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CHAPTER 1
GENERAL THEORY')

1. Definition and Criterion. The reason why
the current thecry of frontogenesis is incomplete is
probably due to the fact that the term frontogenesis
has not yet been properly defined. We shall, there-
fore, elaborate the definition and the criterion of
frontogenesis before we proceed to the mathematical
deductions.

Let us consider a scalar quantity « which has
a continuous distribution in the horizontal plane
(xy). o may then be represented by means of a
map of its equiscalar curves. When time (f) varies,

the a-curves will, in general, move relative to the -

co-ordinates of the chart. We then say that we
have frontogenesis if the a-curves move in such a way
that they tend to produce a discontinuity along a line
in the field.

Frontolysis, being the negative of frontogenesis,
needs no special definition. ’

The line along which frontogenesis takes place
may be called the line of frontogenesis. This line
may be a stationary or a moving ocurved or
straight line.

Let | Val| be the magnitude of the ascendant

of a, and let;% denote the time differentiation in

a system of co-ordinates which is fixed to a particle

of the moving line of frontogenesis. We then see
that

. - ) ( Va “

(1) F= 2

expresses the variation in '[« | per unit time in
a system of co-ordinates which moves with the line

1) The first attempt to explain the formation of fronts was
made by Bergeron, (Die dreidimensional verkniipfende
Wetteranalyse. Geof. Publ. Vol. V, No. 6), who has
made substantial contributions to our knowledge of
fronts and air masses.

of frontogenesis. The quantity & may then be taken
as a measure of the frontogenetical effect, provided
that frontogenesis takes place. (See below.)

If frontogenesis takes place along a line in the
field, it follows that . I7a | must increase more rapidly
on this line than elsewhere. This necessary criterion
is expressed by:

oF ¢ 0iVa
(2) N~ aF ( B‘T") =9
where N measures length along an axis normal to
the line of frontogenesis.

oF

The quantity # has a maximum whenav =0

o°F .. F
and 8—N2<0’ and a minimum when N =0 and
2
—2—1\1;—2>0. The following cases may occur when
oF
T e )2
N 0:2)

otF .

a) "> 0 and Ve < 0. The ascendant of «

increases more rapidly on the line considered

(STFV— = 0) than elsewhere. In this case there is

frontogenesis.
oF

b) F>0 and = > 0. The ascendant of «

increases less rapidly on the line considered than
elsewhere. In this case there is neither fronto-
genesis nor frontolysis.
o' F
¢) <0 and W< 0. The ascendant of «
decreases less rapidly on the line considered than
elsewhere. In this case there is neither fronto-
genesis nor frontolysis.
o*F
oN?
decreases more rapidly along the line considered
than elsewhere. In this case there is fronfolysis.

d) F<0 and > 0. The ascendant of «

2) The case when F = 0 is trivial,
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2. Conservative Field of Property. There can
be little doubt that frontogenesis in the atmosphere
is mainly a kinematical phenomenon: When air masses
from different and distant source regions are brought
into juxtaposition there will be formed a front in the
conservative properties of the masses.

It is true that no property is strictly conser-
vative. Physical and dynamical processes (radiation,
conduction, mixing etc.) will in most cases counter-
act the kinematical frontogenesis. However, in order
to study the nature of the kinematical (conserva-
tive) frontogenesis we shall in this paper neglect
the non-conservative influences, and discuss fronto-
genesis on a strictly conservative basis.

Let « be a conservative property which is
continuous in the horizontal plane. We may then

write:
(1) a = a(xr,y,l).
Since « is a conservative property we put:
da
and hence:
oa
(3) 5{ = —V- Va;

where v = (u,v) is wind velocity.
We consider the air movement along the sur-
face of the earth where the vertical component of

Fig. 1.
Showing the meaning of the velocity of the line of fronto-
genesis. This velocity is not the formal velocity of the line
along its own normal.
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v vanishes. It is then clear that all changes in q,
either in a fixed system of co-ordinates or in a
system of co-ordinates which is fixed to the moving
frontogenetical line (if any) can only be caused by
horizontal advection. From this and from the
definition of frontogenesis it follows that the line
of frontogenesis in a conservative field must be a
substantial line consisting of the same individual
particles, because otherwise the frontogenetical effect
would steadily act on fresh air particles, and no
frontogenesis would result. Furthermore, the equi-
scalar curves of a must also consist of the same
particles because of the conservatism of the pro-
perty. Since the process of frontogenesis primarily
is a variation in the distribution of the ascendant
of the property in question, we need only in-
vestigate how the ascendant of « varies on a moving
air particle. The formulae thus deduced may then
be applied to any individual substantial line such
as lines of frontogenesis or equiscalar curves.

3. Deformation of the Field of Property. The
variation in the magnitude of the ascendant of o
is given by 1 (1), viz,,
| Va|

1) F="lg

The time differentiation in a moving system

0
5t

of co-ordinates is given by the symbolic equation:
7
(2) 5=zt Vv

where ¥ is the velocity of the system of co-ordi-
nates. From (1) and (2) we obtain:

_ o|Va]|

(3) F 5 +V.V|Va]

It is convenient to eliminate in order to

obtain an expression which is independent of the
time variation. In order to do this we may use
the criterion of conservatism. Substituting for
o : .

gta— by means of 2 (3), we obtain:
) F:—Va-V'v-Va—l—Vtyx-VVa-('v—V),

Vai

which expresses the rate at which the magnitude
of the ascendant of a increases per unit time in a
moving system of co-ordinates when « is a con-
servative property.
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Interpreting ¥ as the velocity of a substansial
line (e. g. line of frontogenesis or equiscalar curve),

we may put:
v="V,
which substituted in (4) gives:
: __Va-veva
(5) F = T Va .

The vector —ﬂ—;- is the unit vector of Va. The

Va
Va . . s .
vector TVH Vv gives the variation in v along
|
the vector lines of Va. F is then positive when
this vector forms an angle with [7a which is larger

than g" and F is negative when the angle is less
than ;E In each particular case it is easy to map

the distribution of F.

4. Criterion of Conservative Frontogenesis. Accor-
ding to the definition in § 1 there is frontogenesis
when the equiscalar curves of a« move in such a
way that the magnitude of the ascendant of «
increases more rapidly on a line in the field than
outside this line. The necessary condition for fronto-
genesis is expressed by 1 (2), viz,

or
v =

where N measures length along a line normal to
the line of frontogenesis. This equation expresses
the necessary condition of partial maximum. The
corresponding condition for total maximum is ex-
pressed by:

(1) VF=0.

Substituting from 3 (5), we obtain:

. Va- Vv -FVa \
(2) —FV ( Va] ) = 0.
This is a vector whose components are:
oF o[ VaVv-Val_
oxr o [Val o
(3) ) )
oF 0| Va-Vv-Va |
d oy Va o

Performing the partial differentiations of the
above expressions with respect to z and y respect-
ively, the following cases may occur:

CONTRIBUTION TO THE THEORY OF FRONTOGENESIS 7

oF
a) b and oy
F is constant throughout the field,
b) oF and or are constants or functions of ¢
ox oy
only, in which case F' is a linear function of space
co-ordinates.
oF

c) ™ and

It is obvious that in the cases (a) and (b)
there are no maxima or minima in . There can,
therefore, not be frontogenesis in these cases. In the
case (c), however, there may be maxima or minima
in the distribution of F. The necessary criterion
for frontogenesis in a conservative field may then
be expressed as follows: There is frontogenesis
(positive or negative) when the equations (3) hold
for finite real values of = and y, provided that the
equations are mnot fulfilled throughout the field
(case a).

vanish identically, in which case

oF . .
(or) En contain space co-ordinates.

5. Centre and Line of Frontogenesis. Solving
4 (3) with respect to x and y we obtain the co-
ordinates of the point (w, ¥,) where F has a maxi-
mum or minimum. This point may be called the
centre of frontogenesis.

The line of frontogenesis, which is defined by
1 (2), runs through this point, and its position is
most easily determined graphically. Developing 3
(5), we obtain:
() F=— [ZZ Oy0” = iy iy (ZZ + gz) +

ov

+ @ 0‘201] (a%p + a¥y) —4,

where % and v are the components of the wind
vector, and
ertag
Upg = 59?7;’6'3/4 .

Giving F successive constant values we get the
isolines of F. The line of frontogenesis runs through
the centre and through the points where the equi-
scalar F-curves have maximum of curvature. (See
fig. 2.) In a similar way the equation of the line
of frontogenesis may be determined analytically.

When the two equations 4 (3) depend on one
another in such a way that the coefficients are
proportional, the two lines that determine the
centre coincide, and the centre degenerates into a
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Fig. 2.

Showing the line of frontogenesis in relation to the equi-
scalar curves of F.

line along which F is constant. This line is then
the line of frontogenesis. Such cases are frequent
in nature, and we shall return to such cases in a
later paragraph.

6. Degree of Frontogenetical Functions. We

shall now prove the following theorems:

(a) Frontogenesis is not possible when both the
field of motion and the field of property are linear
fields of x and y.

(b) Frontogenesis is only possible when the dis-
tribution of property and wind velocity along a
profile (s) are such functions of s that the sum of
their degrees is ot least 4.

The first theorem results directly from the
equations 4 (2) or 4 (3). Inspecting these equations

we see that ?E and @ vanish for all values of z
ox oy

and ¥y when v and a are linear functions of z and
y, which proves the theorem (a).

Let us next consider the distribution of o and
» along a profile s. Choosing the z-axis along the
profile we may write:

a=a(xt) and » = u (x).
{ may be eliminated as shown in § 2. The function
F' corresponding to 3 (4) is then: (see b (1))
F o= ——gg g

The necessary condition for F having a maxi-

mum or minimum is:
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oF’ o ou
= e —— Oy — o Ogg = 0.

ox ozt " ox

If a maximum or minimum shall oceur it
follows that equation (1) must contain space vari-
ables. Considering the number of differentiations
we see that (1) can only contain space variables
when neither ¢ nor % are constants, and when the
sum of the degrees of these functions is at least 4,
which proves the second theorem.

The following table illustrates the content of
the theorems:

Frontogenesis:
Field \  Tield . 3rd or
of of Constant | Linear d“nd higher
v « egree degree
Constant Impossible
Linear Impossible Possible
2nd degree Impossible Possible
3rd or
higher degree Impossible Possible

From this table we see that the linear field of
motion can only produce frontogenesis when the
field of property is of 3rd or higher degree. But
even when the degree is sufficiently high, fronto-
genesis can only occur if the field of property obeys
the more rigorous conditions enunciated in § 4.
Moreover, since o cannot exceed a certain value
when =z increases, it follows that only periodic
functions or functions of a special exponential
character can be applied in order to study fronto-
genesis. We shall return to these questions in
Chapter IV. *

CHAPTER II.

FRONTOGENESIS IN LINEAR FIELDS
OF MOTION

7. Introductory Remarks on the Linear Field
of Motion. The idea of treating the field of motion
as a linear field originates from the fact that the
distribution of © may be represented by means of
a Taylor series whose linear terms usually predomi-
nate within a certain area. However, with increas-
ing distance from the point of development the
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non-linear terms become important because, other-
wise, v would increase infinitely with increasing
distance. This restricts the area within which it is
permissible to neglect terms of higher order. 1t is,
moreover, likely that the areas which contribute
substance to the formation of fronts and the ad-

jacent quasi-homogeneous air masses are much larger’

than the areas within which linear motion predomi-
nates.

On the other hand it is a fact that linear
motion seems to predominate in the vicinity of the
saddle points in the pressure distribution, and it is
in such areas that fronts are most frequently ob-
served. It, therefore, becomes important to examine
whether such fronts really are formed in the linear
field of motion, or if they are formed in the area
of non-linear motion and afterwards brought into
the linear area by the air currents.

We have seen in § 6 that a linear field of
motion cannot produce frontogenesis except when
the field of property is a function of high degree.
We shall, therefore, examine the conditions under
which frontogenesis takes place in linear fields of
motion and non-linear fields of property.

A linear field of motion may in the most gene-
ral case be represented by:

U = Uy + U T + Uy

v =1, + v -+ vy
where u,, v, w;, v, 4, and v, are constants. By
appropriate choice of system of co-ordinates we
may write:

U = Uy + ax + bx — cy,

(1) v = v,—ay + by + cx.
Where (u,, v,) represents a translatory, (ax, — ay)
a deformative, (bx, by) a divergent, and (— cy, cx)
a rotational component.!) Writing the equations in
this form we see clearly which réle each partial
field plays in the formation of frontogenesis.

It is well to note that the z-axis in (1) is
chosen along the positive axis of deformation (the
axts of dilatation). In the following paragraphs we
shall always choose the wz-axis in this way except
when otherwise stated explicitly.

Usually w, and #, can be eliminated by parallel
translation of the co-ordinate system. This is, however,
only possible when the field of motion is such that

') The method of determining the constants a, b and ¢
is described in most text-books on vector analysis or
field geometry.

- translation.
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w and » vanish in a point or along a line only.
We shall, therefore, in the following general deduc-
tions retain the translatory components.

Owing to the choice of z-axis, @ may be re-
garded as a positive quantity, whereas b and ¢
may have either sign. b >0 means divergence, and
b < 0 convergence. ¢ >0 means positive rotation,
i. e. rotation from the positive z-axis to the positive
y-axis in a right hand system of co-ordinates. By
appropriate choice of the constants a, b and ¢, the
equations (1) will represent the linear terms in a
Taylor series developed in the point where u = u,
and v = v,

From (1) we obtain:

ou ov
- — == 2a
ox oy
ou v
i = e e = 20
div v o 4+ oy
curl v = w 2¢
or oY

which illustrates the nature of these constants.

The division of the linear field of motion in a
deformative, a divergent and a rotational compo-
nent is, naturally, a formal operation. Moreover it
is important to note that the translation (uy, )
depends entirely on the point which we choose as
the origin. If the field is strictly linear the con-
stants a, b and ¢ are independent of the choice of
origin, and the deformation, the divergence and the
curl of v are constant throughout. Thus, wherever
we choose the origin there will be an axis of
dilatation and an axis of contraction running through
the origin. If we choose another origin, the new
axes of deformation will be parallel to the previous
ones. Since a, by hypothesis, is constant throughout
the field, the deformation is also constant. Further-
more, since the divergence and the rotation are sym-
metrical in all directions whereas the deformation
is symmetrical only with respect to two axes, it
follows that, for a given field, the direction of the
axes of deformation is a reality, whereas the post-
tion of the axes depends on the point where we
choose to place the origin of the co-ordinate system.
This is most clearly seen when we consider a field
of motion which consists of a deformation and a
It should also be mentioned that the
axis of outflow in the resultant field of motion need
neither coincide with mor be parallel to the axis of
dilatation.
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Finally, it should be observed that the field
of deformation, divergence and rotation are con-
centric fields, i. e. the velocities of each partial
field vanish for the same values of # and y. If
we superimpose linear partial eccentric fields on
one another, we obtain:

Deformation: v = a (x —u,); v = —a (y — 4),

Divergence: u =1b (x—x,); v = b (y — u),

Rotation: U=-—c(y—1ys); v=c(x—ux,).

v
v

The resultant of these eccentric partial fields is:

= x4 bx—cy— (ax, + bz, — cy,).
v = —ay + by + cx— (— ay, + by, + cx,).
Putting:

— axy — bxy + cyy = Uy,

ayr — by, — cx; = vy,
we see that eccentric partial fields are equivalent
to concentric fields plus a constant translatory
movement. Thus, the separation of the resultant
field in a constant translation and partial fields
of deformation, divergence and rotation is a formal
operation, and the centre of each partial field and
the location of axes of deformation have no auto-
nomy. What is a reality is the centre of the re-
sultant field and the direction of the axes of de-
formation. This is in contrast to non-linear fields,
where each centre and the location of the axes of
deformation may be autonomous. (See Chapter IV).

8. Linear Deformation of the Field of Property.
We shall now see how the magnitude of the ascen-
dant of a varies in a linear field of motion. Ac-
cording to 3 (5) we have:

(1) g __Ferv e
| pa|

We put:

(2) Va=|pa|(mi+ nj),

where ¢ and 7 are the unit vectors of the z- and
y-axis respectively.

From 7 (1) we obtain:
(3) v =1 (uy+ ar -+ bx —cy) +

+ 7 (vo— ay + by + cx).

Substituting (2) and (3) in (1), we obtain:
(4) F=—|pa|lb+ a(m®—n?]

Let ¢ denote the angle between the x-axis

(i. e. the axis of dilatation) and f7a, and y the angle
between the z-axis and the tangent to the isolines

Geof. Publ.
of ¢ in the point which we are considering. We
then have:

cos ¢ = —sin y = m,

sin ¢ = cosy =n,
which substituted in (4) gives:
(5) F=ra|(acos2y—Db).

From (4) and (5) we see that the translation
(wy, v,) and the rotation (—cy, cx) have no influ-
ence on the variation in [7a|. Since F isx a meas-
ure of the frontogenetical effect (see § 3), we see
that 4t s only the divergent and the deformative
components of the field of motion which can produce
frontogenesis, and these two components play equal
parts in the production of fronts.

From (4) and (5) we also see that F (ceteris
paribus) has a maximum where | /7« | has a maxi-
mum. The point where I has a maximum is the
centre of frontogenesis, and the line along which
F has a maximum with respect to the variation
along the normal of the line is the line of fronto-
genesis. Thus, for a given field of motion (u,v),
the centre of frontogenesis and the line of fronto-
genesis are determined by the magnitude of fF«
and the direction of the isolines of « relative to
the axis of dilatation (i. e. the x-axis).

9. Frontogenetical and Frontolytical Sectors.

Equation 8 (5) shows that the sién of F, for a
given field of motion, depends entirely on the
angle y between the z-axis and the tangent to the
isolines. F vanishes along a line determined by:

. b
(1) cos 2Y' = @

If, at a given point, ¥ > >—y', then F
is positive, and | a | increases. On the other hand,
when n—vy' >wyw>v', then F is negative, and
' pa| decreases. Thus frontogenesis can only occur
when the tangent to the isolines form an angle
with the z-axis which in magnitude is less than
-+ y/. Owing to the duplicity of equation (1) we
see that there are, in general, two symmetrical
sectors in which F is positive and two in which
F is negative.

Fig. 3. illustrates the meaning of the term
sector of frontogenesis and sector of frontolysis: Con-
sider the tangent of the curve a = constant at 7',.
Transferring its direction to the origin, we see that
it falls outside the sector indicated by 2 v/, which
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is the sector of frontogenesis. I' is then negative
at the point 7,. At T,, however, F is positive,
because the tangent translated to the origin would
fall inside the sector 2%’. The line ¥ = 0 divides

/

Y o,
4 o, +7
- / o,+2
A\
< 7 a,*+5
\\
\I
~N

A1
A . -~
~ :'

Fig. 3.

the field in areas of positive and negative F,:or
into areas of fromtogenesis and areas of frontolysis.
In the negative area the isolines of « diverge from
the sector of frontogenesis and in the positive area
the isolines converge towards the sector of fronto-
genesis.

The terms frontogenetical and frontolytical sec-
tors are probably not very logical. The terms
frontogenetical and frontolytical angles might be
more adequate names, but the term sector is pre-
ferred in order to facilitate the discussion in § 13.

Returning again to (1) we see that when b =0
(i. e. no divergence) ' is - Z . Since (1) is inde-

pendent of a contingent existence of translatory
and rotational components of the field of motion,
we see that, when there is no divergence, the sec-

tor of frontogenesis is g— and symmetrical with re-

spect to the axis of dilatation. Likewise, the sector

of frontolysis is —g— and symmetrical with re-
spect to the axis of contraction. A contingent curl,
therefore, does not influence the position and the

magnitude of the sectors. The axis of dilatation
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bisects the frontogenetical sector; and the axis of
contraction bisects the frontolytical sector.
The curl, however, acts in such a way that

the awxis of outflow of the resultant field forms an

angle with the axis of dilatation. It is important
to note this for the discussion in § 13.

When b increases from zero to a (e being al-
ways positive), the sector of frontogenesis decreases

from% to 0. Thus, when b = a, F is positive

nowhere in the field, and there cannot be fronto-
genesis anywhere. This means that the isolines
move in such a way that | /'a| decreases, except
when the isolines of o« are parallel to the x-axis,
in which case F' =0, and | pa| = constant.

When b >a, (1) cannot hold, and F does not
vanish anywhere, it being negative throughout
the field.

When b decreases from zero to — a the sector
of frontogenesis widens and becomes equal to z.
and the two symmetrical sectors cover the whole
area. In this case the isolines move in such a
way that | Fa = increases everywhere, except where
the isolines of « are perpendicular to the wz-axis,
in which case ¥ = 0, and | pa| constant.

When — b > a, (1) becomes meaningless, which
means that F does not vanish anywhere.

From the above discussion we learn that the
xz-axis (axis of dilatation) decides the orientation
of the frontogenetical and the frontolytical sectors.

The width of the sectors relative to g is determi-

ned by the coefficient of divergence. Translation
and curl influence mneither the orientation nor the
width of the sectors.

We shall return to this discussion in § 13 in
connection with various types of linear fields of
motion, and we shall then see that the curl com-
ponent plays an important part in deciding the mo-
vement of the line of frontogenesis.

10. Determination of the Centre and Line of
Frontogenesis. We shall first suppose that the
field of motion and the field of property are given
in the shape of mathematical equations. It is then
most convenient to use the equation 8 (1) for de-
termining the centre of frontogenesis. Substituting
8 (3) in 8 (1), we get the following equations for
determining the centre of frontogenesis: (see § 5).
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oF , .
b | Va=*[(a + b) (— e’y ap — 2 a0 0% ayy +
(1) + @l ay) + (b —a) (— oy 0 —

2 )
—2 0?9050y + @390% 059)] = 0,
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oF | '
—=1Va \"3 [(@ + b) (— a* oy — 2 0500%, ey +

(1) + azm Aoy o) + (b —a) (— ‘3‘301 Ogg —

— 20a¥, ay @ + 003 ay,)] = 0.

These equations can only exist simultaneously when the determinant

V|-

which developed gives:
(2) 10 X (g0 o2 — 2°py) —0
o?yy + a?y
This equation contains all possible solutions
of (1). In the general case (1) determines a centre
which in special cases may degenerate into a line
(i. e. the line of frontogenesis). This happens when

Oy Uge — % =0,
or when the isolines of o are parallel and straight
lines. Imaginary centres and singularities may
also occur.

It is, however, of but little use to discuss
these equations without any specifications as to
the nature of the function a, because only very
special types of functions will represent the field
of property as it occurs in nature. We shall, there-
fore, turn to the case when the distribution of «
is given as a map of its equi-scalar curves. It is
then most convenient to base the discussion on
the equation 8 (5).

As will be shown in § 13 the direction of the

axis of dilatation and the ratio 72- may be deter-

mined from the analysis of the wind chart. Sub-
stituting 9 (1) in 8 (5) we obtain:
(3) F=a|Val(cos2y—cos2y).
The variables |a| and ¥ may be evaluated from
the a-chart, and the distribution of F is easily
found.

A few general results may be deduced from
(3). Differentiating partially with respect to x and
y and equating to zero, we obtain the following
equations for determining the centre of fronto-
genesis:

ax:—.g. -~ ' (cos 2y — cos 2') —
_2agl7d|sin 21,0?!}:0,
@ wr v ’
Va ’
= @ i (cos 2y — cos 2 y') —

—2a|Va|sin 241%}: 0.

a8 . 2 2 3 9.2 2 |
719 g 2 00 0%, gy + Ao gy s Bogp gy —— 20505 0y - 1y 0Ty Ay j

8 - 2 2 3 9.2 e
030 05— 2 039 0% gy + AP Cgp, X0y Ggp — 2 @1 gy g =+ Qg 01 gy |

=0,

%Ea—wzo, the isolines of a are parallel
ox ~ oy

and straight lines. In this case the centre of fron-
togenesis is determined by:

When

o Va| 0[Val _ 4
o oy

But since the isolines are parallel and straight
lines it follows that |Va| is constant along each
isoline. The centre of frontogenesis, therefore,
degenerates into a line which is the line of fronto-
genesis. The line of frontogenesis is then situated
along the line where the magnitude of the ascendant
of a has a maximum. ’

The case of quasi-parallel isolines occurs very
frequently in nature when fronts develop between
two different source regions of property. (See
Chapter 1V).

11. Illustrative Examples. At this point it
might be useful to consider a couple of examples
in order to demonstrate, from a practical point of
view, the way to proceed in order to detect fron-
togenesis. Fig. 4a shows a map of a hypothetical
distribution of property of a type which often
occurs in nature, the distribution being characteri-
zed by a region of quasi-homogeneous low value
of property (say temperature) in the north and
north west and a similar region with high value
in the south. We suppose that the direction of
the axis of dilatation and the angle iy has been
evaluated from the wind chart as described in

- § 13. The direction of the axis of dilatation and

the angle i/ are indicated in the upper left corner
of the figs. 4c and 4d. In the present case 1/
is 52°, or -% :-——i—, which corresponds to a slight
convergence superimposed on a deformation. The
problem is to find the distribution of F. (Equation
10 (3).)
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Fig. 4b shows the distribution of |Ve| in
relative numbers depending on the choice of units.
(Arbitrary orthogonal co-ordinate lines are drawn
in order to facilitate the comparison between the
illustrations.) Mapping the quantity (cos2—
cos 2 1Y) and multiplying graphically by fig. 4b
we obtain fig. 4 ¢, which shows the distribution of
F when the direction of the axis of dilatation is
as indicated in the upper left corner. The centre
of frontogenesis (proper) is situated within the
50-soline of ¥, and the centre of frontolysis is
situated within the — 20-isoline. The line of fronto-
genesis (or frontolysis) runs through the centres
and through the points where the the F-lines have
maximum of curvature, but the position of the line
is indeterminate in the vicinity of the curve ¥ = 0.

Fig. 4 d.

Comparing fig. 4b and 4c, we see that the
centres are sitnated where Fa has maxima. In
the regions where the c-lines are quasi-parallel the
line of frontogenesis coincides with the line along
which | Va| has a maximum. Even outside this
region the line of frontogenesis is very close to the
maximum line in |Ve'.

Fig. 4 d shows the distribution of F' when the
«-field is as shown in fig. 4 a, and the direction of
the axis of dilatation as indicated by the arrow.
Comparing the figs. 4 ¢ and 4 d we see that, owing
to the unfavourable direction of the axis, fronto-
genesis is much less active than in the previous
case (fig. 4 c). However, the line of frontogenesis
has mainly the same position as in fig. 4 ¢, and in
the area of quasi-parallel a-curves the line of fronto-
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genesis is uninfluenced by the change in the direc-
tion of the axis. In all practical cases it suffices
to place the line of frontogenesis by means of the
simple rule that it is quasi-coincident with the line
along which |V« | is maximum. This rule holds with
sufficient accuracy except in the vicinity of the
line along which F =0, but in this area fronto-
genesis is negligible.

For practical purposes it is highly important
to note the angle between the «-curves and the axis
of dilatation, Thus, along the east coast of Green-
land there is usually a zone of maximum tempera-
ture gradient, and, therefore, there is frequently
favourable conditions for frontogenesis. But, if the
axis of dilatation points towards SE there will
usually be frontolysis. If the same axis points
towards NE there will usually be frontogenesis.
When the angle between the axis and the iso-
therms is near the critical value 1/ there is neither
frontogenesis nor frontolysis.

However, a line of frontolysis will in general
move and it will usually pass the critical direction
and then change into a line of frontogenesis. Tt is,
therefore, necessary not only to make out the in-
stantaneous distribution of ¥, but also to find out
the movement of the line of frontgenesis and its
chances of development. In order to do this we
must discuss the various types of stream lines.

12.  Classification of Stream Line Patterns.
Since our aim is to investigate the possibilities of
frontogenesis in the various types of linear fields,
it is important to distinguish the various types of
stream line patterns. It is then natural to classify
the patterns according to the number and nature
of straight stream lines.

The field of motion is given by 7 (1) viz.
U= uy+ (b + a)x—cy
v =1+ cx + (b—a)y.
The field has a centre when % and v vanish
simultaneously in one point (z,, ,) only. Putting

%= =0 and solving (1) with respect to z and y,
we obtain:

(1)

— Uy, —c' la +b, —u,
| — 0y, b—a| e, —uy
2 = SASE - el
(2) %o |b+a, —c T la4+b, —c
e, b—a ¢, b—a

The following three cases may occur:
(A) z, and ¥, are finite. The field of motion has
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a centre. (B) x, and (or) y,, are indeterminate. The
field has no centre, but there is a line along which
there is no flow. (C) x, and y, are infinite, in
which case there is a line along which the flow is
congtant,.

A. Central Patterns. The condition for having
a centre is expressed by

'b+a, —c¢
\

| ¢, b—a

1 >0,
or: |
(3) b?—a? + ¢ 2 0.

By parallel translation of the system of co-
ordinates to the centre we obtain (indices dropped):
w= (b4 a)x—cy

) v=cx+ (b—a)y.
The condition for having straight stream lines
through the centre is:

W _ Yy

de x

Substituting in (4), we obtain

(5) y _atVee—c

independent of b.

Four oclasses of central stream line patterns
may be distinguished:

I°: @ =c¢=0. According to (3) we have
b=0. The field is one of pure divergence, and
there is an infinite number of straight stream lines
through the centre. (Figs. 5 and 6).

2°: a® > c¢? This in connection with (3) gives:
(6) s a—c2>0.

There are two straight stream lines through the

centre.
The inequality (6) may be written:

<at—c¢*>0 or b2>a:—c2>0.

The first type gives stream lines of hyper-
bolic character with two straight stream lines as
asymptotes. The second gives parabolic stream
lines.

Let us first consider the hyperbolic type of
stream lines. Since 0Zb2<a?—c?, we see that
o must be larger than b and ¢. From (5) we
see that the slope of the straight stream lines
is independent of b. From 8 (5) we see that
the sector of frontogenesis is independent of c.
Therefore, the relative magnitude of b and ¢ is of
no consequence for the type of stream lines. Tt,
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therefore, suffices to examine 9 types of hyperbolic
stream lines. These are illustrated in § 13. (Figs.
7—15).

It is a characteristic feature of all hyperbolic
patterns that the sector of frontogenesis always is
less than s¢, and that the line of outflow is situated
in the sector of frontogenesis, and the line of in-
flow in the sector of frontolysis. Put @ = k,c = kb.
Since a is larger than the magnitudes of ¢ and b,
we see that &k, and k, are larger than 1. Let ¢
be the angle between the z-axis and the nearest
straight stream line. We then have:

tan ¢ = ky -+ VF——Z

w1/k—1
tan v/ = sz 1

Putting ¢ = ¢, we obtain:

ky b

—
Vhki—1
which does not agree with the condition 2 <a?—
¢ > 0, which involves:

ky

Vi2—1
whence one sees that ¢ <. Therefore, in the
hyperbolic types of stream line patterns the asymp-
tote which is the line of outflow is always situated
in the sector of frontogenesis, and the other asymp-
tote, which is the axis of inflow, is always situated
in the sector of frontolysis. This feature is of
crucial significance for the estimation of the pos-
sibilities of frontogenesis, as will be demonstrated
in § 13.

Turning now to the parabolic type of stream
lines which is characterized by:

b2>a—c2 >0,
we see that there are 22 possible combinations of
@, b and ¢ which satisfy the criterion. (See Table I.)

Table I.

Iy <

No. b2 >a?—c? >0

I— 2 4+b>a>c=0

3— 6| +b>a>-+4¢>0
7—10|4+b=a>"4¢c>0
11—14ja>+b>+¢>0
15—18la>4c=+b>0
19—22|a>-+¢c>406>0

However, since the relative magnitude of b and ¢
is of no consequence for the type of stream lines,
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and since + b >a and -+ b = a give either fronto-
lysis (b>0) or frontogenesis (b<0) all over
the field, we see that only a few cases need be
examined. The chances for frontogenesis in these
patterns are discussed in § 13. (Figs. 16—19.)

It is well to note that parabolic stream lines
are rarely observed in nature, and are improbable as
dynamically stable systems. Inspecting Table T,
we see that the cases 1-—10 are characterized by
excessive divergence. In these cases a field of curl
would develop rapidly and the stream lines would
rapidly change into a new type. (See § 14).

The cases 11—22 in Table I also are rare and
improbable because they can only exist within
narrow intervals of b, owing to the condition head-
ing the table.

3°. a=-¢>0. In this case b 2 0. There is
only one straight stream line through the centre. The
angle between the z-axis and the straight stream

line is %or——— Z according to whether ¢ is positive

or negative. Four typical cases are discussed in
§ 13. (Figs. 20—23.)

Fields of this type are rare because they can

4. a*><c?. This in connection with (6) gives
a?—c? <02 b2 There are no straight stream
lines through the centre (see (5)).

This class of stream lines is highly important
because it represents all sorts of motion around
cyclonic and anticyclonic centres.

Table II shows the various types which may

occur:
Table 11.

a?l— < 0=b?

1— 2| 4e>a=b=0 17—20 +c>+b>a—=0
3— 4| Fe>a>b=0|21—24|Fc=—+b>a=0
5— 8 4+ c>a>+b>0|256—28|f-c=+4+b>a>0
9—1214-c>a=4b>0|29—32|4+b>4-c>a>0
13—16 | 4-¢>—+b>0a>0|33—36 | +-b>—+c>a=0

Since the relative magnitude of b and ¢ is of
no consequence for the type of stream lines, and
since @ = --b is not qualitatively different from
a > - b, it suffices to examine only a small num-
ber of cases. These are discussed in detail in § 13.
(Figs. 24—35.)

B.  Straight Stream Lines. Let us next con-
sider the case when the equations (2) are indeter-
minate, or when:
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b*—at =0

¥y c b—a

w, b+a ¢

This substituted in (1) shows that » and v
vanish everywhere on a straight line whose slope

is b+ a:_b ¢ p By parallel translation of the
C —

system of co-ordinates so that the origin falls on
this line we obtain: (indices dropped)

u = (b4 a)x—cy,
(8)
v=cx+ (b—a)y.

The slope of the stream lines is gg = Z Sub-

stituting from (7) and (8) we obtain:
dy ¢ b—a 1
de b+a ¢ u

independent of z and y. All stream lines are straight
lines throughout the field. Eight qualitatively
different cases occur. These are discussed in § 13.
(Figs. 36-—43.)

0. Curved Stream Lines without Cenire. Curved
stream lines without centre occur when the numera-
tors in (2) are different from zero, and the deno-
minators equal to zero. We then have:

b—a ¢
T b4 a

Yy

(9) s Z——

Comparing this with (7) it is easily seen that
the field of motion in this case may be divided into
two parts: one which is congruent with the cases
discussed in B (straight stream lines) and another
which is a constant translation superimposed on
and forming an angle with the straight stream lines.

In this case the field of motion results from
Figs. 36—43 by adding a constant translation which
has a component normal to the straight stream
lines. These cases are discussed in § 13. (Figs.
44—51.)

The aim of the somewhat lengthy discussions
in this paragraph has been to show how the various
types of stream lines depend on the combination
of translation, deformation, divergence and curl. In
§ 9 we have seen that frontogenesis depends on the
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angle between the axis of dilatation and the equi-
scalar a-curves. But the axis of dilatation is usu-
ally neither coincident with nor parallel to the
axes in the resultant field of motion. It is, there-
fore, of crucial significance to develop methods for
locating the direction of the axes of deformation
when the field of motion is obtained as a result
of the analysis of weather charts and not given in
the shape of mathematical equations. The deductions
in this paragraph furnish us with the necessary
means of locating the direction of the axes of dila-
tation and contraction, but it is convenient to
postpone the discussion to § 13.

13. Frontogenesis in Various Types of Linear
Fields. The stream line equations discussed in § 12
have been integrated for all qualitatively different
types of linear stream line patterns. The integra-
tion is performed for selected values of the con-
stants involved. The results of the integrations are
contained in the figures 5—51, the frontogenetical
sectors being indicated by dotted areas.

We now propose to discuss the chances for
frontogenesis in the various types of stream line
patterns. 1t is then well to remember that the line
of frontogenesis is independent of the linear field
of motion, its position being determined by the
distribution of the field of property, as shown in
§ 10 and 11. When the line of frontogenesis has
been found, two problems arise: a) where will the
line of frontogenesis move, and b) what is the di-
stribution of the frontogenetical effect along the line?

The line of frontogenesis, being a substantial
line, will move with the air current. If the field
of motion contains straight stream lines, the line
of frontogenesis will move in such a way that it
approaches and becomes parallel to one of the
straight stream lines.

The frontogenetical effect on the line depends
on the angle between the axis of dilatation and the
tangent to the equiscalar curves. This axis is only
rarely visible as a straight stream line. In all the
following figures the axis of dilatation is chosen as
the z-axis.

When the angle between the x-axis and the
isolines is larger than ¢’ there is frontolysis on the
line, and when the angle is smaller than ¢’ there
is frontogenesis. The intensity of frontogenesis is
largest when the line of frontogenesis is parallel to
the axis of dilatation. If a straight stream line is
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situated between the axis of dilatation and the line
of frontogenesis, then the line of frontogenesis will
become stationary along the straight stream line
and never become parallel to the axis of dilatation.

We now turn to the various types of stream
lines and we discuss them in the same order as
in § 12.

1°. Divergence. Fig. 5: The line of frontogenesis
is exposed to frontolysis independent of the direction
of the line. The line of frontogenesis will move out
of the field and dissolve, except when it happens
to run through the centre, in which case it remains
stationary while it dissolves.

5] b u-c=0

6i  -ba-e=0

Fig. 5. Divergence. Fig. 6. Convergence.

Ilig. 6: Any line of frontogenesis will increase
in intensity independent of its direction. The line
will move towards the centre of motion and be-
come stationary. If the line of frontogenesis is a
straight line, it will remain straight. If it is a
curved line, its curvature will increase and the line
will finally become stationary along two straight
stream lines, and eventually become a front between
two sectorially distributed air masses.

Pure divergence or convergence cannot exist
by itself as a lasting phenomenon because there is
no pressure field which corresponds to the motion.
In nature convergence and divergence can only
exist as lasting phenomena when superimposed on
a field of motion which corresponds to a possible
field of pressure. But it is well to note the fact
that convergence helps to increase the frontogene-
tical process, and to suck the line of frontogenesis
into the centre of motion.

2°. Hyperbolic Stream Lines. (Figs. 7—15.)
Fig. 7 shows the case of pure deformation. If the
line of frontogenesis happens to be parallel to the

9 .
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8] a=2h>¢=0|9]

71 €>b=6=0’

4
-2¢>4=0|
= G

Fig. 715,
showing the types of stream lines when 5% < g?— ¢% > 0.

axis of contraction it will always remain so. The
line will then move out of the field and dissolve,
except when it happens to run through the centre,
in which case it remains stationary and dissolves.

If the line forms an angle with the axis of
contraction it will move and ultimately become
parallel to the axis of dilatation, and it will approach
this axis asymptotically. Since b = 0, the sector of

frontogenesis is % with the axis of dilatation as
bisector. The line will, therefore, be exposed to
frontolysis until the angle v is + Z When this

critical angle is passed, the line will be exposed to
frontogenesis which increases in intensity until the
line becomes parallel to the axis of dilatation.
Theoretically, an infinite interval of time is needed
to turn the line parallel to the axis of dilatation.
Therefore, a line of frontogenesis which does not
coincide with the axis of dilatation will never
coincide with it, but it will steadily approach it.

Since the field of motion does not last eter-
nally, we see that a line of frontogenesis which
forms a small angle with the axis of contraction
will have poor chances of developing a front, be-
cause it will first have to move for a long interval
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of time in the frontolytical sector. Therefore, the
more parallel it is to the axis of dilatation the
greater is the chance of developing a front. More-
over, the chance for developing a front is larger
when a is large, because the line will then move
more quickly and sooner come into the fronto-
genetical sector, and more quickly approach the
axis.

Fig. 8 shows a field of divergence superimposed
on the deformative field and forming a hyperbolic
pattern. We see that the sector of frontogenesis is
small. The chances for frontogenesis are, therefore,
poor because of the width of the frontolytical sector.
On the other hand a line of frontogenesis which is
exposed to frontolysis will relatively rapidly be
turned so that it becomes exposed to frontogenesis
because there is a stronger current parallel to the
x-axis than parallel to the y-axis. In other respects
this field is similar to fig. 7.

Fig. 9 shows a field of convergence super-
imposed on a field of deformation. The sector of
frontogenesis is large and the chances for fronto-
genesis are large. On the other hand, when the line
of frontogenesis forms an angle with the z-axis
which is larger than - ¢', it will turn slowly to-
wards this axis, because the flow along the z-axis
is smaller than normal to it.

Fig. 10 shows a field of curl superimposed on
the field of deformation and forming a hyperbolic
pattern. We see that the line of outflow is deviated
from the axis of dilatation, and the line of inflow
from the axis of contraction. Since b = 0, the

frontogenetical sector is — bisected by the axis of
g B y

dilatation. Let us imagine that the y-axis points
northwards. We may then say that a line of fronto-
genesis that comes from the north will stop at the
line of outflow. The effective sector of frontogenesis
is, therefore, small in the NE-quadrant but large
in the NW-quadrant. Conversely, a line of fronto-
genesis that comes from the south will cross the
eastern half of the axis of dilatation, but not the
western half. The effective sector of frontogenesis
is therefore large in the SE-quadrant but small in
the SW-one.

Fig. 11 shows a field of divergence super-
imposed on fig. 10. The frontolytical sectors are
large, and the effective sectors of frontogenesis are
excessively small in the NE and SW-quadrants,
but moderately large in the other quadrants.
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Fig. 12 shows a field of convergence super-
imposed on deformation and curl

Fig. 13—15 shows stream line patterns corres-
ponding to figs. 10—12 but with negative curl.

In each particular case the line of frontogenesis
is determined by the field of «, and must be found
by studying the equiscalar a-curves. When the line
is found as shown in § 10 and 11, it is easy to
estimate the possibilities of effective frontogenesis.
In doing so the following facts, which are in com-
mon for all hyperbolic patterns, should be noted:

(1) The field of motion need not be stationary
wn order to produce fronfogenesis. Since the line of
frontogenesis is independent of the distance from
the axes of deformation and only dependent on the
angle v, and since the deformation and divergence
are constant, it follows from 8 (5) that the fronto-
genetical effect will proceed in the same way whether
the axes of deformation are stationary or moving
parallel to themselves.

(2) If the axis of outflow rotates in such a
way that the angle between the axis and the line
of frontogenesis decreases, then the frontogenetical
effect is increased, because the line of frontogenesis
will then sooner become parallel to the axis.

(8) If the axis of outflow rotates theTother
way, the frontogenetical process is retarded.

(4) The hyperbolic stream line patterns corres-
pond to similar patterns of isobars. The changes in
the field of pressure may be estimated or computed
according to the methods developed in previous
papers.!) In this way the changes in the field of
motion may be anticipated.

(56) Fields with divergence develop negative
curl, and fields with convergence develop positive
curl. (See § 14.)

(6) When the stream line pattern is given as
a result of the analysis of weather “charts the
direction of the axes of deformation may be deter-
mined in this way: Halve the angles between the
straight stream lines, and draw the lines which

form the angles -+ Z with the halving lines. These

lines are axes of deformation. The axis of dilatation

') Sverre Petterssen: Kinematical and Dynamical

Properties of the Field of Pressure etc. Geof Publ
Vol. X, No. 2.
Sverre Petterssen: Practical Rules for Prognos-
ticating the Movement and Development of Pressure
Centres. Procés-Verbaux des séances de I’Association
de Météorologie. U. G. et (. Int. Paris 1935.
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is the one that is nearest to the line of outflow.
The axis of contraction is the one that is nearest
to the line of inflow. (This follows from the deduc-
tions in § 12.)

(7) The width of the sector of frontogenesis
is determined in this way: The slope of the
straight stream lines relative to the axis of dila-
tation is given by 12 (5) viz,

y_atVe—c

X (4

(1)

The sector of frontogenesis is given by: 9 (1) vii.,
, b

(2) cos 2y = P

The slope of the stream lines is:

Y
3 W_v_b—ayte (b—a)g +e

de w (b+a)x—cy b+a—c£
x

and constant along any straight line through the

centre. Evaluate the ratio %» from (1) as explained

above. Evaluate the constant % along a straight

line (‘Z = const.) through the centre (not coin-

ciding with the straight stream lines). Take the

means. Substitute in (3) and obtain 72’ and find ¢’

from (2).

Thus for all hyperbolic stream lin> patterns
the direction of the axes of deformation and the
width of the sector of frontogenesis may be ob-
tained from the analysis of the wind charts.

3°. Parabolic Stream Lines. Figs. 16—19. As
mentioned in § 12, these stream line patterns occur
rarely in nature. As in the hyperbolic case there
are two straight stream lines through the centre.
The sector of frontogenesis is independent of the
position of the straight stream lines.

Fig. 16 shows a case of excessive divergence
with small positive curl. (For negative curl the
straight stream lines would be situated in the 2nd
and 4th quadrant). There is no sector of fronto-
genesis.

Fig. 17 shows a case with moderate divergence.
A line of frontogenesis will move and become
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16| \'\é=5a=¢90
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171 6)g=%’c=2.6
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a=—2¢=
.-,-‘.-Y ‘.:4‘

] &7

Figs. 16—19,
showing the types of stream lines when 5% > a*—¢* > 0.

parallel to the straight stream line which is nearest
to the axis of dilatation. The line would pass
through the sector of frontogenesis and become
stationary along the straight stream line which, in
the present case, is situated in the sector of fronto-
lysis. Frontogenesis would, therefore, be only a
temporary phenomenon, and the line would ulti-
mately dissolve.

Fig. 18 shows a case with large convergence.
The sector of frontogenesis covers the whole field.
Any line of frontogenesis will drift towards the line
of converging stream lines. The frontogenetical
effect would be most intense when the line is
parallel to the z-axis (i. e. axis of dilatation). Fields
of this type would soon develop a positive curl and
the character of the field would change rapidly
(see § 14).

Fig. 19 shows a case with moderate convergence.
Excepting the narrow sector of frontolysis, the case
is similar to fig. 18.

The axis of dilatation and the sector of fronto-
genesis, may be evaluated from the weather charts
exactly as described under 2°.

4°. S-shaped Stream Lines. Figs. 20—33. The
conditions with respect to frontogenesis are similar
to the parabolic cases discussed above. Since there
is only one straight stream line, the line of fronto-
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DT o=l
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Figs. 20—23,
showing the types of stream lines when ¢ = + ¢, and b= 0.

genesis will gradually become parallel to this line.
The straight stream line forms plus or minus %

with the positive axis of deformation according to
the sign of curl v. Frontogenesis will only be a
temporary phenomenon when b >0, and a lasting
phenomenon when b < 0. This is easily seen from
the stream lines.

Patterns of this type occur very rarely in
nature, and when they occur they do not last be-
cause they can only exist when ¢ = -+ ¢ and b 2 0.

The axis of dilatation is ~Z» to the right of the

straight stream line when ¢ >0, and g to the left

when ¢ < 0. The sector of frontogenesis may be
evaluated as in the previous cases.

5°.  Central Patterns without Straight Stream
Lines. (Figs. 24—35.) Figs. 24 and 25 show fields
of positive and negative curl respectively. Since
@ =b =0, these fields are indifferent relative to
frontogenesis.

Figs. 26—29 show combinations of positive or
negative curl and divergence or convergence. Since
a =0 the whole field is either frontolytical (6> 0)
or frontogenetical (b < 0).

— c-%a-55]3)

2

Figs. 24—35,
showing the types of stream lines when a®—¢? < 0 = b2

Fig. 30 shows a combination of deformation
and positive curl. The stream lines are elliptical

with the longest axes g from the axis of dilatation.

The situation corresponds to the geostrophic wind
round an elliptical pressure centre. It is instructive
to imagine lines of frontogenesis in various places
relative to the centre and to discuss the chances
for frontogenesis in the various cases. We shall
here discuss only the case when the line of fronto-
genesis runs through a cyclonic centre on the
northern hemisphere, and, to simplify the discussion,
we suppose that the y-axis points northwards and
towards the colder air masses. We then see that a
line of frontogenesis that moves towards increasing
curvature of the stream lines will be exposed to
frontogenesis, and a line that moves towards decre-
asing curvature is exposed to frontolysis. If the
centre is stationary the line of frontogenesis will
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be rolled up round the centre and periodically be
exposed to frontogenesis and frontolysis. If the
centre moves along its longest axis (as it usually
does')) the line of frontogenesis may be exposed
to frontogenesis or frontolysis for long intervals of
time.

The following rules are useful:

(a) Fronts that move towards a trough in-
crease in intensity.
(b) Fronts that leave a trough dissolve.

The last rule covers the case when a cold
front moves with maximum of cyclonic curvature
in its rear. The cold front will then dissolve while
the bent back occlusion which approaches the trough
will increase in intensity.?) A cold front that moves
through the southern frontolytical sector will again
increase in intensity when it comes into the eastern
sector of frontogenesis, and the resulting occlusion
may be a front of considerable intensity.?)

Fig. 31 shows combination of deformation and
negative curl. The situation corresponds to cyclonic
movement on the southern hemisphere or anticyclonic
movement on the northern hemisphere. The most
interesting case of anticyclonic movement is when
a line of frontogenesis comes from the north. It
will then become stationary parallel to the longest
axis of the anticyclone and develop a «Schleifzone»
parallel to the isobars.

Figs. 3235 show divergence or convergence
superimposed on figs. 30 and 31. These patterns cor-
respond to the general air movement round pres-
sure centres in the northern or southern hemisphere.
We see that divergence narrows the sectors of
frontogenesis, and convergence widens these sectors.
Otherwise the conditions are similar to the previous
cases (figs. 30—31). There is, however, the principal
difference that a line of frontogenesis which does
not run through the centre will be sucked into the
centre when there is convergence, and it will be
expelled from the centre when there is divergence.

When the stream line patterns (figs. 32—35)
are obtained from the analysis of weather charts
the direction of the axes of deformation and the
width of the frontogenetical sectors can only be
evaluated by measuring the slope of the stream
lines along two or more straight lines through

') Sverre Petterssen: Practical Rules etc. loc. cit.
?}) Sverre Petterssen: Kinematical and Dyna-
mical Properties loc. cit. §§ 25, 26.
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the centre and subsequent computation of the

ratios — and %. (See page 19).

6°. Straight Stream Lines. Figs. 36—43 show
the various cases of straight stream lines, and the

36| a=b, ¢ =0 ||37]
Y 4"

a=-b ¢ =u
-. }‘/"..#,".:. .

Figs. 36—43,

showing the types of stream lines when "¢ —..%. _ 27"
u, b+a c
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sectors of frontogenesis. The figs. 36, 37 and 40—43,
which are improbable as lasting wind systems, are
of no particular meteorological interest. Fig. 38,
however, is interesting. It occurs in nature when
the coefficient of deformation is approximately equal
to the coefficient of curl. The two currents, which
are parallel and of opposite direction, correspond
to a cold and warm current in juxtaposition. The
flow is zero on the straight line through the origin
which bounds the sector of frontogenesis. The sector
is ;[ symmetrical with respect to the axis of dila-
tation.

Any line of frontogenesis which is parallel to
the stream lines will remain stationary and be
exposed to neither frontogenesis nor frontolysis. If
the line of frontogenesis has any other direction it
will spin round and obtain a maximum of fronto-
genetical effect when it is parallel to the z-axis,
and then continue to spin round till it coincides
with the line of zero flow, where there is neither
frontogenesis nor frontolysis.

It is of interest to note the position of the
frontogenetical sectors relative to the direction of
the flow. .

Fig. 39 shows the corresponding case when the
curl is negative.

7°. Curved Stream Lines without Centre. (Figs.
44--51.) These patterns result from the figures
36—43 when a translation is added, the direction
of which does not coincide with the straight stream
lines. The sectors of frontogenesis are congruent with
the corresponding sectors discussed under 6°.

When these stream line patterns are given as
results of the analysis of weather charts the direc-
tion of the axis of dilatation may be obtained as
follows:

When the stream lines are symmetrical with
respect to a straight stream line the axis of dila-
tation is perpendicular to the straight stream line
when the stream lines diverge (fig. 44), but coin-
cident with the straight stream line when the stream
lines converge (fig. 45). In the first case the sector
of {frontolysis covers the whole field, and in the
second case the sector of frontogenesis covers the
whole field.

When the stream lines are parabolic (figs. 46,

47), the axis of dilatation is deviated -+ —;1 from
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£<0, 0.

,[”0’ c<_(2

b—a

showing the types of stream lines when Yo o 29
Ug ¢

Figs. 4451,
_°
b+a

the line of symmetry according to whether the curl
is positive or negative.

When the stream lines are asymmetrical (figs.
48—51) there is one straight stream line and an
asymptotical direction to the curved stream lines.
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Halve the angle between the straight stream line
and the asymptote, and draw the lines + g— with

the halving line. These lines are axes of deformation.
The width of the frontogenetical sector is deter-
mined precisely as described under 2°.

14. The Sequence of Stream Line Patterns. In
the previous paragraphs we have seen how the
distribution of frontogenesis may be evaluated, and
in § 13 we have seen how the instantaneous
movement of the line of frontogenesis may be found.
The future state of frontogenesis will then depend
on the changes in the field of motion.

Usually the field of motion will not remain
stationary. In fact, when the divergence is different
from zero, the field is bound to change its structure.
The question then arises: How will the stream lines
change with time? The complete discussion of this
problem will be given in another paper dealing with
the relation between the field of pressure and the
field of motion when the field moves and changes
its structure. A few comments on the question may
be of interest here.

The equations of motion in the horizontal plane
may be written:

v=—sVp—Axv

where s is specific volume, p atmospheric pressure,
A a vertical vector whose magnitude is 2w sin g,
o being the angular velocity of the earths rotation,
and ¢ latitude. The effect of friction is neglected.
Multiplying vectorially by V, and arranging the
terms, we obtain:')

(1) %(curlv) = —dive (A - curlv) 4 Vs>< (—FV p).

The last term is the number of solenoids in the
horizontal plane. This term is usually very small
and may be neglected, except in the frontal zone,
where it may be important when the divergence
is very small. We shall here neglect the solenoidal
term and see how the stream line patterns will
change in accordance with the above relation be-
tween curl and divergence.

1y The orders of magnitude of the various terms in this
equation have been discussed by Hesselberg and
Friedmann, Versff. des Geoph. Inst. d. Univ. Leip-
zig, zweite Serie, Heft 6, 1914.
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Having neglected the solenoidal term we see
from (1) that a special case occurs when

curl v = —A.

Curl v is then constant (i. e. zero in absolute move-
ment) independent of div v.

Returning to fig. 5, we see that a field of pure
divergence must develop a negative curl, and the
straight stream lines will be changed into spirals:
fig. 27 on the northern hemisphere, and fig. 26 on
the southern hemisphere. A field of convergence
(fig. 6) will in the same way develop a positive
curl and change into the spiral patterns of figs. 28
and 29. These are the most simple cases of anti-
cyclogenesis and cyclogenesis through divergence
and convergence respectively.

There is however a significant difference be-
tween the anticyclogenesis and the cyclogenesis:
When negative curl develops, the vector curl @
will subtract from the vector A, and there will be
a limit, (curl ¥ = — A), which the anticyclonic curl
cannot surpass. On the other hand, in the case of
cyclogenesis, the positive curl adds to A, and the
cyclonic curl may grow to any value.

In the same way all the previous stream line
patterns may be discussed. We shall here only
discuss the hyperbolic class, since this is the most
important one with regard to frontogenesis. Figs.
7, 10 and 13 will have a tendency to be maintained

because b = 0, and, therefore, gi (curl ¥) = 0, (ex-

cept for the influence of the solenoidal term, which
is here neglected). Since these patterns have a
tendency to preserve their structures, the fronto-
genesis may last for a long interval of time.

Let us next consider fig. 8. Since 6>0, a
negative curl will develop, and the stream lines
will change into a pattern similar to fig. 14, and
with increasing negative curl the stream lines will
change through a series of patterns which are illu-
strated qualitatively in fig. 52. We thus see that
the stream line patterns of figs. 8 and 11 will have
a tendency to develop into states which not
only disagree with cyclonic development, but even

Fig. 52.
Antieyclogenesis through divergence.
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may result in complete anticyclogenesis. In these
cages, also, there is a limit (curl v = — A) which
the negative curl cannot exceed. It should be noted
that the 3rd, 4th and 5th pattern in fig. 52 can
only exist for short intervals of time. -

The hyperbolic type of stream line patterns
with tendency to cyclonic development is illustrated
by figs. 9, 12 and 15. Since b < 0, a positive curl
will develop: figs. 9 and 12 will change into fig. 15.
By increasing positive curl these patterns will run
through a number of typical stages which are illu-
strated qualitatively in fig. 53. We see that hyper-

2Ny oA
NN

Fig. 53.
Cyclogenesis through convergence.

bolic patterns with convergence have a tendency
to develop into cyclonic patterns. In these cases
there is no limiting value for the amount of curl
that can develop. The 3rd, 4th and 5th pattern
in fig. 53, which can only exist for very short
intervals of time, occur when the pressure field
changes from a hyperbolic to a cyclonic pattern.

The above results, that there is an upper limit
which the anticyclonic curl cannot exceed, but no such
limit for the cyclonic curl, agree with what is ob-
served in the weather charts.

Naturally, this tendency towards development
either into cyclonic or anticyclonic systems may
not last long enough to insure the ultimate result,
* but the instantaneous tendency is always clear from
the kinematical analysis, and the above rules are
very useful both for the prognostication of cyclo-
genesis and anticyclogenesis and for the estimation
of the duration of the frontogenesis because they
show what kind of motion is likely to develop.
The problem then is to make out the distribution
of convergence and divergence, and to discover the
first signs of beginning convergence and divergence.
In practical cases this is most conveniently done
by studying the distribution of the isallobaric gra-
dients, as has been shown in previous papers.l)

The above rules hold when there is no solenoi-
dal term to modify the process. Since the solenoidal
term is negligible when there is no frontal zone,

'Y Sverre Petterssen: Practical Rules etc. loc. cit.
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we see that cyclogenesis and anticyclogenesis may
take place as a result of convergence and divergence.
Cyclogenesis meed, therefore, not be comnected with
fronts, and fronts may form in frontless cyclones, as
has been shown in § 13.

CHAPTER HI.

FRONTOGENESIS IN LINEAR FIELDS OF
PROPERTY

15. General Remarks. In Chapter I1 we studied
the conditions under which frontogenesis takes place
in a linear field of motion, and we found that a
linear field of motion could only produce fronto-
genesis when the field of property was non-linear.
It might then be expected that frontogenesis also
could oceur in a linear field of property when,
simultaneously, the field of motion is non-linear.
It appears, however, that this case is only of
secondary importance, and we shall, therefore, limit
the discussion to some general remarks.

We suppose that the field of property is a
linear function of x and y. Choosing the z-axis
along the isolines of a, and the positive y-axis to-
wards increasing «, we may write:

(1) Va=|Vaij

where | V| >0, and j is the unit vector of the y-
axis. Substituting this in 3 (5), we obtain:

ov

Gy

(2) F = — [7(;4‘

where v is the y-component of the velocity. We

then see that F is positive when ZZ <0 and F is

negative when —83—>0. The line % = 0, or the
% %

line along which v is maximum or minimum, divides
the field in frontogenetical and frontolytical areas.
Substituting (1) in 4 (3), we obtain:

W _ gy B

v aw " by
¥ or 02
! )

o =

which equations determine the centre of fronto-
genesis, provided that the conditions enunciated in
§ 1 bold. We see that the centre of frontogenesis

is the place where -ZZ has a maximum. The line of
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frontogenesis is to be sought in the frontogenetical
area where the variation in velocity normal to the
isolines is a maximum.

We note that it is necessary that the equations
(3) contain space variables, or, in other words, that
v must be a function of 3rd or higher degree, which
agrees with theorem (b) in § 6.

Frontogenesis in linear fields of property is a
very simple phenomenon, but, nevertheless, it is
only of secondary interest, because the field of
property cannot remain linear when v is non-linear.
If o is linear at a certain instant it will immedia-
tely develop into a non-linear field. The discussion
of such a field should then be based on the equa-
tions 3 (5) and 4 (3) in the general case, or on
8 (5) when it is permissible to neglect the non-
linear terms of the motion.

It is, however, important to note that a non-
linear field of motion may start the non-linearity
of the field of property which is essential in order
to make frontogenesis active when the non linear
area comes under the regime of linear or quasi-
linear motion.

Other ways of producing non-linear variations
in the distribution of property may be sought in
the radiation and cooling effects which results from
the distribution of land and sea, and similar radia-
tion discontinuities.!) No doubt these radiation
discontinuities are responsible for the embryos» of
many fronts; but even on a uniform earth there
would be frontogenesis because the equator-pole
variation in temperature on a uniform globe must
be non-linear, and non-linear distribution of pro-
perty is the only essential condition for fronto-
genesis in linear fields of motion, and in non-linear
fields of motion non-linear fields of property will
in general intensity frontogenesis.

CHAPTER IV.
FRONTOGENESIS BETWEEN SOURCE REGIONS

16. Source Regions. The phrase source region?)
is generally used to denote an extensive portion of
the earth’s surface in which the air masses approx-

Soc. 61 p. 156, 1935.

!} Tor Bergeron: Die dreidimentional verkniipfende
Wetteranalyse. Teil I. Geof. Publ. Vol. V,,No. 6, and
H. C. Willet: American Air Mass Properties. Papers
in Physical Oceanography and Meteorology. Cambridge,
Mass. 1933
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imate horizontal homogeneity. The formation of
source air masses takes place on the surface of the
earth whenever the air remains at rest or moves
for a considerable interval of time over areas of
quasi-homogeneous source properties. Examples of
source regions are the subtropical anticyclones and
the arctic (antarctic) or continental anticyclones
over snowcovered areas.

The transition from one such source region to
another is often continuous, but sometimes the air
masses from different source regions are brought
into juxtaposition, and, owing to the quasi-conserva-
tivism of the air mass properties, fronts are formed
by advective processes.

Usually, the linear field of motion has but
slight bearing on the actual problem because no
linear field of velocity will cover both the source
regions and the zone of transition.

In order to study the mechanism of fronto-
genesis in such cases we shall endeavour to intro-
duce some functions for the field of property and
the field of motion which may represent actual
conditions much more acurately than the linear
fields.

In order to represent the field of property we
introduce a function a (z,y) where a approaches
the source region values asymptotically. Usually
the gradient of a is directed from the one source
region to the other, the isolines of a being almost
parallel straight lines. In such cases the field of a
may be represented by means of a function of a
simple exponential type. Tentatively we examine
the function')

a; + oy e
(1) o = 1 e )

where a,, @, and r are constants with respect to
space variation, and s measures length along a
straight line. We then see that a is continuous
for finite values of r. a approaches a, and q
asymptotically when s increases or decreases infini-
tely. When (rs) is small, o is a quasilinear function
of s. When r increases (e. g. with time) the asymp-
totical approach to a, and @, is more pronounced.
When r increases infinitely, a becomes discontinuous
for s = 0, its value then springing from a, to a,.
Thus the formula (1) will represent an approx-
imation to the conditions which are characteristic

Y Sverre Petterssen: Kinematical and Dyna-
mical Properties etc. loec. cit. § 20.
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for source regions and the transitional zone during
the entire process of frontogenesis. a, and a; may
be called the source region values of property, and
r = r(t) will make the o-field vary in the same way
as during a conservative frontogenesis.

r=210" 6°C
L3575 5
4
Lo7p~6 3
2
1
207 25 30 35 40 45 -7 55 60 65 70 75 0N
-2
-3]
-4 4
-5
-67C
Fig. 54,

showing a section through two adjacent source regions for
three different values of r. The field of property is tempe-
rature. 4 is 12° C. r is given in m—1.

Fig. 54 shows the distribution of a along the
axis s for appropriate values of r.

In order to combine the above function with
the field of motion we introduce space variables
(x, y) and put oy—a, =24, and o, + o, = 2a,
We may then write: N

Nerztav ]
(2) a=qay+ A4 14 NewTaw
where N is a constant depending on the choice of
system of co-ordinates. N = 1 when the origin is
chosen on the line where a = a,.

The next problem is to find functions which
approximate a continuous distribution of velocity
between two source regions. Since the linear field
gives velocities which increase infinitely with in-
creasing distance, we shall try to introduce a field
of motion which is linear for small values of x and
y and approaches a constant value with increasing
distance. Such a field of wvelocity will in most
cases be applicable to a larger area of the charts
than is the linear field.

In choosing such a field we use the quality of
the above function and the analogy with the linear
field of motion. The following table shows a set of
such functions which may be used to approximate
the actual conditions.

From this table we see that the velocity com-
ponents in the last column are identical to the linear
components when z and y are small.’) When z and
y increase, the velocity components will increase

1)7"-]5evel.o‘p in a Taylor series.
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Velocity components.

. . Approximation to actual
Linear Field conditions
Translation %, v, Uy, Vo

N e 1 em]
Deformation az, —ay a, T e —a, 10 e
em—1 ey —1

Divergence bz, b by ——0, —
g e T 5 ew 1T fem
T - ) e’ﬂ?j_l eﬂl}___rlv
Rotation —cy, cx —Cy T €y o =
y T rew  TGem

less rapidly than the linear components and approach
certain maximum values with increasing distance.
Thus, by appropriate choice of the constants in-
volved, these formulae may be used for representing
the field of motion within the transitional zone be-
tween the source regions.
The resultant field of motion is then expres-
sed by:
nw____ ny
U= U + (b, + ay) %‘:*_ e,,i —G i‘_I_ é"ﬁi
(3) ny 1 nx 1
v =1+ (b —a) (‘i*_l_ om + %F o
We shall presently use these formulae in order
to discuss how the deviation from linear conditions
gcts with respect to frontogenesis. Obviously, only
a few general conclusions can be obtained on the
basis of these formulae.

17. Frontogenesis between Source Regions. Sub-
stituting 16 (2) and 16 (3) in 3 (56) and 4 (3) we

get some complicated expressions for F, E;x and Z—F
Y

We shall not write down the deductions here, but
%g- and %15 depend as
much on the field of motion as on the field of
property. Usually F has a maximum where the
product of the property gradient and the wind gradient
has a maximum. But it may also happen that each
of the fields creates its own maximum line in the
distribution of ¥, in which case fwo frontal zones,
or a double front develops.

The most effective frontogenesis is obtained
when the zone of transition of the o-field runs
through the intersection point between the axes of
deformation (the centre of deformation). In this
case we may put N = 1, and 16 (2) gives:

it is well to note that F,
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ePz+ay ]
(1) a = 0y + A m
Substituting (1) and 16 (3) in 3 (3), we obtain:
4nA4
@) F =B et b) X g (X— 1)~
—q*(a,—by) Y]

where

ent emy epzr+ay
= mreme Yo T e e

We see that F = 0 when the angle between
the x-axis and the isolines of « is y’, as given by

tan ¢’ = —g =
g (X—Y)+ Ve (X—Y)2 4+ 4(a2—b2) XY

3 (ay 1 b) X
The angle v defines the sector of frontogenesis as
explained in § 9. In the general case the angle
v’ is a function of z and y. However, in the quasi-
linear area of the field of motion, we may put:
X =Y =1, and hence:
,_ b
cos 29 = ?1,
which agrees with 9 (1). Thus, it is only in the
case of linear movement that there is a sector of
frontogenesis which is characteristic of the whole
field.
Differentiating (2) with respect to = and y we

see that
%};:%‘-:O only when z =y = 0.

The centre of frontogenesis thus coincides with the
centre of deformation. This is in contrast to the
results obtained for linear fields of motion where
the centre of frontogenesis may have any position
relative to the axes of deformation. There is an-
other difference too: The isolines of the above a-
function are parallel and straight lines. In the
linear field of motion the centre of frontogenesis
degenerates into a line (the line of frontogenesis);
but in the non-linear field of motion which we are
here considering, the frontogenetical effect will in
general dwindle with increasing distance along the

line of frontogenesis (because %ij and %§ can only

vanish when both 2 and y are zero).

Ounly in a special case will the centre of fronto-
genesis degenerate into a line of frontogenesis. This
happens when the isolines of a are parallel to one
of the axes. We consider the case when p =0 (a-
lines parallel to the x-axis). (2) then gives:
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o2y eny
(1 + e®)? (1 + ew)*

We see that F is constant along any straight line
parallel to the x-axis, and that F has a maximum
along the z-axis.

We choose the positive y-axis towards decrea-
sing . We then see that — g4 >0 when p = 0.
(3) then shows that the x-axis is the line of fronto-
genesis when @, >b, (deformation larger than di-
vergence); F = 0 everywhere when a, = b,; and,
finally, the xz-axis is the line of frontolysis when
b; > a,. In these cases there is no difference between
the linear field of motion and the non-linear field
which we are considering.

From the above discussion we learn that fronto-
genesis is a much more complicated phenomenon
when the field of motion is non-linear than when
it is linear. In fact, it is only when the zone of
transition in the a-field is parallel to the axis of
deformation in the non-linear field that there is
complete analogy with the linear field.

The chief difference between linear and non-
linear motion is that frontogenesis in the linear
field is invariant relative to parallel translation of
the axes of deformation, whereas, in the non-linear
field of the type described, frontogenesis is only
effective in the vicinity of the stress axis. Viewed
from a practical standpoint, this is fortunate be-
cause, in the complicated cases when the field of
motion is non-linear, one need in most cases only look
for fronts in the vicinity of the axis of dilatation. And,
since non-linear fields of motion which are characteri-
stic of the transition from one source region to an-
other are quasi-linear in the vicinity of the axis of
dilatation, it follows that the results obtained in
Chapter IT usually have a much wider range of appli-
cability than one might expect. However, no theory
of kinematical frontogenesis is complete unless the
considerations are based on the existence of source
regions. Usually, the non-linear field of motion acts
in such a way that it tends to produce homogeneity
within the air masses near the source regions and
to bring out the contrasts in the transitional zone.

The above discussion of non-linear fields should
only be regarded as a first attempt to discuss
frontogenesis from a wider point of view. Further
practical and theoretical researches will be needed
in order to divulge the intricacies of frontogenesis
in non-linear fields of motion.

(8) F=—4ngAd(a—b)

Vervarstings pd Vestlandet. Bergen. April 1935.



