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In a previous paper') I have with the aid of
variational methods given a new treatment to the
problem of tidal oscillations. In particular varia-
tional methods are well known from their success-
ful applications to atomic problems. Therefore, con-
sidering the similarity of many wave mechanical
and hydrodynamical problems, variational methods
suggest themselves to a more extensive use in hydro-
dynamics than has o far been the case. The appli-
cation of variational methods in the theory of tidal
oscillations was, however, above all introduced in
order to overcome serious difficulties of satisfying
given boundary conditions.

Continuing the work the advantage of using
variational methods in tidal theory has been even
more stressed. As will be shown it is possible to formu-
late the problem of tidal motion in an ocean with
given arbitrary boundaries in such a way that
boundary conditions, either of cinematical or of dy-
namical type, are all comprised in a single variational
principle. The explanation of this remarkable fact
is that the variational integral formulating the
problem may be put in a form in which the
so-called natural boundary conditions of the problem
are identical with boundary conditions derived from
dynamical and cinematical considerations.

The main aim of the foregoing paper was to
make clear the remarkable effect of the natural
stable stratification of sea water. As has been shown

Y E. A. Hylleraas: Uber die Schwingungen eines stabil
geschichteten durch Meridiane begrenzten Meeres.
Astrophysica Norvegica Vol. IIT, No. 6, 1939,

by Solberg') the familiar two-dimensional theory of
tidal motion given by Laplace cannot be deduced
from the general three-dimensional hydrodynamic
equations for homogeeous water, due to the fact that
in the equations of motion it is not legitimate to
neglect the vertical component of Coriolis’ accelera-
tion. On the contrary, due to vertical Coriolis’
forces, certain types of motion must occur which
are quite unforeseen by the Laplacian tidal theory.

However, if we start from the hydrodynamical
equations for stable water the situation becomes quite
different. The water particles are driven back to
their original equilibrium positions, not only by the
elevation or lowering of the above-lying point of
the sea surface, but also by their own vertical
displacements relative to the surroundings. By
normal mean stability of sea water these vertical
quasi-elastic forces .are much stronger than the
vertical components of Coriolis’ forces.

The mean downward density gradient of the
oceans is rather small, its order of magnitude being
0,001—0,002 per kilometer. It is, however, strong
enough to create quite a new situation. This is easily
seen from the modified equations of motion. Due to
the natural stability of sea water the vertical
Coriolis’ force component, or rather the component
due to the horizontal component of the earth’s rota-
tional vector, looses its importance in the theory
of tidal motions in large oceans. Apart from small

Y H. Solberg: Uber die freien Schwingungen einer ho-
mogenen Fliissigkeitsschicht auf der roticrenden Erde
Astrophysica Norvegica. Vol. 1, No. 7, 1936,
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modifications of the waves of an order of magni-
tude which surely cannot be detected by tidal
observations we are justified in neglecting this
component of Coriolis’ force. It is the aim of this
paper to make that side of the problem clear.

Before passing over to the two-dimensional
Laplacian theory, there remains another interesting
point to discuss. The quasielastic forces of stable
water, which were able to suppress vertical Coriolis’
forces, have also the power of maintaining waves
of a special type which are well known from theo-
retical and practical investigations by Fjeldstad') as
wnternal waves.

In a deep and large ocean with flat bottom
or slow variations of the depth free internal waves
may theoretically exist. However, due to the form
of the waves (with a multitude of zero lines in hori-
zontal direction) they must remain almost unaffec-
ted by tidal forces. Furthermore, even if they were
strongly affected by ordinary tidal forces, they
could not be generated with any perceptible ampli-
tude except in the case of practically exact reso-
nance of their eigen-frequencies with frequencies
of tidal forces. We may therefore consider internal
waves, though theoretically not excluded, as having
a vanishing small probability of being generated by
tidal forces (cf. equ. (90)).

This is in agreement with the view of Fjeldstad
who considers the generation of such waves as
mainly due to irregularities of the sea bottom or
of the sea boundaries as for instance sharp edges
and narrow fjords, the generating forces being in
this particular case the periodical tidal motion
of adjacent larger sea basins. Also from purely
theoretical considerations it is clear that, in order
to adjust the wave motion to cinematical boundary
conditions by rapid -variation of the depth or
of side boundaries of an ocean, it would be nec-
essary to take into account elements of motion
corresponding to complicated internal waves. As
to the motion of the sea surface, however, most
disturbances originating from such irregularities of
the sea basin can surely be accounted for by the
Leplacian tidal theory.

Corresponding to the numbers of zeros in vertical
direction we may divide internal waves into ‘‘zeroth
order”’ and higher order waves, the latter being

Yy J. E. Fjeldstad: Interne Wellen. Geofysiske Publika-
sjoner, Vol. X, No. 6, 1933.
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characterized as proper internal waves. In the La-
placian theory all higher order waves are neglected.

We shall start with the equations of motion
for a stable liquid on a rotating earth of spheri-
cal shape

2

M 22005 ogut —=—vp—g9),
u being the displacement of a water particle from
its mean undisturbed position, . its radial compo-
nent, and Q the vectorial angular velocity of the
earth. ¢ is the mean relative downward increase
of water density per unit length corresponding to
a density distribution ¢ == g,e—""—%. Tor the sake
of simplicity we have taken the density ¢, at the
earth’s surface r = a to be equal to unity. Further
— g is the potential of tidal forces from the moon
or the sun, g being the acceleration of gravity. By
this definition @ means the elevation of the sea
surface in the static Newtonian tidal wave. Finally p
is the variation of pressure or pressure perturbation.

Of importance to the treatment of our problem
is the magnitude of the quantity og as compared
to the square of the double angular velocity of
the earth (2£2)2~2.10-8, Taking ¢ ~2-10~% and
g ~ 1000 we have

@) og ~ 1000 (29)2.
To the equation (1) we have to add the equa-

tion of continuity for an incompressible fluid

(3) divg = 0,
further cinematical conditions at solid boundaries
(bottom and coasts)
(4) U = 0,
u, denoting the normal displacement component,
and finally the dynamical boundary conditions
(5) P = gquy
at the surface of the sea r =a.

We now proceed to formulate the problem by

the aid of a variational principle (writing uv etc.
for scalar products of two vectors)

o 1-f[ e

—uaVy (p__g(p)] av 4 %fp%lf} dt = Extr.,

r=a

2
- u

ou 1 .
Q Xé?) — 5 ogut —

in which 7 = @ denotes that the surface integral is
restricted to the surface of the sea. By an extremum
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value we shall here only mean a stationary value
of the integral, condition of which the is /=0
for arbitrary infinitesimal variations du and ép of
the dependent variables # and p. It has to be under-
stood that these variables also have to satisfy some
boundary conditions at the limits of the time vari-
able. Now the familiar condition of given values
at the limits ¢, and ¢, may be replaced by the
condition of periodicity. For periodic solutions we
may assume ¢, —{f, to contain either a whole num-
ber of periods or, as will also be sufficient, a very
large number of periods. Owing to the linearity
of equation (1) we may treat separately tidal forces
of different frequencies, taking eti“¢ as time factors.

We shall now demonstrate that a stationary
value of the integral (6) is possible only if the
equations of motion (1) and the additional cinema-
tic and dynamic equations (3, 4, 5) are simultaneously
satisfied. First giving arbitrary variations to the

displacement vector u and integrating o 88_1; =— du

by parts we get

o o= f{ [z

—uy (p——g@)] ou dV}dt = 0%

Owing to the periodicity the limits ¢, and ¢, con-
tribute nothing to the integral. This equation is
equivalent to (1) since du is an arbitrary vectorial
quantity.

Next consider the variation of pressure dp. The
corresponding variation of the integral (6) becomes

8) ol :j{—fu (Vop)dV + %prdpdf}dt _

1
:f{fdivuapdv*funade%fpapdf}dt=o,
ty

r=a

using Gauss’ theorem fdiv(uép)dV:fun dpdf.

Here we find at once equs. (3) and (4) as
necessary conditions for 61 = 0 if dp is an arbitrary
quantity. For the sea surface we write wu, = u,
thus getting the dynamical boundary condition (5).

Corresponding to an elimination of the time
factors etit in the differential equation (1) we may
dispense with time integration in our variational inte-
gral. The real quantities of the foregoing equations
can always be split up into two parts, a complex
quantity containing the time factor et and the

‘u r
2 | — —_—
(Q X at) ogur —
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conjugate complex quantity containing the factor
e~ We ghall therefore always replace a real
quantity by a sum of two conjugate complex quan-
tities in the following way

(9) u—u-+ u*

meaning thereby that the factors e and ¢~ are
to be found in the first and second quantity re-
spectively on the right hand side. For the first
one of these quantities equ. (1) transforms into

(10) ow?u—1i0wQ X u—ﬁg’ll«rri =V(—g9),

whereas the additional conditions (3, 4, 5) remain
formally unchanged.

By the introduction of (9) in the integral (6)
all quantities containing e?* or e—2i! such as u?
give no contribution to the variational integral.
Leaving aside the unimportant factor w?(t; —1¢,)
the variational principle reduces to

(1y I ———f[u*u—u* (th X u) — B, *u, — a*yy —

] 2
—uyydv + G [ Ty | df = Extr,
where we have put |
: _2Q e o9, P99
(12) ;\_w’k“wzyl’b—— prE

Giving now arbitrary variations to u and
and corresponding variations to a* and ¥, we
can put the variations of I due to the variation
of u and u* or Y and y* separately equal to zero
since the resulting variations are complex conjugate
quantities. For instance by the variation du* we
get the equation

(13) a— ik X u— k- =y,
which is equivalent to (10). By the variation Jy*
using

(14) —ay (0y*) =diva - dy* —div (udy¥)

we find by the aid of Gauss’ theorem the condi-
tions div 4 =0 and %, =0 at solid boundaries,
whereas at the sea surface we have

w?

(15) U=V,

which is equivalent to (5).
Passing to spherical polar coordinates x = rsin#

cos ¢, y=rsindsingp, z=rcos ¥, we shall make
intermediate use also of ecylindrical coordinates
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components
(16) U, = U, COS } — uysin I,

Uy == U, COS @ - u, 8iN ¢ = U, 8sin P - uycos J.

If then the z-axis is taken in the direction
of Q and )\ we have

(17) —u* (@A xXu) =i\ (@* Xu) =

= 14 (o™, — wy*u.) = 04 (w,*u, — u,*u,)
and
(18) |y —ddu, | = u,*u, 4

+ 14 (uFug — ug*u,) + A2u,*u,.
The variational principle (11) may then be
written

(19) I :f[(l — k) w Fu, + whuy — Puju, +

+ | g — 122,

P—utyuy — uvw*] av +
q 2 2
= [ —u | df = Extr.
—i—wzflg :rl—[—@l df = Extr.,
r=a

where
(20) LU

or

1 aw 1 oy

e s R Tmé

In the foregoing paper (1. c¢.) a special coordi-
nate transformation was introduced consisting in
a very moderate alteration of the z-coordinate.
We write
z=X, y=1Y, u:\/l—:_azZ,
Up=Ux, u,= Uy,uz:'\/lTﬁ2 U,,

maintaining thereby the invariant form of a*yu.
Passing to the corresponding polar coordinates we
must therefore have corresponding to equ. (20)

o 1 o 1 o
RAVAES .
WV =Ul;p+Ub g oy + Vb g aas

(21)

(22)

For the quantity 2 we shall take

2 (20 (20)2 1
T— k2 T Tog 1000

(23) &= w?—og

In the case of homogeneous water k2 = 0, og = 0,
the corresponding special value is &= 4% For
natural mean stability of sea water, equ. (2), & is
a very small quantity and almost independent of
the frequency w.

By this transformation all quantities in the
integral (19) with the exception of u,*u, and uy*us
are formally unchanged. We have

(24) r? = R?— 7% — R? (1 — &2 cos? )
and, since rcos 9 = \/1 — 2 Reosh, rsind=Rsind,
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(1—é?) cos?f sin? A
25) cos? i =~ —n~ L =
(25) S 1—ecorg > ) 1 —e2cos?H
Therefore, using the relatien uy == #y COS & — u,
sin ¢ we find
(26) whugy — — 5 _ysw
B = T cost g 00
Further since
(27) w'u = UU-—2U*U,
we have
) _— : &#sin® f
(28)  uju, = UgUp-+ I costh UUg—e2U3U,.
From. (26) and (28) we get
>
(29)  (L—F?) w,*uy + wiug — 2Pu,*u, =
, A2sin? 6
A * e B
) UkUn + [1 —e?cos? 0

1—e& * % .
+ 1-— ¢ Ci)szaJU()U()w;nz(UzUz—i— Ui’Ui’):

= (1—k* (1 —e&) UrUr +
POt

1 —¢2cos26

The variational principle (19) may now be
written

(30) I= fl

(1 — &) (1— 12 cos? f))
1—5200820

2 2
—Uryyp— UVL/’*}CZ V—l—(—‘%f‘ C—Og— -+ D | df = Extr.,

].——~8) UI*{UR —i—

Up*Up+ | Ugp—1dU, 2 —

where, corresponding to (11), U, = Ugsin 6 - Ugycosf.

We shall use both this formulation and the
formulation (19) in discussing the problem. We shall
further from now on put r=a in all equations,
since the depth of an ocean is never greater than
about 1/1000 of the earth’s radius.

From the variational principle (19) we find by

variation of u,*, uy* and w,*
o . o
(31) (1 —k?) ur-{‘zlmnﬁum:é,
1 ow
X 1A C g == —
wy -+ 14 cos & uy, P
7 (sin ® os 4 1 ow
J— n v " . - ’u,“ —_ — —
14 (sin Ju, + cos duy) ¢ = ain &g

which may be written
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o

(82) (1 —k)u = ;- —ilsin Su,,
1 o .
up =g — 4 cos Du,,
Msmﬁam 1A cos & o 1 o
" —k or a 08 asindop
L 1— &?sin? ¢ — A2 cos? ¢ '

On the other hand b3.7 variation of * we get,
remembering that dV == a?sin ¥ dr dd do,

8u,

(33) diva =" -+ O sin Huy EZ(’J = 0.

asin 9[69

From these equatlons we see that the function v
has a singularity on the circles of latitude

(34) 1 —¢e2sin?2 & — 12 cos2d = 0,

provided 4> 1. Now the partial differential equa-
tion (33) has an infinity of solutions of the form

(35) Y = enr— W (F)eims,

n and m being arbitrary numbers. Inserting this
expression into (33) we get a differential equation
for the function ¥,. with a regular singularity
in cos d =+ (1 —e?)/(il2—¢?). Independently of n
and m we find the indicial equation ¢ (p-—2)=0,
corresponding to the asymptotic solutions

(36) Yom = (1 — &2 sin? 9 — 12 cos? 9)? #
and Ym = log (1 — g2 sin%d — 2% cos? )

near to the singularity. The second solution must
be ruled out because according to (32), the first
solution only gives finite displacement amplitudes,
Every solution i then always contains the factor
(1 — &2 8in? ¢ — A2 cos? 9)2.

The occurrence of a singularity in the domain
of integration necessitates a modification of our
variational problem. This modification consists in
dividing the integration domain into two parts
(37) 1 —esin?d —A2cos?d 2 0,
where at the dividing boundary we must now add
the condition that 1 remains finite. On account
of (36), this means 1y = 0. Thus we are forced to
use only the first form of (36).

We proceed to discuss first the case of homo-
geneous water, corresponding to & = A% or
1 o 1 ow

cos 2 -

. oy .
Msmﬂﬁ +dco 59 mfﬁ

(38) wu, =

1—72

In the special case of i—1, w— 2£2, since all
displacement components have to remain finite,
Y must satisfy the first order differential equation

1 oy

.. o .
(39) usin 19—6; + 1 cos 19753 -+
1 oy o oy
+rsin06;_ ox Zay)—
with the general solution
(49) Y =f(rsinde?, rcos ) = f(x —1iy, 2).

This result may more easily be obtained from
equ. (13) in Cartesian coordinates putting k=0
and 1= 1. We then have

o . o
(41) Uz + 1U, = %% uy—m,:@,
or o Lol
A S
ox oy
as in (39).

It is obvious that with solutions of the form
(40) there is no possibility of satisfying boundary
conditions such as for instance %, =0 at a flat
sea bottom r=a—*h. It is true that the domi-
nating components of tidal forces have frequencies
(42) w=20—2w, and w =2
wy and wg being orbital frequencies of the moon
and the sun relative to the earth, and these fre-
quencies are not in exact resonance with the double
rotational frequency of the earth 2£. However,
analyzing the Legendre function P, (cos#) in the
development of the moon or sun potential, we may

— 2 g,

- for a body of orbital frequency cul, split up P, (cos 8)

in the following way
(43) P,(cosf) =

3 1 3
— s intg—— — — sin? 2 ]
= P, (cos 9) psinfa—— 1 sin?acos (Jlt] +
+ Pyl(cos¥) Sl%‘[— cos? —;i sin (¢ + £ — 2wt) 4

-+ cos asin (@ -} £2¢) | sin? % sin (¢ - £

+ TPZ (cos @) [0054? cos (2@ -+ 282 — 2w,t) +

sin2a

+ —5—cos (29 -+ 2

%+ z%t)} +

Q) +

+ sin4% cos (2¢ - 29 & zwlﬂ.

Here 6 is the angle between the celestial body
and a point ¥, ¢ on the earth’s surface as seen from
the centre of the earth, whereas a is the inclination of
the orbital plane to the equator plane of the earth.

From this expression we see that beside the
frequencies (42) we have also tidal forces of the
exact resonance frequency w = 2£2, though with
smaller amplitude, together with components of
frequencies @ = 202 + 2wy and o = 22 + 2wy, how-
ever with practically negligible amplitudes. The
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case of perfectly homogeneous water must therefore
be regarded as an unallowable idealization, and from
now on we shall consider only the actual case of
stable stratification of sea water.

The expression (43) contains the majority of
observed tidal frequencies. A component with fre-
quency approximately equal to 20— 3w, must be
attributed to the same term P, (cos 8) if the excentri-
city of the moon’s orbit is taken into account. All
components coming from the next term containing
P, (cos 6) in the expansion of the potential of the
moon are much weaker. The components with
frequencies 42 — 4wy = 2 (22 — 2wy) together with
(202-20y)+(22—20y)and 2 (22— 2wy) — (22— 20)
~must certainly be interpreted as combination fre-
quencies due to the mnon-linearity of the funda-
mental (non-linearized) hydrodynamic equations.
Oscillations of this kind (shallow water components)
cannot be accounted for in the present treatment.

Thus from an observational point of view we
have very little need for treating oscillations of
higher frequencies than w = 30, 42, etc. Moreover,
in this case with decreasing values of the para-
meter A =22/w <1 the equations of motion will
rapidly approach the equations corresponding to a
non-rotating earth. With higher frequencies, there-
fore, we meet with no particular theoretical diffi-
culties. :

The important tidal frequencies being thus
smaller than 2£ we shall usually have the case of
(37) with two separate domains of integration.

Returning now to the variational problem (19)
we shall for the sake of brevity denote the surface
integral by S. If the displacement components are
defined by 1, then from the equations of motion
we have
(44) I = [[—uyy*]dV + 8§ = Extr.,
which may easily be obtained from (11) and (13)
when multiplying (13) by a*.

Now for the sake of brevity we shall in (32)
make the non-important alteration of writing
1—2%cos®’? for the denominator, transforming
thereby the singularity from the circles of latitude
1—¢%sin®*¥—A%cos® ¥ = 0 to 1 — 22cos? ¢ = 0. Inserting

Uy, Uy, Uy into (44) we find
1 ooy 1 ow*ou
(45) I = — =
f[l——kz or or + a* 98 o9

+ (1 —A%cos?3) u(,,*u(,,] dV + S = Extr.

Geof. Publ.
We shall now write
(46) Uy = Uy | Uy, A
14 .cos ¢ o o 1 o
wmysv e ) 9o b
" 1—k% or . ] eosT 819+ sin 9 ap
15 ] oty 2T, 1—2cos®d

in order to show that 4, may be dropped against u,.
Putting for brevity

1 oUrE ot
47y I, = kziif"aTﬁdV’

I, :f(l — 22 cos? F) u*u, dV,

we have as to the order of magnitude

L

]CZ
Further, using the inequality of Schwarz

49)  [(frg+g*)dv =2V [f4av - [grgav,

we find )

(50) f(l — 22 cos? ) (w,*uy + ug*uy) dV ~ ]26\/11_[;—

(48) f(l — 22c0s? &) uy*u  dV ~

The integral (48) may always be neglected on
account of k%~ 1000. Then consider the particular
case of I, ~ I, corresponding to appreciable varia-
tions of i in wvertical direction, or, what is the
same, to higher order internal waves. Then the
integral (50) may be neglected against both I, and
I,. its value being k£~ 30 times smaller than I,
awd [,. Its actual magnitude is, however, much
smaller than can be seen from the inequality (49),
due to the approximate orthogonality of «, and u,.
This orthogonality is exact for an ocean bounded by
two meridians on a non-rotating earth correspon-
ding to 1=0. But also apart from this particular
reduction of the integral (50) its order of magni-
tude as given by (50) will justify dropping this
part of the integral (45).

Next consider the case of I; being small, say
of the order of magnitude I,/k? corresponding to
the case of only zeroth order internal waves. Then
the integral (50) must be of the same order of
magnitude and the integrals I, and (50) may both
be neglected against I,. Thus in either case we
find that the integrals (48) and (50) can be neg-
lected as small quantities.

Obviously this simplification of the problem
corresponds not only to the dropping of the first
term u, in u, but also to the dropping of the
second term of u, in (32). We thus obtain at the
variational principle
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_ ooy 1 ooy
(61 I= “[[ "R o T ad o

+ (1 —A%cos ) u,,u,,} av + 8 = Extr.

with
1 oy 1 oy
(52) Up = m'é;, Uy _-78—19:_%1 COS \{)u(’,
ol 1 oy
L ] iheosd o5 + v ag
" a 1—A%2cos?¢

The system of equations (52) may also be
written

o
— ke —
(563) (1—Fk®) u, = a
. 1 oy
uy + 94 cos Yu,, = PPTE
. 1 o
Uy — 1A cos D uy = asndag’

or in vectorial form

(54) u—zlcosﬁ—Xu ku, =V
showing that the horizontal component of A =2Q/u?,
and consequently the vertical component of the

Coriolis’ acceleration, may be neglected.

In the case of I, being very small compared
to I,, which corresponds to zeroth order internal
ayr

waves, we may take % and u, to be approximately

equal to zero and 1 approximately constant. Put-

ting then
2

(55) . (ﬂ _ )
9 q

we have

(56) U, =%+ @

if U, means the elevation of the sea surface. Writing
further Uy and U, for the horizontal displacement
components, which are now approximately inde-
pendent of r, we have from (53) the equations

(57) Uy + 2 cos 9 U, = i ; a(p aﬁg o(p—g %)
1 op—99)

Uy—ikcosd Uy =

M

«? asin 9 o

corresponding to the time dependent two-dimen-
sional equations of motion

.. . . 1op—gP)
fop—20 = ——— b 57
(58) Uy —20cosd U, PR
_ I o(p—yg9)
U 4+ 2Qcosd Uy ~ S ng P .
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Performing the integration in r in the volume
integral (51) for a variable depth % =% (9, ¢) and
dividing by the mean depth A, times (g9/w?)?, the
variational principle may be written

i2

% %;;COSJagj—‘-'.—lTa—qy 1

(59) T [ B [2E*e¥ 89 " sinddp|
hol 09 89 1 —%cos2y

2~2
+ 22wt oplsin 9 d9dp — Extr.
gh, I

This formulation of the tidal problem is appli-
cable to arbitrary depths and arbitrary boundaries
of the sea.

In the foregoing paper (I. ¢.) a somewhat diffe-
rent method was used to establish the same result.
In order to get partly separable equations the
coordinate transformations (21) were introduced.
From the corresponding variational problem (30)
in pclar coordinates we find by variation of U,
U and Uj the following equations

(60) (1—E)(1—e) Up+
4 tisin 0 (Ug—1td cos 6 Up— ik cos 8§ Uy)= g-%
1—7%cos?6
ey A POS
(1—¢) 1 —e?cos?d
1608 6 (Up— i1 cos 8 Up— il cos  Ug)— —~20
- 24 cos » j3 L ¢ 0= g
1 oy
(Uq:.—'-@;» cos 8 U —idcos 0 Ug)= Peindad
or, solving in Ugr, Uy, Ug,
1 oY 1k oy
—e? = A
0) (1—=&Ur=y—p%lszg Radi)
1—e%?cos?8/1 oy ikcosBoy
. Ballbh A il
(1—&) Uo = 1—72cos?6\ R o6 sin ¢ 8(15)’
. Msm(}&/;
(=) Us =7 57p
1— ¢ cosz()(zl cos ()31/! 1 oy
+ 1—72cos?0\ R Rsin 66D/

It is obvious that it makes very little diffe-
rence if in these equations we put &= 0 which
corresponds to the non-important simplification of
(45) and following equations. Secondly, we sup-
pose the result to become very little different if, in-
stead of taking as free boundary surface

—
r=R ]/1 T doodd =

and as solid boundary surface a flat sea bottom
r=a—Hh, we take these boundary surfaces to be

(62)
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R—=a and B =a—h, the thickness of the water
sheet then being the same in either case. This is
mathematically equivalent to retaining as boundary
surfaces r =@ and r =a—h and in return sup-
posing the equations (61) to be valid in the origi-
nal coordinate system r, ¢ and ¢. Adopting this
view we may replace all capital letters with small
ones and write

1 o oy
©) = [5 T ap} :
v — 1 [1oy 14 cos I oy
YT 1 —72costd| @ 89 asind op
_ 7:]. sin .‘)‘81!!
A gy
X 1 14 cos J oy 1 ay
1-— 22 cos?y a 0% asind 699
corresponding to the system of equations
. e o
(64) (1—k%) u, - 22cos Jsin P uy +idsindu, = %,
1 oy
A2cosdsind u, +ug --1hcos fu, = T
1 oy
—.x. N —1 '.l’) 4 ,»:—‘.‘——‘_7.
isind u, — idcosd uy 4 asind og

Comparing this system with the system of
equations (31) there is but little difference. In
the first and second equation we have the terms
A2cos I sin Juy and A% cos ¥ sin J u, respectively. We
might also have changed the system (31) into the
above system at once by the following argument: If
in the first equation we are allowed to drop the term
74 sin Y uy asunimportant, this must also be allowed
with 4%2cos ¢'sinJ uy; and if in the third equation
—lsind u, is unimportant, so is also the term
42 cos 9 sin Ju, in the second equation.

Adopting the equations (63) and (64) the corre-
sponding wvariational problem for the function
turns into

1 r ¥ o
(65) ]_—fll k2 “or 8r+

g [PUrow_ Burou\ | ayro
op or 25 99
o | 1 o

8¢ ' sindop|\ . . . .
I 120052 Jdrsm JIddde +

57

The non-separability is now due to the second
term of (65). Dropping first this term we may
solve the problem in the following way.

|
' il cos Y

+

sin ¢ 9 dp = Extr.
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Consider the two-dimensional eigen-value pro-
blem

2y a?f
(66) 4 f{ 29 89

4 1 av¥e
”‘COS“Z; sin ) dep | |
v N 1 o . q
+ I a0 ¥ | sin J dJdp = Extr.

with the additional condition

(67) B = [¥*Wsin 9dYdp = L.
Writing

(68) _ V=>3c, P,

we have "

(69) 4 = Z C‘;:’L anmna B = E C;:L Cp an

in which "

(70) an :f T;;[, !I/n Sin '\r]' dl() d(p

and where corresponding expressions for 4,, may
easily be found from (66).

Assuming the functions ¥, to be eigen-func-
tions of the problem and 4, the corresponding eigen-
values, then we first have 4,, = A4,, B,, =1. Se-
condly, putting all coefficients of (69) except for
instance ¢, and ¢, equal to zero, we find that if
A, and A4, are stationary values of the integral
(66) they must be roots of the equation
An —4 Anm - BﬂmA
A::m'_B;:mA A",—A | o

This is possible only if 4,, — B 4 = 0 for both
A=A, and 4 _—?Am, which means that 4,, =0
and B,, =0 or
(72) Apm = 64 A4y Buw = Sy,
Writing now

=2 R, (r) V(3 @)

n
the volume integral in (65), apart from the second
term, turns into

(71)

®

(73)

, } a* dR}dR,
(14) I'=—x [’i—kz nC Nt 4, R ,,}dr

Then the functions E, must satisfy the diffe-
rential equations

a? d2R,
(75) k 1 de + )n Rn - O yn = Aﬂs
of which the solutions
(76) R = @, CO8 / n \/kz_‘ 1 A*%té
d;j" =0 at a flat

sea bottom 7 = a—h.
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In order to solve the problem (65) we shall
write

(77) ,/;22{3 Py
iz ——sm(}’ux/kz——l Z—!—h) 399}
from which we flnd
I
~ YR, [ - 2(};: ; a;;n]

showing that the boundary condition for u, at
r=a—h is satisfied. On the other hand we see
that the second term of this expression, being
k? ~ 1000 times smaller than the first one, may
be neglected against the first term.

As to the second term of (77) we have to con-
sider two different cases y,<{<k and y, ~ k. In the
first case the cosine function of R, may be taken
equal to unity, whereas the sine function of R’,
may be replaced by its argument. We readily find
the second term to be k/a = 1/1000 times the first

. h .
term. In the second case, since k2 "l ~1 the sine

and cosine functions are both of magnitude from
zero to unity. We therefore have to compare the
coefficients of sine and cosine getting the ratio
1/k? ~ hja as before.

Thus in the variational integral (65) we may
neglect this second term of (77) and (78), its role
being only to adjust the radial displacement com-
ponent to its given boundary condition at the
bottom of the sea. The first two terms in the
integrand of (65) may from (78) be written

A% oukoy

2
R Py

the last term being of a negligible order of mag-
nitude. Thus we see that the variational problem
(65) is equivalent to the simplified problem

a? dw*au' ourk oy
(79) I—_'f{ B or T o9 9
1 oyj?
] _____
4 IM cos Jal) +sm~i8¢p
1 — 2 cos? Y

g (o®
v g

where for the displacement components we have
the modified equations

2
sin ¢ 49 dp = Extr.
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1 oy 1oy o
(80) u, — 1—‘_—102 5, Uy = “a'—& — 1A cos I u{/),
o 1 oy
.
" _ii c0s J8J+sm1i6q)
" a 1—22cos?Y
as in (52) and (53).
Putting

(8) O=3b,%, b,=[¥rdsinddsdy
n

and taking into account the boundary condition
at the sea surface (equ. 15)

: 2
(82) U, = % -+ P
we find the boundary condition for R
1 dR, o?
(83) 1 . kg d?' -Rn + bns
or from (77)
Yn i
84 &, —F=—=—s8Inx, = a,—cos x, + b,
(84) T 7 + b,
a
a _\/,%_T sin z,, = i ib" S —
a —
2% z, cotg x,
b.
=t V2ugh tg 2, )
Lnf2 8%
w?a? z,

At the sea surface we then have, writing U,
for u, at r = a,

1 dR,,, _ ”

(85) U,= L——— TR gy n T a0 . l:_ — ging, ¥, =
b, VP,
= ¢ —
wa? xn

For small arguments z, this is equivalent to

b ¥,
A

2a2

(86)

corresponding to the solution of the two-dimensional
problem (59) for a flat sea bottom.

Only if in the neighbourhood of z, ==7, 2z, 3=,. .
one of the denominators of the expression (85) is
almost equal to zero can internal waves of higher
orders be excited with measureable amplitudes. We
shall estimate the probability for first order internal
waves corresponding to x,~ =z to be excited, in which
case we claim one of the denominators of (85) to be
smaller than the expansion coefficient b, of (81).
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Taking the most favourable case of a rather wide and

deep sea and the highest tidal frequencies we have
~~~~~ h 1

(}’n+1—7n) 7 ~ 1000’

w? ~ (29)2~2-10-%.

(87)

Then from (85) we find the denominator to be
approximately
Yo 88 X

(88) P 8%

Vu
10 =z, > n

30

Further, since y, corresponds approximately
to the numbers of zeros of the eigen-function ¥,,
we must have b, ~ 1/y,. We shall now evaluate
the interval Ay, in which the denominator is smaller
than b,. Since all quantities except tg z, have only
slow variations we have

(89) %dtgﬂcnr\z;—tdmn:
G LS 1
=A™~ ™ 100, 1000
or
90 A L )
(90) e ™~ Jo00 Vrr17a)

Thus we find that the probability for the first
order internal waves to be excited is of the order
of magnitude 1:1000. In practice this probability
may be said to be infinitely small and we may
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therefore safely assume only zeroth order internal
waves. For these waves the formulation (59) is valid.

Thus we see there is no difficulty in consi-
dering also an ocean of variable depth % (J, ¢). We
need only make use of the eigen-functions of the
variational problem

?I’*a![’
o k o9 o9
‘2
Iy cosﬁagj—}— _1_@‘
sin < dp |
T P oostd sin ¢dddp = Extr.,
B =f Y ¥sin I dJ dy = 1.
Then taking
W:Ecnﬂu Ur:(p+ '3[',

+

(92)

we have from (59)

) w32q?
%U At Gty

2
w; (eh bn—+ Cn b*—{—const)} = Extr,,
0

from which by variation of ¢ we find

(93) CrCn

_ w?a? w?a? b
o) [~ 42 ot e =0, o=
a’w?

corresponding to equ. (86). Thus the validity of
the two-dimensional Laplacian tidal theory is fully
gsta,blished for real oceans.
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