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LIST OF NOTATIONS

z, 7, z — cartesian co-ordinates along axes
directed eastwards, northwards and
vertically upwards, respectively.

i, k,j—unit vectors directed eastwards,
northwards and vertically upwards,
respectively.

v — in Chapter I, three-dimensional Ha-
milton operator.

Vs — three-dimensional Hamilton opera-
tor.

7 — in Ghapters II and IIY, meridional
Hamilton operator.

or = Orr; — line element.
0F = 0Fn — surface element.

¢t — time.
v — in Chapter I, three-dimensional ve-
locity.
Vs = U +

v,j + v,k — three-dimensional velocity.
v=v,j+v,k— in Chapter II and III, meridional
velocity.
Vi — zonal velocity in the stationary,
circular vortex.
C — velocity circulation.
M — the mass of a certain fluid quantity.
dM — mass element.
K — kinetic energy.
p, P — pressure of a fluid particle.
g, @ — density of a fluid particle.
8, 8 — specific volume of a fluid particle.

T — temperature of a fluid particle.

¥, @ — potential temperature of a fluid

particle.
— V¢ — external force per unit mass.

g — acceleration of gravity.

Q@ — angular velocity of the earth.

£ — scalar value of L.

N — defined on p. 10.

R = RR; — distance from the axis of the earth

to a fluid particle.

W — heat.

Cs, ¢p — specific heat of air at constant vo-
lume and constant pressure, re-
spectively.

R — gas—constant.
I — coefficient of piezotropy by adia-
batic processes.
v — solenoidal velocity.
vp — ascendental velocity.
iy — stream function.
a — velocity potential.
M,y — tensor defined on p. 11.
Ja, kg — principal axes of M.
m?y, n?y — defined by:
Mo = mPqjofq + n*okoke-
My — tensor defined on p. 15.
Jo, ko — principal axes of Mg.
m2, n% — defined by: Mg = m2gjpjo - nZokoke.
3, ¢ — meridional cartesian co-ordinates
along jg, ko or along jo, ko.
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INTRODUCTION

By the Norwegian school of meteorologists it
is assumed that the existence of fronts is always
needed for the formation of the cyclones of
middle latitudes. This view seems to be theo-
retically well founded. Firstly, the formation of
cyclones can undoubtedly be interpreted as a
consequence of an instability of the underlying
fundamental field of motion. Secondly, if the
atmosphere may as a first approximation be
identified with a barotropic stationary circular
vortex, which is inertially, as well as statically,
stable, there will be no other destabilizing fac-
tors than the wellknown dynamical instability
connected with the wind shear at the fronts.
[See for instance Godske (1936)].

In recent years, however, it has been shown
by several investigators, first of all by E. Hoi-
land (1938, 1941) that if also the baroclinity of
the atmosphere is taken into consideration, the
stability properties will essentially change from
those in the barotropic vortex. The stability
criteria for the baroclinic stationary circular
vortex by symmetric perturbations were first
examined by Helmholtz (1888). Later they were
found by H. Solberg (1936), by Hgiland in the
papers referred to above, by E. Kleinschmidt
(1941) and by E. Ertel (1941).

In Kleinschmidt’s paper and in a paper by
R. Fjortoft (1942) the stability criteria under

atmospheric conditions were found which showed
that instability could actually exist in the at-
mosphere independently of contingent fronts, if the
baroclinity is great enough and the statical sta-
bility not too large. The stability criteria were
given in Fjertoft’s paper in such a form that it
was very natural to ask whether the cyclones
of middle latitudes were developing as a conse-
quence of the instability in question.

As early as in 1933, the Russian investiga-
tor P. Moltschanow (1933) pointed out the possi-
bility of explaining the formation of the cyclones
as due to an instability connected with the
baroclinity of the atmosphere; but he did not
succeed in arriving at precise stability criteria.
Later, P. Raethjen (1941) expressed a similar
opinion as to the explanation of the cyclone
formation. In & quite different way I have earlier
shown by arguments from the theory of advec-
tion that just the baroclinity of the atmosphere
outside the fronts must be of essential impor-
tance to the development of the cyclones. (Fjor-
toft 1942.)Y)

The main purpose of this work is to examine
more thoroughly how frontogenesis and cyclo-
genesis are related to the instability which the
air masses may possess owing to their baro-
clinity, BEarlier, P. Raethjen (1939) has tried

1) This appeared first as an examination paper at
the University of Oslo 1940.




to explain the frontogenesis dynamically as due
to a convective instability in a baroclinic field
of motion. His examinations, however, are not
in full accordance with the precise stability
criteria.

This work appears in two parts. In the
present, first part, I have tried to give the
theoretical examinations of the stability proper-
ties of the stationary circular vortex a more
solid foundation. In the second part, the appli-
cation to the atmosphere will be the main pur-
pose.

In Chapter I the equations of motion of an

T

inviscid fluid are written down. The influence
of the friction and the diffusion will be consi-
dered in the second part. In the case of a com-
pressible fluid we have in Part I limited the
considerations to adiabatic processes. A remark-
able analogy as to the circulation theorems,
between the incompressible and adiabatic com-
pressible fluid, has been shown in Chapter I. In
Chapter II, the stability criteria have been found
by an energetic method of consideration. This
energetic method is also useful in connection
with the* discussion” of the kinematics of the
motion which is given in the last chapter.
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Chapter 1.

THE HYDRODYNAMICAL EQUATIONS
OF AN INVISCID FLUID

1. The ineompressible fluid.

The movements of the fluid particles are
in this case determined by

the equation of motion in the form of Euler

w
(L) g =—Vp—aqVp—qv- v

the equation of continuity

(1,2) A —vvy

the condition of incompressibility
(173> Vo= 0
and certain initial and boundary conditions.
In the above equations v is the velocity,
g the density p the pressure of a fluid particle,
whereas — Vo is an external force per unit mass.
As to the boundary conditions, we shall for
the sake of argument consider a rigid closed

wall at rest. Denoting with n the unit vector
normal to the boundary surface, we obtain

the kinematic boundary condition
v-n=10

as a consequence, partly of the geometrical re-
straint of the walls and partly of the condition
of incompressibility. The kinematic boundary
condition having to be identically satisfied, we
obtain particularly

ov
(1,4) g n="0

at the boundary.

As to the initial conditions, we must assume
the hydrodynamical variables to be known func-
tions of the spatial variables at the beginning
of the time. We shall now show that the pres-

sure gradient —- p is uniquely determined by
the distribution of velocity and density and the
boundary conditions. The equation of motion
(1,1) can be written as follows

(1,5 vop =g VY — - V.

ov

i
Performing the scalar multiplication /- on each
term of this equation, we obtain

ov
v?p—%q-vzaz—qv-v-vv——qv-gt—-

Owing to the incompressibility of the fluid, this
equation is reduced to

(16) v —hup=—qv-v-Vo

If we substitute into the kinematic boundary
condition (1,4) for q%lti the expression obtained

from (1,1) we obtain

the dynamic boundary condition

(1,7) Vp-n=—q[Ve+uv-vv]-n

The equations (1,6) and (1,7) determine the
pressure with the exception of a spatially constant
function. As a particular consequence of this,
the intial distribution only of velocity and den-
sity, can be arbitrarily chosen.

From the hydrodynamical equations of mo-
tion we may derive other useful equations. Of
great importance to the applications is the cir-
culation theorem of Bjerknes. We arrive at
this theorem if we refer the equation of motion
(1,1) to unit mass:

ov
F =—8/p—VP—0v-VV
and then take the circulation of each term in

this equation round an arbitrary closed curve L
which is at rest. Then we obtain




8 RAGNAR FJORTOFT

v s {
‘4? :—'sz r)r—fv-vv-ér.
L

]1 L

According to the theorem of Stokes, the first
right-hand line integral can be transformed into
a surface integral where it is integrated vectori-
ally over an arbitrary surface F bounded by
the curve L. Doing so, we obtain, using the

notation €' for the velocity circulation fv - Or,
oC .
E:wfVSXVp-éF—fv-vv-()r.
F L

In the applications of the circulation theorem
it is nearly always necessary to obtain an ex-

. .0 .
pression for the acceleration W of the velocity

circulation. This is especially the case when the
theorem is used in stability examinations. In
this way the circulation theorem has been used
by V. Bjerknes (1937), but first of all by K. Hex-
land (1938, 1941) in an examination of the

stability properties of several fluid motions. The
. o0 . .

expression for e 1 most easily arrived at by
derivating locally with respect to time the terms

in the equation of motion (1,1). Then we obtain

Py | 0g
'y + w SV

““th vvv

Here we introduce from the equation of con-
.. 0 . .
t1nu1tya—tq = — p - /¢ and then take the circulation

of each term of the equation round an arbitrary
closed curve L. The resulting equation is

0
v v—qsvp——v | - or

According to the theorem of Stokes, this equa-
tion can be written

f{vq X o +qv>< atz] OF =
F

fors
F
Ve

0 .
v- MSVp——tv-Vv) - OF.

)
SVp—— v Vv) - O0F 4

+ Jav X

e

Geof. Publ.

By division by g on both sides of this equation
we arrive at

f\, X8t2 -O0F = [VX
o%v

0
+ [vq v —svp~—~v Vo— ol

_S VpP—

v Vv)

. 6F.

Again as a consequence of the theorem of Stokes
this equation can be written

a2C %
(LY Z =g or=
L
{ 0
j v —6?77)"-—1) Vv) or +
&%)
—i—f%qx v SVp— Y Vv — at:’)-éF.
F
The corresponding vorticity equation is
NZU
(1,9)atzv Xv=
o
v X [0 —vﬁswv——v Vo) +
0 0%
+Vq quVP——v Vv—~a—;.

will be referred to below
the acceleration of circu-
lation and vorticity, respectively. In the next
section the existence of equations for a- com-
pressible fluid will be proved which show a re-
markable analogy to the above equations.

The above equations
as the equations for

2. The compressible adiabatic fluid.
The movements of the particles of a com-
pressible inviscid fluid are determined by
the equation of motion in the form of Euler

(1,10) qa—?:—Vp—qvw—qv-Vv
the equation of continuity
aq -
(1,11) 'g———'—‘V‘vq_qV v

the gas-equation

(1,12) p = Rql
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the first theorem of thermodynamics

aw _ T
th qut pv v

(1,13)
and certain initial- and boundary conditions
together with a sufficient number of equations

determining the supply of heat q%%y per unit

time and volume. In the gas-equation R is the
gas-constant, and 7 the temperature. With the
assumption of dryadiabatic processes the last
equation is reduced to
ar

(1513’) 0= cvqm + YAVARR 2

Substituting in this equation for 7' the expres-
sion obtained from the gas-equation, we obtain

dp —
(1,14) d—t——Trv ‘v
where
¢ 1
5 =
(1,15) I'= ., BT

¢, and ¢, are the specific heats at constant vo-
lume and constant pressure, respectively. Having

dp _op :
‘o‘l?—'é't-"f"”'vp

equation (1,14) can be written

(1,14") %?=—v-Vp——g:V-v-
This equation has a form quite analogous to the
equationof continuity (1,11) and will be referred
to below as
the equation of pressure tendency.
According to the equation of continuity

we have
- dq
—gv-v= "
Substituting here for —¢</-v the expression on
the left-hand side of (1,14), we obtain

dg _ dp

a =&
This is the so-called equation of piezotropy and
I' is the coefficient of piezotropy by dryadia-
batic processes. We shall now characterize the
air particles by the temperatures that they are
assuming if they are brought adiabatically under
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constant pressure. This potential temperature
¢ will obey the following equations
od

(1,16) = =—0v-VY

and )
(1,17) a—lve__ Vo

q o
the first of which expresses the conservation of
potential temperature. The equation of continuity

can now be written in the form

_81 +I8p

1,11
wmy 4

This equation is arrived at if we substitute for
—gqv-v in (1,11) the expression I —l-l’ -Up

obtained from the equation of pressure ten-
dency (1,14').

The circulation theorem of Bjerknes assumes
the same form for the compressible as for the
incompressible fluid. It is now a remarkable
fact that equations for the acceleration of cir-
culation and vorticity exist for the compressible
fluid in a form quite analogous to that in the
incompressible one. In order to derive these
equations, we derivate equation (1,10) locally
with respect to time, obtaining
sVp=—

iy | oq
/e Q~v V.

In this equation we introduce from the equation
- n 04 AV Lop

of continuity (1,11') Fraial CArs + 1 a5 and

obtain then

118) v24 400

gl = sop— 2y 3P ¢,
=q [v 5 SVP— v vﬂ + s o7 -
Suppose the vector A, to be defined by
=P o
(1,L19) A=vw- 5 SVP— vV

Eq. (1,18) can then be written

(1,20) V + é‘tz"__‘lA"f"IS V-

Taking the curl of each term of this equation
we arrive at

P 0 , 7 .
VX5 =v><qA+vai:><ISVp+—£vxlsvp-
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According to (1,15) we have Il<>'=ﬁ-i and

Cp
therefore

VX [sv/p == CC—’ TXVInp=0.
I
Consequently, the above equa,tion is reduced to

t7ar))
v><q5t2 =V XqA +v XFSVP

In this equation we introduee for

pression given by (1,2 ) thus obtajmng

vxqatzszx U XgA—TUpXA.

of?
Now we can write
217 ZU 82
V Xy =4V XV yatz

and

UXGA = g7 XA +TVgxXA.
According to these identities the last equation
can be written
Sy

o2 .
qvxat—fzqv XA+ (vq~1\7p)><(x‘l—-at—2 .

Dividing this equation by ¢, we obtain

g —I'</p 2o\
X (A 7 }

(1,21) antz =VUXA+

According to (1,17) we have
vg—Ivp v
g 9

(1,21) can therefore be written

Vl9 (A— v)

&
VX =TxA (T =

We now take the surface integrals of each term of
the last equation over an arbitrary vectorial
surface F. According to the theorem of Stokes
we can transform the first and second integral
to line integrals. Doing so, we obtain

dta (5r~j>A(5—l—f» kS

_ %o

o 2

-OF

where L symbohzes the curve bounding the sur-
face F. In the last two equations we substi-
tute again for A the right-hand side of eq. (1,19)
and arrive in this way at the following two
equations

(1,22) i =§32—i—’-0r:
L

—
= [v- ;ﬂSVP

L
—\) —vd 4 v
+f 9 X!:i)' 9 SVp—atv-Vv—gﬁ]wSF
F

0
F v-Vv:l-ér—}—

, & o P
(1,227) éZZ‘VXv-— g
A T 8
=V><[ 7 g SVP— v Vv]Jr
— — v 0 P
+—5 x[v g SVPT v Vo— W}

It chould be noted that these equations for the
acceleration of circulation and vorticity of a
compressible fluid develop from the correspon-
ding ones in the incompressible fluid simply by
— 7O

3

changing zqq to

Chapter 11.

THE STABILITY OF A STATIONARY CIRCULAR
YORTEX BY SYMMETRIC PERTURBATIONS

A.
The stationary eircular vortex.

We shall here refer the motion to a co-
ordinate system which rotates with the rotational
velocity Q of the earth and let x, y, z denote
cartesian co-ordinates directed eastwards, hori-
zontally northwards and vertically upwards re-
spectively, whereas Z, j, k shall be unit vectors
directed in the positive directions of the axes
of the co-ordinate system. w,, v, V3 and 7 are
defined by:

Vy = Vi —f—vyj—f‘vzk' v =1+ vk
a . 0 4
va—z~+h thg V=ig Tk

In this relative motion the equation of motion
assumes the form

0
(2,1) q_;;_s =-—V3p+ q¢ — 2Q Xv;—qu;- Vsv3

g is the apparent force of gravitation determi-
ned by
g=—yp + &

rﬂ
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where R is the vector distance from the axis of
rotation of the earth to a fluid particle.
g obeys the condition

VXg=0.

We shall now consider the motion of the
earth’s atmosphere and hydrospere, identifying
these, as a first approximation, with a sta-
tionary circular vortex. By definition, the
fluid particles then have to move concentric-
ally round the axis of the earth without
changing their speed, and the pressure and the
density must be symmetrically distributed round
the same axis. Since evidently no heat trans-
formations are possible in such a motion, it is
necessary to suppose adiabatic processes in the
compressible vortex. If this condition, however,
is fulfilled, all other necessary conditions will
be satisfied for this systemn of motion if the
meridional distribution of the hydrodynamical
variables satisfies the meridional component of
the equation of motion. On account of the
presupposed stationarity, this must now be
written '

., U
0=—p+9g—q2QXui + 5 R

Corresponding to the conditions in the hydro-
spere and atmospere of the earth, the last term
in the above equation can be neglected as com-
pared with the others. In order to distinguish
the motion of the stationary circular vortex
from the motion of perturbation which we shall
next consider, we denote the variables in the
former one with capital letters. The above equa-
tion can now be written with good approxi-
mation

2,2) 0=—VP + Qg —Q2Qx V.,

It will prove usefull below to introduce the
notation N for the vector defined by:

oy o0z

2,3) N:( — 2.@2)]‘—[— +2Qy) k.

We take the curl, v x, of each term of equation
(2,2). Then we obtain the relation

1
(2,4) ) V@ XS7P + Nx20R; = 0.

Ry is the unit vector directed normal to, and
outwards from, the axis of the earth. In the
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case of a compressible fluid this equation may
also be written by introducing the potential
temperature

(24)  — 5 VOXSTP + NX22R, = 0.

The equations (2,4) will be referred to below as
the conditions for stationarity in the circular
vortex.

B.

The symmetrically perturbed stationary
circular vortex.

1. The perturbed hydrodynamical equations by
symmetric perturbations of the stationary
circular vortex.

We are now going to consider a system of
motion having a distribution of the variables
which deviates from -the distribution in the sta-
tionary ecircular vortex with quantities which
are small of the first order. The deviations are
supposed to be symmetrically distributed round
the axis of rotation of the earth, i. e., they shall
all be equal in zonal direction. Neglecting terms
which are small of higher order than the first,
the hydrodynamical equations can now bhe

written:
The meridional equation of motion
w7 .
(2,5) ai; =—p 4 gSVP — Q2Q X Vi

the zonal equation of motion

vy
(2,6) 22 =
Ve o oVa _
_(\@_2_-7) UU—'( az —+— 2Qy) Vg = —v N

the equation of continuity in one of the
following forms

9

EZ——V'VQ_‘QV?,'V
(2,7)

q VO .op

-
and

the equation of pressure tendency

. op _ Q
(2,8) a= v VEP—F Vs
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2. The stability criteria.

The stability criteria by symmetric pertur-
bations of the most general baroclinic stationary
circular vortex have earlier been found by H.
Solberg (1936), E. Hoyland (1938, 1941), E. Klein-
schmidt (1941), H. Ertel (1941) and incompletely
by the Russian investigator Molishanow (1933).
Of the mentioned investigators, Hgiland is the
one who has developed the stability criteria
most satisfactorily, having based his examinations
on the circulation theorem of Bjerknes. In the
case of a compressible vortex, however, also this
method is not satisfying (Hgiland 1941 p. 16).
We shall therefore develop the stability criteria
by means of an energetic method of considera-
tion. In connection with this, the circulation
method also will prove useful when the equations
for the acceleration of circulation and vorticity are
used in the form developed in Chapter I (1,22).

In Part II it will be shown that a function
@* exists depending only on the meridional posi-
tions of the fluid particles and being connected in
the following way with the meridional kinetic

energy K :J'gvsz of a fluid mass M which is

M
symmetrically distributed around the axis of
rotation of the earth:

K= — [¢p*dM +c+ Wy=—@*+-c+ W,.
M

Here ¢ is a constant with respect to time. W, is

the work received from the pressure forces at the

boundary. Considering especially an isclated fluid

having no contact with other fluid masses at its

boundary, we obtain

(2,9) W,=0

according to which the above relation is reduced to

K=—0* Le

In Part II it will further be shown that @©*

satisfies the necessary condition for an extremum

(2,10) oO* =0

and that accordingly the criterium for stability

can be found if we know the conditions making
AD¥ = * (¢ -+ Ar) — O* (r) > 0.

Here r denotes the positions of the particles in

a stationary circular vortex and r -+ Ar arbitrary

positions in the neighbourhood. If the positions

r + Ar are reached in a real motion after a small

time A¢, we obtain according to the above energy

equation an increase 4K in K which is equal

to — AD*, Othersides we have for 4 K:

Geof. Publ.

_AK (A2 T (dv) d2v
AR = At 5r +—5 f[(d—t)“ i
M

]+h(o)

k(0) indicating terms which are small of a still
higher order. On account of (2,10) this equation
is simplified to

o k= s o[ o]

having neglected terms which are small of a
still higher order, and introduced dM = Qdx,
7 being the volume of M.

2
The expression for ta-—:) is obtained by deri-

vating the meridional equation of motion (2,5)
locally with respect to time. This gives

>2p avx.
Qﬁ va—t— ——SvP Q2Q X —

If we here for 88—? substitute the expression on
the right-hand side of the zonal equation of
motion (2,6) and for g? the right-hand side of

the first equation (2,7), we obtain

v ap Ve
ﬁ__vﬁ"Q”' \:VSVP +

+ NmRI]——Qw - oSTP.

Below,, the tensor within the brackets above will
be referred to as My:

M, — %Q S7P 4 N2OR,.

The last equation can therefore be written
2
ZT:=——V%Z;‘—Q0'MQ—‘QV3'1)SVP-
Carrying out the scalar multiplication »- on the
terms of this equation we arrive at
v
o

(2,12)

_ op
v_——VaT-v——
—Qv-Myg-v— Qv -SVPV;-v

(2,13)

We can write

617
Substituting in the last term by the equation of
pressure tendency %% = —p- VP — % Vi v, We
obtain
op @ 5
~v L o= —X (0 —

o
— Qu-SVPVs v— V- 3—§’v-
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. 0 . .
This expression for mv—azg - v substituted into

(2,13) gives

o
T
1
-—Q{-]—-(Va-v)z+2v-SVPV3-v+v-Mu-v}-~
P
VAR

a v

Taking now the volume integrals of each term

in this equation over the volume 7, we arrive at
2

(2,14) fa—l’-vdM =

ot?
M

1
—flif(vsv)+2vSVPV3v—l—vMQv} aM
M

—f?nﬁv-ndff'
at
7

having introduced dM = @dr in the first two
integrals, and transformed the last integral by
means of the theorem of Gauss, F' denoting the
surface bounding M and n the unit vectors nor-
mal to it.

Making use of this equation in eq. (2,11),
we obtain
@2,15) —AK =

2
(—Qf[i(vg-v)z—l-?v-SVPV3-v+v-Mq-v]dM

2 r
" (4t)? (]9
NP,
3 [ﬁt v n] oF
b
dropping the index ¢ = 0.

This equation may be used to obtain the sta-
bility criteria when the boundary conditions are
known. These must be in accordance with the
condition (2,9). Here two cases shall be consi-
dered: Either closed walls, which of course ac-
cording to our earlier assumptions must be sym-
metrically distributed around the axis of rota-
tion of the earth, or a single wall above which
in the incompressible vortex there is a free
surface, in the compressible vortex the pressure
decreases to zero in finite or infinite height. For
the incompressible vortex we assume besides that
the density decreases to zero simultaneously with
the pressure. With the introduction of the
cellular boundaries which actually do not exist
in the earth’s atmosphere or hydrosphere, we
only intend to simplify the calculations in
Chapter III. The second case of boundaries is
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approximately existing at the earth with the
surface of the earth as the rigid wall.

In connection with the mentioned bound-
aries it will be of some interest to consider the
corresponding different types of streamlines.
Owing to the' symmetric property of the per-
turbations we obtain

0=V3-v=v'v—% tgo +;z

where ¢ is the latitude, R, the radius of the
earth. If the meridional dimensions of the motion
are not too large, the last equation may be
written with sufficient accuracy:

(2,16) Vv =0.

Owing to the above relations the streamlines in the
meridional motion for the incompressible vortex
must be of the cellular closed type in the first
case of boundaries, (fig. 1 a). In the compres-
sible vortex the field of the meridional stream-
lines may be either of the cellular type, of the type
of mainly expansion and contraction, (fig. 1 b),
or a combination of both types. In the second
case of boundaries, all the streamlines, or some
of them, may end at the free surface of the in-
compressible vortex, or at the upper finite or
infinite limit of the atmosphere, (fig. 1 ¢ and 1d).

Fig. 1.
THustration of types of streamlines and boundary
conditions.

Having assumed the boundaries as mentioned
above we see that the integrand in the last inte-
gral in (2,14) or (2,15) vanishes identically except
perhaps in the case where M extends to the free
surface of an incompressible vortex or to the
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upper limit of the atmosphere. The mentioned
integral may therefore be written

op
~f—6—t-v-n6f
f

f denoting the part of the free ‘surface or the
upper limit of the atmosphere which bounds the
considered mass M.

According to definition we have at the free

dp . .
surface i 0, giving
ap
a = vVP

which, owing to (2,2), also may be written
o .
> =—v-Qlg—20X Vil
Since n is the unit vector normal to the free
surface, directed outwards, we obtain
op . , oP
o=
In the case of a compressible vortex, the
relation (1,14) gives

dp___cp
d—t—c—vPV3'v
dp

owing to which vanishes at the upper limit

dt
of the atmosphere, the case that here v/, v = 0o
must be excluded. Consequently, we obtain also
at the upper limit of the atmosphere

op

3_t —= — V- VP
or, by a substitution for VP by means of eq.
(2,2),

0
% =—Qu-[g—2Q X Vi
which is simplified to
ap
P 0

as @ should be equal to zero. The last inte-
gral in (2,14) or (2,15) will therefore vanish in
all cases except in the case of a free moving
surface in the incompressible vortex, where it

is equal to
opP
5 \
fv "o 7.

Geof. Publ.

Accordingly (2,15) may be written:
The incompressible vortex:

2
a —AK = gfl[fv-MQ-vdJW— vznz—géf}

M
(2,17) (moving free surface)

{ {1\2
b —AKri_—Z—)f[v-MQ-v]dM

M
(cellular motion)
The compressible vortex:

c —AK =

(At)? 1 210
5 ’T(V3‘v) +~W'SVPV3'U+W'MQ'W am
M
The stability criteria will now be given by:
1°. If 4 K < 0 for any kinematics, the initial
equilibrium is stable.
2°. If AK > 0 for some kinematics, the initial
equilibrium is unstable.

If we wish to examine the degree of stabi-
lity or instability released by a certain system
of symmetric perturbations of the stationary
circular vortex, we cannot use eq. (2,17) in its
original form. The only rational measure for
the stability, if a negative stability is identified
with instability, is the relative decrease :KZ;IS
of the kinetic energy of the meridional motion.

K . .
For —x— e obtain the expressions:
The incompressible vortex:

(At)z(fv-ﬂf(pvdM—[— ”2n2‘§(5fj
f

—A4K Y7
K Jvredm
Vi
(2,18) (moving free surface)
412 [ [o-My-v]dM
X TR ? [ 1o Mo o] ‘
K JvdM _
S {cellular motion)
The compressible vortex:
— 4K _
=

S |01 +20-89PTs vt 0| it

M

j’vsz
M

EYREL gl D Lot
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Supposing the solution for the velocity to o mi -+ % _ Ve STP 4 N-20
have the form Q

v = D, CoS ¥t
we can introduce
v N
a0
in eq. (2,14). Doing so, we obtain the frequency
formulae:
The incompressible vortex:

P
79 . _ 2
j” Mpd M — [o2, - of

a’ )2 M f
: - Jvd M
M
(2,18%) (moving free surface)
fv -My-vdM
b=
2
13[ vidM (cellular motion).

The compressible vortex:

f [ (T3 0)*+-20- STPV, - p4v- M- vJ aM
—M

‘/‘vz aM

The justification of chosing :jél]g 2 & measure

for the stability is thus evident, noting that »?
is a direct measure for the stabilizing forces.
Discussing now the stability conditions, we
consider first the incomgpressible circular vortex.
Referring the tensor M, to its principal
and k,, we may write

My = mPjojo + nPokoky.

It further v, and v; are the components of p
along j, and kg, respectively, (2,17) a, and (2,17)
b may be written

a’ AK =
At)2

—(—QL [ f (m*qv?, 4 n2®;) dM — f szngg (Sf]

217) ™ d

b’ AK = —

axes jy

AP

( zt) f[m(é2v1j2 _I“”'Q%Ez] dM
M

M, was given by (2,12)

My— % VQSTP + N2OR,

by means of which we can show tat m2g and n2,
are determined by

(2,19)

b W’LQZ . %Qz.: SVP X 2_(.)R1 % VQ <N
By the vector multiplication of the terms in eq.
(2,2) by SvP we find

SVP X )QR] == gzu—zl

according to which eq. b above may also be
written

924,
(2,19) b’ mZQ-nZQ— N VOXN-i.
The vectors appearing in (2,19) must in addition
satisfy the condition of stationarity of the cir-

cular vortex (2,4)

le— V@ XSVP +~Nx202R; = 0.

Basing the discussion on eq. (2,19) and (2,4) we
may arrive at the final form of the stability
criteria expressed by magnitudes determined by
the state of the stationary circular vortex. As
to this discussion we refer to Hpiland (1941).
At this place it will be of interest only to de-
termine the signs of m?; and w2y for the atmo-
sphere when this is as a first approximation iden-
tified with a stationary circular vortex. It can
then be shown that both signs are positive,
mainly as a consequence of the relatively rapid
decrease of the density with altitude. In the
atmosphere we will therefore always have

v'MQ-v>O.

Now we proceed to derive the stability
criteria for the compressible stationary circular
vortex. We denote the integrand in (2,15) with I.
Accordingly we may write

(2,20) — AK =

(4¢t)2 1 .

5 T(Va'v) +2v-SVPV; v+ v- Me.v |dM
M

=341 f IdM.
M

According to this equation, an increase of the
kinetic energy of the meridional motion, when
this is initially in a state of equilibrium, can
be obtained by symmetric perturbations only if
I is negative. Before using this to obtain pre-
cise stability criteria, we shall draw an interest-
ing conclusion from (2,20) when this is applied
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to the atmosphere. It was emphasized above
that the last term of I always is positive in
the atmosphere. Since now the first term of I
is always positive too, having a positive factor
before the quadratic function of v/;- v, an increase
of the energy will be the result, only if the
second term of I is megative. This can only
then be the case if the air is expanding whemr
it moves towards lower pressure, and is con-
tracting when it moves towards higher pressure.
Quite generally it can be shown that the most
unstable motions in the atmosphere must be
thus characterized, in full accordance with what
is normally observed in the atmosphere.

On account of its capability to expand and
contract, the air may therefore be less stable
than if it should move like an incompressible
fluid. The second term of I in (2,20), repre-
senting the destabilizing influenze of the com-
pressibility, is a linear function of 73-v. The
first term of I, representing the stabilizing in-
fluence of the compressibility, is a quadratic
function of 7,.p, and thus limits the destabili-
zing influenze of the compressibility. In order
to arrive at precise stability criteria, we must
therefore determine the minimum, [y, of the
integrand I. Since I is a quadratic function of
Vs ¥ dmin 18 given by

Inin =[v-Mg-v—1I'(v-SVP)]

when
Vo= —£v Svp
Y
i. e. according to (2,8), when
op -
5= 0.

Writing in the expression for Iy,

I'(p-S7P) = p- gvPSVP-v

and, according to (2,12),

1
v.MQ c =P 'EVQSVP'0+U'N2QRI.v

we obtain

Loy —p- [V&"Qﬂr’ SUP 4 NQQRI] v

Owing to the relation (1,17) we have

vQ—I'vpP  vO
Q A

Geof. Publ.

Consequently, the maximum of increase of the
energy K, will be given by

a AKpyax =
— %(At)2f[v. :(Z—(—‘)SVP“FN?QRI\}V'} dM
P /
(2,21) when
r
b v3.v=———v-\7P.

Q

We denote with My the tensor within the
brackets above,
\VAZ|

My=—""-8yP+ N2¥R,

(2,24) 5

If My is referred to its principal axes jo and ko,
we can write

Mo = mPpjojo+ n2okoko

and

(2,21)  AKuaxs = — HALY [ (m20?, 4+ n2ov?;] dM

M

having also introduced the components v, and
v; of p along jy and kg, respectively. According
to the expressions (2,12) and (2,22), m?g and n%
must now be determined by a system of equa-
tions which are quite analogous to the corres-
ponding ones (2,19) in the incompressible case.

In ’o}:e latter we have only to change ZQQ to

—V
©

In this way we obtain

a m? -+ ngo:—YQ-SvP+ N-20R;

C]
(2,23)
g28, .
b m2()-n20—————@-—-v(9><1\/-1.
Besides we have the condition for stationarity of
the circular vortex (2,4)

—%v@xSvP 1+ Nx29R, = 0.

Discussing the stability conditions, three
essentially different cases are to be regarded:

A: m2 and n%p are both positive. Total

stability.

In this case it appears from eq. (2,21’) that
the kinetic energy of the me:ridional motion will
decrease whatever are the characteristics of the
kinematic of the symmetrically distributed meri-

ey
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dional velocities. In this case, therefore, the
stationary circular vortex is totally stable for
symmetric perturbations,

B: m2g and n2g are both negative. Instability
with one kinematical condition. «Total instability».

In this case it appears from (2,21') that the
kinetic energy of the meridional motion will in-
crease provided that the relation b of (2,21) is
fulfilled. As it will always be possible to arrange
the initial meridicnal motion in such a way
that this condition is satisfied, the stationary
circular vortex will in this case be unstable.

C: m2p and n%g have opposite signs. Instabi-
lity with two kinematical conditions. Conditional
instability.

Suppose in this case m? to be negative.
Then it appears from (2,21’) that the kinetic
energy of the meridional motion will increase,
provided that the initial meridional velocities
are mainly directed along the #-axis, and the
relation b of (2,21) simultaneously is satisfied.
Since in the compressible case the two compo-
nents of p are independent of each other, it will
always be possible to get both these kinematical
conditions fulfilled, and consequently the sta-
tionary circular vortex also in this case is un-
stable. This case, having a kinematical condi-
tion not contained in the case B, will be refer-
red to below as the case of conditional insta-
bility, whereas B will be referred to as the case
of «total instability».

The condition b of (2,20) is not a neces-
sary one for obtaining instability in the cases B
and C, since a contingent increase of the kinetic
energy under the assumed conditions, of course
also indicates the instability when it is not the
maximum possible one. We shall now derive an
expression for the increase of the kinetic energy
under conditions where the relation b of (2,21)
is not necessarily satisfied. In the meridional
equation of motion derivated locally with respect
to time

Q*A

0 o oy .
6t2=——<7p+quP Q2QxX i

at

we now introduce for = the right-hand side of

the second equation (2,7) whereas for a@% we

make the same substitution as on p. 11. Then

we arrive at
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2.
(2,24) Zt—g’z—v———l"ap SVP —Qu- My.

In the same way as on pp. 11—12 we obtain

2
fgtz dM"“f"" My vdM——fFS2 (37’) am.

M
The correepondlng expression for AK is

2,25) JK —
— f Iise (%—f)sz
2 ‘

—%@M{fbuMwﬂdM

M
It appears from this equation that in the cases
B and C, instability will then and only then
be the case if the pressure tendencies determined
by (2,8)

op
Et‘ —v VP —

?V3-v
have numerical values not so large as to com-
pensate the destabilizing effect of the first term
on the right-hand side of the above eq. (2,25).

Applying the relations (2,23) and (2,4'), the
stability criteria may be expressed in terms
characterized by the state of the stationary
circular vortex. As to this we refer again to
Hgiland (1941). The stability criteria under at-
mospheric conditions have been derived by E.
Kleinschmidt (1941) and R. Fjertoft (1942) and
will be subject to a closer examination in the
second part of this work. Here we shall only
write down the criterium of conditional insta-
bility of case C'. In this case we should have
opposite signs for m?, and n?;, giving the
condition

m?, -n?, < 0.

According to (2,22) we have

2~-z
7 JOXN-IL.

2 ,m2
MmNy = —

Consequently, the stationary circular vortex will
be conditionally unstable if

(2,26) VOXN-i>0.

3. Stationarity and indifference.
If the stationary circular vortex is totally
indifferent against symmetric perturbations we
must particularly have

o0 Vg

- w0
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Neglecting terms which are small of a higher
order than the first, eq. (1,16) may, owing to
the symmetry of the perturbations, be written

60

- —_p Ve
I n vV
2,2 7)i Besides we have the zonal eq. of motion
0
’U@, =y -N

In the statlonary meridional motion this system

is reduced to

(2,27") JO=—o Vo
0=—oN

By a symmetric perturbation of the stationary
circular vortex, p cannot identically wvanish.
Consequently (2,27') can exist only if 7@ and N
are parallell, i.e. when

(2,28) VOXN-i=0

including the special case where 7®, N or both
are vanishing. Comparing this result with the
preceding section, it appears that we in the
above simple way have determined the impor-
tant intermediate state of the stationary circu-
lar vortex which separates the states of

total stability and ’total instability:,

total stability and conditional instability,
and

‘total instability and conditional instability.

Chapter III.
ON THE KINEMATICS OF SIMPLE MO-
TIONS RESULTING FROM SYMMETRIC
PERTURBATIONS OF THE STATIONARY
CIRCULAR VORTEX

1. The perturbed hydrodynamieal equations
in question.

In Chapter II we have discussed the sta-
bility properties of the stationary circular vortex
by symmetric perturbations without much regard
to the nature of the corresponding meridional
motions. Now we proceed to find simple solutions
of the hydrodynamical equationsin question, which
confirm the stability criteria arrived at in the
preceding chapter and which can also be used
in the study of the kinematics of the motion.

In the incompressible case, v may, owing to

Geof. Publ.

relation (2,16), be exprested by a stream func-
tion i as follows

oy, 811/
Eq. (2,12) is reduced to
v op
(3,2) ﬁ——vﬁ—Qv-Me-

Performing here on each term the vector mul-
tiplication </ X, we obtain

. v
(3,3) VX 5t;+v><v-MQ+

o2
o] =
which is the equation for the acceleration of
vorticity (1,9} modified to the relative and per-
turbed meridional motion, now considered. If
we substitute into this equation

Mo = mPqjojo + n*q kokq
81/! 81[1
] kg.
CJQ o Q
7 and { being the cartesian co-ordinates along
Jo and kg, respectively, we obtain a partial
differential equation of order four

o Y > o2

and

B4 VG g bt
o9 29
,om [P oY\ of [ &dp me o
Tﬁ(éqa_tz+ Qar;)+Q(a§at2+ oz =0

which determines ¢ as a function of %, { and ¢
when the initial and boundary conditions are
known. (It must be remembered that m2; and
n?, are supposed to be spatially constant func-

. . 0
when p is determined o can

tions). Afterwards, 5

be found by means of eq. (3,2) above.

In the compressible case, the meridional
velocities may also in general have divergences
Vs-v different from zero. The most general
meridional velocity can be written as a sum of
two velocities
(3,5)
where p, is a solenoidal vector satisfying the
condition

v=vc+vs

Vavc=10
or, by sufficiently small dimensions of the motion
V-o=0

and p, is an ascendental vector satisfying the
condition
V Xwvp = 0.
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, According to these two conditions we may write (3.9) —AK
| , — =
o, o K
Ve T oy 1
Y 0t [ | [+ (7w +20- 87273 w0t
vp = —Va M
and . AT
o . awk +ov-My-wj:v Jv aM
U=z _— =
o) f v:dM
b4

Since v, in the general case will possess vorti-
cities different from zero, we shall also call this
vector the circulatoric part of the meridional
velocity.

Evidently, we need in the general compres-
sible case two equations in order to determine
the two components of p, or the two functions
U1 and a defined above. The first equation is
the equation for the acceleration of vorticity
which, according to the remark at the end of

Chapter I, is simply obtained by changing %Q-

in eq. (3,3) to ——zg

G
by (2,12), transforms to My given by (2,22).

Hence we obtain

Then particulary M, given

v v
— & l:atz +v- JW()] = 0.

The other equation is arrived at if we for instance
in one of the component equations of (2,24) in-

e . .
troduce for _6§ the expression in the pressure

tendency equation (2,8). Doing so for the y-com-
ponent we obtain

LR v-vP+%v3-v)—~Fv-vP+
+ ¢ Qo M, j=0
fV' 6t2 v 0 J—V.

It is easily seen that it will be much more
difficult to find solutions in the general com-
pressible case than in the incompressible one.
Owing to the compressibility, namely, we will
now meet with several kinds of motion which
are excluded in the incompressible case. In
order to obtain a survey of the different possi-
bilities, equation (2,18) ¢ will prove useful. By
the introduction of v, into this equation we
may write it

According to this formula we obtain as measure
f the stability

—AK

K

3,8 1,
(3.8) l:f(vs'ﬂ/))“+2U'SVPV3'vl)"*‘v'MQ'v:|

— (Aep

2

having put outside the integral sign an average
value of the expression within the brackets.
We now let the last expression determine the
stability for an arbitrary system of perturbations
and consider in comparison with that a perturbed
motion with velocities »" in which all distances
are multiplied by the factor L, and where o'} =
avp, v’ = by. With these assumptions we intend
in the most simple way to study the influence
on the stability from a change in the dimensions

of the perturbed motion and in the ratio %D— which

is now multiplied by the factor %.

this with r, we obtain as measure of the stabi-
lity in the new motion

(3,8) Tdi{ =

Denoting

)—l—v M,- v:|

[T(vs- vp)“’-(%) 420 STPYV, vy
(o

From this formula it is seen that if the dimen-
sions of the motion are steadily decreased and r
does not simultaneously tend to zero, we must
by sufficiently small dimensions, obtain

according to which stable conditions are now
existing. The corresponding phenomena of mo-
tion are those of sound. On the other hand,
if the dimensions are steadily increased and r does
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not simultaneously increase infinitely, we ob-
tain by sufficiently large dimensions

—AK - M4-v

K

According to what was said in Chapter IL
v-Mgy v is positive in the atmosphere, and a
less stable motion will generally be obtained if
the fluid makes use of its capability to expand
and contract. Neither of the two motions con-
sidered above, will accordingly be the less stable
one. However, it is seen from (3,8') that the
dominance of the stabilizing influence from the
first term by very small dimensions of the mo-
tion, can be fully compensated if r is sufficiently
small. Noting the meaning of the symbol r,
we can formulate the above results as follows:

1°. The less stable or most unstable motions,
or more generally, motions which are not similar
to that of the sound, will if the dimensions of
the meridional motion are sufficiently small, be
kinematically characterized by the circulatoric
part p; of the meridional velocity, vp being
small compared with v.

In connection with 1° above it is of interest
to notice that the large-scaled motions in the at-
mosphere obey the condition of incompressibility

Vs vy =0

with a relative error of about 10 %. In the at-
mosphere there will, owing to the variability of
the stability conditions, be a rather well-defined
limited room for the unstable motions. Conse-
quently, we can probably explain by arguments
similar to those above, why the motions in the
atmosphere generally approximately satisfy the
condition of incompressibility. This will be sub-
ject to a more thorough examination in the
second part of this work.

Below, we shall exclude motions which are
essentially sound motions. Further, we shall as-

sume the dimensions of the meridional motion -

to be so small that, according to 1° above, vy
can be supposed to be small compared with vc.
The equation of vorticity formation (3,6) will
then be approximately satistied for » = v, and
may consequently, if we also introduce

: A
M9 == m()z_lejo + 7'/20’&0’1/0 s Vo= a—c——J() p— 87 hO

be written

Geof. Publ.
oY > oY
(3:9) Vzﬁ +')’L20 517? 20 a—zz*—
06 06
[y, 00 BEPU g O
O \onot? on © \olot? ot

When solutions of this equation are found which
. 0
satisfy the initial and boundary conditions, a_lt)
can afterwards be found from eq. (2,24) which in
the case under consideration can be approximately
written
b _ pop o Qpe- M, — @22E

Then we can find the dynamical important diver-
gences /- vp from the equation of pressure ten-
dency which under the present conditions can
be approximately written

I's r
(3:11)V'UD =—\V%a :_Q"g‘—gvv'vp-

By means of this equation, which can be solved
with respect to the potential a, vp may be de-
termined. From the analytical expressions for
ve and wp it will then be possible to establish
more precise kinematic conditions for the above
approximate method of solution, which was
based on the assumption that wvp should be
small compared with we. This will be done
for the atmosphere in the second part of this
work.

If we compare eq. (3,4) with (3,9), the equa-
tions are seen to be quite analogous. The coeffi-
cients in the compressible case are simply ob-
tained from those in the incompressible one by

Ve —ve
e o

therefore both solved when solutions of the
differential equation

changing These equations are

Ry Y 2y
2 2 2

e TV T T
>y , O ol

, 0P
+0&ﬁ+maJ—O

are found. In order to obtain the solutions in
the incompressible and compressible cases, we
have in the solutions of (3,12) to substitute for
m?, n?, b and c, the expressions they are as-
suming in these cases, respectively. It must be
noted that the choice of co-ordinates is not the

(3,12) -+ b(

A " én
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same in the two cases, these having directions
along the principal axes of M, in the former
and along those of the tensor M, in the
latter case.

2. Solutions of eq. (3,12).

We are now going to solve eq. (3,12) by
the method of separation of the variables. We
assume a solution of the form
(3,13) Y = Y, cos vt - :—* Y, sin v*¢

where i, 11D, v and »* are independent of time.
The corresponding initial conditions are

Y=o = Uy, = 1/10(1),

bi—o
By the introduction of the above expression for
Y into (3.12) it will be seen that this equation
will be satisfied if and only if

Y 2
2,2y 70 2___,2y_ 10
a (m v?) P (m v%) e
oYy oyl
2__,2 20 —
. +b(n v)an +cim v)aé_ 0
) (n2 — 04y 2 p%2) 8_2%’(_1)
on? acz
Ry, ALY
2 ___¥a) T Y0 2 __ Y0 T
+ b (n? —»*2) o +c(m p¥2) o 0.

Tt is seen that the functions v, and vy, have
to satisfy analogous differential equations and
boundary conditions. 1t will be sufficient for
our purpose to find one of them, for instance
Y, corresponding to the initial conditions

It
Pi=0 = Y and ta—l = 0. The solution (3,13) as-

t=0
sumes now the form

(3,15) Y = Y, cos vt

As boundary for the meridional motion we ima-
gine a zonal tube having a parallelogram as
projection in the meridional planes. The position
of this parallelogram is, as indicated in fig. 2,
determined by the angles a, and ¢; which two
neighbour sides of the parallelogram form with
the #» — and { axis, respectively, and by the
pieces of lines, H: and H,, which the same
sides cut off from the respective axes. The
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positive directions for a, and a, are as indicated
in fig. 2. It is now immediately seen that the
boundary condition 1= const at the sides of

Fig. 2. Illustration of a boundary having a parallelo-
gram as projection in the meridional planes.

the parallelogram, is satisfied if we assume for
Y, the expression determined by

(3716) lr/’0:

ke (n —cotgay) <in It (¢ — cotg agn)
HZ ‘H3

gezz’]"{"zac Sin

k and | denoting arbitrary integers, and ¢ a
constant small of the first order. By the intro-
duction of this expression for v, into eq. (3,14)
we shall find that this will be satisfied then
and only then if

|+

k? I cotgla,

(n2_,,2) [%22_752 H—22 H .

M) ) [ [ o)
+b(n2——v2)x2+c(m2—v2)x3~0
(3,17) 9 (m2 — 92 2 (2 — 2
b (n? — ) 2y — 2 (M2 — %) 24 cotg

+ 6 (n*—?) — ¢ (m? —»*) cotg a, = 0
—2(n?-—»?) xycotg a; + 2 (m? —v?) 3,
— b (n? —»?) cotg a; ¢ (M2 —»2) =0

d (n?—»?) cotga; + (m? —»%) cotga, =0

From the eq. b and ¢ above we find

b
Ho — — 4~

1
(3,18) e
g = 5

Introducing these expressions for =, and x; into
eq. a, we obtain the frequency formula
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b? k* | Pootgias\] |
{Z e (H + *72—“)] -+

c? o P kzco’rg a\ |,
NIk =~ e

(3,19)

bZ 02

Z;— + e + (H 2 _{— H 2 +
k? co’cg oy, I%cotg? o,

T i,

The stability criteria of Chapter II p. 16 are

immediately seen to be confirmed by this fre-
quency formula:

A: m? and n? are both positive. Total stability.

According to the frequency formula above,
»2 will in this case be positive whatever the
k .
oy Hy oy, ¢z, b and c. The solution
(3,15) is in this case representing an oscilla-
tion with the frequency v along an invariable
system of streamlines determined by the func-
tion 4y, of (3,16).

B: m? and n? are both negative. *Total in-

values of

stabulity‘.

According to the frequency formula, »*
will be negative in this case. Consequently, »
will be imaginary and the solution (3,15) can
noy be written

Wy = Yy cosh vt = § vy (e e ).

Accordingly, there will in this case be a ten-
dency to generate circulations along an unvari-
able system of streamlines determined by (3,16).

. . 2
The instability is of an exponential type, —;i
v

being the ’time of flight<. (V. Bjerknesb 1938 p. 276).

O: m?* and n? have opposite signs. Conditio-
nal instability.

If we suppose in this case m? to be nega-
tive, it is seen from the frequency formula that
»? will be negative if

b? k2 2 cotg? o
—_ _|_ 72 7 2_i>) o
_;_*_ lz | kPeotg? 9:2) n2

This case corresponds to the case C of condi-
tional instability on p. 16.

Eq. d of (3,17) restricts the boundary con-
ditions essentially. Without this condition being
satisfied, no simple solutions of the form (3,13)
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will be possible. E. Hoiland (1938 Chapter 1V)
is the first one who has discussed more thor-
oughly the kinematic boundary conditions which
must be fulfilled if solutions of (3,12) having
the form (3,16) shall exist. The examinations
of E. Hpiland is limited to a special case of
(3,12) corresponding to the case of rotational
stability in a homogeneous, incompressible vor-
tex. In this case, the constants of eq. (3,12) are
determined by

me =0, n? =407
b=0, ¢ =0.

It is not difficult to extend his results to the
general equation (3,12). When we are now about
to do so, it is in order to examine whether re-
sults which are important to motions in the
atmosphere then can be obtained.

From formula (3,19) it is seen that the
value »* will always be intermediate those of
m? and n2 Consequently, m?—»? and ni—?
will have opposite signs. In connection with this,
cotg a, and cotga,, will as a consequence of eq.
d of (3,17) have equal signs. Having, as indi-
cated also in fig. 2, chosen the positive direc-
tions for @, and a; from the » — to the { axis
and from the [ — to the 7 axis, respectively,
it will be understood that no rectangular boundary
is possﬂole when «, and g5 are different from
zero. On the other hand, eq. d of (3,17) will
be satisfied if a, = «y = 0, corresponding to a
rectangular boundary. Consequently, there will
be one and only one rectangular boundary satis-
fying the condition d of (3,17), the sides of
which are parallel to the axes of co-ordinates 7
and (, i.e. parallel to the principal axes of the
tensors Mg and M, in the incompressible and
compressible case, respectively.

From eq. d of (3,17) it is found that

cotgas m? — 2
cotg a, n2 — ¥
m2-—y? .
If we here for — R substitute the expres-
.

sion obtained by means of eq. a of (3,17), we
arrive at

cotg ¢, —{— H . ;(17—{— cotg ay - cotg ag)

(3.20) Z2E0 = - .
cote @2 (1+cotga2-cotga3)

&€
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The expression for the solution ¥ will now
according to (3,15), (3,16) and (3,18) be given by

(3,21) v =

kn (5 —cotg eyl) .

@, sin b,
From (3,20) above it is understood that the in-
tegers k£ and I cannot be arbitrarily chosen
except in the case of a rectangular boundary
where a, and a; are equal to zero. Let us in
the latter case suppose H, and H, to be so
small that the function e—i®i+¢) in the solution
(3,21) can be neglected. Then we obtain the
approximate solution

lz (£ —cotg a377)cos v,

.k . Iad
W= ¢g8in i sin ) cos 71,

3,21’
(3.21%) T sin 7

As now k and I can be arbitrarily chosen, we
may obtain the solution corresponding to the
initial conditions

o
Yoo

g = —
fli=o = Yy, T

where %, now is an arbitrary function vanishing
at the boundary, by the series

o0
) == \ Qill —,7 sin l_ﬂ [e18]3] 1
= & & Vi
Yy 2& & H, H, kit

k=1,0=1
where the coefficients are determined by the
Fourier development of the function y,:

o0
! E sin kay sin Il
Yy = &k 7 IT "
70 k,1 D+ H2 H3
k=1,1=1

The system of streamlines given by (3,16)
consists of k-1 similar cellular motions. In the

case of only one singular cell we have b =1=1,

according to which the condition (3,20) must
now be written

b (1 + oot t
cotg a Z+H—22 (1 4 cotg a, - cotg ay)
(3,22) =

cotg a,

c2 752 -
T +173,§ (1 4 cotga, - cotg ay)

3. Elementary frequency relations.

In the preceding section we have found
simple solutions of the equations in question of
a trigonometric or exponential time dependency
and satisfying the boundary conditions given by

ON THE FRONTOGENESIS AND CYCLOGENESIS IN THE ATMOSPHERE 23

& parallelogram in the meridional planes. We
will now more generally suppose that the meri-
dional projection of the rigid boundary is a
closed curve which, without necessarily being a
parallelogram, shall be consistent with a solu-
tion of the form

(3,23)

In the incompressible case, the frequency »
is determined by the formula (2,18') b’ p. 14.

Sv-Mq-vdM
M

v = v, cos L.

»2

- fedM
M

which by the introduction of
Mo =miojojo + nPokiokq; v = v,jq + veke

can be written

S dM Svred M
3,24) 2 =m2, M n2, M
(3:24) qusz+ ® [vam
M i

Assuming n%q > m?,, it appears from the last
formula that »* must satisfy the following re-
lation

(3,25) miq < < nl.

This relation can also be found by means
of the circulatoric method of Hailand.

In the compressible case we can find the
lower limit for »* by means of formula (2,18') ¢’
on p. 14. According to the developments on
p- 15, the lover limit of the integrand i this
formula will be given by

v-My-v
where M, is the tensor defined by eq. (2,22).
Consequently, we must always have
Jv- M, viM
TS
. / vidM
M
Writing in this formula

My =mPyfojy + wokoky s v =v,j, + vk,

we obtain
JvrdM Jvrcam
25 g2 M ne M_
T am T [od M
b 14 M
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and, with the assumption #2,>m?,

(3,26) 2 S m?,

On the other hand, it appears from formula
(2,18") ¢’ that no wupper limit for »? exists as
long as we may concider the fluid as continuous.
These high frequent motions are those of the
sound, and the frequencies will be determined by

f (Vs 0)dM

J vid M

M

Excluding, however, motions similar to that of
the sound, we can also in the compressible case
obtain an expression for the upper limit of »2.
In order to arrive at this expression, we start
with the equation for the acceleration of vorti-
city (3 6)

U X —+v><v M+ —

ot?

VQ [
l a2

2 T U Ma} =0
from which, by an application of the theorem
of Stokes, the corresponding equation for the
acceleration of circulation is obtained:

(3,27) fét—z 57——fv-MU-6r+
L

—v6e [

Jrf_@ [8#
P

I is an arbitrary surface in the meridional plane
L its bounding curve. Substituting here
o
ot?
we obtain the frequency formula

v- M, (5r—}—f—-><1) M, idF

vér—}—f

We now suppose that the streamlines of p also
in the compressible case are closed curves along
which the velocity circulates in the same direc-
tion. This condition must, with a closed boundary
for the motion, be satisfied for the circulatoric
part p. of the meridional volocity p, but not
for the ascendental part pp. If now p¢ is great
compared with pp, then the condition in question
will also be satisfied for p, and therefore especi-

+v Mo}

:—'yzv

(3,28) »?
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ally for the motions we are searching for (cfr.
1° pp. 18—19).
Into (3,28) we substitute
v = VFry, or —I— (STI’]

and then take the circulation for the terms of
this equation round a closed streamline bounding
a surface of such a small area that the frequency,
with sufficient accuracy is determined by

_from

fvér

According to the above presuppositions, v is of
equal sign at all places of the streamline along
which it is integrated. We may therefore put an
average value of r;-M,-r; outside the integral
sign in the above formula. Doing so, we obtain

o Fvor

?’2 = Fr- M_;
Consequently, »2 will be intermediate the extreme
values of r;- M, -r;. Having

rr- My -rr=m?,rty, + n2yri;

we see that the extreme values of r;- M, r; will
be equal to m?, and n?,. Hence we obtain the
relation for the frequency

(3,2%) m?, <v? <.

Having assumed n2,>m?, this relation is quite
analogous to that in the incompressible case,
(3,25).

4. The general frequency formula for a
quadrangular boundary.

Let us below assume k=1I[=1 in the solu-
tion (3,21), and further H, and H, to be so
small that we in this solution can neglect the
function e—:@+ed and in the frequency formula
(3,19) and in eq. (3,22), the terms containing
the magnitudes b and c. Then we obtain approxi-
mately the solution
7 (n — cotg a,f) sin 7¢ (§ — cotg ag)

H, H,

the frequency formula
(3,31) »2=

_ (H?,--H?; cotgPay)m® - (H?, | H?, cotgiay) n?
Hz2, - H?, + H?;cotg?a, + HZ, cotgla,

(3,30) 1 = esin
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and the condition

(3,32) H?, cotga, — H?, cotga, =0

which must be satisfied at the boundary. The
function @ of (3,30) will now be the solution
of the differential equation

oY
D

2 Py

(3,33) \Vid R

o*y
+n23—77§

having as boundary a parallelogram satisfying
the condition (3,32), and a frequency deter-
mined by the frequency formula (3,31). By
more general boundary conditions, solutions of
(3,33) will also be solutions of (3,12) provided
that the dimensions of the motion are suffici-
ently small. Let us now suppose a square to
be the meridional projection of the boundary
for the motion. The conditions, which this square
must satisfy if solutions of (3,33) shall exist
having the form

(3,34) Y1 = 1y cos 1,

can be found together with the corresponding
frequencies, by a method quite identical to that
used by Hpiland (1938 p. 51) in his examination
of the earlier mentioned (p. 21) special case of
eq. (3,38). The above function will be the solu-
tion of eq. (3,33) if and only if

2y

iy .
on? o

(8,35) (0t — %) G (mt—r®) g
If the co-ordinate system (y, {) is turned an
angle f, the last equation, if referred to the new
system (', ('), must be written

2 (m? + n® — 2+2) sin f cos B Zj;'f

(3,36) +[(m2—»%) sin® § -+ (2 —12) cos? ] -
yi

o’

=0

+[(m?—»?) cos? f 4 (n*—1?) sin? ] ot

having introduced

ZUN

oY,
=V, gy =
or’ "oy

= — V¢

According to the relations (3,25) and (3,29) of
the preceding chapter we have always

(m? — »?) (n? — »?) < 0.

® 2 (m* 4 n? —2»*)sin B cos B aa%;’—;
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According to this, there will exist two angles
B, and {3, satisfying the equation

(3,37) (m? —?%) cos? 8 + (n? —?) sin% B = 0,

Let us now suppose that %’ and ¢’ are co-ordi-
nates in a system which appears if (n, ) is
turned an angle 8, or 8,. Transformed to these
co-ordinates, eq. (3,36) will, according to (3,37),
be reduced to

’

’

+ [(m* —»?) sin  + (n? — »?) cos? 3] 631{7;;, = (.

By an integration of this equation we obtain
B.-v = f({)
having introduced the notation B defined by
2 (m? + n? — 2»?) sin B cos B,
+ [(m? —»?) sin® B 4 (n? —»?) cos? B] K¢

The right-hand side of (3,38) will depend only
upon {' and B must in the general case of
m? ==n? be different from zero.

(3,38)

Let us first consider the straight line

C’=C1

passing through the edge P,:(b;, ¢,) of the
square P,P,P,P, of figz. 3. The corresponding

Fig. 3. Tllustration of a boundary inconsistent with
a solution of the form vy = v, cos st.

constant function f(c,) of (3,38) must vanish
because this equation has to be satisfied by
v (b, c;) =0. We may therefore write

(3,39) B.v (', c)=0.

Suppose now the straight line ¢’ = ¢, not to be
a diagonal of the square, and denote with §
the intersecting point between (' =¢; and the
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side P,P, opposite to the edge P,.
to (3,39) we must have

B-v(8) =0.

According

This relation must now also be valid if 8 denotes
an arbitrary point of the side P,P;, B being
a constant vector and all velocities at the side
P,P; having equal directions. In the same way
we obtain that

B.v(8Y=0

*
when §’ here denotes an arbitrary point of the

opposite side P,P,. For all values of {” in con-
sideration we must therefore have f({') = 0, and
consequently, (3,38) is reduced to

(3,40) B.v=0.

According to this relation, however, the stream-
lines must be parallel straight lines which is in-
consistent with the condition

V-v = 0 (in the compressible case \7-v, = 0)

and the boundary conditions, except in the case
v = 0. Consequently, the diagonals of the square
must be parallel to the directions determined by
the angles f, and f, which satisfy eq. (3,37).
According to this equation, we have

Bi + 82 = m.

The diagonals of the square must therefore be
symmetric to the  — and { axis. Remembering,
that the co-ordinates have been chosen along
the principal axes of the tensors Mg and M, in
the incompressible and compressible case, respec-
tively, we may form the result obtained, as
follows:

1°.  The differential equation (3,33) can by
a quadrangular boundary have solutions of the
form
W =1, cos vt

only if the diagonals of the square are symme-
tric to the principal axes of

ve

Mo= -+

°TQ

in the incompressible case, and to the principal
axes of

M, — i_g—@ STP + N2OR;

in the compressible case.
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It can be shown that condition 1° also is
sufficient. The frequencies or *times of flight‘ are
determined by (3,37) from which we find the
general frequency formula

(3,41) ¥2 = m? cos? # -+ n?sin? .

As an interesting consequence of this formula,
we observe that all squares corresponding to a
given value for # will have equal frequencies or
‘times of flight. 1In fig. 4 we have as an illu-
stration of this result drawn to squares corres-
ponding to precisely the same frequency.

Fig, 4. Illustration of two boundaries consistent with
a solution of the form w = vy, cos»t and corresponding
to equal frequencies.

Evidently » in the stable case is a measure
of the stability, and é in the unstable case a
measure of the instability -of the motions. If
therefore m? is the algebraically smaller one of
m? and n?, it is seen from the frequency formula
above that the less stable or most unstable
motions will be characterized by an angle §,
(31 < B,) which is as small as possible, i.e., for
motions which are directed as much as possible
in the direction along whick the vector compo-
nent of Mgy or My has its algebraically smallest
scalar value.

If required, we may by simple geometrical
considerations confirm the frequency formula
(3,31) and the condition (3,32). Here we shall
only consider the case with a rectangular
boundary. Evidently, the diagonals of the rect-
angle can only then be symmetric to the co-
ordinate axes n and £, if the sides of the rect-
angle are parallel to the co-ordinate axes. Let
us suppose the sides to have lengths H, and H,
along the 7 — and { axis, respectively. Then
we must have
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cos? § = H?, _ sin?d— — A2 In applying to the atmosphere the results

H2, - H2) ’ H?, + H?, just obtained, we have to remember that one
of the sides of the square must coincide with
the surface of the earth. It will therefore be
important to determine the direction of the
principal axes of My relative to earth. As will
be shown in the second part of this work, this
in accordance with the frequency formula of is easily done by means of the expression (2,20)
(3,32) when « is equal to zero. defining the tensor M.

which, if introduced into the frequency formula
(3,41), gives

H2m? -+ H2n?
H?, ++ H%

2
22—

2

Vervarslinga pa Vestlandet
Bergen, October 1944,




[§)
Q0

RAGNAR FJORTOFT

e

Geof. Publ.

REFERENCES

Bjerknes, V. (1937): Application of Line Inte-
gral Theorems to the Hydrodynamics of Ter-
restrial and Cosmic Vortices. Astrophysica
Norvegica, Vol. 11, No. 6. Oslo 1937.

Ertel, H. (1941) Tensorielle Theorie der Stabili-
tat, Meteorol. Zeitschr. 1941. p. 389.

Fjortoft, R. (1942): On the Deepening of a Polar
Front Cyclone, Meteorologiske Annaler, Bd. 1.
Nr. 1. Oslo 1942,

Godske C. L., and J. Bjerknes (1937): On the
Theory of Cyclone Formation. Asirophysica
Norvegica. Vol. 11, No. 6. Oslo 1937.

Helmholz (1888): Ueber atmospharische Beweg-
ungen. Meteorol. Zeitschr. 1888, p. 329.

Hoiland. E. (1939): On the Interpretation and
Application of the Circulation Theorems of
V. Bjerknes. Archiv for mathematik og natur-
videnskab. B. XL II. Nr. 5. Oclo 1939,

— (1941): On the Stability of the Circular Vor-

tex. Avhandlinger utgitt av Det Norske Viden-
skaps-Akademi i Oslo. I. Matem.-Naturv.
Klasse 1941. No. 11. Oslo 1941.

Kleinschmidt, E. (1941): Stabilitatstheorie des
geostropischen Windfeldes. Annalen d. Hydrogr.
u. mar. Met.,, LXIX. Jahrg. (1941), Heft X.
Berlin 1941.

Molischanow, P. (1933): Bedingungen des Gleich-
gewichts und der Stabilitit der Luftmassen
nach der Horizontalen und der Vertikalen.
Peterm. Mitt., Erg.-Heft Nr. 216, p. 62. Gotha
1933.

Raethjen, P. (1941} Labile Gleitumlagerungen,
Annalen d. Hydrogr. u. mar. Met., LXIX.
Jahrg. (1941), Heft X, Berlin 1941.

— (1939): Konvektionstheorie der Aufgleitfron-
ten. Meteorolog. Zeitschr. 1939, p. 95.

Solberg, H. (1936): Procés-verbaux de 1'Associa-
tion de météorologie, Edimbourg Septembre
1936.

Printed 3d May 1946.
GRONDAHL & 30XNS BOKTRYKKERI




