars. Substituting in (1) we get

oT 2p
(2) OTw—a—tH_—ﬁH.
Formula (2) is completely analogous with the formula for the velocity of an isobar.

The velocity is positive when the barogram is curved anticyclonically and vice versa.
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0 .
When the tendency is uniform, 5’;: 0 and, therefore, Cz = 0, except in the center

of isallobaric systems, where H = o0o. Cr is then given by an indeterminate expression
of the type %

%p
a2
dency. Conversely, if Cp can be obtained with sufficient accuracy from two consecutive

The guantity may be computed from two consecutive values of barometric ten-

2,
(preferably three-hourly) weather charts, we may substitute for 27229 by means of (2) (see
paragraph 8).
The acceleration of the isallobars is easily obtained in the same way as the accele-
ration of the isobars (see paragraph 8). The equation for the acceleration would, however,

3
contain the term oo , which, at present, is not obtainable from the weather charts.

0
ot®
Formula (2), however, gives the instantaneous displacement of the field of isallo-
bars, and it is frequently important to calculate the movement of the system of isallobars
relative to the pressure system. In general, there is little difference between the acce-
leration of the pressure system and the acceleration of the isallobaric system. We thus

can obtain the relative displacement of the two systems with a high degree of approximation.

7. Acceleration of Isobars. With the symbols introduced in paragraph 2 we have
for one individual isobar :

Dooo = p = constant.

The acceleration A4; of an element of the isobar along the z-axis is then obtained from
4 (6) by putting Pims =p. We then get:

*p % g O%p
T AT

ap
ox

(1) di=—

which is the general formula for the instantaneous acceleration along the z-axis of an
element of the isobar.

It is convenient to choose the z-axis normal to the isobar. The various terms in
(1) then have the following meanings:

9 .
5% is the total pressure ascendant.

% . . . .
B_tg is the ‘curvature’ of the barogram (or more accurately, the local variation

in tendency).
2,

a 3 . » .
a—la)t is the component of the isallobaric ascendant normal to the isobar.
X

*p .
5;61—22 is the ‘curvature’ of the pressure profile.

can be obtained from one single weather chart.

%
All quantities in (1), except Ik
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The acceleration, however, depends largely on the curvature of the barogram, which,
unfortunately, is not contained in the international code for synoptic information. Over

. 0*
West-Europe, however, where tbhree-hourly observations are common, E)_p

jr can be compﬁted

with fair accuracy from two consecutive weather charts.

154

8. Discussion of the Preceeding Formulae. (a) In the paragraphs 5 and 7 we
have found expressions for the velocity and acceleration of the isobars. If these quanti-
ties were given as functions of time, the problem of predicting the pressure distribution
would be completely solved. The formulae 5 (3) and 7 (1), however, give only the
instantaneous velocity and acceleration. - By means of these formulae, the instantaneous
kinematical state of the pressure systems can be diagnosed. For the dynamical analysis
of the weather charts, these formulae are indispensible.

The future position of the isobars may be extrapolated over a moderate interval of
time by means of the formula

) S= it + 5 A

where S is the displacement along the initial normal, and ¢ is the forecasting period.
(b) According to § (8) and 7 (1) we have

@ Ci=—"Th
and
%
o A.__8t2+2039t+03w”
®3) = 5
o
. . op 1
Introducing as previously = = —-, we-get
dx h
®p  10h
2 Wow

where b is the positive distance between two consecutive unit isobars.

2
Putting %: I, = the z-component of the isallobaric ascendant, and substituting
FZ
n (3), we get
4) Ay—— Zt{fh 201xh+—a—’f
(¢) Uniformly changing pressure. The term —_ depends on the curvature of the

barogram. It is positive when the barogram is eurved cyclonically, and negative when
curved anticyclonically. When the pressure change is uniform it is zero.
Uniformly changing pressure generally occurs in places on the chart where there

is no (or very slight) isallobaric gradient, or, in other words, in the centers of the
2,

o°p

isallobaric systems. In such areas we have = =0, and I, = 0. From (4) we then get
Ct oh
Ai= b ox
Substituting from (2), we get
oh

() A= Toh

ox
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. . - oh
If, in such areas, the isobars are equidistant, we have T 0, and hence:
A;=0.

This case frequently occurs in the front and in the rear of moving cyclones and
anticyclones. It is in such areas that the isobar velocity is constant, in which case the
extrapolation may be performed by means of the simple formula

(6) S=Ct=—1Tht
Uniformly changing pressure generally also occurs in the warm sector, where the
2,
isobars are equidistant. We then have 27120 =0 and % = 0. From (4) we then get
(7) di=—20C,Lh=2TLh.

If I; is zero, there is no acceleration, and if 7 = 0, there is neither velocity nor
acceleration. ‘

(d) Tendency equal to zero: In such cases we have C;= 0, and therefore

%

This case generally occurs in the vicinity of the symmetry line in troughs and
wedges, and also in the vicinity of a line through the pressure center and normal to the
path of the center. In such areas formula (6) fails to be of any value for extrapolating
the pressure distribution, the displacement then depending on the acceleration only.

In the next two chapters we shall develop some convenient formulae for calculating
the pressure distribution in the vicinity of troughs, wedges and pressure centers. The

e 1 S ?p . -
difficulties arising in these areas where the ferm 5%: is predominating, can thus be
overcome.

9. Evaluation on the Weather Chart. Returning again to the complete equations
for velocity and acceleration, we may endeavour to express the various quantities in terms
which are most easily obtained from the weather chart.

The formula for velocity is most easily evaluated by means of 8 (2). The formula
for the acceleration may be expressed in simple terms.

Sy . . . . L .
The term which is least easily obtained is the one which contains ﬁlﬂ) (see f. inst.

8 (4)). This quantity may be obtained from two consecutive (preferably three-hourly)
values of barometric tendency, viz!):

| 32
1) s =T— T,

or from three consccutive pressure observations, viz:
p

(2) e (P2 — p1) — (01 — o)

It is recommended, whenever possible, to apply three consecutive pressure observa-

tions, because the barometer readings are much more reliable than are the estimates of
the variations of the barograph.

"} In the following formulae for numerical differentiations’ we choose the time unit equal to the

tendency interval (3 hours), and in accordance with common practice, we drop the notations for
dimensions.
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In most countries, the morning chart is the one that is the most important for the

forecasting service. The time interval from the evening chart to the morning one is,
2

however, too large for computin 7P s well as similar uantities in the equations of
2 puting =5 q q

the succeeding chapters. It would, therefore, be an immense advantage if night observa-
tions, at least of pressure and tendency, were more common. Still more advantageous
would be if the night observations were postponed to 4 o’clock GMT. In the mor-
ning, the forecaster would then have two complete pressure and tendency charts at
intervals of three hours. From such charts, differentials could be obtained with suffi-
cient accuracy.
2

The term ZTJ’? can also be obtained when the velocity of the isallobar can be
evaluated with sufficient accuracy from two (preferably 3-hourly) weather charts. From
6 (1) we get

3210 01'

3 ES T H

where Oy is the velocity of the isallobar, and H is the positive distance between two
neighbouring isallobars,

The first component of the acceleration as given by 8 (4), may now be written in
the alternative forms:

—(py — 2p, +po) h
h
[ + O

—(Ty— Lo}k
(4) A,'—[

The two other components of the acceleration can be computed from one single
weather chart. '

. 1 . . . . .
Putting I, = Vil where H, is the distance between the points of intersection be-
x

tween the z-axis (which is normal to the isobars, see fig. 3) and two consecutive unit
isallobars, we get for the second term in 8 (4) ’
= p h m

The third component is also easily evalnated.
Let &, and h, be the distances between two con-
secutive pairs of isobars (see fig. 3). For the

middle isobar (p, + 1) we may put
B (hy + hy) and 2 Ta "M

AR, . Furthermore:
o flhathy)
2

o = o — 2 £ 1)
¢ 4 .

Substituting we get:

(6) A" = T? (hy — hy).
Fig. 3, showing the Yarious quantities in The total acceleration is then given by
the acceleration formula. ’ g
(7) Az — Ail + Ai” + Ai’”-

In general, there are frequently simple areas on the chart where the displace-
ment of the isobars may be computed without acceleration, or without some of the
terms in the acceleration formula. It is, therefore, important to pick out the easy areas
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and carry out the calculations there. In this way one can, in the majority of cases, get
a good picture of the future pressure distribution without much computation.

The following table exhibits the various forms of the acceleration formula according
to different types of pressure fields.

Table 1. Types of pressure fields and corres-
ponding formulae for the acceleration
of the isobars.

Description Formula

Uniformly changing 2Th?

2 (f
pressure. H, T2 (hy— )
Center of isallobars. T2 (hy — hy)
Center of isallobars on 7
equidistant isobars. 1ero
: (T 17 T 0) h he
Equidistant isobars. h +27 ——
Cr— H,
H
. h
On the zero-isallobar. | (T,—T\)% or C’TTI—

The writer is aware that the acceleration does not remain a constant. Equation
8 (1) gives only the first two terms in the series which can give accurate values for
the displacement. Under present conditions the writer considers it useless to develop
the terms of higher order. Even if such terms could be obtained, the series would
converge only within a certain interval, and, at present, no estimate can be made as
to the interval of convergence.

The formula for the velocity of the isobars gives by itself the actual instantaneous
state of motion. By means of this simple formula only, a complete diagnosis can be
carried out, and the evaluation of the instantaneous displacement of the pressure field
is an important step from the completed physical analysis to the prognosis.

The accuracy which can be obtained depends largely on the accuracy of the obser-
vations. Accidental errors in the observations can generally be neutralized by a thorough
analysis and an intelligent smoothing of the fields of pressure and tendency. It is,
therefore, necessary that the observations should be critically analysed, and that the values
which are put in the formulae, should be taken from the carefully drawn isolines, and
not from the individual observations.
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CHAPTER IIIL
THE MOVEMENT OF TROUGHS AND WEDGES.

10. Introduction. In the previous chapter we have seen how the future distri-
bution of pressure may be computed by means of the equations for velocity and accele-
ration of the isobars. In the areas of the charts where the barogram has large curva-
ture, some technical difficulties arise, because it frequently is difficult to obtain

approximate values for the quantity % This quantity is particularly large during the
passage of troughs, wedges and pressure centers. The aim of this chapter, therefore,
is to develop some convenient means for computing the displacement of the pressure
field in the vicinity of troughs and wedges. In chapter IV, pressure centers will be
subjected to a similar examination. '

The mathematical deductions being the same for troughs and wedges, it is incon-
venient throughout to write both words. We shall, therefore, speak of troughs only,
remembering that the results subsequently obtained, are applicable to both pressure
formations.

The problem of calculating the displacement of a trough may be divided in two
parts: (a) to compute the displacement of the trough line (which will presently be defined),
and (b) to compute the variations in pressure in a system of co-ordinates which is fixed
to the moving trough line. The second problem will be treated in chapter VI.

11. Definition of a Trough Line. Roughly speaking we may say that the pressure
distribution exhibits a trough (or a wedge) when the isobars are curved in such a way
that there is maximum of curvature along a line in the pressure field. We shall call
this line the trough line. ’

In fig. 4 a and b are given two types of troughs. In fig. a the pressure gradient
normal to the trough line is zero. In fig. b
the pressure gradient normal to the trough

X line is different from zero. In both these
cases we choose the z-axis tangential to the
isobars with origin at the point of intersec-
tion between the isobar and the trough line.

The trough line is then characterized
by the following conditions:

p _ 7P
(1) L _0 and L0

7;‘04/?/5 Leine

X

Fig. 4 a and ).

The second condition means that the isobars are not straight lines.

Troughs in the current sense of the word, are frequently accompanied by fronts,
which cause a discontinuous distribution of pressure gradient and pressure tendency along
the trough line. We shall here exclude these kinds of troughs, and treat them separately
in chapter V. To the conditions previously stated we may, therefore, add one more,

s 0 0 . . . . .
namely, that the quantities % and é% shall be continuous functions of x in the vicinity

of the trough line.

The conditions (1) are the necessary but not the sufficient conditions for having
a pressure trough in the usual meaning of the word. The conditions are fulfilled for
any line that cuts curved isobars, when the system of co-ordinates has been chosen as
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specified above, We may, therefore, deduce equations for any such line and apply them
to pressure troughs. :
The trough is finally characterized by the:condition that the pressure profile along
the x-axis has maximum of curvature on the trough line.
Let o denote the curvature of the profile. We may then write

rp
(2) 0 — aw2 — p200
T VT T
R

On the trough line, we have by definition, p,), = 0, and hence:

0 = Psoo -
The condition of maximum or minimum of curvature is found from (2) by diffeven-
tiating with regard to x, and equating to zero, viz:

(3) 90 __ Pseo (1 + P’100) — 30%a00P100 —0.
oz (L + p*o0)?

Again we have as an initial condition that p,,, = 0, and hence

oo
(4) oz Psoo = 0.
Summing up we get the following initial condition for a trough line:

(a) Pip=10 and continuous
(b)  Pse =0 » ?
© Zmo=0 > >

Condition (c) says that there is maximum or minimum of curvature along the trough
line. For the deduction of the following equations it is immaterial whether there is
maximum or minimum. This feature is worth noticing, because, in the next chapter we
shall apply the equations to lines where there is minimum of curvature.

12.  Velocity of Trough Lines. In order to obtain an expression for the velocity
of a trough line, we must specify some permanent condition which the trough line shall
obey during its motion. In order to do this we propose to develop an equation for the
velocity along the x-axis of the point which always has maximum of curvature.

The condition of maximum of curvature is expressed by 11 (3), viz:

(1) o6 __Psno (1 + PP100) — 3900 P100 -9,
ox (1 + Pt
The permanent condition which the trough line must obey, therefore, is:
o [do
® sl =0

The trough line thus corresponds to the definition of a characteristic line as given in para-
graph 2. The velocity of an element of such a line, normal to its initial position, is
obtained by substituting (2) in equation 4 (5)Y), viz:

0%

oxot
- %

x*t

3) Cr=

) 8ee foot-note pag. 6.
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From (1), we get:
0% Ps (1 + P%100) + Pioo 2 Ps00 Pror — 3 Pao1Pror — 3 PaooProz) — 3P 00 P1mn

dxdt (1 + P%00) %
Paoo T PsosP*100 — 3 Paoo Proo Pror
—5 = D .
(1 + P2oo)F P01 P1oo
Introducing here the initial conditions: pge = pig = 0, we get:
0% .
4) Gt Psor — 3 P00 D101 -

Likewise, we get by differentiating 11 (3) with respect to x and introducing the
initial conditions:

~ 826 (2l
(5) a2 = Paoo—° PPago -
Substituing in (3), we get:
P
Pror— 3;—201
(©) O) = — L0
Pagy — Paoo
20 " Fye o

which is the general formula for the instantaneous velocity of an element of the trough
line along the chosen z-axis. If the trough is of the type given in fig. 4 a, the velo-
city is normal to the trough line. In any case the velocity is tangential to the isobar
at the trough line. ,

Formula (B) contains two coefficients of high order, namely, py, and p,,, both of
which are exceedingly small. In relative units (which we shall explain in paragraph 14)
Psey and Pyg are of an order of magnitude 10—* whereas p,, is of the order 10', and
P1oy 18 of the order 10°

We, therefore, get the following magnitudes:

Py~ 10°
Dy~ 107
Psn -
; ~ 10—
3P%00
Paso 10—+
39%00
Neglecting the terms of high order, we get from (6)

M 0, =1
D200

which formula in all practical cases, may be applied without any noticeable inaccuracy.

Formula (7) is not only an approximate expression for the velocity of the trough
line. It also has a stringent mathematical interpretation. Comparing (7) with the general
formula 4 (5) for the velocity of a characteristic line, we sce that formula (7) represents
the velocity of a characteristic line defined by

P1oo = Constant.

At the initial instant we have p,o, = 0, which only means that the isobar at the
trough line is tangential to the x-axis. If the trough line moves without rotating, then
would P, = 0 hold at any instant for the trough line. This condition could then be
taken as a permanent condition for the trough line. We would then get:

OPioo
8t 0.
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The velocity C'; of this line would, according to 4 (5), be:

’ 2 Proy
) e Paa

When the trough line rotates during its motion there would still be a line along
which the condition p,), = 0 is a permanent condition, but this line would coincide with
the trough line at the initial moment only. Formula (7), therefore, represents the velocity
of the element of the isobar which is tangential to the z-axis.

Fig. 5 represents the trough line L and its position L, after an interval of time ¢.
The line L’ represents the position of the line defi-
ned by p;po =0 at ¢ =¢;. This line is in all prac-
tical cases hardly distinguishable from the trough
line itself. The more pronounced the trough is, the
closer does the line L follow the line I’. Noticeable
discrepancies occur only when the trough is very
indistinct because then p,, is small. In all practical
cases we may, therefore, reckon with the simplified
formula (7).

The quantities p,y, and pyy, as well as p,,, and Fig. 5.

Puo are obtainable from one single weather chart.

The welocity is, therefore, uniquely determined by the actual instantaneous state
of affairs, .

The coefficients in (7) and (7') may be interpreted in simple terms. p,,, is the
a-component of the isallobaric ascendant, or, approximately, the difference in tendency
between the front and the rear of the trough. p,,, is, as we have previously shown, the
curvature of the pressure profile along the x-axis.

The formulae (7) and (7’) are never indeterminate expressions, because, by definition
we have py, 2 0, and neither p,; nor p,,, are indeterminate at the trough line (see
paragraph 11},

Pao is negative for wedges, and positive for troughs. A wedge, therefore, moves
in the direction of the isallobaric ascendant, and a trough moves in the direction of the
isallobaric gradient. The steeper the pressure profile, the slower the motion.

When the trough is accompanied by a front, p,,; and p,y, are discontinuous at the
trough line. In chapter V we shall see that front troughs obey a formula similar to (7),
the differentials p,o; and Py, being then replaced by finite differences.

13.  Acceleration of Trough Lines, In the last paragraph we have shown that the
trough line corresponds to the definition of a characteristic line, defined by the perma-

nent condition
o |oo
ot (%) =0

The acceleration of an element of such a line is then obtained from the general

equation 4 (6)!) by substituting Z—Z for pum. We then get:

2% 2% %

I —— 2,

M A 0x91? +20 ox®ot C% oz’
L= d%c
ox?

) See foot-note pag. 6.
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The initial conditions of the trough line are, as stated in paragraph 12:

(2) D100 = P00 = 0.
The curvature ¢ is given by 11 (2), viz:

Pano
3 . £200
@) (1 + Proolt
From (3) we get some exceedingly long expressions for the various terms in formula
(1). As our problem is to deduce a formula for the instantaneous acceleration at the
initial moment, we may introduce the initial conditions (2). We then get:
A o 8
(4) saaE  Pser T 12 Pa01 D200 Pror — 3P%200 P1oz-
9%a
(3) pye Tl 1 9 %200 D201
o
(6) 28 Psver
. 9%

“oxt = Paoo — 3P*200-

@
In paragraph 12 we have shown that p,, is completely negligible in comparison
with 3 p3,0,. Therefore, substituting (4)—(7) in (1), and writing down each term of (1)

separately, we get:

%

(8) o oxop? Y- Psox 4P Pror + Peoo Pro
%o 37%00 P00
0x?

The first term on the right hand side is in the relative units mentioned in paragraph 12,
of the order 10-%, whereas the last term is of the order 10— Neglecting the first
term, we get:

9) - Ay = 41920117101 + pzoopmz
P00 .
The second term in (1) may be written, when we substitute for C;, by means of 12 (7):
2%
0x°0¢ A" 2p DPao1 Pre
”—2CL?2—=AL= 3 o 401+6210226:1
oux?

The first term on the right hand side is negligible in comparison with the second, because
its order of magnitude is 10—5 whereas, the second term is of the order 10— Ne-
glecting the first term we get:

(10) A", — 61920113101
P00
The third part of formula (1) may be written, when we again substitute for C:

i
o3 Do ?

11 — = A = £ 1000500

() OzL& 4 3 P%200
ox?

If the pressure profile is symmetrical with respect to the trough line in its im-
mediate vicinity, pgo, is, as shown previously, equal to zero. This condition is identical
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with the condition of maximum of curvature. If the symmetry exists apart from the
immediate vicinity, the next odd derivative (i. e. p;q) must be equal to zero. For sym-
metrical troughs, therefore, py = 0. This condition corresponds to symmetry in
curvature. .

Even if ps, is of the same order of magnitude as p,,, which is negligible in com-
parison with 3 p3,,, we get A'”; of the order 10-6, at most.

The three components of the acceleration as given by (9), (10) and (11), therefore,
have the following orders of magnitude:

A'p ~ 101
A" ~ 101
: A"~ 108
Neglecting the last component, we get instead of (1):
(12) Ay = — PaoaPao — 2 P101 P20
P00

which is the most convenient formula for calculating the acceleration of the trough line.

The coefficients in (12) may be interpreted in simple terms: p;y, and py, bave the
meanings explained in paragraph 12. p,o, is the difference in tendency variations between
the front and the rear of the trough. p,, is the difference in the z-component of the is-
allobaric ascendant between the front and the rear of the trough. The evaluation of
the coefficients from the data of the weather charts will be demonstrated in para-
graph 14.

Equation (12) has a very simple interpretation. If we, (as shown in fig. 5) instead
of computing the acceleration of the trough Iine L, endeavour to calculate the acceleration
of the line L', which defines the place where the isobars are tangential to the z-axis, we
would have to put (as shown in paragraph 12), as a permanent condition of this line,

IPaoo
o0 0.
From the general formula 4 (6) for the acceleration of a characteristic line, we would get:
Do 4 2 O 1 paos 4 C?L P00
D200

At the initial moment this line coincides with the trough line where, by definition p,, = 0.
We, therefore, get:

(13) Al =

Ay = D2+ 201

Pago

which after substitution from 12 (7) gives

(14) 4, = — D102 P2oo —2' 2 D101 Paot
P00

which is identical with (12).

The equation 12 (7) and (12) give approximations of high order for the instantaneous
velocity and acceleration of the trough line. Their stringent mathematical significance is
explained above.

In the next paragraph we shall explain the facile evaluation of these formulae on
the weather chart.
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14. Evaluation on Weather Charts. The velocity and the acceleration of an
element of the trough line are determined by 4 coefficients, which depend on the distribution
of pressure and pressure tendencies. These coefficients are most accurately determined
by graphical methods.

Fig. 6 represents the distribution of pressure and pressure tendencies in the vicinity
of a trough, the full lines representing isobars and the dotted lines isallobars. L is the

trough line. Draw the z-axis through the point P,
tangential to the isobar or, in the present case, nor-
mal to the trough line.

In fig. 6 below, the pressure profile along
the x-axis is represented by curve p. Curve T} re-
presents the distribution of tendencies along the z-axis

x at the instant of the chart above. Let curve 7, re-
present the distribution of tendencies along the same
line on the previous chart. We may then ecvaluate
the four coefficients from these curves in the following

manner:
P11 is obtained by graphical differentiation of

—~~_ curve T;. ‘
AN - Pao by differentiating curve p twice.
: «\.: I /./' - >X Papy Dy differentiating curve T twice.
AT P1ee 1s finally obtained by differentiating graphic-
ally the difference between the curves 7 and 7).
Fig. 6. In this way the most accurate results are ob-
. tained.

It is, however, quicker and sufficiently accurate to evaluate the coefficients by
means of the well-known formulae for numerical differentiation!) This differentiation is
most easily performed in the following manner:

Choose an arbitrary unit of length, and mark the points (1,0), (1/2,0), (0,0), (— 1,2,0)
and (— 1,0) on the chosen z-axis. Let p™ and 7% signify pressure and the three-hourly
pressure tendency at the point (zy), and let A T® denote the three-hourly change in
pressure tendency (or bhalf- of the 6-hourly change). With these notations we get the
following approximate values for the coefficients:

pioy = THO— T—48 ]

(1) Paop = pt* — 2p°° + p= 10
Pioe = AT — AT 30
Pogy = TLO — 2 700 4 T—10

It is important to choose a unit of length which is convenient in each particular
case. In general, the length unit should be chosen as large as possible in order to neu-
tralize the effect of inaccurate tendency values. Moreover, as the pressure tendencies
are given as change per three hours, it follows, that the tendencies observed immediately
behind the trough may be influenced by the pressure variation before and after the
passage of the trough. For this reason also it is advantageous to choose the unit as
large as possible.

On the other hand, the choice of length unit depends on the pressure and the
tendency profiles. Let p represent the pressure profile and 7' the tendency profile

) See Runge-Konig: Numeriches Rechnen. Berlin 1924.
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along the x-axis (see fig. 7). The unit of length should be chosen in such a way that
the approximate formulae for numerical differentiation give the closest approximations
to the true differentials. We shall, therefore, have to Vs

choose the unit of length partly to satisfy the pressure P
profile and partly to satisfy the tendency profile. The
question then arises: which of the profiles carry the largest
weight for determining the displacement? The velocity is
given by the formula 12 (7) viz:

I !
! |
: |
0, = — o ! |
Dano : | :
The variation in C, with respect to pyq is: 1 ; |
| L unit
00y — 1 ! 4Ty 5 X
=, f T >
P10 D200 [
_ . [ 1
Similarily we get the variation with respect to the value | |
of Pyggs Viz: : ! 7
2C p (
LS Fig. 7.

o0 Do
Now, pyo is of the order 10° whereas p,, is of the order 10%. We therefore get:

90 ~ 10—! and 20,

P10 'Paoo

~ 102,

Thus py (the ascendant of the tendency) carries much more weight than does pyy,. It
is, therefore, recommended to choose the length unit in such a way that the most
accurate value for p,, is obtained. Simultaneously the length unit should be chosen as
large as possible in order to render the errors in the tendency values ineffective. In fig. 7
the most convenient unit is marked. As a general rule we may state that the length
unit should, if possible, not be chosen smaller than 3 degrees latitude.

For practical rcasons it is sometimes necessary to choose fairly small units. In
such cases it is more advantageous to use another set of formulae for numerical diffe-
rentiations, viz:

P = $ (T — T—19) ]

@) Dago = P17 — 290 - pT 1
Pn=HOTH—AT-19)
Pagy = TLO — 2 700 4 T'—10 J

the advantages being that the tendency values are not taken from points which are
immediately behind the trough line.

The two sets of formula (1) and (2) stand for the first approximations obtained
from the general formulae for numerical differentiation (Runge-Konig, loc. cit). The
formulae thus correspond to differentiation after parabolic interpolation. The parabolic
interpolation involves py = 0, which also is the condition for maximum of curvature, as
previously stated.

When the velocity and the acceleration have been computed, we may extrapolate
the displacement S of the trough line by combining velocity Oy and acceleration A, viz:

3) 8= Cit+ 3 At

where 7 is the forecasting period.
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It is understood that C, and 4, are expressed in the arbitrarily chosen length unit,
and three hours as unit of time (since the tendency is given as change per three hours).
The forecasting period ¢, therefore, represents the number of 3-hourly intervals.

C;. and A, represent instantaneous values only. Formula (3), therefore, gives only an
approximation for the true displacement,

How far the displacement way be extrapolated depends on the particular case, and
also on the accuracy of the observations. In chapter VII we shall see that the displace-
ment may safely be calculated for 20 to 24 hours.

Formula (3) gives only the two first terms in a series, which can give exact
values. Terms of higher order than acceleration are, at present, not obtainable from
weather charts, and it is, therefore, of no interest to develop formulae for the instantaneous
variation in acceleration. Even without the acceleration term, the displacement may be
computed with sufficient accuracy for 12 or more hours.

It sometimes happens that the displacement may be calculated for two or three
days in advance. In such cases, the series whose first two terms are given in (3), has
a wide interval of convergence. At present no estimate with regard to the magnitude
of the interval of convergence can be made. As a forecasting equation, formula (3),
therefore, has no value outside the interval of time in which it is always (or in the
large majority of cases) convergent. The present experience is that it may always be
applied with advantage within 24 hours.

In chapter VI we shall develop methods for calculating the change in structure of
moving troughs. In this way we can compute the future position of the trough line and
the distribution of pressure in its vicinity. This method, therefore, is a valuable supple-
ment to the method developed in chapter II.

CHAPTER IV.
THE MOVEMENT OF PRESSURE SYSTEMS.

In chapter II we bave developed some formulae for calculating the instantaneous
velocity and acceleration of the isobars and isallobars, and their future displacement. By
means of these methods, it is possible to compute the future distribution of atmospheric
pressure.

The pressure distribution in the vicinity of cyclones, anticyclones, and neutral points,
are frequently of special interest. When for instance, a cyclone decpens, new isobars
are created, and the methods developed in Chapter II do not furnish the necessary means
for calculating the future distribution of the isobars which are going to be created. In
order to overcome this difficulty, and for the purpose of deducing some convenient means
for calculating the future pressure distribution, we propose to develop in this chapter
some formulae for calculating the displacement of pressure systems. In chapter VI we
shall demonstrate the methods for calculating the deepening or filling-up of pressure
systems. In this way it is possible to predict the displacement and the change in
structure of such pressure systems as cyclones, anticylones and neutral points,

15. Definition of Pressure Center and its Displacement. Let p = p (z,y,?) repre-
sent the distribution of atmospheric pressure at sea level. A pressure center at any
instant { = £, may be defined as the place where simultaneously:

. p op
(1) 55—@*—0
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and
*p *p
i i
(2) oxt <= 0, oyt

N
<

The definition thus comprises centers of cyclones, centers of anticyclones and neutral

. . . o* 0 . .
points. A cyclonic center is characterised by 5§>0 and —37]:> 0, an anticyclonic center

. . 92 0%
by the opposite conditions. In the case of a neutral point, a—x]—: and 551; have oppo-
site signs, except in the direction of the asymptotes.

If the profiles of the pressure system have maximum of curvature in the center,
we also have

Pp P

Let S in fig. 8 be the path of the center, and S; and §, the positions of the
center at two instants {, and #,. Let A S be the secant that cuts the path at S, and
S,. Putting f,— ¢ = A¢, we may define the instantaneous
velocity of the center as

AS
C, = Ii (~)
Alzn_l,o At Db S
The acceleration of the path may be defined analogously
as the change in velocity per unit time. o Fig. 8

The velocity and the acceleration of the center is iden-
tical with the velocity and the acceleration of.an individual particle that, during its motion,
is forced to remain in the pressure center.

The acceleration may then be written:

dC;

4) Ai=—7.

16. The Velocity of Pressure Centers. In order to obtain an analytical expression
for the velocity of a pressure center, it is convenient to choose a system of co-ordinates
(xy) whose origin is in the pressure center, and whose co-ordinate axes coincide with
the lines where there is either maximum or minimum of curvature of the pressure pro-
files. These lines naturally coincide with the maximom or minimum of the curvature
of the isobars. The co-ordinate axes need neither be straight nor orthogonal lines. If the
center in question is circular, the axes may be chosen arbitrarily.

The center is then defined by the point of intersection between the two lines.

In all respects these lines correspond to the definition of trough lines. The
equations which we have previously deduced for trough lines, are based on the condition
that there is either maximum or mimimum of curvature along the trough line. We can,
therefore, apply these equations to the two lines which we have chosen to draw through
the pressure center.

When the center moves, the two trough lines (we shall hereafter prefer to call
them symmetry lines) will also move, and their point of intersection will always define
the position of the center.

Relative to the chosen system of co-ordinates, the center has one component of
velocity along the z-axis and one component along the y-axis. The two components of
the velocity of the center are, therefore, equal to the velocity of the element of one sym-
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metry line along the other. The two components are, therefore, identical with the velocities
of trough lines, which we have developed in the previous chapter.
According to 12 (7) we may, therefore, write:

Cos = _g}i’l ]
(1) 200
0,y — —Don
Dozo

which are the general expressions for the velocity of a pressure center.

P and pyy; are respectively the x- and y-components of the isallobaric ascendant.

Pago a0d Py are the curvatures of the z- and y-profiles respectively.

The velocity is proportional to the isallobaric ascendant, and inversely proportional to
the curvature of the profiles. ‘ '

It will be remembered from paragraph 12 that the velocity of a trough line does not
depend on the condition that p,p0=0. Therefore, the velocity of a pressure center
is also independent of this condition. The formulae (1), therefore, are valid for any
kind of pressure center.

17. Acceleration of Pressure Centers. According to the considerations in the
previous paragraph, we may apply the equations developed for trough lines, to the sym-
metry lines of pressure centers. The acceleration of a pressure center would have one
component along the one symmetry axis, and one component along the other. Kach
component would represent the acceleration of an eclement of the one symmetry axis
(trough line) along the other. In analogy with 13 (12), we may, therefore, write for the
two significant components:

A e P10z P00 — 2 Pro1 Voot
& T 2
(1) D200 l
Ay = _ Porz Po2o — 2Po11Pon l
Pozo

In deducing equation 12 (12), we have assumed that there is maximum or minimum
of curvature of the pressure profiles at the trough lines. The formulae (1), therefore, are
subject to the same conditions, or, in other words, they are based on the assumption that
Paoo = Pozo = 0. .

In the same way as in paragraph 13, we may deduce formulae for the acceleration
of a center where the co-ordinate axes do not coincide with the lines where there is
maximum or minimum of curvature.

Formula 13 (13) gives the acceleration of a line in the pressure field where the
only condition is that

Pioo=10.

As this condition is fulfilled for the co-ordinate axes, we get from 13 (13):

Ay = Pt 2 Coz Par + C%ex Paoo

2) Daoo
Aoy = _ Dioe 1+ 2 Coy port + Co)® Poso

Dozo

Substituting for C,, and Cy by means of 16 (1), we get:
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P10z P200 — 2 Pror P2or + P Paoo
A = Pzo0

= P%200

3) P
DorzPozo — 2 Por1 Doz + PP %0
— Poz2o
Ay = — 5
P20

The formulae (1) and (3) are identical, except for the terms which contain py, and
Poso» Tespectively. As in the last chapter, p;; and po; are of ‘the order 10°, pyg
and Py are of the order 10!, whereas p, and pgy ave at most of the order 10—*,
and are equal to zero if there is maximum or minimum of curvature. Conse-

quently p%, %go_o and p2y, ;ﬂ’ are of the order of magnitude 10~2, whereas the other

200 020
terms in the numerators of (3) are (as shown previously) of the order 10° Neglecting

therefore, the last terms in (3), we get the same formulae as (2). In all practical cases
we may then reckon with formulae (2) as a sufficient approximation to the true instan-
taneous acceleration. It is, therefore, of very slight consequence whether the pressure
center is symmetrical or not. The errors committed by neglecting the non-symme-
trical terms are altogether smaller than are the errors due to inaccuracy in the observed
tendencies. The interpretation of the various coefficients in (1), (2) and (3) need not
be repeated here. The quantities have exactly the same meanings as stated in para-
graph 13, the only difference being that we now have two co-ordinate axes instead of one
as previously.

18. Determination of the Coefficients. The evaluation of the coefficients from
the observations of the chart proceeds analogously with the methods described in paragraph
14, viz:

Draw the two co-ordinate axes, contingently along the symmetry axis of the pres-
sure system (see fig. 9). Mark the points (1,0), (1/2,0) (0,0), (— 1/2,0), (— 1,0), (0,1),
(0,1/2), (0,— 1/2) and (0, —1). Writing as previously p®, T, and A T respectively
for the values of pressure, tendency and tendency vari-
ation at the point (xy), we get the following set of
formulae for the numerical differentiation: (compare
paragraph 14):

Py = T#0 — T—40 or }{I'\0 — T'—10)

Pap = p+0 — 2 p*0 + p~ 10

Proz = DT40 — AT 30 or YA TW—AT-19)
(1) Paoy = T _ 9 To,0 + T—1,0

Poy = T4 — To or (701 — 10—

Pz = PO — 2p00 | pO—1

Pore = ATH — AT+ or YA TL—AT)

Doy = TOL—2 T00 | T0-1

where the alternative formulae are to used when the

length unit is small.

With respect to choice of length units ete., the reader is referred to paragraph 14,
The statements made there, hold for pressure centers also.

When the velocity and the acceleration have been computed, the displacement of
the center may be extrapolated by combining velocity and acceleration, viz:
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(2) Sa: - cht + gj Acx t2
Sy - Ocyt + % Acy t2

In paragraph 14 we have made some comments on the application of the corres-
ponding formula for troughs. The same comments are true for pressure centers also.

19. The Path of Pressure Centers. The path of a pressure center is easily cal-
culated from the velocity and the acceleration by means of the formula 18 (2).

Angervo') has recently shown how the path of a center may be’ calculated
more directly, when the center is symmetrical with respect to two axes. Angervo
proceeds as follows:

Let p=p (x,y, t) represent the pressure distribution at (say) sea level. Develop p

in a series:
oc

N) 1 1,min
P = Diraraite vt
[}

where
al +m+ np

D = ooy ot

Introducing the symmetry conditions and neglecting terms of 4th and higher order, he gets:

dz
(P200 + Do) a + P1oa F+ Per @ - Pro2t =0
(1)
d
(Po20 + Po2rt) d_:ty + Pour T+ Po2¥ + Pr2ot =0 J

The integration gives (for details see Angervo l. c.)

2z = _ D tt §Pie?
@) P20 + Panl
- Posst + § Pors 7
Pozo + Do t
where the coefficients have the same meaning as in paragraph 18.

Formula (2) is easier to work with than 18 (3) when the prohlem is to compute
the path only. For the succeding considerations on the deepening and filling ete., of
moving pressure systems, it is necessary to have separate expressions for the velocity
and the acceleration. In chapter VII are given numerous examples showing the accu-
racy which can be obtained from Angervo’s formulae compared with our formula 18 (3).

The discussion of the preceeding formulae offer corroboration of the following rules
relating to the paths of cyclones:

(a) Round centers move in the direction of the isallobaric ascendant.

(b) Oblong centers most frequently move along the longest symmetry axis (or along
‘the line of least resistance‘).

Newly formed wave cyclones invariably move in the direction of the warm sector
current, which is parallel to the longest axis.

When the pressure center is circular, or nearly so, we may put psgy = pozo- Substi-
tuting in 16 (1), we get:

Cy __DPon

tan 8 = =
Ce: P

5 Uher die Vorausherechnung der Wetterlage fiir mehrere Tage. Gerlands Beitr. z. Geoph. Bd.
27. 1930.
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where @ is the angle between the z-axis and the velocity of the center. Remembering
that p, and py, are the 2- and y-components of the isallobaric ascendant, we see that
rule (a) necessarily must hold good. In paragraph 28 we shall see that this rule con-
forms with the rule that the center moves towards the area where the wind is most
accelerated. (Guilbert’s rule),

The velocity of a round center is obtained from 16 (1), viz:

C, — V]’2101 + pztm _ _L
Paoo Paono
where I is the isallobaric ascendant, Thus, the velocity is proportional to the isallobaric
ascendant and inversely proportional to the curvature of the profile of the pressure system.
Therefore, centers whose profiles are very steep, generally move slowly.
Rule (b) holds good only conditionally. From 16 (1) we get:

Ceo  Pro1Pozo’
Suppose that the pressure system is so oblong that p,y, is negligible in comparison with

Pozo, We then see that 6 approximates zero, unless p,, approximates zero. In general
Pror and Py, are about equal, and, therefore, rule (b} generally holds good.

tan 6 —

CHAPTER V.
THE MOVEMENTS OF FRONTS.

The movement of the fronts and the change in structure of their accompanying
pressure fields are of crucial significance for the analysis of weather charts and for
forecasting. In this chapter we shall only treat the movement of the fronts and kindred
phenomena, leaving the deepening and filling to be investigated in chapter VI.

The mechanics of the fronts have recently been subjected to a thorough investiga-
tion by A. Giao.l) We shall, therefore, limit our investigation to a few points where
Giao’s investigations need supplementing.

20. Discontinuities and Layers of Transition. A front is generally defined as the
line of intersection between a surface of discontinuity and a horizontal plane, at the
ground or in the free atmosphere. The surface of discontinuity, which is supposed to be
the surface of separation between air masses of different densities, must obey two
conditions?):

(a) The pressure at both sides of the surface must be equal.

(b) The velocity components normal to the surface must be equal on both sides.

The first condition originates from the principle of equal action and reaction, and
the second one is the well known kinematical surface condition, which states that no
fissure can develop at the surface.

The front, being a line contained in the surface, must obey the first condition, but
need not obey the second. :

In the atmosphere, however, surfaces of discontinuities do not exist in the strict

1y A. Giao: La Mécanique Differentielle des Fronts et du Champ isallobarique. Memorial de
L’'Office Nat. Mét. No. 20. 1929. o

%) See f. inst. V. Bjerknes: On the Dynamiecs of Circular Vortex etc. Geofysiske Publikationer
Vol. II, No. 4. 1921,
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mathematical sense of the word. The ‘front surfaces‘ are layers of transition, in which
density, temperature ete., vary continuously, but more or less rapidly. For the sake of
clarity, we shall preliminarily use the phrases surface of discontinuity and line of dis-
continuity for mathematical discontinuities only, retaining jfront surface and fronis to
designate layers and zones of transition.

The question now arises: Do the front surfaces obey the same surface conditions
as do the surfaces of discontinuity? The question is a difficult one, and can hardly be
answered satisfactorily. The following considerations, however, may help to throw some
light on the matter. :

The question whether a front surface can be treated as a surface of discontinuity
is principally a matter of scale.

Let us, for example, consider the water content in a cloud. At a distance, the
clond may appear to be limited by a sharp surface. Examined at close distance, however,
it will be found that there is a gradual transition from the saturated to the non-saturated
air. Thus, the same cloud may be said to be limited by a surface of discontinuity or a
layer of transition, according to the scale on which it is observed. If the surface of the
cloud had to obey some mathematical law, one would have to find some such approxi-
mation as would suffice the accuracy which the scale of observation would necessitate.

Let o, and o, denote the densities of two adjacent air masses which are separated
from one another by a surface of discontinuity. o, and g, may be functions of space and
time. Let us consider the variation in density along a line (s) that intersects the surface
(S). Let s measure length along the line s in such a way that s = 0 at the point of
intersection. At this point the density (¢) will vary discontinuously, its value springing
from g, to g,. This discontinuous variation can be replaced by a continuous varia-
tion which, to any desired degree, approximates to the discontinuous one.

Writing 1)

ne
(1) 0= Qlltrg;i

we see that ¢ is a continuous function of s for finite values of . When n— o0, ¢ is
discontinuous for s = 0, its value then springing from o, to g,. The number » may be
said to measure the degree of approximation, and ¢ may be called the density-of the
approximated layer of transition,

Let us next consider a real layer of transition in which ¢ varies evenly from g,
to g,. Let s, in the same way as previously, measure length along a line that cuts
throngh the layer of transition, and let m be the scale on which s is measured. We
may then write:

(@) do = (01 — @z) mds.
When m — oo, g becomes discontinuous.

Differentiating (1) we get:
eﬂl

do = (01 — 02) nds m

which for s = 0, and for finite values of =, gives

n
(3) do = (0, — 02) 4 ds.

1) See f. ex. Webster-Szegd: Partielle Differentialgleichungen der mathematischen Physik.
Leipzig 1930. p. 2.
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Comparing (2) with (3) we see that m is equivalent to %Z— As (8), by suitable choice

of n, approximates a discontinuity, it follows from (2), that a layer of transition, by
suitable choice of scale (m), may be approximated by a discontinuity,

Fig. 10 represents the approximations. The full lines represent the discontinuous
variation, the dotted line the approximation obtained by formula (2), and the thin line

the approximation obtained by (1), which for s =0, is 5
equivalent to (3). Let ¢ be a given small positive number, Q [ 2
and let ;, be the difference between the curves aand ¢, * N -
and d, the difference between the curves ¢ and b. It is ¢ \l\K
easily seen that one can always find a value of n, so that |
AR EARER ;
The same applies to m. >4

In most cases m is given 4 priori, i. e. the scale
of the chart. The question whether a layer may be |
treated as a surface, thus depends on whether the layer \\
appears as a discontinuity on the scale on which the ‘
phenomenon is graphed. This leads to a closer definition A 3,
of fronts and frontal zones, viz: Fig. 10, showing the discontinuous

(c) A front is a zone of transition which, on the 2nd the approximated continuous
scale of reference, appears as a discontinuity. variation.

(d) A frontal zone is a layer of transition which is so wide that it does not appear

as a discontinuity.
~ o el ~F
& Ci'/;% o}/ c’:t/ Jo/ Fig. 11 a and b represent the

= - ;7 27 :7 Z”/ :7 "~ distribution of density at a front
o of o o7 o surface, graphed on different scales.

Fig. 11 a. Density varying  Fig. 11 b. Abrupt change
rapidly in a layer of of density at a front
finite thickness. surface. (Scale m).

21. Surface Conditions for Layers of Tramsition. The considerations in the pre-
vious paragraph now permit us to deduce surface conditions for layers of transition of
finite thickness, analogous to the surface conditions of mathematical discontinuities.

Returning now to the surface conditions (page 31), we easily see that the alteration
of the scale does not affect the continuity of pressure itself, and hence, the surface con-
dition (a) holds good.

The second surface condition may be written:
(1) (Vl‘—‘Vg)'N:O

where V is the wind vector. Indices 1 and 2 denote two points on either side of the
surface and infinitely near one another, and IV stands for a unit vector perpendicular to
the surface. Equation (1) may be written :

(2) (4y — tg) & + (v, — va) B+ (w1 — wy)y =0

where u,, vy, w,, are the components of ¥, and u,, v,, w,, the components of ¥,.
Let us now consider a layer of transition of finite thickness. Let U, V, W, be

the velocity components in the layer of transition, in which U, V, and W vary evenly

from U,, V,, W,, to U,, V,, W,, at the limits of the layer. Consider next a surface

in the middle of the layer and a line which cuts the surface. Let s measure length
3
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along this line in such a way that s = 0 at the point of the intersection. In analogy
to 20 (2) we may write for the point s =0:

AU = (U, — U,)mds
Vl h— VZ) ”st

dW= (Wl_— Wg) mds

Let N = (, 8,7) be a unit vector normal to the surface. Multiplying (3) by e, # and y
respectively and adding, we get:

(U1—U2)0‘+(V1—‘ 2),3+(W1_W2)7=
1 (dU av daw
wla et Gt )

Remembering that U, ¥ and W are continuous, and that %g ,%f and 97'-(;:—7 are finite
values, we see that by suitable choice of scale (m), the expression on the right hand side
of the equal sign may be made smaller than any small number ¢. In such a scale we
can write:

“) (Uy—Ua+ (Vi— Vo) B+ (Wi — Wiy =0

which is the surface condition of the layer of transition, which on the scale considered,
is an apparent surface of discontinuity.

Equation (4) would hold good on any scale, if the velocity in the layer is parallel
to the layer itself. If the layer expands or contracts, equation (4) holds good with an
approximation which depends on the scale. In any case, if the scale of the chart is
large cnough to reduce the layer of transition to an apparent surface of discontinuity,

; we can apply equation (4) to

T __/ the layer.
~f - / The following considerations on
the movement of fronts proceed

Fig. 12 a. Curved stream- Fig. 12b. Refracted stream- on the assumption that the sur-
lines in a layer of finite lines at a front surface. face conditions of front surfaces
thickness. (Scale m).

are the same as for surfaces of
discontinuity. Fig. 12 a and b represent the stream lines on two different scales.

22, Definition of Velocity and Acceleration of Fronts. Let us consider the iso-
chrones of a front. Let f, in figure 13 denote the position of the front at the initial
instant £ = 0, and let f; denote the position of the front after f
an interval of time ¢. Choose an arbitrary point P, on f, and Jo '
draw an arbitrary line L. Let P, be the point of intersection,
between L and fi', and let 4L denote the vector from P, to P
P,. The velocity of a curve element of the front f along the Fo L3,
line L may then be defined as:

C; = lim (%)
D0
The velocity is thus defined as being co-axial with the line L Fig. 13.
at the point in question of the initial isochrone.

An imaginary particle which during its motion is forced to remain on the front and

on the line I, would have a velocity equal to C;. The definition of the velocity of an
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element of the front is identical with the definition of the velocity of a characterlstlc
line (see paragraph 2).

The acceleration of an element of a front may be defined as the change in velocity
per unit time of the individual front element. In the same way as in paragraph 2, we get:

ac,
at -

It is convenient to choose a system of co-ordinates with origin at P, and the
positive x-axis directed along L. The element of the front has a velocity which is
permanently directed along L, or along the z-axis. There can, therefore, never be any
component of velocity or acceleration normal to the axis. We may therefore write:
dCy _ 30,« 6Cf
dt

When the line L is normal to the front, we get the normal velocity and the normal accele-
ration of the front element in question.

0y Ay =

() Ay = + 0

23. The Velocity of Fronts and Frontal Zones. In the previous paragraph we
have seen that the definition of the velocity of a front is identical with the definition of
the velocity of a characteristic line in the field of pressure. If we can find some pres-
sure condition which must be fulfilled during the movement of the front, we may apply
the general equation of paragraph 4 to the front.

The pressure condition that is permanently fulfilled at the front, is the dynamical
surface condition, which, as we have seen in paragraph 21, holds also for front surfaces.

Let p, and p, be the values of pressure at two points 1 and 2 on either side of
the element of the front which we consider. According to the surface condition we have:

@ P1—Pp =0
In a system of co-ordinates which is fixed to the moving front element, we must, there-
fore, have:

O(pr—pa)

Y, =0

which is the permanent condition that the front must obey. Substituting pim. = p; — s
in the general formula 4 (5), we get:

1 _ p
ot ot
2 Cr=— —
@ i o ops
ox dx

which is the general formula for the instantaneous velocity of a front along the a-axis.
In general, it is most convenient to choose the x-axis normal to the front at the point
in question.
Formula (2) is identical with the one which Giao (loc. cit.)) has deduced for mathe-
matical discontinuities.

. . . 0 0 0 0 .
The question now arises: Do the differences Py P2} ang (22 P2 oxist at the
ot ot ox ox

front, or is formula (2) an indeterminate expression of the type %

The surface condition (1) naturally holds good for any material surface in the air,
whether there is a front surface or not. But, at a surface which is not a discontinuity
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L 0pr 0py opr  Ops .
of some sort, we would have T 0, and P 0. In this case we may
. - . . o1 [0
take the points 1 and 2 at finite distance from one another, divide (% — aai?) and
0 0
(8%1_5%) by 4x, and then let 42 converge to zero. We would then get:
%p
’ oxdt Piar
3 C _ — e = ———,
) g *p D200
dx®

which is identical with the formula for the trough line. When there is a front surface, we
cannot differentiate through the discontinuity, and formula (2) will be appropriate to use
in such cases.

The physical conditions for having a discontinuity in pressure tendency and pressure
gradient may be studied by means of the well-known formula for the inclination of the
front surfacel) When 6 signifies the angle of inclination, we have:

1 _ 0
4) tan 6= L 22O
g 01— 02

where o is density, and g is the acceleration of gravity.
9py _ 9ps__
ox  ox

also have: %y s _ 0. From (4) we then get that, if 6 is different from zero, and

As the front velocity must be finite, we see from (2), that if 0, we must

gl;_l_%zz 0, we must also have: g, — g, = 0, which is contradictory to our definition
of a front (see paragraph 20). In this case, however, we may have a frontal zone, which
according to the definition, does not exhibit a discontinuous distribution of density.
At the front surface we have by definition: g, 2 g,, and since simultaneously
Py = Py, it follows that the temperature (¢) (disregarding the effect of humidity), must
be discontinuous. ’
Summing up, we may state that the definition of a front also involves the following
conditions:
=D
a0
2T
p1 > 0P
ox T ox
o, <, o

and 252 5

, unless the front is stationary.

A front, therefore, is always accompanied by angular isobars, and, if the front is
not stationary, there will be an angle in the barogram. Formmla (2) may, therefore,
be applied to the formations which we in paragraph 20 have defined as fronts. Formula
(3) may be applied for calculating the velocity of frontal zones. This formula is, as
previously stated, identical with the formula for a trough line. There is, therefore, no
principal difficulty for computing the movement of fronts and frontal zones, because the

1 See J. Bjerknes: Exploration de quelques Perturbation ete. Geofysiske Publikasjoner Vol
IX, No. 9, where some similar questions are discussed.
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above formulae are not deduced on the assumption of the existence of mathematical
discontinuities.

The previous considerations may be transformed into some useful rules for the
physical weather chart analysis. '

(a) A front can never be drawn where there are no angular points in the isobars.

(b) A non-stationary front should never be drawn where there is no discontinuity
in barometric tendency.

(¢) Quickly running fronts are frequently accompanied by ill-defined pressure troughs,
since the velocity is inversely proportional to the discontinuity in pressure gradient.

(d) Slowly moving fronts are, for the above reason, frequently accompanied by well
marked troughs.

Some other interesting features regarding the velocity of atmospheric fronts, have
been discussed by Giao (loc. cit.), and the reader is referred thereto.

The expression for the velocity of fronts, which we have developed and discussed,
has been obtained from the dynamical surface condition. This expression is the only one
that is applicable to the weather charts for calculating the displacement of the fronts.
From the kinematical surface condition we can deduce another equation for the velo-
city of the front, but this equation is, owing to its structure, not applicable to the
charts. It is, however, very useful for discussing the various conditions at fronts.
We shall here only deduce the equations, and leave the discussion to a later paragraph.

.We return to equation 21 (4), and choose a system of co-ordinates whose x-axis is
normal to the front. Equation 21 (4) may then be written:

(Uy—Uy)a+ (W — Wyy=0
or Q
(5) W]_“" W2=(U1_ UZ) tan 6
where 6 denotes the inclination of the front surface.
Equation 21 (4) says directly that the discontinuity consists in a sliding motion
parallel to the front swface, When 8 is the relative velocity of the two adjacent air
masses, we may write:

§: N=0

where N is the normal vector of the surface.

The movement of each of the air masses relative to the front surface must also be
tangential to the surface. When wu, denotes the normal velocity of the front,’) we
may write:

Ij]_ — Mf == W1 cotan 6

Uy — uy = W, cotan 6
or:
©) W, = (U, —us) tan 8
W2 = (Uz _— be) tan 6

From each of these equations we could compute the normal velocity of the front, if W,
U and 6 were known.

It is, however, easily understood, that "owing to technical difficulties, the front
velocity cannot be computed from these equations. The equations (5) and (6) are, however,
useful for discussing the vertical velocity in the vicinity of front surfaces, and we pro-
pose to return to this subject in a later paragraph,

!y We prefer to write us here instead of previously Cr, which has a wider meaning. uy is, however,
indentical with Cy when the w-axis is normal to the front, '
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24. The Acceleration of Fronts and Frontal Zomes. An analytical expression
for the acceleration of a front may be deduced on the same principles as applied when
deducing the formula for the velocity of fronts. The surface condition is p; — p, = 0.
In a system of co-ordinates which is fixed to the moving front element, we must have

0 {(p1— ) _
ot =0.

Substituting s = p; — p, in the general equation 4 (6), we get:

*py 0°p, *py 9%y 9 Ppy  Ppy
o)+ 20 T R R

o8 o oxot  oxot
1 P
@ d o0y 0ps
ox ox

which is the general formula for the acceleration of a front element along the z-axis.
When the z-axis is normal to the front, we get the normal acceleration.

Equation (1) is identical with the formula deduced by Giao (loc. cit.) for mathema-
tical discontinuities, but, according to the considerations in the previous paragraphs, for-
mula (1) also holds good for front surfaces as they are defined in paragraph 20.

According to the considerations in paragraph 23, the denominator in (1)is different
from zero. The formula, therefore, is never indeterminate.

The surface condition p, — p, = 0 naturally holds good for any material surface,
whether a front surface or not. Formula (1) would, therefore, also hold for a surface of
air particles in a frontal zone. But in this case, we have by definition that there is no
discontinuity in the various elements. A frontal zone is characterized by rapid but con-

tinuous variations of the meteorological elements. In this case formula (1) is indetermi-
. . . . 0 0

nate, because, according to the considerations in paragraph 23, 5%——%;2 =0, and 4;

must be finite. In this case we may take-the points 1 and 2 at finite distance (4z),

and divide the numerator and the denominator in (1) by 4, and let dx converge to

zero. We would then get:

2%p , P n O%p
o T U7 i C 7 o8
2%
ox?

(@) A'y=

or, with the notations applied in the previous chapters:

6) A= _ P + O sPaor + C%Ps00
D200
which is identical with the formula 13 (13) for the acceleration of a trough line.

The coefficients in (3) may be evaluated from the weather chart precisely as
described in paragraph 14. The term which contains py, is, as in paragraph 14, fre-
quently negligible. :

For the practical application there is no difference between the formulae for the
accelerations of troughs, fronts and frontal zones, because the differentials p;,,, which
enter in the formulae for troughs and frontal zones, must be replaced by such finite
differences as enter in the front formulae. '

The various quantities in equation (1) are similar to the corresponding quantites in
equation 7 (1), which express the acceleration of the isobar, and the variovs terms may
be interpreted as shown in paragraph 7, with the exception that the z-axis now has a
different orientation.
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The kinematical surface condition could also be used for deducing an equation for
the acceleration. Such an equation has been deduced by Giao (loc. cit.) and the reader
is referred thereto. '

25. Types of Fronts. It should be emphasized at the outset that considerable
difficulties are involved in computing the acceleration of the fronts. The difficulties
arise from the circumstance that the quantities which are to be put into the for-
mulae, are taken from the immediate vicinity of the fronts. For troughs and wedges
etc., the problem is fairly simple, because, owing to the continuous variations of the
various quantities, we may approximate the differentials by means of finite differences.
In the case of a front this is not possible, because the first term in the accelera-
tion depends on the curvature of the barogram, and this quantity cannot be determined
by means of two consecutive tendency values, because the first of these two tendencies
would have to be derived from that part of the barogram which gives the tendency
before the front passage. For this reason we shall detail the discussion of formula
24 (1) in order to give rules for estimating the sign of -the acceleration. KExperience
has shown, however, that when the front is accompanied by some sort of pressure
trough, the formulae which we have previously developed forpressure troughs, give
fairly accurate results for front troughs, when the discontinuity in pressure gradient.
and tendency is smoothed. These formulae may therefore be used for calculating the
displacement of the front trough as a whole. The displacement of the front may,
however, be slightly different from the displacement of the trough.

The discussion of the acceleration formula will also render valuable results for
estimating the probable development of the cyclone to which the fronts belong. The
analysis of weather charts has revealed various types of fronted cyclones, or patterns for
characteristic steps in the development of individual cyclones. We shall first consider
some frequent types of warm sector cyclones, and afterwards comment on the occluded ones,

In the previous paragraph we have developed a general equation for the accelera-
tion of the front along an arbitrary line L, which we have chosen as x-axis. In general,
it is most convenient to choose the z-axis normal to the front. In this paragraph we
propose to discuss warm and cold fronts and their relative behaviour. It is then con-
venient to choose the z-axis along the warm-sector isobars, which, as a rule, are almost
straight lines.

In order to avoid confusion of indices we shall throughout index the air masses
in the following manner: Index 1 denotes the cold air in front of the front, index 2 the
warm air in the rear of the warm front, index 3 the warm air in front of the cold front,
and index 4 the cold air in the rear of the cold front.

Type A. Fig. 14 represents a warm sector cyclone whose main characteristics are
the open warm sector and the symmetrical distribution of pressure.
The general formula for the acceleration is:

(%JLM)HQ(% %)+02 9_11_91)

o o oxot  oxdt ozt 8x?
) Ay =—
oy 9ps
ox ox

where the subscripts 1 denote the air in front of the front, and the subseripts 2 denote
the air in the rear of the front in question. With the indexing introduced above we
may take equation (1) as the expression for the acceleration of the warm front. The
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acceleration of -the cold front is then obtained from (1) by substituting index 3 for 1,
and index 4 for 2.

It is a fundamental property for all fronts that the denominator in (1) is always
positive.l)

Let us first consider the warm front at the point P;. Since the z-axis falls along

Fig. 14. Warm sector cyclone, type A. Continuous curves denote isobars.
Broken curves denote isallobars. The curve below represents a barogram,
reconstructed from the pressure variations at stations on the x-axis.

. 0 0 .
the warm sector isobar, we have P 0, and a£1-> 0. We prefer to discuss each term

ox x
in (1) separately. We may then write for the first part of the acceleration:
opy, _ 7y
L
o
ox

The inspection of the barograms shows that the tendency in the warm sector is almost
2,

invariably uniform (see also paragraph 34). We may therefore put % = 0. Further-

more, at this type of warm front, the barogram in front of the warm front (and in the

2,
rear of the cold front) is almost invariably curved anticyclonically, i. e. a—p‘<0. We

o2
therefore get approximately:
2}
or
(2 A'=——>0.
) o
ox

) See Bjerknes—Bjerknes—Solberg—Bergeron: Physikalische Hydrodynamik. Springer
1932 p. 479—80.
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The second term of the acceleration may be written:

Ppu_ s
oxot  oxot
A" =—2 0 ——«——.
T
ox
?py . s 9%py
Consulting the isallobars, we see that wt ® large and positive, whereas Py

is small and positive. Since C; and a%; are both positive, we get, when we neglect

. ?pe
the small term Pt )
a2191
3) A =—20, ax_at <0.
B:c

Finally, the third term of the acceleration may be written:

®py _ p,
oz ox*
AIII —_ Y2 -
% o
ox
Since the warm sector isobar is a straight line coinciding with the z-axis, we have
02 .
51—2_)22 = (0. Furthermore, aﬁ is negative, We therefore get:
’ a2191
a 2
® 4 =m0, s,
Z)
F

Returning now to equation (1) and discussing it in respect to the cold front (where
the warm air is indexed by the number 3, and the cold air is indexed by the number 4),
we get in the same manner:

%y _ ops 0%py - 9174
—W_O, %-—-O, a—xé—t—-—o,ad <0

and hence:

321:)4

ot?
5 A =——<0.
®) e

ox

For the second term we get, when the z-compouent of the isallobaric ascendant in the
cold air is negative (i. e. directed away from the front):

] 2]’4

A — -2ofaw—at<0

?)x

) The barometric tendency is frequently negative in the warm sectors, but in the majority of

. o2
cases, the isallobars are almost parallel to the isobars.. The term 7Pz can therefore be neg-

20t

lected, when the z-axis is chosen along the isobar.
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and when the x-component of the isallobaric ascendant is positive (i. e. directed towards
the front):
9*py
” 9 @
A 2 C 2 7> 0.
ox
As mentioned previously, it is difficult to obtain an accurate picture of the distri-
bution of the isallobars in the cold air close to the cold front. By means of the synoptic
charts and equation 28 (3) we may determine the sign of the isallobaric ascendant.
Equation 28 (3) gives the rule that the isallobaric ascendant is directed away from the
front when the wind veers after the front passage, and it is directed towards the front
when the wind backs after the front passage. Synoptic studies show that the first case
most frequently occurs at the part of the front which is most distant from the center,
whereas the second case most commonly occurs in the vicinity of the center. For this
reason we have in fig. 14 marked two typical points P, and P;, and in table 2 the
acceleration is given for each of these points separately. We shall presently see the
significance of the said distribution of isallobaric ascendant.

Returning to the above equation, we see that we get for the third term:

0%y

. 0xc?

no___ g T
A" = Cf_ap_4<0,

Jx

. 02 9 .
since both _p; and 2 are negative.
ox ox

The results of the above discussion are comprised in the following table:

Table 2. Type A.

Warm front Cold front
at P at by at Py
py 9*p4 9%p,
ot o o
A ——>0 ——— <0 — <0
oy P P
ox ox o
2%py 2%p, 2%y
oot oxdt oxdt
A" —20C, — <0 —20,—>0 —2C 0
7 op 7 ops 7 opy
ox ' ox ox
2%py 0%p, 0%p,
2 P oot
A" —C* —>0 —C*, — <0 -— (? <0
"opy 2 "op
ox ox ox

We thus see that the terms A’ and A", which depend on the curvature of the baro-
gram and the curvature of the pressure profile respectively, are positive for warm fronts
and negative for cold fronts. The second part of the acceleration is negative, except
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at cold fronts where the isallobaric ascendant points from the cold side towards
the front.

It is interesting to see that the southern part of the cold front of type A is re-
tarded, all three terms being negative. In paragraph 26 we shall see that this kind of
cold front is exposed to frontogenesis.

Another interesting feature is that the acceleration of both the warm and the cold
fronts in the direction of the warm sector isobars, depends almost entirely on the condi-
tions in the cold air. The retardation of the southern part of the cold front tends to
prevent the southern part of the warm sector from occluding. It is a common experi-
ence that cyclones of this type occlude very slowly, and this observation concords with
the results of the above discussion. Moreover, cyclones of this type proceed along the
principal front more or less as waves without appreciably altering their structures. Such
cyclones rarely develop into big affairs, however large the temperature differences may be.

An outstanding example of this type of cyclone has been described by Bergeron
and Swobodal) i. e. the wave cyclone marked 4 on the weather maps for October
10th and 11th 1923. The maps are reproduced at the end of the publication just men-
tioned. The cyclone travelled more than 4000 km. during 60 hours without occluding
appreciably, thus approximating a stable wave.

Prima facie, it may appear difficult to understand that the cyclone can last for
days, when the accelerations are distributed as described above. It should, however, be
born in mind that the structure of the distribution of pressure and pressure tendencies
in the vicinity of the center is somewhat different from the conditions described along
the z-axis in fig. 14.

The general equation for the acceleration of the front permit us to obtain the accele-
ration along any line L. Let us now study the acceleration at a point ¢ near the center
and slightly in front of it. It is now convenient to draw the line L normal to the warm
sector current, We take L as co-ordinate axis, and, in order to prevent confusion, we
let y measure length along this line L. The expression for the acceleration of the front
element at @ along the y-axis is completely analogous to equation (1), when y is substi-
tuted for . We then get:

(0%, 9102)+ ny(apl 32]02)_]_02 (8271 a]’z)

or T ot oyat  oyot 2 oy
Ap=— F) 2
9P1__ %P2
oy 0y

The denominator is positive, and so is C,, which stands for the velocity along the
y-axis. Index 1 denotes the cold air, and index 2 the warm air, To the north of the
front at the point @, the barogram is curved cyclonically, and the curvature is generally

large. ! is, therefore, positive, and presumably much larger th'm ZP> The first part

ot? ot?
of the acceleration is, therefore, negative.

It is easily seen that the other two parts of the acceleration are negative. These
terms, however, carry less weight than does the first term, because the velocity of the
warm front along the line L is exceedingly small.

Summing up, we get the following picture of the acceleration of the fronts of the
cyclone represented in fig. 14: At P, the front is accelerated eastwards, at @ it is acce-
lerated southwards and at P, it is accelerated westwards. The point P, will sooner or
later come to a standstill, whereas the point at @ will move southwards and thus make

) Wellen und Wirbel an einer quasistationdren Grezfliche iiber Europa. Leipzig 1924.
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up the rear of the cyclone. The center will move along the front. The resemblance
to a stable wave is, after these considerations, even more pronounced.

In the said series of weather charts, Bergeron and Swoboda have treated the
cyclone B which succeeded the cyclone A. It is easily seen from the charts, that the
cyclone B represents a totally different type, its rear not being symmetrical with the
front of the cyclone. This cyclone encountered a development totally different from that
of the A. Cyklone B deepened quickly and occluded quickly. We shall presently
see that Bergeron’s B-cyclone represents a common type, whose main characteristic
is that it occludes quickly.

The above considerations show how utterly important it is to diagnose the structure
of the cyclone, and how apparenily minute differences in structure carry large weight for
the future development. The examples mentioned show the fundamental significance of
an accurate physical analysis.

Returning again to the cyclone examplified in fig. 14, we may discuss the possibili-
ties for occlusion by means of the formula for the front velocity. We index the air
masses as previously, and we let C, and C; denote the velocities of the warm and the
cold fronts respectively. According to 23 (2) we may then write;

1 op,
ot ot
Comm—r
Ips__9ps
x ox
s __opy
ot ot
=" o
ox ox

According to the particular choice of x-axis, we have:

oy _ s _

ox ox

Assuming the front and the rear of the cyclone to be symmetrical with regard to pres-
sure distribution, we get:

opr _ Opa  Ops _i_%
o ot ot ot

which is a measure for the rate at which the cold front overtakes the warm front.
In general, the barometric tendency in the warm sector is negative. We then see
that negative tendency in the warm sector favours the occlusion. If the rise in pressure

behind the cold front [i. e. %), is larger than the magnitude of the fall in front of the

ot

warm front (i. e, %

ot
conditions arc in disfavour of occlusion.

, we also have favourable conditions for occlusion. The opposite
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The occlusion process naturally depends in the first instance on the occluding
velocity. But the difference in velocity between the cold and the warm front is a result
of acceleration, sinee the front originally was stationary. If we want to decide whether
a warm sector cyclone is going to be long-lived or not, we should consult both velo-
city and acceleration.

Type B. Having detailed the discussion of the previous type A, we may now
more briefly discuss the type B, which is represented in fig, 15. The main characteristic
of this type is that the cold air isobars in the vicinity of the fronts are curved
cyclonically.

Fig. 15, Warm sector cyclone, type B. For symbols see fig. 14.

We index the air masses as shown under type A. The general equation 24 (1)
then gives for the warm front:

0*py  Ppy 2*py 92]’2\) 2 ®p1  %py
P ___('ars—a—ﬁ + 20 ot o) T O %—a?)
’ o __ %Py '
oxr  Ox
o%p %
Consulting the barogram, we see that W’l is positive, whereas —at—f is zero or slightly
negative. The denominator is, as previously positive, and 6_2;:2 = 0. The first term of
the acceleration may, therefore, be written : '
0°py
F R
A = ji_ < 0.
o

ox
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In the second term we have C; >0 and > 0 an d > 0, but the isallobaric as-

at
. lg . . J?;l .
cendant in the warm sector (1 e o t) is decidedly smaller than P We therefore get:
P Ope
oxo dxt
A" = 9,00
P
ox

2
In the third term we obviously have % = 0 and 3]9 1>O and hence:
a’pl
A = Of — <0.

_IA
o

The acceleration of the cold front is obtained by substituting index 3 for index 1
and 4 for 2 in the general equation.

Consulting the barogram, we see that ?)?;3 is negative because the tendency incre-

2py . - .
ases towards the cold front. —’d% is zero or slightly positive, and in any case smaller

in magnitude than a—fg In the denominator we have 21; 0 and @< 0. The first term

of the cold front acceleration may, therefore, be written:

32193 0% Py
o or
p,
ox

A=

2 2
In the second term we have Py >0 and Ml<O. We therefore get:
oxot oot

py 0%y

) dwit_dabl _

2
In the third term we have: s _ 0, and i p4

© ozt
%P4
ox®
w29
A C, waw134—>0.
ox

Summing up, we get the following schedule for the distribution of front acceleration
in a cyclone of type B.



Vol. X, No. 2. KINEMATICAL AND DYNAMICAL PROPERTIES 47

Table 8. Type B.

‘Warm Front Cold Frout
82p1 %ps 0%,
or otr ot
A —2<0 2T >0
ops Py
ox ox
’py  0*p, 0*ps _ 9°py
0x0t  bxot oxdt  oxot
A" — 20, —————<0 20 o
s on, 5 s
ox ox
’py 9”294
” 0a®
A — 02— <0 —C2 —>O
py 9py.
ox ox

We thus see that the warm front is always retarded, whereas the cold front may
be accelerated or retarded according to which of the three terms are predominating.
The formula for the velocity of the cold front may be written:

9ps _ 9pa
¢ —_ 2
7 s _ 0pa
ox 0x

Again, 3_ =0 and — 4> 0. Since the cold front of this type is accompanied by a

very shght. dlscontmmty in pressure gradient, simultaneous to a more pronunced dis-
continuity in pressure tendency, C; is large. The type B is exactly the type that is
generally recognized!) as a quickly running cold front. Since C; is large, the third
term of the acceleration is likely to carry larger weight than the other terms. A cold
front of this type is, therefore, likely to be accelerated. = Since simultaneously the warm
front is retarded, we arrive at the conclusion that a cyclone of type B occludes quickly.

It would be easy to list a number of recent cyclones which belong to the type B.
In fact, most warm sector cyclones belong” to this type, at least with regard to the cen-

tral region of the cyclone. The outskirts may exihibit other features, and we shall
presently comment on such cases,

An excellent example of type B occured over the British Isles on January 23rd
1926 in the morning.?) The cyclone moved quickly and occluded at an enormous rate,
developing a ’bent back’ occlusion, which during 12 hours, grew to the length of about
600 km. A discription of this cyclone has been rendered by J. Bjerknes (loc. cit.)
who has pointed out some other interesting features of this type of cyclone. We shall

return to the same type of cyclone when dealing with frontogenesis and deepenmg
and filling.

") See f. inst. J. Bjerknes: Practical Examples of Polar-Front Analysis. Geophysical Memories
No. 50. London 1930.

%) See example 11, chapter VIIL
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Type C. Tt frequently happens that the cyclone exhibits a warm front of type A
and a cold front of type B (Fig. 16). In this case we get the following schedule for

the distribution of acceleration.

Table 4. Type C.
Warm Front Cold Front
2*py o'ps  2%p,
ot o o
A’ —>0 —_— >0
oy ops
or ox
2°py %py  0p,
a0t FE
A" —2C;—<0 20 —— <0
" op T s
ox ox
A 2*p,
rra ozt
A" — (02> >0 —C2—=—>0
7 opy " ops
oxr ox

This type naturally occludes quicker than type A, but slower than type B. Type C
exhibits some interesting features with regard to frontogenesis, deepening and filling ete.
We shall return to this type later on.

Theoretically, it might be possible to combine a warm front of type B with a cold
front of type A in one cyclone. Experience shows,
however, that the case is extremely rare. We shall,
therefore, not make any further comments on this
type. Its properties with regard to acceleration
are easily obtained by combining the results con-
tained in the tables 2 and 3.

Type D. Most frequently the cyclones ex-
hibit other combinations of types A and B. The
most common case is that the northern parts of
the warm and the cold fronts are of type B,
whereas the southern parts are of type A. Most frequently the type B predominates on
the cold front. This case is represented in Fig. 17.

Along the line L, we have the conditions represented by type B. Along the line
L, we have type C, and along the line L; we have the conditions represented by type A.
This frequent type of cyclone is charachterized by rapid occlusion near the center, and a
remaining warm sector in the southern part. The southern part of the cold front, which
is retarded, soon becomes stationary, simultaneously being exposed to the effect of fronto-
genesis, and under certain circumstances, cyclogenesis. We shall return to these questions
in some later paragraphs.

Fig. 16.

Occlusions. The previous considerations on types of fronts refer to warm and cold
fronts respectively. We have, however, not used temperature differences as arguments.
The considerations are based on the structure of the pressure field only. The various
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types of fronts mentioned above, are, therefore, representative for occlusions also,
when the pressure field corresponds to any of the mentioned types, A word or two on
occlusions may, however, be of
some value,

In fig. 18 is drawn a
partly occluded cyclone, which
in structure is principally the
same as the so-called occlusion
model designed by Dr. Berge-
ron, and circulated in the Nor-
wegian Weather Service as a
professional note. The writer
understands that the partly oc-
cluded cyclone will be subjec-
ted to a thorough examination
by Dr. Bergeron in the
second part of his Dreidimen-
stonale Wetteranalyse. We shall,
therefore, restrict our comments Fig. 17.
on occlusions to their properties
with regard to acceleration.

The various parts of the fronts in fig. 18 have features which correspond to either
of the types mentioned previously. The arrows represent the acceleration of various
typical parts of the fronts. The upper cold front,
which is represented by the broken curve, may be
accelerated or retarded according to the pressure
conditions aloft. It is, however, most likely that
it is accelerated in the vicinity of the junction
point between the warm and the cold front, and
retarded nearer the center.

It is worth notice that the bent back occlu-
sion in the rear of the center is equivalent to an
accelerated cold front. It is easily understood

Fig. 18. that the distribution of wvelocity and acceleration

along the occluded front may lead to a repeated

occlusion process, which brings the bent back occlusion in contact with the primary

occlusion, and that this process may lead to a new bent back occlusion of seemingly
complicated structure.l)

The types of fronts which we have discussed with regard to acceleration, should
only be regarded as fentative models. A ratioval classification of fronts (with regard to
acceleration, frontogenesis, rain intensity etc.) should be based on the study of a large
number of authographic records. The writer hopes to be able to return to this subject
in a later communication.

26. Frontogenesis and Frontolysis. Soon after the discovery of the fronts, it was
realized that the fronts were subjected to processes which either diminished or increased

1y Only little is known as to the aerology of bent back occlusions. Frequently such fronts do not
move with the air current at the ground. They should then be regarded as upper fronts —
probably troughs of warm air — projecting from the varm sector at some altitude.

4
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their intensities. Dr. Bergeron?) has proposed the phrases fronfogenesis for the pro-
duction of fronts and fromtolysis for the destruction of fronts. A front is said to be
exposed to frontogenesis when it develops towards increased intensity, and it is said to
be exposed to frontolysis when it develops in the opposite direction.

According to Bergeron, the field of deformation produces a front along its
stress-axis. In the régime of a neutral point in the pressure distribution, it is easy to
locate the stress-axis, and to estimate the possibilities for formation of fronts.

In a moving cyclone f. ex, conditions are more complicated, and it is frequently
impossible to estimate the whercabouts of the axes of deformation. It is, therefore,
difficult to judge whether a ready made front is exposed to frontogenesis or frontolysis.

Giao has treated the problem of frontogenesis-frontolysis from a different point of
view. The problem which has interested Giao is the following: What are the conditions
which determine frontogenesis or frontolysis at a pre-existing front.

Let 7, and 7, denote the temperatures of adjacent air particles separated from one
another by a front surface. The temperature variations on either side of a moving ele-
ment of the front is obtained by applying the operator defmed by 3 (6) to 7, and 7, viz:

oty 8t1 . , 01y
) st = ait Uy
dt, 8t2 L, 07g
ot + 0 ox

where C; is the velocity of the front element along the chosen wx-axis. The temperature
discontinuity at the front element is vy — 7, = 47. The variation with time in 47 at a
moving front element is obtained from (1), by subtracting the one equation from the other:

d0dvr o1, Oty o1y ?fg)

(2) F) = +0

St ot ot ox  ox/

The function F'(z) may then be taken as a measure of the intensity of the frontogene-
tical or frontolytical process in the field of temperature.

Equation (2) is not directly applicable to the weather charts, because the tempera-
ture tendencies are not known, and the temperature gradients obtained from the charts,
are often misleading, because of the poor representativeness of surface temperatures.
Neglecting the vertical velocity and performing various substitutions in (2), Giao derives
the following equation:

_wmC—Gop o1y o1,
®) Py="2% 0% - 7y - (R -7

where 17,, is the mean value of 7, and 7,. C, and C, are the specific heats respectively
for constant pressure and constant volume. (V; — V,)is the discontinuity in wind velo-
o1y

city parallel to the front. — — and

0 . .
o — " are the temperature gradients tangential to

the front.

The first term on the right hand side represents the adiabatic change in temepera-
ture, and the second term represents the ’transport of temperature’ tangential to the front.
Equation (3) expresses in simple terms some of the chief agents which produce fronto-
genesis or frontolysis. But, for reasons mentioned above, the equation is not applicable
to the weather charts.

As the frontogenetical or frontolytical process causes variations in most quantities
which characterize a front, we may define the measure for these processes in a more

1y Die dreidimensional Verkniipfende Wetteranalyse. Geofysiske Publikasjoner Vol. V, No, 6.
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general way. Let s, and s, be some property at both sides of a front surface. We may
then define the frontogenetical (or frontolytical) function as:

0 (s, —sy) 08, Os s s
4 Fl=—2 2= 12 Dk
@ ) 3t ot ot T e T ow
3 (8, — T . P .
because ds1 —5) measures the variations in the discontinuity in s at the moving element

ot
of the front. For density we would have, for instance:

- d{o, — 0 9
®) Flg="0—e) 0o Y6, g

o ox)

901 892)

We say that we have frontogenesis when the quantity in question (s; —s,) increases at
the moving front element, and frontolysis when the discontinuity decreases.

As in paragraph 25, we choose the z-axis along the warm sector isobars so that
C; is positive both for warm and cold fronts. We then get the following schedule for
the sign of I '

Table 5.

Frontogenesis Frontolysis

F()<0 F@n)>0
F)>0 Fo)<0
F@>0 | F@)<0
F(9)<0 Fo)>0

Warm Front

Cold Front

We shall now endeavour to express the effect of frontogenesis or frontolysis in
terms of pressure only. This is so much more convenient, because pressure is the only
element for which no question of representativeness arises.

According to the dynamical surface condition, there can be no discontinuity in
pressure at the front. The time or space derivatives may, however, be discontinuous.
In fact, the definition of a front involves discontinuity in the z-component of the pressure
ascendant (see paragraph 23). We, therefore, propose to study the production or destruc-
tion of this discontinuity. Studying a number of fronts by means of autographic records,
J. Bjerknes!) has shown that there is an intimate connection between the frontogenesis
of the temperature field and the variations in the discontinuity in the pressure gradient
at the front. Bjerknes understands that cold fronts become accelerated because of
downward motion in the rear of the front. The downward motion causes adiabatic heating
of the cold air and a decrease in the temperature discontinuity. Bjerknes’ examination
showed that cold fronts which were subjected to this development, developed into our
type B, which we have previously described, whereas retarded cold fronts developed into
our type A, simultaneously increasing in intensity. Moreover, it was found that there
exists a close relation between the acceleration and the velocity on one hand, and the
frontogenesis or frontolysis on the other.

Led by Bjerknes’ ideas, we shall endeavour to express these rules in more con-
cise forms.

According to the dynamical surface condition the pressure at both sides of the front
must be equal. From this it follows that the pressure ascendant tangential to the front

1) Practical Examples ete. Loe. cit.
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(the y-component) must be equal on both sides, because otherwise, the continuity in pres-
sure could not be maintained. The discontinuity in pressure gradient at the front can,
therefore, be represented by the discontinuity in the z-component of the pressure as-
opy _ Opa
ox  ox’
front. The expression for the frontogenesis or frontolysis of this quantity is then ob-

cendant, or 2= This quantity defines the pressure trough which accompanies the

tained from the general equation (4), by substltutmtra— for s, viz:

(6) /A L R e
ox| \oxot oxot T\ o2~ o2

where the first term stands for the difference in the z-component of the isallobaric
ascendant, and the terms in the last bracket give the difference in the curvatures of the
pressure profiles at both sides of the front. Both these quantities are easily obtained
from the weather charts (sce paragraph 9). It is, therefore, easy to calculate the rate at

which the discontinuity increases or decreases. The discontinuity increases when # E}%)

. . s . opy  Op,).

is positive and decreases when it is negative, because e 9w is, by definition, positive.
\

Both terms in equation (6) are contained in the formula for the acceleration of the
front. It is, therefore, only natural that the empirical investigations of Bjerknes have
revealed some connection between frontogenesis and acceleration.

The relation, is, however, not a simple one.

As the front is accompanied by a discontinuity in pressure tendency, we may ende-
avour to express the production or destruction of this discontinuity in exact form. We
would then have to apply the general definition of frontogenesis to the quantity —2—1;,

o e 0 . .
which represents pressure tendency. Substituting ﬁ for s in equation (4), we get:

op °p, 0% %py, 0%,
® F(at) (%’ 8t2) + f(axat a0t
where the terms in the first bracket depend on the curvatures of the barograms on
either side of the front, and the terms in the last bracket give the difference in isallo-
baric ascendant. The terms in (7) are also contained in the general formula for the
acceleration of a front (see equation 24 (1)). In fact, the equations (6) and (7) combined
and compared with 24, (1) give:

7 (%’-) + ¢, F|%
opy  Ops

o ox

(8) Ap=—

which equation states the complete relation between the acceleration of the front and the
frontogenesis of the field of pressure. As the denominator in (8) is positive, we see that
the acceleration is negative when there is frontogenesis in pressure tendency and in pres-
sure gradient,

The function F

op\ . : : ; i i
5%) is more easily discussed in counection with weather charts than

[0 . . o .
is the function F ). We shall, therefore, return to equation (6) and discuss it in
ot 1

detail. This equation is also the more important one, because it tells whether the front
is going to increase or decrease in intensity.
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It is most convenient to discuss formula (6) in connection with the types of fronts
described in the previous paragraph. We start with a warm front of type A. We choose
the x-axis along the warm sector isobar, and we index the air masses in the same way
as previously, As shown in paragraph 25, we have:

?ps  0%p, *py *p,
Tl R U v R =
and therefore
© /AN L S B OB Y
) 0z dxot 7 oa?

The two terms have opposite signs, and there is no general rule for the sign of F (-Z%)
When the front is stationary or nearly so, it is likely that the first term is predominating.
When the velocity is large, the second (negative) term is probably the larger one. The
two terms are apt to balance one another, and fronts of this type are long-lived.
For the cold front of type A we have according to paragraph 25:

Ip 9°py 9°pq
10 ) = — 2 O, L
(10) o (ax) gaat g
0? : 0% o2 .
a—f»zf< 0. Furthermore a—;a)—;> 0 near the center, and 555%<0 along the more distant
part of the front. For the more distant part of this cold front we get without exception:

where

F(aﬁ]>o.
ox,

In paragraph 25 we found that the acceleration of this part of the cold front is nega-
tive. The front vs retarded and exposed fto fromtogenesis.

The practical importance of this rule, which holds without exception, can hardly be
overestimated. The reinforcement and simultaneous retardation of the cold front leads
to a sharp stationray front, which in due time, may produce a new wave cyclone. The
negative acceleration may lead to a retrograde movement of the cold front, and thus give
birth to a new cyclone. (See paragraph 27).

The part of the cold front which is most distant from the center, is Ppractically
always of this type (see fig. 17 and 18). The retardation aund reinforcement of this
part of the front act in such a manner as fo link together the various members of the
cyclone series.

Looking again at the equations (9) and (10), we see that the frontogenetical and
frontolytical processes depend only on the conditions in the cold air, since there are no
terms of indices 2 or 3. The same rule may also be deduced from equation (2). Owing

‘e . . 0
to the homogeneous conditions in the warm-sector air, we may neglect the terms 7?
0 . . . . . .
and éj— against the corresponding terms for the cold air. Examining some synoptic charts,

J. Bjerknes') found that the reinforcement of fronts was caused by processes in the
cold air, notably adiabatic temperature variations.

Let us next consider a warm front of type B (fig. 15). According to the consider-
ations in paragraph 25, we have:

2°p;  2*ps %p, 3*p,
W(’)t—{)}—a}>0’ a—xg>0 and 222 .

Y Practical Examples, loc. cit.
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We, therefore, get:
2%py |

(1) dxdt  dxdt

oz

)

Therefore: A warm front of type B, is retarded (see paragraph 25) and exposed to
frontogenesis. The frontogenesis is, however, rarely as active at this type of warm front
as it is at a cold front of type A, because, in general, none of the terms in (11) are as
large as the corresponding terms in (10).

For a cold front of type B we have, according to paragraph 25:

2 2 2, . 2
%__a_p%>0 6_1_9:3: and a—ﬂ>0.

dwot oxot” ’  oxt ox®

We then get
op ps_ 0°p, 0*py |
12 A O A < S Y Iy Bl
(12) dw) |owdt  oxot 4 axﬂ?

The two terms counteract one another. However, when the velocity is large, the last
term predominates. Bjerkmnes’ rule, that quickly running cold fronts of this type are
exposed to frontolysis, thus seems corroborated.

The fronts of the types C and D, as well as occluded fronts mentioned in para-
graph 25, belong in parts to type A and in parts to type B. The discussion of these
types, therefore, would bring to light no further details.

A word or two may he said about the application of these equations to the weather

charts. The function F(Z—g) is very easily evaluated. The four important equations (9),

2 2
(10), (11), and (12) contain terms of two types, viz: gxgi and % C;. The first quantity,

which is an isallobaric ascendant, may be replaced by the reciprocal of the distance
. . o ., % .
along the z-axis between two consecutive unit isallobars. The quantity 5721% is the varia-

tion in Z—i along the z-axis. This quantity may be determined exactly as described in
paragraph 9, by means of the two distances between three consecutive isobars.

The general equation (6) is very easily applied for studying frontogenesis and fronto-
lysis at stationary fronts. We then choose the =z-axis perpendicular to the front, and
positive towards cold air, and let index 1 denote the cold air. For a stationary front,
we have C;, = 0. KEquation (6) then gives:

P
ox

1

AEp 0%
_$___19_2_11_Ix2

(13) A

when I, denotes the z-component of the isallobaric ascendant,

Equation (13) shows that there is frontogenesis at stationary fronts when the isallo-
baric gradients (— I;) are directed towards the front, and frontolysis when they are
directed away from the front.
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The results of the above discussions are compﬁsed in fig. 19. Writting equation (6)
in the following form:

op
F(é;):A + C; B,

o ®p

1 _ 9P P2
where 4= oot " ol
and _ P Pps

T a2 o2’

a ] B ] ’
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the symbols in fig. 19 give the possibilitis of frontogenesis or frontolysis at some fre-
quent types of fronts. The small arrows indicate the directions of the isallobaric gradients.
The z-axes are everywhere chosen along the warm sector isobars.

The idealized wawe cyclone in fig. 19 shows the normal distribution of fronto-
genesis along the front. It is interesting to see that the northern part of the warm front
and the southern part of the cold front are exposed to frontogenesis. The occluded front,
which results from such a cyclone, may, therefore, be a sharp one. Most frequently the
northern part of the cold front and the southern part of the warm front are exposed to
frontolysis. It is a common experience that cold fronts increase, and warm fronts decrease
in intensity with distance from the cyclonic center.

In paragraph 29, we shall see that the convergence of the isallobaric gradient repre-
sents the convergence of the field of motion, and that frontogenesis depends largely on
the convergence of the air currents.

We have in this paragraph given a quite general definition of frontogenesis, and
shown how the increase or otherwise in the discontinuity of pressure gradient at a front
can be calculated. Prima facie, it might seem as if the study of the function ¥ (%)
bas very little to do with frontogenesis or frontolysis in the current meaning of the word.

According to Bergeron'), frontogenesis gives concentration of the equiscalar sur-
faces of temperature at the front, and frontolysis gives separation of these surfaces.
Moreover, frontogenesis means concentration of solenoids, and frontolysis dispersion of

solenoids at the front. No such terms enter in our equations. If our function F (%)

is conform with frontogenesis—frontolysis in the current meaning, it must be because
the pressure function contains the other arguments implicitly.

. o . . . .
The connection between F (a—g) and the variables which determine frontogenesis—

frontolysis in the common meaning, could be obtained by substituting for p or‘% in

F (%) by means of the equations of motion, the equation of condition or other con-

venient equations. A relation thus obtained, would, however, contain terms which are
not discussable on the basis of the weather chart data. We shall, therefore, not enter
into this discussion here, because it would fall outside the scope of this paper, which
only deals with what is calculable from the weather charts. We shall here only show

a simple relation between the function F(g—ﬁ) and the function ¥ (¢), which gives the

frontogenesis in density.

‘When tan 6 denotes the inclination of the front surface, we have?)

91 __ s
tan 0 feed gx————aﬁ
g(o1—02)

1) Die Dreidimensional verkniipfende Wetteranalyse, loc. cit,.
*) See paragraph 23.
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In a system of co-ordinates which is fixed to the front, we get by differentiation:

s (%P1 _0ps
o\ o) s
ot =9 "

which cdmpared to (5) and (6) gives:

6 (oL — 09) dtan 6
5 + g1 — @) T

op\ . d tan 0
F(%) =g F(g) tan 0+9(Q1“Q2)T,

d tan 6 - cr s o e .
where “-% Y means the variation with time in the inclination of the moving element of

the front surface. When 6 is constant we have that F' (?xi) is directly proportional to

F (o). The synoptical studies seem to indicate that the last term, which depends on the
time variation in inclination, either is insignificant, or else acts in such a manner that
7 . . . 0
F (6%) and F (o) always have the same sign. If this be so, we may consider (51%)
as expressive of the production or destruction of the density discontinuity. In this case

F (%) is expressive of the intensity of the comcentration or dispersion of solenoids at

the front. We shall return to these questions in a later paper.

27. Stationary Fronmts. The formulae for the velocity and acceleration may be
applied for discussing conditions at stationary fronts. It is then convenient to choose
the w-axis normal to the front and positive from the warm towards the cold side.

We say that the front is stationary at the point in question, when the velocity
normal to the front is zero. From 22 (2) we then get:

o m_
0 | R S
or ox
By definition we have %1%—-—%1% = 0 (see paragraph 23). From (1) we then get for a
stationary front:
@ PP

at ot
The front is stationary when the tendencies are equal on both sides of the front.

It seems to be a general opinion that a front which is parallel to the isobars (for
instance old occlusions) is stationary. This supposition does not hold, unless simultane-
ously (2) holds. A front which is parallel to the isobars, moves (as do all other fronts)
towards the lowest tendency. This circumstance is particulary significant for the front
at the tongue of cold air between two cyclones. Such tongues generally move southwards
in spite of there being no isobars crossing the front. The southward displacement of the
cold air tongue is due to the circumstance that the tendency is (algebraically) larger on
the cold side than on the warm one.

Equation 24 (1) gives for a stationary front:

&py __ %pe
orr ot
3 A, = —
@) g oy __ e

or ox
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The denominator is, by definition, different from zero, and it is positive, because the
x-axis points towards the cold air, whose index is 1.

Equation (3) may be used for studying the conditions which produce a new wave
on a stationary frout. Let us consider a stationary front which runs (say) east—west.
The questions then arise: (a) Is the new wave produced by a positive (northwards) acce-
leration of part of the front, or, (b) is the part of the front which makes up the rear
of the cyclone accelerated southwards. Both processes are probably possible. From
synoptic studies it is difficult to decide what actually happens at the moment of the birth
of a new wave.

There is, however, sufficient evidence to show that the latter process (b) is by far
the most common. The drawing of isochrones of fronts shows, that in most pronounced
cases, the (say) western part of the stationary front becomes accelerated southwards. The
rear of the cyclone thus born, then becomes stronger than the front part of the cyclone.
Such cyclones quickly develop into formidable perturbations.

In other cases, even though uncertain, it seems as if the new wave is produced
by a (say) northward acceleration of the stationary front. The wave thus born, seems
to be extremely stable, travelling along the front without much increase in amplitude.
Such waves frequently travel quicker than the air current.

We shall not enter into the synoptical evidences which we have already referred
to, but only point out one important feature, which can be read off the pressure distri-
bution in the vicinity of the stationary (or quasi-stationary) front.

Whether the new wave is produced according to the process (a) or (b), the acce-
leration which starts the phenomenon, is inversely proportional to the discontinuity in
pressure gradient normal to the front (see cquation (3)). As the front, by hypothesis, is
stationary, the variation in the numerator of (3) cannot be caused by any displacement of

. . - . L. 0P 7
the pressure field surrounding the front. The variations in the quantities 8—? and 5‘%,

which represent the curvatures of the barograms on either side of the front, must then

. . . &2 ‘pp
be due to processes which occur in each of the air masses. When E:I-;—lbecomes different

& . . . N
from “22 an acceleration is produced, one way or the other, which may cause a new
2 y ’ Y
wave. The resulting acceleration is, however, inversely proportional to the difference in
pressure gradient normal to the front. We then see that the smaller this difference is, the

larger is the resulting acceleration.

Fig. 20 a and b represent two typical cases.

e e P, "2

P, In fig. a, the two currents are oppositely directed,
—_———— + —— - . . .

1> — »*1  and the difference in pressure gradient normal to
e —— 0 00 { P Cr—

—_— - the front is large. The acceleration resulting from
2 G 3 "1} a certain ’impulse’ is then much smaller than in
Fig. 20 a. Fig. 20 b. the second case (Ifig. b), where the currents have

the same direction. Say that the currents 1, 2 and

3 in fig. 20 have the same strength, and that the carrent 4 is only half of 3. We would
then get that the acceleration resulting from a certain ’impulse’, is in the second case
four times larger than in the first case. The front surface in the first case, thus scems

to be much more stable than in the second case.

These considerations would not hold good if there was any relation between the
numerator and the denominator of equation (3) to the effect that the numerator and the
denominator were proportional to one another. Apparently therc is no such relation.
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That two parallel currents of same direction more easily produce a wave than
do currents of opposite directions, is a fact of experience obtained from empirical
studies. Bergeron and Swoboda') thus write: ’Auch an der Grenzfliche
zwischen einer kalten und einer raschen bewegten warmen Weststromung kaon Zyklo-
genese eintreten. Dieser Fall ist in Wirklichkeit sogar der hiufigere” J. Bjerknes?)
also remarks that.’a polar westerly current in the north and a sub-tropical westerly
current in the south is an almost unmistakable sign that a new disturbance in the shape
of a young deepening disturbance is due to arrive’.

Formula (3) affords, at least, a qualitative means for estimating the stability of a
front surface, and the rule stated above is uncommonly usefull in the weather service.

28. Convergence and Isallobarie Systems. In 1917 H. U. Sverdrup?) pointed
out the dynamical significance of the field of isallobars, and showed that a very simple
relation seemed to exist between the isallobaric gradient and the local acceleration of
the air particles. Sverdrup found that the local acceleration is related to the isallobaric
gradient in the same way as the geostrophic wind is related to the pressure gradient.
Brunt and Douglas* have more recently treated the question of the modification
of the strophic balance caused by changing pressure distribution, and pointed out some
highly interesting features which are of importance for our investigation. With due
reference to the said authors, we proceed to develop the relation between the ficld of
isallobars and the convergence of the field of motion.

Let the vectors ¥ and ¥ denote wind velocity and acceleration respectively. Let
Up, as previously, represent the pressur¢ ascendant, and « specific volume. Put
1= 2 wsin ¢, where o is the angular velocity of the earth, and ¢ is the latitude.
Let % denote a unit vector which is vertical and positive upwards. The equations of
motion in the horizontal plane may then be written in the following form, when we dis-
regard the effect of friction:

V=-—aVp+ V>=<@Up

Multiplying vectorially by k, we get:

(1) Vz__"‘_}?ﬁxk__’f%i’f

The first term on the right hand side of (1) is simply the geostrophic wind.
Differentiating (1) partially with respect to time, we get, when « is constant
locally :

ov ad 1 8V

According to the considerations of Sverdrup, Brunt and Douglas, the last term
in (2) is negligible against the other. We, therefore, get:

) Wellen und Wirbel etc., loc. cit. p. 63.

%) Practical Examples etc., loc. cit. p. 50 (19).

% H. U. Sverdrup: Zur Bedeutung der Isallobarenkarten. Ann. d. Hydrogr. u. Mar. Met.
1917. Similar problems were also treated by Hesselberg Sverdrup and Holtsmark,
and published in Verstfentlichungen des Geophysikalischen Instituts, Leipzig.

% Brunt and Douglas: On the Modification of Strophic Balance etc., Mem. of Royal Soc.
Vol. 8, No. 22, .
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oV a 0V . a . .
(3) a—t“—“_ITtﬁXk:—ZIX’”

where I is the isallobaric ascendant. This equation shows that the local acceleration
is related to the isallobaric gradient (— I) in the same way as the geostrophic wind
is related to the pressure gradient (— \/ p). The local acceleration is tangential to
the isallobars, with the lowest tendencies on its left hand side. The isallobars, there-
Jore, represent local acceleration in the same way as the isobars represent geostrophic
wind. Returning to equation (1), we may write

. oV
V= 7 +V-vV

which combined with (3) gives:

oN/p

. a . -
(4) V:-/T T <k 4+ V.YV

According to Brunt and Douglas (L c. p. 32) the convective term in (4) is negli-
gible against the others, except, when the curvature of the path is excessively large.
Neglecting this term, and substituting in (1), we get:

Vo _ ¢ Np>x<k  adyp
A A2 ot
or, when we introduce the geostrophic wind: G = — ¢ Tfp > Ik, and the isallo-
baric ascendant: aéyl = I, we get:
(5) V=6—-51I

/12

The wind is thus composed of one component which is directed along the isobars, and
one component directed along the isallobaric gradient (— I). The field of isallobars,
therefore, represents the deviation of the wind from the geostrophic value.

The simplifying assumptions, on which the deduction of the equations (3) and (5)
is based, seem to be fully corroborated by the synoptical evidence brought to light by
Sverdrup, Brunt and Douglas.

The divergence or convergence in the air masses dnd at their boundaries is a)
question of crucial significance for the weather chart analysis and forecasting. To
study divergence by means of the wind observations is of but little use, because of
the poor representativeness of these observations. Equation (5), however, offers a means
of expressing the divergence of the air current in terms of pressure only. Remembering
that the geostrophic wind has no divergence, we get from (5):

(6) div (o¥7) = l divT
where ¢ is density. Disregarding again the slight horizontal variations in o, we may
interpret equation (6) in the following manner: The convergence of the wind velocity is
directly proportional to the convergence of the isallobaric gradient.

The distribution of vertical velocity, which results from the convergence, may be
obtained from the equation of continuity, Let ¥’ be the three-dimentional wind vector,
and let w be its vertical component. The equation of continuity may then be written :

div (V') = div oV + ow k) = 0
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or
) div (o¥) + a(gzw) — 0.
Combining (6) and (7) we get:

2 (;;w) = Ilg div I
or, when we write div T = conv (— I), we get:
(8) 2 ggzw) = % conv (— I)

which gives the relation between the distribution of vertical velocity and the conver-
gence of the isallobaric gradient (— I). Since w vanishes at the surface of the earth
(except at singular points or lines in the field of motion), we see that (¢ w) must
increase with hight when the isallobaric gradients converge. Furthermore, since ¢ ac-
tually decreases with hight, it follows that w must increase with hight to such an extent
that the variation in o becomes over-compensated. The convergence of isallobaric
gradients is, therefore, an unmistakable evidence for positive vertical velocity.

When, on the other hand, the isallobaric gradients diverge, as they do, for ex-

ample, from a center of positive tendencies, (;)Zw) is negative. Writing
o (ow) 00 ow
- — "o T %%

we see that ow

4

descending motion which increases with hight.

The above considerations may be applied to the weather charts for estimating the
sign of w in areas where the isallobars are closed curves. It is a common experience
that cloud systems and areas of precipitation occur in the centers of falling tendencies,
whereas clearing weather occurs where the isallobaric gradients diverge from a center of
positive tendencies. This coincidence between rain area and isallobaric low, seems some-
timés to have lead to the misunderstanding that the rain-producing cloud system (Ast,
Ast praecipitans, Nbst) is directly caused by the convergence towards the center of the
isallobaric low, resulting in ascending motion. This conception, however, is at variance
with the fact that (in case of a warm front), the isallobaric system belongs to the cold
air, whereas the cloud system belongs to the warm air. A contingent ascending motion
in the cold air cannot penetrate the front surface, and can therefore not produce the
warm front cloud system. We shall return to this question in the next paragraph.

The equations (3) and (5) seem to corroborate the Guilbert’s rule mentioned in
paragraph 19. IEquation (5) may be written: '

must be negative at the ground because w vanishes there. This means

a
where the vector difference on the left hand side denotes the difference between the
geostrophic wind and the true wind. This difference is directly proportional to the
isallobaric ascendant. In paragraph 19 we have found that the velocity of a round
pressure center is directed along I. We may then say that the velocity of the pressure
center is directed towards the area where the wind is most undernormal. Equation (3)
expresses the same in terms of acceleration.
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29, Remarks on the Distribution of Vertical Velocity in the Vicinity of Fronts.
The discussion in this paragraph has no pretention of being a complete treatise of the
subject. We shall here only discuss the sign and order of magnitude of the vertical
velocity on the basis of the equations developed previously. In a later publication we
shall endeavour to take up the problem of vertical velocity on a broader basis, and
discuss it in full.

Equation 28 (8), which gives the relation between the vertical variation of vertical
velocity and the convergence of the isallobaric gradient, is, as mentioned before, conve-
nient to apply when the isallobars are closed curves. At a non-stationary front, however,
the pressure tendency is discontinuous, because, otherwise the velocity of the front would
be zero (see 23 (2)). The isallobars, therefore, either end at the front, or they run
parallel to it. At the front itself the isallobaric gradient is indeterminate. This difficulty
might be overcome by considering the front on a magnified scale, on which the front
surface would be a layer of transition (see paragraph 20), However, since equation 28
(8) is deduced on the simplifying assumptions that the local variation in acceleration, and
the convective term of the acceleration are negligible compared with the local variation
in the wind velocity, we cannot apply equation 28 (8) to a layer of transition, where
obviously, these quantities are large. We shall, therefore, choose to discuss the problem
in a more indirect way.

It is well to note that the dynamical surface condition, which states that the pres-
sure is continuous at the front, involves continuity in the pressure gradient tangential
to the front. The geostrophic wind normal to the front would, therefore, be equal on
both sides, except for the difference in density. Brunt and Douglas (L c) have
shown that the slight discontinuity in densinty does not cause such discontinuity in the
geostrophic wind normal to the front, that measurable amounts of precipitation could be
accounted for. We must, therefore, take the acceleration into account in order to explain
the rain intensities which usually occur.?)

Let us, for sake of argument, consider a warm front as represented in fig. 14. We
may now apply equation 28 (8) for discussing the convergence in each of the air masses,
and equation 28 (5) for discussing the flux of air towards the front surface.

In the warm sector the isallobaric gradient is usually slight and is almost invariably
directed towards the center of the cyclone. According to 28 (5), there is then in the
warm sector a flux of air along the isobars (caused by the geostrophic wind), and a slight
flux of air towards the pressure center. If the isallobars in the warm sector are straight
and equidistant, there is no convergence (see 28 (8)), and there is, therefore, no vertical
velocity. Precipitation can then only be caused by non-adiabatic cooling and expansion.
The cooling by expansion may again be due to (a) the transport of air across the isobars,
and (b) the local pressure variation. If the isallobaric gradients converge, there is
ascending motion and increased precipitation.

On the cold side of the warm front, the isallobars generally run more parallel to
the front (see fig. 14). There is then according to 28 (5), a fairly strong flux of
air towards the front, which to some extent counteracts the flux of air away from

1) In a recent paper A. Giao means to have shown that the vertical velocity is of but slight
significance for the production of precipitation. Giao understands that the rain is produced

h}
chiefly by the cooling due to the expansion caused by the local pressure variation ({E) Giao

however, neglects the acceleration altogether. It is, therefore, not to be wondered at, that he
arrives at the result that the vertical velocity is insignificant. Giao’s theory can, therefore, have
but slight bearing on the actual problem. See Gigo. Essai D'Hydrométéorologie Quantitative,
Gerlands Beitriige zur Geophysik. Képpen-Band IIT 1931.
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the front, which is caused by the component of the geostrophic wind normal to the
front. Again, if the isallobars are straight and equidistant, there is no convergence in
the cold air, but the flux of air due to the isallobaric gradient, acts in such a way
as to reduce the wind component in the cold air normal to the front relative to the same
component in the warm air. Choose the x-axis normal to the front and let u;, be the
z-component of velocity in the cold air in front of the warm front, and let u, be the
z-component in the warm air. We then see, that according to the above considerations,
the distribution of the isallobars in fig. 14 corresponds to a case when u, is smaller than
tty. From the kinematical surface condition (see 23 (5)), we get:

(1) wy, — wy = (U — Uy) tan 6,

The case discussed above thus involves that the warm air (index 2) is ascending
relative to the cold air, becauce tan 6 is positive. This naturally need not mean that w,
is positive, because it might happen that 0, was negative and in magnitude larger than 1w,.

The question now is: can we determine the sign of w,? If so, we then also know
the sign of w, Looking again at fig. 14 we see that the isallobars are most crowded
at some distance in front of the warm front. This ¢s tnvariably the case with warm
Sfronts. Even though the tendency generally is larger near the front that at some distance
from it, we invariably have that the inclination of the tendency profile is smaller near
the front than at some distance from it. The maximum of isallobaric gradient is, there-
fore;, always to be found at some distance from the warm front. On the right hand side
(fig. 14) of the area where the isallobars are most crowded, we have divergence of isallo-

baric gradients and, therefore, also: %Ul <0 (see 28 (8). Where the isallobaric gra-

dient is maximum, we have: 8(Qw)zo. To the left of the area where the isallobars
oz
; . . 9 (ow)
are most crowded we have convergence of isallobaric gradients, and therefore: e >0.

According to the considerations in paragraph 28, there is then descending wotion in
the more distant part of the cold air, and ascending motion in the part which is
nearer the front. It is a common experience that low clouds disolve under the front
of a warm front cloud system, whereas low clouds form in the cold air near the warm
front. These observations seem to concur with the above deductions. We may then
take it for granted that the cold air near the front is ascending, or that ¢, in the above
equation (1) is positive. We have previously seen that tan 6 is positive and (u;—u,) is
negative. Lquation (1) can, therefore, only hold when w, is positive, and in magnitude
larger than w, We shall presently see that synoptical investigations have shown that
this is so.

The above discussion leads to the con-
ception of the vertical structure in the vincinity
of the warm front surface which is represented
in fig. 21: The velocity normal to the front is
larger in the warm air than in the cold, The
ascending motion is more intense on the warm
side than on the cold. It is important to note that the sign of w is the same on both
sides of the front. The difference in vertical velocity at both sides of the front may,
therefore, be slight.

It is easily understood that this distribution of vertical velocity in general favours
frontogenesis, because, if the temperature in the cold air decreases with distance from
the front, the equiscalar surfaces of temperature will then be brought towards the front.
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This case is frequent in winter when a warm front approaches the cold continent of
Europe. In summer the revers conditions predominate, at least in the lower part of the
atmosphere.

If the warm air ascends moist-adiabatically and the cold air dry-adiabatically, then
would the distribution of vertical velocity described above, lead to frontogenesis which
increases with bight. It is a common experience that warm fronts increase in intensity
with hight!). It is, however, well to note that the southerly component of the air cur-
rent in front of the warm front tends to bring warmer air northwards. This advective
influence will then counteract the frontogenetical agents.

Let us next consider a cold front of type A as described in paragraph 25 (fig. 14).
We choose the z-axis normal to the front and positive towards warm air. Tan@ is then
negative, and u, denotes the x-component of the velocity of the warm air, and u, the
same component of the cold air.

We consider first the flux of air, which according to 28 (5), is caused by the
isallobaric gradient. In the warm air the isallobaric gradient is always directed towards
the front. There is then a flux of warm air towards the front, and this flux subtracts
from the geostrophic wind component. On the cold side the isallobaric gradient is
directed away from the front in the vicinity of the center, but towards the front at the
more distant part of the front. At the latter part there is then a flux of air towards
the cold front both from the warm and from the cold side. Moreover, in the cold air
the flux towards the cold front adds to the geostrophic wind, whereas in the warm air,
it subtracts from it. Since the geostrophic wind normal to the front is approximately
the same at both sides of the front, it follows, that #, must be larger than w,,

Equation 238 (5) gives:

Wy — Wy = (u, — Uy) tan 6.

Since tan 6 is negative, and u, is larger than u,, it follows that the warm air (index 1)
must ascend velative to the cold air. :

In the vicinity of the center this rule need not hold, because the isallobaric gradient
in the cold air may have opposite sign. For this part of the cold front no definite rule
can be formed. It is even possible that the warm air may descend relative to the
cold air. o

The cold fronts of type B (paragraph 25) are characterized by very slight differences
in tendencies. Moreover, since the isallobaric gradients are directed almost parallel to
the front, there is but slight flux towards the front. These fronts are generally recog-
nized for having no particular cloud system?). Their importance for weather forecasting
is chiefly that they divide the areas of fog and drizzle from those of instable showery air.

We have here discussed the flux of air and the convergence by means of equations
which have been derived from the the equations of motion without frictional force. The
results are therefore subjected to such limitations as arise from this simplification. The
investigations of Brunt and Douglas (loc. cit.), however, show that friction does not
play an important role in the phenomena with which we are here concerned.

It is of considerable interest to determine the order of magnitude of the vertical
velocity. It is a common practice to neglect vertical velocity in the vicinity of the
ground, The common justification for neglecting vertical velocity is that it actually
vanishes at the ground. It is then frequently assumed that the vertical velocity is
negligible in the lower part of the atmosphere, say up to 100 or 200 meters. This
simplification is frequently necessary for rendering the hydrodynamical equations agree-

1) Bee f. ex. Bergeron, loc. cit.
) See J. Bjerknes: Practical Examples, loc. cit. and Example 11 in chapter VIL
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able for mathematical operations, but the supposition can hardly be said to have any
foundation ¢n re. It is easily seen, that if the vertical velocity is negligible up to 100
or 200 meters, a warm sector could not occlude. In the warm sector there is generally
a flux of air towards the center. As there can be no piling-up of warm air at the top
of the warm sector, it is necessary that the warm air must escape vertically. Moreover,
if the cold front shall overtake the warm front, it is necessary that there is so much
vertical velocity that the warm sector air can escape. It is reasonable to believe that
the major part of this vertical velocity is concentrated at the fronts, where also the
solenoids are concentrated. The vertical velocity is of course small, but it lasts 2 long
time on the same air masses, and has, therefore, a large capacity for transforming the
structure of the air masses. It is possible that the terms in the hydrodynamical equations
which depend on the vertical velocity and vertical acceleration, are small compared with
other terms, but, as the vertical velocity is necessary for the production of rain, the
occlusion of cyclones etc., it is evident that the vertical velocity cannot be neglected when
we deal with problems concerning weather forecasting.

It is frequently customary to neglect vertical velocity at the so-called earth fronts,
because there can be no vertical velocity at the surface of the earth, The surface con-
dition, which states that the velocity must be tangential to the surface of the earth, is
only valid when there are no singularities in the field of motion. As the front is a
formidable singularity, it is evident that the surface condition cannot be applied to the
line "of intersection between the front surface and the surface of the earth.

Even if it was allowed to assume the vertical velocity to be zero at an earth front,
it is easy to show that the vertical velocity is likely to increase rapidly with height in
the vicinity of the earth, According to 23 (6) we have:

wy == (uy — Uy) tan 6
Wy = (g — ty) tan 0

@)

where w is vertical velocity, # is the component of wind normal to the front, u, is the
velocity of the front along its normal, and tan 6 is the inclination of the front surface.
Index 1 denotes, as previously, the air in frout of the frount, and index 2 the air in
the rear.

Let s measure length along the line of intersection between the front surface and
a vertical plane at right angle to the front. Differentiating the second of the above
equations partially with respect to s, we get:

1 o6
cos? 6 ds’

ow,  Ouy Ouy
6_8 ——-'6—3'tan 0 - 3‘5‘ ta,n 0 “]“ (u2‘-"uf)
It is reasonable to suppose that the front velocity (u,) is constant with height, and that
the inclination of the front surface is constant. With these simplifications we get:
ow, Ouy
as - os A0 6,
or: the vertical velocity increases with height (along the front surface) in proportion to
the increase with height in the z-component of the wind velocity. Suppose we have a
warm front surface whose inclination is 1 in 100, and that the wind velocity increases
from 3 m sec—' at the ground to 5 m sec at 5 meters above the ground. We then
get: 88% =4.10-5 m sec™ on an average near the ground. If w, is zero at the ground
we get at 10 meters above the ground (i. e. s = 1000, because we measure along the
front surface) w, =4 em secL This increase in vertical velocity is rapid near the ground

5
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where the wind velocity increases rapidly with height. At larger height the increase is
slow. In general the increase in wind velocity with height is more rapid than indicated
above. The vertical velocity at the height of a well exposed anemometer may, therefore,
easily exced 5 cm per second. This is also the value that Brunt and Douglas
reckon with as a frequent value, admitting that larger values may occur frequently. We
shall presently see that 5 cm sec.™® is the most common value at an ordinary station.

Returning to the first of equations (2), and discussing it in like manner, we see
that oty must be positive at an earth front, and that oy and oy

oz . oz oz
order of magnitude, which agrees well with the results obtained previously.

Giao (loc. cit) understands that the vertical velocity near the ground is negligible.
According to 23 (5), we have:

must be of the same

Wy — Wy = (U, — Uy) tan 6.

(Giao has examined the wind records at Utsira and found that (u; — u,) is approxi-
mately zero. Giao then concludes that both w; and w, must be equal to zero. This
result of Giao's seems to be so largely at variance with the established ideas of the
distribution of the velocity in the vicinity of fronts, that it was thought desireable to
re-examine the question.

It is well to note that the meteorological station Utsira is situated at the top
of a little island, the anemograph (Dines Pressure Tube with direction recorder) being 10.5
meters above the top of the hill, and 70 meters above sea level. It was, therefore,
thought that the vertical velocity at the fronts would be of such an order of magnitude
that a noticable difference between u, and u, might be recorded. In order to examine
this question, a number of distinct front passages at Utsira were examined. During the
years 1924 to 1932, 62 cases of sharp fronts were found when the orientation of the
fronts could be determined with sufficient accuracy. The material thus examined includes
the few cases examined by Giao. In order to avoid any ambiguity, the fronts examined
were discussed by three synopticians of Vervarslingen pd Vestlandet, the
writer being one of them.

In table 6 is given the frequency of the quantity 4w = u, — u,.  Ju thus denotes
the rate at which the warm air moves faster than the cold air at warm fronts (or occluded
fronts whose rears are warm), or the rate at which the cold air moves faster than the
warm air at cold fronts.

Table 6.

Ju (m sec.” ') | Frequency

—4to 0 ‘ 6
0, 4 2
4 » 8 20
8 » 12 10
12 5 16 1 3
Sum } 62

Out of 62 cases only 6 give negative values?) for 4u, whereas, 56 give positive values,
which means that the warm air (both at warm and cold fronts), must ascend relative to
the cold air.

" The slight negative values may be due to slight errors in the orientation of the fronts.
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If the inclinations of the front surfaces were known, we could calculate the relative
vertical velocity of the two air masses by means of equation (3). We do not know the
inclinations, but if we assume 1 in 100 to be a reasonable value, we would get that the
frequency of the relative vertical velocities expressed in em sec.~! would be equal to
the frequency of 4w in table 6. A relative vertical velocity of about 5 cm per sec.
would then be the most frequent value, but, as mentioned before, the absolute vertical
velocity is likely to be larger, hecause both the cold and the warm air ascend.

During the working-up of the observations it was found that the sharpest fronts
did not give the largest values of Au. It was, therefore, thought that the value of Au
might depend on the wind velocity normal to the front. Table 7 gives the relation
between the values of gu and the values of wind velocity normal to the front and in
the rear of it.

Table 7.
—

u (m sec.”) (;Za;n 55101.1%) Nu::;::: of
0— 4 1.7 19
4— 8 35 21
8—12 6.7 15
12—16 7.3 3
16 —20 - 13.6 2
20—24 6.3 1
24—28
28 —-32 13.7 1

It is seen from the table that fu is approximately proportional to the wind velocity in
the rear of the front and normal to it. The values of #u for high wind velocities are,
of course, uncertain, owing to the small number of cases examined.

It appeared natural to test the above results by comparing the values of u with
the intensity of the precipitation which occured during the front passages. Unfortunately,
the pluviograph at Utsira had been out of order for long intervals of time. For this
reason the records of the Bergen station had to be used. As, sometimes, some hours may
elapse from the time the fronts passed Utsira until they passed Bergen, it was
necessary to take the sum of precipitation during 6 hours. In this way we may, in some
cases, risk to get incorrect amounts of precipitation, but there can be little doubt, that,
on an average, the 6-hour sums of precipitation give some rational measure for the
efficiency of the fronts in producing precipitation. The average amounts of rain in
relation to the values of Au are -given in table 8.

Table 8.
e (m secY) Precipgaltlié)lr:rsduring
0— 4 4.6 mm
4— 8 6.8
8—12 7.6
12—16 . 8.6

It is seen that the rain intensity increases in proportion to Au.
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The above discussion shows that Au is of the order 5 meters per second in anemo-
meter level, and that the vertical velocity of the warm air relative to the cold air must
be of the order of 5 cm sec.™l. The absolute vertical velocity of the warm air may be
larger than the relative velocity. .

On page 65 we have shown that w increases rapidly with height in the vicinity of

the ground. We found 68%]: 4.10—% along the inclination of the front surface. With an

inclination of 1 in 100 we would get 4.10—3 per unit vertical distance along the front
surface. J. Bjerknes?) has frequently used the equation of continuity for discussing
the conditions in the vicinity of the front. Bjerknes has shown that the equations of
continuity for the air of the transitional layer may be written in the following form:

ow _ ou
oz o
In the 62 cases examined above, the average value of du is 4.5 m sec.™*. The
average duration of the front passages was 5 minutes. Say that the average velocity of
the fronts was 48 km. per hour. The average thickness of the zone of transition would
then be 4 km, which is a frequent value for sharp fronts. Assaming an inclination of 1
in 100, the average thickness of the transitional layer, would be 40 meters. The average
Z—Z = % 103, (because
Au in the preceeding tables gives the difference between the rear and the front of the
front). Substituting this value in the simplified equation of continuity, we get:

ow 45 .
i 10-3.

increase in the x-component of wind velocity would then be

The increase from the bottom to the top of the layer of transition would then be
approximately 4.5 cm sec.™, which agrees well with the values previously obtained. The
absolute vertical velocity would then be this relative velocity plus the velocity of the
cold air.

The statistical evidences given above clearly corroborate the theoretical deductions
based on the equations 28 (5) and 28 (8). These equations may, therefore, be regarded
as helpful means for estimating the intensity of the rain-producing processes at the fronts.
Tt is, however, well to remember that only a meticulous analysis of the chart is capable
of bringing out the details on which the prognosis should be based.

It would be natural to sub-divide the 62 cases treated above, in such under-groups
as warm, cold and occluded fronts. The examination, however, showed that the number
of cases was not large enough for such detailing, especially because the material com-
prised only 9 real warm fronts. It appeared, however, that 4u on an average was larger
for warm fronts than for cold fronts. Tt was interesting to see that the extreme high
values of 4u occured when the front surfaces became retarded against the store of cold
winter air over Scandinavia.

We shall not here enter into further statistical discussion of the properties of fronts.
A complete statistical discussion will be given in another paper which is hoped to be
completed within a year or two. It will there be shown that the results obtained above
for average values, also hold in individual cases. One such case is discussed in para-
graph 41.

Y Practical Examples etc., and Exploration de quelques Perturbations Atmospherique etc., loc. cit.
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CHAPTER VL
DEEPENING AND FILLING.

30. Definition of Deepening and Filling. In the previous chapters we have given
some formulae for the velocity, the acceleration and the displacement of such pressure
systems as {roughs, wedges, pressurc centers and fronts. In this chapter we propose
to develop equations for calculating the change in structure of the moving pressure
systems.

The expressions deepening and filling are familiar to synopticians. A pressure
center f. ex. is said to deepen when the pressure in the moving center decreases, and it
fills-up when the pressure rises. Deepening and filling thus refer to the pressure in a
moving system of co-ordinates which is fixed to the moving pressure system. For
example, a ship furnished with barograph, and sailing in the center of a moving cyclone,
would record the deepening or filling of the center. A number of ships evenly distri-
buted round the center, and sailing with the velocity of the pressure center, would
record the deepening or filling at the various points of the moving pressure system.

We shall now endeavour to develop equations which express the deepening or
filling by means of the observations at a fixed station. According to the above con-

siderations, we may define the instantaneous deepening or filling intensity as where

Sp
577
p is pressure, and the differentiation refers to a system of co-ordinates which is fixed
to the moving pressure system. The connection between the pressure variation in a
moving system of co-ordinates and a fixed system is given by equation 3 (6), which

writes : «
dp o ,
@) 3t T ot + C-Vp

This equation shows that the pressure variation at a fixed station is composed of two
parts: (a) one which is caused by the movement of the pressure system, and (b) one
which is caused by the deepening or filling, or in other words the evolution of the
pressure system.

In the previous chapters we have shown how the velocity (C) of the pressure

. ) - .
system may be computed without the term % Equation (1), therefore, permits of

computing the deepening or filling of the pressure system.
The deepening or filling may vary from one point to another in the moving pres-

. 0 . . .
sure system. By computing -31% for a number of points and subsequent interpolation,

the change in structure of the moving pressure formation may be calculated.

The deepening or filling may vary with time. The variation with time in the
2
deepening or filling intensity is defined by 3}7’ where the differentiation refers to the

system of co-ordinates which follows the pressure formation (or part of it). The relation

02 . . f . .
between 2 and the observations at a fixed station is given by equation 3 (7), viz:

ot?
(52 2
o i v2 L0 yptre VeV

2

may be called the deepening celerity, and the quantity % may

The quantity %Iti
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be called the deepening acceleration of the pressure system at the point considered. Both
the celerity and the acceleration define instantaneous values.

Equation (1) is very easily applied, qualitatively and quantitatively, to any pressure
formation. Equation (2) is seemingly more complicated. In the following paragraphs
we shall specialize these equations for the various kinds of pressure systems.

At times, meteorologists have tried to calculate the future pressure distribution by
developing the pressure function in a Mac-Laurin series. The results have, as a rule,
been poor, owing to the irregular variations at a fixed station. The pressure variations
in a system of co-ordinates which is fixed to the moving pressure formation, are, how-
ever, more regular and uniform, oscillating deepenings or fillings being rare exceptions.
We shall, therefore, develop the pressure function in a moving system of co-ordinates,
in order to study the deepening or filling of a moving pressure system. Let Ap be
the pressure variation at a point in the moving system during the time interval {. We
then get:

_(dp 1 {d%)\ ,
? 2o = (af)e o+ () + o

where index o denotes the initial values. With this in mind we may drop the indices
as being superfluous. A p then defines the deepening or filling that takes place during
the time interval ¢ at the point considered.

Combining (1), (2) and (3), we get:

0
Ap =[5$+ C-vp] t+
Tloi F2CV 5 VO v@ v v

where terms of third and higher order have been neglected.
The equations (1), (2) and (3) may be specialized and simplified, as will be shown
in the succeeding paragraphs.

31. Deepening and Filling of Pressure Troughs. As in paragraph 10, we shall
not distinguish between wedges and troughs when we treat general questions.

We choose the system of co-ordinates as shown in paragraph 11. The velocity of
the point in question of the trough line is then given by 12 (7), viz:

@ Cp = — Do
Peoo

where py,; and p,y, are given in paragraph 14. Since the velocity coincides with the
z-axis, we may write:

op Py
C; - = (0 — = — % =
vV Fox Do 0%
Substituting this in 30 (1), we get:
dp op ap op _ P Op
2 £ = & i AR S ¢ 1 I 4
) ot ot T C2 ot Paoo O

This equation may be applied at any point on the chosen wx-axis. The coefficients p,o

and p,, then refer to the trough line, whereas g—% and Z—i refer to the point which
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. 0 .
we consider. 3—1; may be replaced by the observed barometric tendency, and g% may
be replaced by the reciprocal value of the distance between unit isobars, or one fifth of
the distance between two 5 to b isobars. The distance is reckoned positive from low to
high pressure. When the displacement of the trough line has been computed, C; is

known, and the deepening intensity is then obtained without much reckoning.

It is important to note that Z—i is zero on the trough line itself. The deepening
intensity is then simply equal to the barometric tendency. We then easily see, that
when the zero tendency line is situated in front of the trough line, a wedge decreases
(deepens) and a trough decreases (fills). When the zero tendency line is in the rear of
the trough line, we have the reverse conditions. It is, therefore, easy to get a measure
of the deepening or filling intensity without any calculations. :

Since the time unit in the barometric tendency is three hours, equation (2) gives
the deepening that takes place during three hours. The deepening for larger intervals
of time may then be extrapolated by multiplying the tendency by the number of three-
hour intervals.

More accurate results are obtained by applying equation 30 (2). This equation
may be transformed as shown in paragraph 3. According to 8 (9) we have:

?p p

8 p
@ o 6t2 + 20 aom

P
2 L
+ 3 + Az =
where O, and A; are given by 12 (7) and 13 (12). All quantities in the above equa-
tions are evaluated in the same way as shown in paragraph 14. When the displacement

“ ' 2
of the trough line has been computed, r and Az are known, and %

is easily com-
tﬁ

puted without much reckoning.
Returning now to equation 30 (4) and substituting by means of (2) and (3) we get

for the total deepening or filling during the time interval ¢, ¢ being the number of
three-hour intervals :

®) Al (829 + O ) +3 (atz T20 88t+ ax2 + 4 8p)t2+

This equation may be applied to any point on the chosen z-axis. Experience has
shown, that in general, sufficient accuracy is obtained even if the term of second order
is neglected. For points on the trough line, the second term is, however, obtained
without any calculations except what is mnecessary for computing the velocity and the
acceleration of the movement,

According to the definition of the trough line we have: 8_5; = (. According to
12 (7) we have:
0, — — Pwm
Daoo
For any point on the trough line we thus have:
o2 &*p &p
ét—f = DPoozs Zoo = Pror and 6_9015 == Paoo

The last two of these quantities are contained in the formula for vélocity, and the first
one, is the auxiliary quantity /\ 7, (the difference between two consecutive tendency
values), which is used for computing the acceleration (see paragraph 14). . Putting



12 SVERRE PETTERSSEN Geof. Publ.

g% = T == the barometric tendency, and substituting the above values in (4), we get:
) Ap =T+ L arp— L0u gy
= 2 Paoo

In chapter VII we shall give some examples which show the accuracy rendered
by the above formulae.

32. Deepening and Filling of Pressure Centers. Expressions for deepening or
filling of pressure centers are readily obtained from the general equations 30 (1), (2)
and (4). By suitable choice of the points for which we want to calculate the deepening,
the equations become much simplified. In chapter IV we have shown how the center
may be defined by means of two lines along which there is either maximum or mini-
mum of curvature of the pressure profiles. It was also shown that these lines in all
respects correspond to the definition of trough lines. The movement of the pressure
center could then be defined as the movement of the point of intersection between these two
lines. Moreover, the said lines at the initial instant ¢ — 0, were chosen as co-
ordinate axes, and the quantities which enter in the formulae for velocity and accelera-
tion of the center had to be evaluated at these lines. It is, therefore, natural to com-
pute the deepening or filling at points which at the initial instant ¢ = 0, are situated
on the co-ordinate axes.

In general it suffices to compute the deepening or filling of five points, namely:
the pressure center itself, and one point on each of the four semi-axes. The general
equations may be applied to any point, but it saves labour to choose the points accord-
ing to the above principles.

Let us first consider the pressure center By definition we have {/ p = 0. From
equation 30 (1), we get:

dp_op__
@ Cowma T

The deepening or filling intensity at the center is simply equal to the barometric” ten-
dency. It is, therefore, important to note the position of the zero-isallobar relative to
the center.

The deepening or filling that takes place in the center during the time interval ¢
(t = number of three-hour intervals), is obtained from the general equation 30 (4). De-
veloping this equation and remembering that \/ p — ¢, we get:

_3_]_7 261} 3p 5
Ap—att+‘(6t2+ Caat+20”aat+0”” TG o)t
+ 0, C’yaagyt”

Owing to the particular choice of co-ordinate system, the last term vanishes.
Introducing the symbols defined in paragraph 18, and substituting for €, and
C, by means of 16 (1), we get:

1 D1’ Dot
2 Ap=T00% — ( T 101 o )tz
@) ! T 2 4 Do Pozo

which gives the total deepening or filling that takes place during the time interval .
The quantities which enter in this equation are contained in the formulae for velocity
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acceleration. The deepening or filling of the pressure center can, therefore, be com-
puted without any additional labour.

Having completed the calculation of the deepening or filling of the pressure center
itself, we proceed to calculate the deepening or filling at one point on each of the semi-
axes of co-ordinates, Having done this, and having calculated the future position of the
pressure center, ‘we may easily draw the new isobars.

We have repeatedly stated that the co-ordinate axes have the properties of trough
lines. We may, therefore, simply apply equation 31 (5) to any point of the co-ordinate
axes. It is convenient to calculate the deepening or filling at the four points whose co-
ordinates are (see paragraph 18 (1.0) (—1.0) (0.1) and (0.—1). For each of these points
we may write an equation similar to 81 (5). This equation has been discussed previously,
and no further comments are necessary.

33. Deepening and Filling of the entire Pressure System. In the previous para-
graph we have seen how the deepening or filling may be computed at a number of points
in the vicinity of a pressure center. It is frequently both useful and labour-saving to
compute the integral of the deepening over certain areas of the chart. Looking at aqua-
tion 30 (1) we see that the deepening intensity depends largely on the velocity of the
pressure center. For the deepening or filling at each particular point the convective term
plays an important role. When we, however, consider the sum-total of deepening over
certain areas of the chart, the convective term will disappear, so that we may evaluate
the deepening or filling even without knowing the velocity of the center.

Let do denote a surface element of the chart. The integral of deepening or filling
per unit time over a surface ¢ is then given by:

dp P
(H f(Tth—fa—tdo—l— C.-\/ pdo
Choose a right hand system of unit vectors 7, 8 and #, where » coincides with {/ p.
We may then write \/p =%'r. Choosing dp =1, dh becomes the distance between unit

isobars. We may now write: do= dhds where ds is a line element of the isobar. Substi-
tuting in (1), and remembering that €, is a vector in common for all elements, we get for
the last integral:

2 ch-Vpdo=Cc-f1'ds
Integrating over the area bounded by two closed isobars, we get:
JC.- pdo=0,

because the last integral in (2) is the line integral of a closed curve. Substituting in (1)
we get:

) 0
(3) f£d0=f—aﬁtdo

The deepening or filling over the area between two closed isobars is, therefore, equal to the
planimetric value of the barometric tendency in the same area. '

Adding up for all zones between consecutive isobars, we get the result that: the
deepening or filling inside a closed vsobar is equal to the plawimetric value of the baro-
metric tendency. The deepening or filling of pressure systems may thus be calculated
without computing the velocity.
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According to 30 (1) we have in any moving system of co-ordinates:
o __%
FTRir +C-Vp.
In a system of co-ordinates that is fixed to the moving isobar, we have:

ap _
~ag~—0i-Vp

where C; is the velocity of the isobar.
Integrating this equation over an area between two closed isobars, we get:

4) f%ch:—fC,--Vpdo

Substituting as above, we get:
d4
—fo,-.rds_- =

where, A is the area enclosed by the isobar. Summing up for all closed isobars in the
pressure system, we get:

op a4

where 3} may be extended over the whole pressure system. Combining (5) and (3), we get:
op add

(6) ?t do= — '?l?

By means of this formula the deepening or filling may be estimated without tendency
observations. The formulae (5) and (6) are, of course, less useful than (3). Over the
ocean, however, where tendency values are not obtainable, the deepening intensity may be
estimated by comparing two pressure charts.

34. Deepening and Filling at Fronts, in Warm Sectors ete. An expression for
the deepening or filling intensity in the vicinity of fronts is obtained from the general
equation 30 (1), which may be written in the following form:

1) o o
(1) L—Z 405

where C, is the velocity of the front as given by equation 23 (2).

At the very front both 38% and —Z—g are discontinuous (see paragraph 23). Formula (1)

can, therefore, only be applied in the vicinity of the fronts. Even though both 3(% and

7 . . ) . .
61_92 are discontinuous at the front, —£ must be continuous, because otherwise, the dyna-

mical surface condition would not hold. Since the deepening intensity is continuous, it
must be equal at both sides of the front. If we, therefore, know the deepening at one
side of the front, we also know it at the other side.

It is important to note that the velocity of the front (C;) has been defined along
an arbitrary line L which was chosen as z-axis. In the case of a warm sector cyclone, it is



Vol. X, No. 2. KINEMATICAL AND DYNAMICAL PROPERTIES 75

convenient to choose the z-axis along the warm sector isobars. We then get for any

s s 0
point in the warm sector: P

g =0, which substituted in (1), gives:

dp __ op

ot ot
The tendency in the warm sector, therefore, gives the deepening intensity. Since the
deepening intensity must be equal at both sides of the front, we see that the warm sector
tendency near the front expresses the deepening that takes place also at the cold side of
the front. By simple inspection of the distribution of the warm sector tendencies, im-
portant results are obtained with regard to deepening and filling.

Outside the warm sector the convective term in (1) becomes important. Substituting

for C; by means of 23 (2), we get:

o _or,
@) §p_op o atop
ot ot op 3p2 ox

o ox

It is important to note that p; and p, denote pressure at two points on the z-axis which
are near one another and on each side of the front. p (without index) refers to the point
whose deepening we want to calculate. Equation (2) may be applied to any point on the
chosen z-axis. Index 1 denotes the air in front of the front, and index 2 the air in the
rear. As we have chosen the wx-axis along the warm seetor isobars, we have for warm
fronts:%=0 and for cold fronts: a£1=0. .
ox . ox

The variation with time in the deepening intensity is given by the general equation
30 (2). This equation is difficult to apply to fronts, because it is difficult to compute the
acceleration of the front, (see terminus of paragraph 25). In the warm sector, however,
the formula is simple. Since the velocity of the front is directed along the z-axis, we
may write 30 (2) in the following form:%)

(f;tg _ap s+ 20; '5"at+ozfaﬂ +4 fax
In the warm sector g—f;—z 0. Since the isobars in the warm sector are almost straight
lines, we may write: éﬁz“— 0. We then get:

where I, is the component of isallobaric ascendant along the x-axis (the isobar). In general
the isallobaric ascendant in the warm sector is slight and the isallobars run almost parallel
to the isobars. For both reasons I, is small. Furthermore, the pressure tendency in the

. . & .
warm sector is uniform, so that 5t7 is small.  We may, therefore, reckon with an almost

L . 0%
unaccelerated deepening in the warm sector. For reasons explained above, 6—;,'3 must be

equal at both sides of the front. We may, therefore, conclude that the deepening accelera-
tion is slight in the cold air in the vicinity of the front. It is a common experience

1 Compare 8 (7) and 8 (9).



76 SVERRE PETTERSSEN Geof. Publ.

that the warm sector cyclones deepen with an almost constant intensity until they occlude.

After occlusion, they may deepen with variable intensity. In chapter VII we shall see

some examples which show the regularity of the deepening intensity of warm sectors.
Returning to the general equation 830 (1) for the deepening intensity

& 8
3) 2T t+cvp

we may give some qualitative rules for estimating the deepning or filling of warm sector
cyclones. € in the above equation denotes the velocity of the system of co-ordinates in
which (;l; is recorded. We may then take C as the velocity of the center of the cyclone.
Warm sector cyclones invariably move in the direction of the warm sector current. We
then have C€.\/p=0, and the deepening intensity at the center is equal to the
tendency at the top of the warm sector. This rule holds with such accuracy that it may
safely be applied.!)
Let us next see how the convective term influences on the deepening intensity.
We consider first a round and symmetrical cyclone (fig. 22 a) whose velocity is C.
In the direction of C the convective term (C-\/p) has maximum, and it is positive in
front of the cyclone and negative in the rear. The convective term thus counteracts the
negative tendency in front of the cyclone, and the positive tendency in its rear. At right
angle to C, the convective term is zero, and the deepening along this line depends entirely
on the tendency. In a round cyclone the convective term will
more strongly counteract the tendencies than in other cyclones.
‘ Let us next consider a new warm sector cyclone as given
@ ¢ in fig. 22b. The convective term is positive in front and nega-
“ep tive in the rear of the cyclone. But since \/p is small and
deflected from C; we see that the convective term is of slight
significance, The tendencies, therefore, carry larger weight for
the deepening of this cyclone than in the previous case of a
round one. Moreover, since the rear and the front are symme-
trical with respect to pressure distribution (V/p), it follows
that the convective term plays the same part in the front and
in the rear. The convective term, therefore, does not help to
deform the cyclone. This is exactly the type A, which we have
described in paragraph 25. Such cyclones are generally long
lived. They travel along the principal front more or less as
stable waves (see paragraph 25).
Let us next consider the cyclone represented in fig. 22 c.
The convective term in front of the cyclone is small and posi-
tive, whereas, in the rear, it is large and negative. This type
of cyclones invariably deepen quickly, chiefly in the rear. The
warm sector occludes quickly and the fronts become rolled up.
It sometimes happens that a warm sector occludes parti-
ally, and develops a secondary low at the top of the remainder
of the warm sector. The classical example of this type is the
so-called Skagerakk-cyclone described by J. Bjerknes and
H.Solberg? The development of such a secondary, naturally,

Fig. 22 a

» 1 Bee examples in chapter VIL
F’-g' 224d ) Life Cycle of Cyclones. Geofysiske Publikasjoner Vol. III, No. 1.
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is a tricky thing to forecast, and the writer has spent some time in exploring the structure
of such cyclones before they develop the secondary low. It was found that these cyclones
invariably had warm sector isobars which diverge from the cold to the warm front. Let
us, therefore, examine the influence of the convective term on such a warm sector. Con-
sider the convective term at two points a and b in fig. 22d. At a, the convective term
is positive and, therefore, counteracts the negative tendency in the warm sector. At b,
the same term is negative, and thus adds to the negative tendency. The distribution of
the convective influence thus favours deepening in the southern part of the warm sector.
Whether a secondary develops or not, depends on the distribution of tendency, but it has
never been recorded that a secondary has developed without diverging warm sector isobars.
In each particular case the deepening is easily calculated numerically.

The reader will probably think that the amount of work involved in the calculations
of the displacement and the deepening or filling of pressure systems is so large that it
cannot be overcome in the daily weather service. This conception may be right if the
forecaster concerns himself with every detail which the pressure distribution exhibits. It is,
however, well to remember that in each particular case, the forecast depends chiefly on
the movement and. the development of one single pressure system. Again, the movement
of the pressure system is generally much more important than the development, and the
displacement is easily calculated in 30 minutes. The deepening in the center of the system
is obtained without additional labour.

It should also be remembered that it depends on the particular weather situation
which method is best adapted for the numerical operations. In some cases it pays to
calculate the displacement of the isobars, in other cases it pays to calculate the movement
of the center, and so on. It is not easy to give general rules for when each method is
most advantageously applied. Experience only can tell. Even without any computation,
a mere qualitative discussion of the chart, based on the principles developed in these
chapters, will render valuable results.

CHAPTER VIL
PRACTICAL EXAMPLES.

35. Introduetion. In this chapter we propose to give some examples of the appli-
cation of the preceeding formulae to the weather charts, the aim being to give an idea
of the average accuracy which can be obtained by numerical methods.

In order to be able to publish a fairly large number of cases, the writer has had
to publish the results in a somewhat condensed form. For this reason, the charts showing
the physical analysis on which the calculations are based, had to be left out. Readers,
who would like to study each particular case, are recommended to compare the examples
given below with the daily weather maps issued by Vervarslingen péd Vestlandet.
The reader will then see that the cases treated below are not ‘simple’ cases. In fact, many
of the cases treated below have been chosen because of their complicated structures.

It was thought to be of particular interest to examine some cases where the fore-
casts (which were based on usual estimations) were erroneous, in order to see if numerical
methods would have given better results. Some such cases will be mentioned below, and
it will be clearly seen that numerical methods would have given correct forecasts.

A word or two may be said about some technical difficulties in calculating the
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movement and the development of the pressure systems. The velocity of any pressure
system depends on quantities of the following forms:

% *p

aoor " 2t
The last quantity, which is the denominator in the expression for velocity, is obtained
with great accuracy from the pressure chart. The first quantity, which is the numerator

. . . .. 0
in the said expression, is inaccurate for two reasons: (a) because 51% must be replaced by

. . 0%
the mean pressure variation during 3 hours, and (b) because Wgt must be replaced by the
difference between the tendencies in front and in the rear of the pressure system. The
three-hour tendency which is observed in the rear of a pressure system, is in general
more erroneous than is the one in front of tbe system. The tendency in the rear of a

cyclone, for instance, is in general too small, because the three hour variation depends on
2,

the pressure variation during the passage of the cyclone. For this reason ;a;gt is gene-

rally too small, and, therefore, the instantancous velocity thus computed, is somewhat

smaller than the true velocity.

On the other hand, the inadequacy of the rear tendency of a cyclone causes a
computed acceleration which is slightly larger than the true acceleration. The two errors
thus compensate one another, but, as the acceleration is multiplied by the square of time,
the error in the acceleration, therefore, causes too large displacement for large values
of time. 'This feature is predominating practically in every case treated below.

It will be seen from the succeeding examples that the accuracy obtained for the
displacement during 24 hours is altogether satisfactory. The discrepancies which oceur,
are chiefly caused by the inaccuracy in the pressure tendencies.

?p
oxot?,
celeration, has to be determined by means of 6-hour differences. Even slight errors in
the acceleration may cause considerable discrepancies when the forecasting period is large.
The succeeding examples show that fair accuracy is obtained for 24 hours ahead, even
&*p o®

it ™™ G
believe that better accuracy could be obtained even for longer periods, if the tendencies
were more accurately observed, and if the time interval between the weather charts

which enters in the expression for ac-

Another difficalty is that the quantity

with the rough methods for determining It is, therefore, reasonable to

was smaller?).

36. Examples of Troughs, Wedges and Fronts. Fxzample 1. Fig. 23 shows the sym-
metry line of a well developed wedge, which on Nov. 30th 1927 at 14 M E T extended from
a central High over the British Isles towards The Barents Sea. Simultaneously a front with a
well developed pressure trough extended from a depression near Novaya Sembla towards east
Germany. Both the front and the wedge moved towards SE. The movement was calculated
for 24 hours ahead. The broken lines show the computed positions. It is seen from the chart
that the discrepancy between the calculated and the observed displacement is nowhere
larger than 100 km. The front moved with a velocity averaging 30 km per hour. The
error of 100 km 'after 24 hours thus means that the front arrived at the calculated
place 3 hours too early. An error of 3 hours in 24 is generally considered to be slight.

) The writer is preparing a memorandum on the technical arrangements which a quantitative
forecasting service would necessitate,
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Fig. 23. Full lines observed positions,

The wedge line remained stationary over
the British Isles and moved with large velo-
city in the northern part. The agreement be-
tween the observed and the calculated positions
is altogether satisfactory. There can be little
doubt that such accuracy could not be obtained
by guessing the movements.

Fxample 2. Tig. 24 shows the sym-
metry line of a well developed wedge, which
on Nov. 11th 1932 at 14 M ET extended
from a central High over South Norway to
half way between Bear Island and Jan Mayen.
The position of the wedge line was calculated
for 5, 18 and 24 hours ahead. The chart
shows that there is perfect agreement be-
tween the computed and the observed posi-
tions, except over North Finland, where the
wedge arrived 3 hours too early on the fol-
lowing morning. The calculations show that

Fig. 24. Full lines observed positions.
Broken lines computed positions.

79
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the central High over South Norway would remain stationary. The rapid movement
eastwards in the northern part was due to an approaching depression over Iceland. The
movement of this cyclone could not be calculated because of lacking informations. It
was, however, concluded that the accelerated movement of the wedge would be correlated
to the movement of the said cyclone. The development took place as expected, and the
next day there was a gale in North Norway, while South Norway still was under the
influence of the Central High. This case is particularly interesting because the calculations
were carried out before the forecasts were issued.

° o Fxample 3. Fig. 25 shows a trough line which on July
A\g 11th 1931 ran from East Finmarken to South Sweden. The
trough line first moved slowly eastwards and than returned.
The calculations gave the same result, except that the trough in
i the northern part returned slower than calculated. It is diffi-
~ cult to say whether this calculation would have improved a
* forecast based on guessing, On the whole the trough remaind
stationary, and the writer does not think that a forecast based
on these calculations, would be substantially wrong. The
/"’gf example is included here to show what inaccuracy one may
experience in difficult cases.

Example 4. Fig. 26 shows a front which on the 12th
of March 1932 at 8 MET had passed the west coast of
Norway. 'The same morning there was no pressure gradient
4@&{%\y over the Baltic. The wind was everywhere slight. The velocity
Fig. 25, Full iines observed of the front was calcu}ated for two points indicated by arrows

positions. Broken line on the chart. The displacement was computed to 19 MET
computed positions. (the broken line). .The agreement was perfect.

In order to see what winds were likely
to occur over the Baltic area, the velocity of
the isobars were calculated. (Accelerations
were not obtainable). The computed isobars
at 19 h are given on the map, and the winds
observed at 19h are plotted. The calculations
show that the wind would increase from 2
or 3 B to 7 B, which also occured. The com-
puted pressure distribution differed from the
observed one by 3 to 5 mb., but the distribution
of gradient and wind was fairly accurate.

Gow»(
,H/E\s

2fo

Erxample 5. On January 12th 1932 a
strong depression approached The British

Isles. The front and the center was off the .

coast so that no calculations could be made % gy el 005
until 19 h. At this hour part of the depres- 4

sion covered Scotland and Ireland. The dis- 1010
placement of the isobars were calculated for 1 \;1 015
the area over West Scotland, where the

pressure distribution was such that the cal- % 2o
culations were easy. Fig. 26.



Vol. X, No. 2. KINEMATICAL AND DYNAMICAL PROPERTIES 81

Fig. 27.

The first map in fig. 27 gives the pressure distribution and wind observations over
West Norway on the 12th at 19h. The second map gives the observed pressure distribution
and the observed winds 18 hours later, and the third map gives the pressure distribution
calculated 18 hours ahead. It is seen that the pressure gradient agrees well with the
calculations, and that a wind forecast, based on the calculations of the (furture pressure
distribution, would have given the observed wind velocities. The actnal forecast for the
13th was: SSE 9 to 10 Beaufort. The forecast was founded on calculations.

37. Examples of Pressure Centers. The following examples of pressure centers
show 9 cases where the movements of the centers have been calculated. The full lines
represent the observed paths, the broken lines give the paths calculated according to
formula 18 (2), and the dotted lines show the paths computed by means of Angervo’s
formulae 19 (2). Each center has been calculated for 24 hours in advance. Kor the
centers indicated by numbers 1 to 8, the calculations proceed from 14 to 14 o’clock.
The first point, where all three paths unite, is the position of the center at the beginning
of the calculation. The second point on each path denote the position of the center
(observed or calculated) the same day at 19 h. The third point gives the position the
next day at 8h, and the last point gives the position at 14h the second day.

Each center is indicated by a number. We sball return to the same centers in
paragraph 38, where the dates will be given in the tables 11 and 12.

Example 6. Fig 28 shows the eight centers mentioned above. It is seen from
the maps that the agreement between the computed and the observed paths on the
whole is good. No. 1 exhibits a considerable discrepancy which was caused by the
approach of a secondary perturbation. In view of the fact that it is not aulways easy
to locate the position of a pressure center with larger accuracy than 50 to 100 km, the
discrepancies in the above examples are insignificant.

The examples show that the writer’s formula for the path of the center renders
larger accuracy than does Angervo’s formula. Experience has, however, shown, that
Angervo’s formula gives larger accuracy for 24 to 48 hours.

It is seen from the above examples that the accuracy obtained is as large for
quickly running centers as for slowly moving ones.
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Fig. 28, Full lines observed paths. Broken lines
paths computed from the writer's formulae. Dotted
lines paths computed by means of Angervo’'s for-
mulae. All paths are calculated 24 hours ahead,
and the positions corresponding to the intermediate

weather charts are indicated.

In the introduction to this
chapter we have pointed out that
the computed velocity is slightly too
small, and the computed acceleration
is slightly too large. In the majority
of cases, the two errors seem to
neutralize one another after a time
interval of 18 to 24 hours. After
24 hours it is generally found that
the error in the acceleration pre-

dominates, If the tendencies were

Geof. Publ.

Example 7. An interesting depres-
sion occured over the Irish Sea, on the
22nd of October 1932 at 8 M E T (see
fig. 29). There was no time forthe fore-
caster to compute the path of the center.
The forecast for the next day was based
on the assumption that the center would
move quickly and keep off the west coast
of Norway. Southerly gales were fore-
casted, Even at 19h, the forecaster be-
lieved that the center would move close
off the west coast. The next morning the
forecaster was rather surprised to see
that the center had crossed the coast
of the southern part of Norway.

The path of the center was calcu-
lated afterwards in order to see whether
the forecast might have been improved
upon by numerical labour. It was then
found that the path of the center could
be computed with an error which no-
where exceeded 100 km. The average
velocity of the center was 70 km per hour.
An inaccnuracy of 100 km would then
mean that the center arrived at (say) the
SW coast of Norway 1 hour and 20
minutes, as it was, too early. This in-
accuracy is of course of no consequence
for practical purposes. Again, the A n-
gervo path is less accurate than the
one calculated from the writer’s formula.
But, if the path had been calculated for
48 hours or more, Angervo’s formula
would have given more accurate results
for the second half of the path.

N o N,

Ao

Fig. 29. Symbols as in fig. 28.

observed with larger accuracy, the formula would probably hold for much larger inter-

vals of time.

The depression mentioned above, deepened quickly.

In the next paragraph we

shall see that the calculations also give accurate values for the increase in intensity.
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38. Examples of Deepening and Filling. In chapter VI we have given the general
principles for calculating the deepening and filling of pressure systems. We shall here show
some cases where the various formulae developed in chapter VI, have been applied to
pressure centers.

In paragraph 34 we have shown that the deepening intensity of a warm sector
cyclone is simply equal to the pressure tendency at the top of the warm sector, the
deepening acceleration being negligible. This rule has been subjected to a thourough test
by examining a large number of warm sector cyclones. During the winter 1931—32,
25 warm sector cyclones were examined and the deepening calculated for as long intervals of
time as the centers could be identified. The results of these computations, compared
with the actual development of the cyclones, are given in the following tables. 7 out of
the 25 cases occured on evening charts, and 7 others occured on noon charts. Therefore,
only 18 could be checked after 6 and 12 hours respectively.

Table 9. Frequency of Lrrors in the calculated Deepening for Warm Sector Cyclones.

Error (mb) 6 fﬁﬁis 12A1f1t:1frs 18Al§:)elfrs 24A}flgelfrs

0 7 2 2 1

1 7 ) 3 1

-2 1 6 2 2

3’ 3 3 — 2

4 — 2 1 —

5 — — 1 —

6 — — 1 1

7 — — — 1

8 — — 1 —

11 — — 1 —

15 — — — 1

Number of

cases . . 18 18 12 9

Table 10. Actual Deepening and Error in the Calculations.

After 6 hours After 12 hours After 18 hours After 24 hours
Deepening | Error | Deepening | Error | Deepening i Error | Deepening | Error
0 0 0 0 0 0 0 1
0 0 2 2 1 1 0 1
1 1 3 1 7 8 6 5
1 1 4 3 8 1 9 3
2 0 4 3 8 2 9 15
2 2 5 ) 9 0 13 2
3 3 9 0 10 6 20 2
3 1 9 1 14 4 21 3
3 3 9 2 17 1 24 0
4 1 9 2 17 2 - —
4 1 10 1 18 5 — —
5 0 10 1 25 11 — —
6 0 10 1 — — - —
1 0 10 2 — — — —
7 1 10 3 — — — —
8 1 12 2 — — — —
8 3 12 2 — — - —
10 0 17 4 — — — —
Mean 4 mb| 1 mb M 8 mb 2 mb 11 mb 3 mb 11 mb 4 mb
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Out of 25 cases only 2 showed appreciable discrepancies from the -calculated
values. The one showed an error of 8 mb, and the second an error of 11 mb after 18
hours, Both these cases were disturbrd by secondary perturbations which caused acce-
lerated deepenings. After 12 hours the majority of cases have an error of 1 to 2 mb,
and in no case did the error exceed 4 mb.

It is of greater interest to see how the errors are distributed relative to the
amount of deepening that actually took place. Table 10 shows this.

It is seen from the table that the errors are independant of the actual deepening
that takes place. The large deepenings are calculated with the same accuracy as the
small ones. The error is proportional to the time interval, and increases with 1 mb
pr. 6 hours, It is, therefore, to be believed that the errors are almost entirely due to
errors in the observed tendencies, because the deepening has been calculated by multi-
plying the initial tendency by the number of 3-hour intervals.

In the above tables we have written down the magnitudes of the errors regardless
of their signs. If we compute the algebraic means of the erfors; we get:

Interval (hours) 6 12 18 24

Mean Error — 04 — 0.3 — 12 — 1.2

The algebraic means of the errors are exceedingly small. We may, therefore, conclude
that the errors in table 10 are more likely to be due to inaccuracy in the observed
tendencies than to any systematic error in the applied method.

If we exclude the said two cases, when secondary perturbations disturbed the
development of the warm sector cyclones, we may form the following rule: Warm
sector cyclones deepen with an almost constant celerity, which is determined by the ten-
dency at the top of the warm sector (see also paragraph 34).

When the occlusion progresses, the deepening is more irregular, and the intensity
varies. When the path of the center has been computed, the deepening is easily cal-
culated by means of the formulae developed in chapter VI. '

The deepening or filling has been computed for all the centers whose paths we
have described in paragraph 37, These are the results obtained:

Table 11. Deepening calculated by means of Formula 32 &) Jor the 8 Pressure Centers
(No. 1 to 8) referred to as Example 6 in Paragraph 37. (Calculated pressures in

brackets).
No. Dates Initial After 6 hours | After 18 hours| After 24 hours
Pressure
1 22. 1V, 1982. 14h | | 987 986 (986) 993 (996) 996 (1006)
2 20. X. 1931, 14b , | | 970 967 (966) 973 (968) 2 (979)
3 15. XII.1981. 14h , | | 964 962 (960) 968 (966) 975 (976)
4 14, XII.1931. 14h | | | 993 987 (988) 970 (969) 965 (965)
5 22. VI. 19381, 14h , | | 988 986 (984) 983 (980) 983 (983)
6 13. IIT. 1931, 14b | | | 982 982 (983) 983 (983) 98¢ (982)
7 15. VII. 1931. 14h | | | 994 996 (995) 996 (995) 998 (994)
8 24, X. 19381. 14k | | 982 980 (978) 978 (975) 976 (972)
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Table 12. Deepening of the Pressure Center referred to as Example 7
in Paragraph 37.

Dates Initial After 6 hours | After 11 hours | After 24 hours
. Pressure
No. 9 922, X.1932. 8n . . . . 990 988 (988) 987 (986) 982 (982)

It is seen from the two tables that the 9 centers are mostly very deep centers. 7
out of 9 centers were old occluded cyclones, whose future developments were not easily
estimated. No. 1 shows a considerable discrepancy between the calculated and the ob-
served pressure after 24 hours. Otherwise the results of the calculations are satisfactory.
It is seen that some centers deepen throughout the period of 24 hours, others deepen
and then fill-up, and others fill-up the whole time.. The calculations show the same
march,

It is interesting to see that No. 1, whose deepening was imperfectly calculated, also
showed considerable discrepancy with regard to the calculated path. The calculated
pressures, however, agree well with what is observed along the calculated path.

The 34 cases of deepening and filling, treated above, show such correspondance
between observations and calculations, that there can be little doubt that the calculation
of the paths and the development of pressure systems would largely increase the accuracy
of weather forecasting.

39. The Hurricane Center of October 22nd 1921. FExample 8. The writer does
not know any pressure center which has developed more unexpectedly, attained such
strength, and caused such damage, as did the pressure center that developed over KEng-
land on the 22nd of October 1921. It was, therefore, thought to be of particular
interest to see if thiz master cyclone could be forecasted with sufficient accuracy by
means of numerical methods.

The story began with a quasistatio-
nary front over South England which, in
the morning of the 22nd, developed a tiny
center. At 14" the same day the center
was situated over Lancashire. The distri-
bution of pressure and pressure tendencies
at this hour is given in fig. 30, It is
seen that the center is not a strong one.
This chart, and the tendency chart at
8h the same morning (fig. 31), form the
basis for our calculations. The system of
co-ordinates and the chosen length units are
marked in fig. 30.

From these two charts we get: (see
paragraph 18):
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o e o by T =33 AT = 015
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\

The length unit is 4 cm (scale of the chart 10—7)
along the z-axis, and 3 cm along the y-axis, Trans-
ferring the above coefficients to cm-distances on the
chart, and substituting in 16 (1), we get for the velo-
city of the center:

C, = 048, €, = — 0.17.
o o 3 A
J N 60
N \ 0 18
. N o VERP N
A g 0(997) )
10¢g >
. (991) ;
€I§:'°. g
J (g8 99,
Qdo
5
1012) 02 I =
— - ' 2 955)
— \.- 0(939) .
2 '-_o..(looz)
! 0(1000) ;
7 S 50
r O(1004
1010
Y o Mo 20
Fig. 32.

The hurricane center October 23rd, 1921, 14 h. The isobars represent the actual pressure distribu-
tion. Small circles indicate points for which pressure has been computed. The dotted line represents
the computed position of the cold front. The actual path is drawn as a full line, the computed path
as a broken line, The points marked on the paths, give the positions on the the preceeding charts.
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According to 17 (1) we get for the acceleration :

4, = 0.188, 4, = — 0.030.
Substituting in 18 (2), we get for the co-ordinates of the center:
Sy = 048 ¢ 4 0.094 ¢

) A

S, — — 017 ¢ — 0.015 ¢
Substituting in 32 (2), we get for the deepening of the center:
(@) Ap = — 33t — 0054 ¢

The position of the center has been computed for the same evening at 19%, the
next day at 8" and 14", Fig. 32 shows the computed path compared with the actual
path. The center was easy to locate, and the agreement between calculations and ob-
servations is so pronounced that the slight discrepancies which occur are of no practical
significance whatever. The calculations thus show that the path of the center could
have been computed with abundant accuracy.

In this case it is, however, of equal importance to decide if the deepening of the
center could have been predicted. Evaluating the above expression for A p, we get for
the pressure in the center:

Table 13.
Dates Observed Calculated
pressure pressure
22. Oct. 142 . . . . ., 1001 —
22. » 190 . . .. 994 995
23. » g . [ 975 979
23. » 14b , . . .. 971 971

It is seen that the calculations give an accuracy which is far superior to what is re-
quired for a correct forecast.

The next question of considerable interest is: Could the pressure gradient in the
surroundings of the center have been forecasted ? In order to decide this we must cal-
culate the deepening at some points round the center. ILooking at equation (2), we see
that the deepening celerity is about 60 times larger than the deepening acceleration. It
is, in the present case, difficult to compute the deepening acceleration outside the center.
Since the deepening acceleration in the center is small compared with the deepening
celerity, we may expect to obtain fair accuracy by computing the deepening celerity at
a number of points in the vicinity of the center.

The deepening during 24 hours has been computed for a number of points, which
are marked by circles on the chart fig. 32. The computed pressures are written in
brackets. It is seen that the computed pressures differ from the observed pressures by
1 to 7 mb. This is what we have expected, because we have not taken the deepening
acceleration into account. The agreement between the computed and the observed pres-
sures . is, however, so good that no appreciable error would result in the distribution of
gradient. '

The displacement of the cold front trough, indicated in fig. 30 was also computed.
The dotted line indicated in fig. 32, shows the computed position after 24 hours. The
error in the computation is 200 km. after 24 hours. Since the velocity of the front on an
average i1s 72 km., the error in the computation involves that the front arrived (say) at
Breslau two hours and a half earlier than expected. An error of 2!/: hours in 24 is
insignificant,
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The geostrophic wind over Denmark in the rear of the cyclone amounted to 80 m
sec™!. The cyclone was accompanied by widespread hurricane, and caused devastations
which, according to newspaper reports, amounted to more than #£ 100000 in Denmark only.

It does not appear from the weather bulleting of the meteorological institutes in
NW-Europe that the hurricane force had been appropriately forecasted already on the
noon chart of the 22nd. The above calculations, however, show that it could have been
forecasted with an accurary hitherto unknown.

40. Examples of Frontogenesis. Fux-
ample 9. Fig. 33 shows a quasi-stationary front
which on the 10th of December 1931 14t
extended from Bordeaux to the middle of the

>~ North Sea. The chart gives the position of
the front, the field of isallobars, and the
temperatures at a large number of stations.
The isallobars (the broken lines) are drawn
for each millibar.

According to the considerations in para-
graph 26, it is to be expected that the distri-
bution of isallobaric gradient would tend to
make the front increase in intensity. In order
to test the theory, we have computed the
mean temperature for a zone of 100 km at
either side of the front. The following table
shows how the mean temperature varied in
each of the said zones.

Table 14.

Dates Warm Cold Diiference
10. XII 1931. 14b | | 9.0°C 7.1°C 1.9
19h | | 8.8 5.8 3.0
11. XII 1931. 08h | | 9.0 5.4 3.6
14b | | 9.2 5.0 4.2
190 | 92 31 6.1
12, XIT 1931, 08h | | 8.9 04 8.5

Throughout the period the isallobaric gradients were directed towards the front from
both sides, and the temperature difference increased from 1.9 to 8.5 degrees centigrade.

It is interesting to see that the temperature of the warm air remained almost con-
stant, whereas the temperature on the cold side decreased steadily. This is what we should
expect, because, owing to the homogeneous conditions of the warm (tropical) air, the flux
of warm air towards the front (see paragraph 29) would not cause concentration of iso-
thermal surfaces. On the cold side, however, the flux of air towards the front, (caused
by the isallobaric gradient, see paragraph 29) would bring the temperature surfaces
towards the front.

Example 10. Fig. 34 shows a front which on the 5th of December 1931 at 19®
extended from the Bay of Bothnia towards Poland. The chart shows the distribution of
pressure (full lines) and isallobars (broken lines). The observed temperatures are plotted
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in small figures. The mean temperatures within zones of 200 km. at either side of the
front, were computed. The difference was 8,5° C. As the isallobaric gradients were directed
away from the front, it was to be expected that the front would decrease in intensity.
Fig. 35 shows the situation the next morning. The pressure trough is then indistinct,
and the difference in temperature has decreased from 8.5 to 5.4. The decrease continued
on the following charts.!)

The examples stated above are typical, and the rules referred to, have proved to be
of great value for estimating the increase or decrease in front intensity.

o 4 2lo 310

Fig. 34. ) Fig. 85.

41. [Isallobaric Gradient and Precipitation. ZFErample 11. In paragraph 29 we
have made some comments on the distribution of vertical velocity in the vicinity of fronts,
and shown that the vertical velocity is caused by the flux of air along the isallobaric
gradient, which, as a rule, are directed towards the front. We shall here give one example
which illustrates the theory.

Fig. 36 shows a young
warm sector cyclone which oc-
cured over Great Britain on
January 23rd 1926 8B, This
cyclone has been examined by
J. Bjerknes? ‘where a closer
description is to be found. The
arrows in fig. 36 show the di-
rections of the isallobaric gra-
dients, and the alotted numbers
give the ‘isallobaric wind’ com-
ponent in m gec™, computed
from equation 28 (5).

It is seen that there is a
strong flux towards the warm front on both sides, the flux increasing towards the center
of the cyclone.

) The rapid decreace in temperature difference may partly be caused by radiation. The rapid
destruction of the pressure trough, however, indicates intense frontolysis.
%) Practical Examples, loc. cit.
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Along the cold front (which is of type B, described in paragraph 25), the flux is
very small, the isallobaric gradients being almost parallel to the front. The theoretical
considerations in paragraph 26 show that this front is exposed to frontolysis, which is
corroborated by the empirical investigations of Bjerknes.

The properties of these two fronts have been examined and the results are contained
in the tables 15, 16 and 17. I then stands for the difference in isallobaric wind per-
pendicular to the front, I being expressed in m sec—t. I is computed for the three
points 4, B and C as shown in fig, 36. These points correspond to the parts of the
front that passed the three stations: Eskdalemuir, Holyhead and Andover, from where
complete autographic records have been published by J. Bjerknes (loc. cit) The
figures in the following tables are taken from these records.

Table 15. The Warm Front.

Items Andover Holyhead | Eskdalemuir
O 5.3 7.8 10.2
Amount of rain during the front passage . . . 7mm 5.2mm 10.6 mm
Duration of rainfall thours). . . . . . . . . . 8 45 35
Rain intensity (mm per hour) . . . . . . . . 0.9 1.1 30
Temperature difference at the front. . . . . . 20°C 18°C 25°C
Duration of the passage . . . . . . lhour 1 hour 20 minutes
Front intensity, °C per hour . . . . . . . . . 2 18 75

It is seen from the table that the rain intensity is directly proportional to the flux
of air towards the front,

The warm front which at Kskdalemuir is of type B (see paragraph 25), is retarded
and exposed to frontogenesis. This explains the large front intensity at Eskdalemuir. The
front at Eskdalemuir became almost stationary, and the strong flux of air towards the
front would cause increased front intensity (see paragraph 40).

At the cold front there is but slight flux towards the front. It is then to be
expected that the rain intensity should be smaller at the cold front than at the warm

front. Table 16 shows this:
Table 16. The Cold Front.
Ttems Andover Holyhead | Eskdalemuir
Amount of rain 4 mm 1 mm 1 mm
Duration 23/4 h. 1 h. 42 h,
Intensity . . . 1.5 1.0 0.2

It is seen that the rain intensity decreases along the cold front from South to North.
This is usually the case with cold fronts of type B. In the vicinity of the center such
fronts are ill-defined. In the present case, the front is hardly distinguishable at Esk-
dalemuir.

It is seen from fig, 36 that there can be but slight convergence or divergence of
isallobaric gradients in the southern part of the warm sector. The flux is fairly uniform
and directed towards the top of the warm sector. As there can be no piling-up of air
at the top of the warm sector, the air must ascend. In general, the isallobaric gradient
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is small in the vinicity of the center. There would then be a strong convergence in the
warm air near the center. According to considerations in paragraph 28, this convergence
would result in a strong ascending motion in the warm air at the top of the sector. From
the distribution of isallobaric gradients in fig. 36, we would conclude that there ought to
be intense precipitation in the warm air at the top of the warm sector. Table 17 shows
the amount and intensity of the warm sector precipitation at the three stations.

Table 17. Warm Sector.

Items Andover Holyhead | Eskdalemuir
Amount of rain 2 mm 1 mm 27 mm
Duration . . . 20h. 9'/; h. 5 h,
Intensity . . . 0.1 0.1 54

It is seen from the table that the rain intensities at Andover and Holyhead, where
the convergence is slight, are insignificant, whereas at Eskdalemuir the rain intensity is
excessively large. The autographic records published by J. Bjerknes, clearly show
that the rain fell in the warm air.

It is well to note that the isallobaric gradients in this warm sector were exceptionally
strong, ‘and that part of the rain at Fskdalemuir might be of orographical origin. In
most cases the isallobaric gradients are much smaller, and the amount of rain recorded
at the top of the warm sector, rarely amounts to more that 1 mm per hour.

This one example presumably suffices to show the importance of studying the
details of the distribution of the isallobars. "“The pressure tendencies and the isallobaric
gradients, being the cause of all changes, are deeply rooted in all forecasting problems.
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