ON EQUAL-AREA TRANSFORMATIONS OF THE INDICATOR
DIAGRAM, AND A NEW AEROLOGICAL CHART

BY W. WERENSKIOLD
(Manuscript received Feb. 26th, 1938.)

1. Tor the exploitation of the observations
made on aeroplane ascents or soundings, it has
proved useful to plot the corresponding values of
pressure and temperature on some kind of squared
paper. For several purposes it is convenient to
employ a simple pressure-volume diagram, like the
indicator diagram used by engineers. On this dia-
gram, the work done by the external forces in a
cycle process can be found directly from the area
of the figure traced on the paper. This property
is useful in meteorological work, too; and by the
help of the same chart, it is possible to evaluate
the integral

P2
gz:—-f vdp
D1

giving the height z between two isobars p, and p,.
As usual ¢ is the acceleration of gravity.

For aerological work, however, other diagrams
may be more convenient, and quite a number
of different papers have been constructed. We re-
quire that the paper shall retain the property of
the p, v diagram: that the work done by the ex-
ternal forces in a cycle process is represented by
the corresponding area on the plot. We are thus
lead to consider the theory of equal area projection
in general.

2. The condition for equal area transforma-
tion of the plane v, p upon the plane z, y is:

ox oy ox 6y_1

op v w op
Here x and y are functions of p and v. We will
now make the supposition that y is known as a
function of p, v, and find the value of z that satisfies
this condition.

When y is a known function, the same is the
case with the partial derivates:

_ _ oy
M—% and Nﬁap

The equation of condition becomes:

u® N,
op ov
The corresponding simultaneous system is:
dp dv
7 S

From the two first terms we obtain:
Ndp+ Mdv=0
that is, integrated:
y = const. = y,

From this last expression, v is obtained as a func-
tion of p and y,, and this value is substituted in
the expression M, which then assumes the form M.

_ [d9p F
x—fMl—f— (%)

where F is an arbitrary function. In the integral,
p is the only variable, y, is constant; but after
the integration has been performed, we make the
substitution:
Yo=Yy (p,?)
and obtain the value of z, as a function of p and v.
In an analogous way, we can, from

Y=1Yo

find an expression for p, in terms of v and y,,
which is substituted in the function N

N =N (v,p) =N, (vy)
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Then z is found from:
dv
v=—Jw + F(y)

Under the integration, y, is constant, afterwards
we substitute:

Yo =Y (P, V)

whereupon z is obtained as a function of p,v.

By the help of these two formulae, we can de-
termine the function z that satisfies the condition
of equal-area transformation, when y is known as
a function of p and v.

3. We will consider some examples. First, let
y — Um p‘ﬂ,
Then:
M — mvm—-l pn
Here v must be expressed by p and y. We have:
¥ = yi Im pn e
and by substitution:
Ml — my(m——-l)/m pn Im
and further:

dp 1
= B (1—m) /m p{m—n)/m
v fM, m—n? p

By substituting the value of y, we get:

xXr =

1—m pl—n
v
m—n p

From this follows:
2y — vp RT

Tm—n m—n

The argument breaks down for the case of m =mn:
Y= ™ pm — Rm T
Then, by the same procedure, we obtain:
1
_— 1—m g l—m
g= 0D log p

1
— Rl—— me P—mn
= 1 log p

also:

xy:;lZ—RT log p

4, We will consider another case. Let
y=mlogv-nlogyp

M = m/v

Then

but, as
v = ¢e¥ Im p—n I
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we have:
Ml — me-—y/m pnlm

r = _/n]'? ey/m fp—n/m dp

— 1 ey [m p(m—n) [

m—1n

and

and by substituting the value of y:
1 RT
r=—"vp = ———
m-—mn m-—mn
In the case of m = n we obtain:

y = n log (pv) = n log (RT)
x—nvi’ og p . gp

Tt is believed that these cases comprise all practi-
cal diagram papers.

5. We will now consider some special cases.
In (3), we put: m =0 and n = (x — 1)/x, where »
denotes the quotient between the two heat capa-
cities of air:

% = CplCo
We then have:
z—1
y=p”
1
= ap7
x——x—l p
and
_ _ol
xy—%——lRT—A

A being the caloric equivalent.

This set of variables does not seem to have
been applied in meteorological papers. We shall
therefore return to this case later on.

Now, let m =1 and » = 1, then,

y = ovp=RT
z=logp
(Stiive 1927, Refsdal 1930, «emagramy.)

This is a well-known diagram; another form is:
y=RT

x=logs s being the density.

I case (4) we choose:
m=cp, and n = ¢,
then:
y = ¢, log v + ¢, log p =8 = entropy.
RT T

cp—c, A
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This temperature-entropy-diagram is well
known both from physics and from meteorology
(Sitr Napier Shaw).

Putting m =1 and n =1 we have:

y=1log (RT) '

x=RT log p
which set of coordinates has been used by Refsdal
an his «aerogramy» paper (1937). On this paper, the
evaluation of the integral

gz = — f vdp
is very simple.

By adding a function of y, we can find still
another form:

y =log (RT)
t=RTlogp-+ F(y)

We now choose
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and obtain:
1
x— 1

y =log (RT)

Whether this diagram has ever been used, the
writer does not know. It may perhaps have some
application.

T8

=

1
RT log |vp~ e

6. We now return to the set of coordinates:

y=p*
1
%
_%-—lvp
.

The computations and constructions are easy.
(Fig. 1.) The values of the constants R and =z,

1 ] ) &oand
F(y) = ;,7:—_1_?/(3,, = i - RT log (RT) honeV er, are. found to differ somewhat in the
: various physical tables.
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Fig. 1. The adiabate-pressure chart.
Scales: extreme left, for pressure p, in centibars;

along left margin, for coordinate y;
on top, for coordinate x;

below upper margin, and continued down to the right, specific volume », in

to the right, temperature in centigrades;

down below, entropy §.

Curves are drawn for pressure p, entropy S, temperature 7, and specific volume o.

cubic metres;
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ordinate x, for this part of the observation curve;
the ordinate will intersect the scale at a point,
and the reading will give the height required, in
dynamical metres. (Fig. 3.)

As a matter of fact, the numbers of the scale
give the area of the strip between the neighbouring
principal isobars, from the ordinate & = 0 to the
ordinate % = Z., in the proper units.

500

600

Fig. 3. The mean ordinate intersects the scale of small
crosses at the point 13.6, giving the thickness of the layer
between isobars 600 and 500° = 1360 dyn. metres.

By a slight modification of the same proce-
dure it is possible to determine the height of any
point on a curve plot.

500

600

Fig. 4. The mean ordinate for the part of the curve shown
on the plot, gives the reading 13.41. By measurement, the
breadth of the whole strip is found to be 4.1 cm. and the
distance from the end point of the curve, to the isobar
600, is 1.9. Then the height of the end point, above the
said isobar 600, is 1341.(19/41) = 625 dyn. metres. The
other method, using the temperature scale, gives
100 - (16,4 — 10.1) = 630 dyn. metres.
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It is required to find the height of the end
point of a plot, above the principal isobar im-
mediately next below.

The mean ordinate is drawn for the part of
the curve in question, and the number = is read
off the cross-scale. By means of a centimeter scale,
the breadth of the strip between the two neigh-
bouring principal isobars is found to be ¢, and
the distance from the end point of the curve, to
the principal isobar immediately next bolow, is p.
Then obviously the dynamical height @ of the end
point, above the said isobar, is: @ = n - (p/g).*)

10. If the observations made during an ascent are
plotted on the diagram paper, we can determine
the stability of the air from the slope of the curve.

The stability, as defined by Hesselberg, is:

E’:i(mo——m)

T
where m is the vertical lapse rate
__ T
T o
But on our paper we have:
m_ o _ 198 1—x &p
T Toz ¢, 0% x  poz
_ 198 x—1wdp 108 x—19
e, 2w wpdzr ¢, o2 » RT

For an adiabatic lapse rate dS = 0, and

—1
m0=% g

x R
Then we obtain:

_ M08

B = lm—m) =737

T

Now, along an adiabate § = const. or x = const.
we have:

dT = — mydz

and accordingly:
__mtdS
B= A 4T

*} Table of inverse values of distances between principal isobars on chart:
mb.: 1000 — 900 — 800 — 700 — 600 — 500 — 400 — 300 — 200 — 100

0.545
1.835

1/q: 0.715 0.660 0.604
q: 1.399 1.515 1.657

0.483
2.068

0.274
3.652

0.187
5.337

0.419
2.388

0.349
2.862
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According to Landolt- Bornstein
R = 286.8 and » = 1.402, then

(x — 1)/x = 0.28673, y{i R = 1000.2
Bjerknes uses the values:
R = 287.05, and » = 1.403, then
(¢ — 1)/ = 0.28724,

»

1 R = 999.3

It seems, that with the same certainty, we may
use the values:

R — 287, (x — 1)/x = 0.287, 41 R = 1000
x —

We then have the formulas for the numerical com-
putation:
log y = 0.287 log p

1000 T
xr =

Yy
7. Instead of the coordinate x we can intro-
duce the entropy S. Remembering that:

S =c,log v+ ¢ log p

8 = ¢, log <Up%>

or

we obtain:
o=,
Thus, our paper can also be used as an entropy-
temperature diagram.
8. The work done by the pressure under a
circle process is:

F= f vdp = f ydz
the integrals taken within the same boundaries.
We will compute the value of this integral for an
area, bounded by two isotherms 7, and T, and
two ordinates z; and z,. The computation is easy,
and leads to:

F =22(T, —1T) (log & — log ;)
1
== A“ (Tz _ Tl) (Sz— 81)

For unit differences 7,— T, =1, S, — 8, =1, the
value of the integral is

f=1/4
The work done by the exterior forces during a
circle process is equal to the number of unit meshes
in the 8, 7' pattern, divided by A4; the numerical

value is

1
—— = 4184
A

using the meter-ton-sec.-system.

Geof. Publ.

9. We will compute the dynamical height or
the gravity potential @ from the observations of
temperature 7' and pressure p:

By— &, = —[vdp=— [wdy
= (Y2 — Y1) Tm = Yam — H1¥m

Here z,, is a mean value, which can be determi-
ned approximately on the paper. But now:

X

xy:%_lRT:mOOT

and accordingly

b, — &, = 1000 (T, —T,) (dyn. dm)
Here 7, and 7T, are the temperatures correspon-
ding to the points zn, y; and Zw, ¥, respectively.
(Fig. 2.) If we want the height in meters we have

1
H,—H, = o (T, —T,) (m.) = 102 (T, —T,) (m.)
0
20°
/ 500
zr—F
/
_§ 1r
Ve
£ /
7
- 600

Fig. 2. Part of curve plot between isobars 600 and 500 mb.

Against upper and lower end points of the mean ordinate

are read off the temperatures — 22.1 and — 8.5 respec-

tively. The difference is 13.6, giving a thickness of the
layer of 1360 dyn. metres.

where m, ist the adiabatic vertical lapse rate of
temperature:

% g 1

mO:xml E:EE

Tor the computation of results of aerological
observations, the heights of the principal isobars:
p = 1000, 900, 800 .... mb have generally to be
determined. To faciliate this operation, a scale is
inserted in each interval, approximately in the
middle between two and two consecutive principal
isobars, in accordance with Vissdld’s method.

To find the thickness of a layer between two
consecutive principal isobars, draw the middle
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This expression can be determined with the help
of our chart. Through the point in question, draw
an adiabate and an isotherm, and the tangent to

2.40 30° 241
Ve
/ 20
/4
500

s 10°

600
00

Fig. 5. The stability determined from the formula

E = %-0.4. On the figure, we have: A S = 0.01, and
AT =325—95=23. Then E=04-(001/23) = 1.75 - 10—4.
the curve plot. If we now proceed upwards along the
adiabate, a distance corresponding to the unit inter-
val of temperature, and then horizontally to the
tangent, we can at once read off the value of
dS/dT. The numerical value of the factor m*/4 is 0.4.

11. It is possible to express the stability by
the help of the variables z and y.

In the formula:

Y — __ar
_.i{(mo m), m= dz
we introduce:
dT,f‘}El(xderydm)
1
dz = — —xd
g Y
Then:
__ 4T _x—1lyg y,dx)
M= T4 T R(l+xdy

and, accordingly:

Geof. Publ.

1f now u is the angle between the tangent to the
curve plot, and the vertical (or adiabate):

dx
and w the angle between the tangent to the iso-
therm through the same point, and the vertical:

x
tgw=—
g Y
we obtain:
B i tgu_ ptev
T tgw tg w

This expression is independent of the scale of the
paper. The numerical value of the coefficient K,
which represents the stability for an isothermal
atmosphere, is:

~70 —60 —50 —40 —30 —20 —-10 0 10 20° C.
47 45 43 4.1 39538 3.65 3534 33-10°*

12. By the help of the same diagram, we
may determine the vertical lapse rate of tempe-
rature:

ar
— =™

If the lapse rate is referred to the geopotential
we have:

tgw —tgu

"= tg w

1 tgw—tgu
71000 tgw

A B 500 c

Y

600

P

Fig. 6. Determination of stability and vertical lapse rate
of temperature. PB is the tangent to the curve plot, and
PC is the tangent to the isotherm. The distance AB =
2.6 em, and AC = 5.0 cm. Then the stability £ = 3.65-
10— . (2.6/50) = 1.9-10—4  The vertical lapse rate is
found in a similar way; as BC = 2.4 we have: m = (2.4/5.0) -
1/102 = 4.7° pr. 1000 m, or p = 4.8° pr. 1000 dynmetres.
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The graphical construction. of this expression
is easy. Through the point P in question, draw
the isentrope, and the tangents to the curve plot,
and to the isotherm. These three straight lines
cut an isobar in three points, 4, B and C respec-
tively. Putting 4C = a, and BC = b, we have:

m— L b
T 102 a
_ b

#1000 @

The same figure (Fig. 6) renders a geometrical
representation of the stability, too. We have:

and tgw = 40

twu—éj32
= AP

ST AP
Putting 4B = ¢ we obtain:

_ g ¢ __ . C
B= T a =K a

13. These simple constructions are valid for
all transformations of p-v-diagram. But on papers
with curved lines, the tangents in the point P
must be used for the determination of the various
points of intersection, 4, B, C. In this case the
procedure is: :

Through the point P on the observation curve,
draw the tangents to the (1), isobar, (2) the isen-
trope, {3) the observation curve, (4) the isotherm.
At a convenient distance, draw a straight line
parallel to the tangent to the isobar. This line
intersects the three other tangents in points 4, B, C.
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Putting, as before: AC =g, and BC = b, the lapse
rate of temperature:

__,1, ‘( r m) 0[-1-—-—1——9— r. dyn. metres
"= 02 o P "= T1000 ¢ P" ™

A B ¢

[

+2
<
=2
3 o
< et
P
/S0ba, T—
Fig. 7.

This construction is then valid for the simple
p-v-diagram, for Sir Napier Shaw’s «tephigramy, for
Stiwe’s «emagramy, for Refsdal’s «aerogramy, and
for all other diagrams belonging to the same class
of transformations. (Werenskiold 1937.)

14. So far, we have only considered the dry-
air conditions for the construction of adiabates,
stability and energy relations. It is of course pos-
sible to draw a set of wet-air adiabates too, on
the new paper. This work must however be post-
poned.
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