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PREFACE

These investigations have been carried out as part of a project on synoptic
and theoretical investigati of the circulation in the troposphere. The project is
sponsored partly by the Norwegian Academy of Science through its “Committee on
Variations in Weather and Climate” and partly by the Norwegian Council for Aca-
demic Research.




ON HORIZONTAL MOTION IN A ROTATING FLUID

BY
EINAR HOILAND

(Manuscript received March 24th 1950)

1. The Induced Circulation and the
Induced Vorticity.

In a system of coordinates rotating with
the earth the equation of motion for an ideal
fluid in horizontal motion assumes the form

D

(L) = —sVup—2Q,xv, v, =0.

% is the horizontal component of the indivi-
dual time derivative of the velocity v, i. e. the
horizontal acceleration of a fluid particle, —<7;;p
is the horizontal component of the pressure
gradient, Q, the vertical component of the
earth’s angular velocity and v, the vertical velo-
city here assumed to vanish.

The circul of the 1
a closed curve is given by

1.2 j%-dr:l\i(p,s)~j29,xn~6r,

where dr is a line element of the curve and N (p, s)
the number of isobaric-isosteric solenoids embraced
by the curve.

Disregarding the effect of baroclinicity, i. e.
neglecting the solenoid term, our equation re-
duces to

(1,3)

around

$o e = — 2050 0m
The solenoid term N (s, p) will vanish when:
1. The fluid is autobarotropic, i. e. when
the equation of state is the same for all par-
ticles and of the form s = s (p); or

2. The equation of state is of the form
s =s(p,?) where # is the temperature, the mode
of motion however so that isobars and isotherms
coincide (barotropy).

The left-hand side of our last equation, i. e.
the circulation of acceleration, can by a well
known procedure be transformed to denote the
variation per unit time of the velocity circula- -
tion ¢ around the material curve coinciding at
the moment with the considered closed curve.
Hence we obtain:

(1.4) Z—L€=—fzg,xu~ﬂr.

This variation of velocity circulation is
entirely due to the earth’s rotation. We shall call
it the induced circulation on account of its simi-
larity with the induced electric current in a
closed conductor in motion relative to a mag-
netic field.

This similarity will appear clearly in our
developements below.

If the closed line is a stream-line, then v
and dr are parallel. Hence it follows that

(1,5) e

for a closed horizontal stream-line in the baro-
tropic atmosphere. This equation shows that
we can never in the barotropic atmosphere have
horizontal oscillations within cells (for instance
rectangular cells) and we can have no standing
oscillations. A standing oscillation can always
be split up into two waves propagating in oppo-
site directions, the positive and negative direc-
tions being equivalent. This is not the case
for horisontal motion in our system. A wave
can only propagate in one direction.
Transforming by Stoke’s theorem the con-
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tour integral on the right-hand side of equation
(1,3) into a surface integral, we obtain

(1,6) % ~_2\/‘(,; V2, + Q.7 -v),

where 3 is the area in the horizontal plane en-
closed by the considered curve. Considering the
effect of horizontal divergence, we find the well
known result that positive horizontal divergence
will produce anticyclonic circulation while nega-
tive horizontal divergence or horizontal conver-
gence will produce cyclonic circulation. In the
following we shall neglect the divergence term
and ider the fluid as i 3¢
tion (1,5) then assumes the form

ac . )
= —zf(wv!):) do.

Since £, is a function of the latitude ¢ only,
this equation can further be written

a0 2 aQ,

kI —Ef % O

where @ is the radius of the earth, and v,
the northward velocity.

This equation clearly reveals the physical
principle underlying the “effect of the variation
of the Coriolis’ parameter”. If, namely, a plane
closed curve consisting of fluid particles, for in-
stance contained in a closed tube of infinitesimal
cross-section, rotates relative to the earth, so
that the component £, of the earth’s angular
velocity along the perpendicular to the tube (the

essible. Equa-

()

plane of the tube) has an increase d;t)'—"per unit
time, then the velocity circulation in the tube
will increase at a rate

where X is the area enclosed by the tube. This
is the induced circulation in an incompressible
fluid, which is completely analogous to the in-
duced electric current in a closed conductor
moving 1n a magnetlc field so that the number
of d losed by the d

varies wibh time. The formal conformity be-
tween the two cases will appear if we consi-
der the flux of the constant vector 2Q. If
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N be the total flux encircled by our curve,
then

d0 _ dN
KT

That this induced circulation must appear is
easily understood. Assume for instance that
the plane of our tube at a given moment is
parallel to the earth’s axis (N = 0), and that
there is no relative circulation in the tube at
that moment (the constant in the last of eq.
(1,8) represents the circulation in the absolute
motion). Now let the plane of our tube at
another instant be perpendicular to the earth’s
axis. If we still had no relative circulation in
the tube, we would in the absolute motion have
a circulation on account of the rotation of the
earth and with a direction given by that rota-
tion. But such an absolute circulation would
contradict the law of conservation of circulation
in absolute motion (Kelvins law). To avoid this
absolute circulation we must therefore have in
the tube a relative anticyclonic circulation. This
is the induced circulation.

A horizontal curve which is being transported
horizontally northwards or southwards will
rotate around an axis perpendicular to Q. The
total, flux encircled by the curve will therefore
vary. Hence the induced circulation. It is
easily verified that the right-hand side of eq.
(1,7) gives just the variation per unit time of
the total flux encircled by the curve arising
from the northward velocity v, of its individual
points.

From eq. (1,6) or (1,7) we find for the in-
duced vorticity per unit time corresponding to
the induced circulation per unit time

D 2 dQ,
(1,9) d—f = —73’;”w=—ﬁvw
where { is the relative vommty We have in-
duced the

(1,8) or 0= —N + const.

ﬂ:f_@_g,ﬂ‘“

8@
ady ~  a

(1,10)

for the “variation of the Coriolis’ parameter”.
Eq. (1,9) can be integrated individually.

We obtain

(1,11) {=10—2Qsinq.

where £, is the absolute vorticity of the consi-

dered particle.
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2. On the Fundamental Effect of the
lnllnced Vortlclty on the Motion in
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If the relative vorticity is of about the
magmtudo observed in large scale motion in the
here, a fluid particle which is transported

y Cy and Anticyclones.

It appears from the discussion in the pre-
ceding section, explicitely from formula (1,9) or
from (1,11), that the induced vorticity will pro-
duce an increase of vorticity for a southward
moving particle while a decrease of vorticity is
obtained for a northward moving particle.

Suppose that we in a region have a sta-
tionary system of closed stream-lines, Fig. 1,

Fig. 1.

with for instance a cyclonic circulation along
the stream-lines, and suppose also that the
vorticity is cyclonic within the whole region.
A particle moving along a stream-line will on
account of the induced vorticity have the
smallest relative vorticity at the northernmost
point of the stream-line and its largest vorticity
at the southernmost point of the stream-line.
Thus at the southern part of the region we
must have a greater cyclonic vorticity than at
its northern part. If the curvature of the
stream-lines at their southernmost and northern-
most points are not much different, the diffe-
rence in relative cyclonic vorticity at the two
points will give rise to a greater cyclonic shear
at the southern point than at the northern point.
From the centre of the cyclone the velocity will
therefore increase more rapidly towards south
than towards north, and we obtain a stream-
line picture as that drawn in Fig. 1. A4 stationary
cyclone will have a motion asymmelrical in the
south-north direction with the most intense motion
south of its centre, where we have westerly winds.

from a point sufficiently far south of the centre
to a corresponding point north of the centre,
may by the influence of the induced decrease of
vorticity, have lost its entire cyclonic vorticity on
arriving at the northern point. If the stream-lines
are closed in this region, the vorticity at the
northern point must then be zero, and if we have
still more closed stream-lines, the vorticity must
be anticyclonic north of the point where we had
zero vorticity, Assuming the curvature of the
closed stream-lines to be cyclonic, the shear
must become anticyclonic at a point south of
the point with zero vorticity. Thus the velo-
city must begin to decrease at some point
south of the point with zero vorticity. Passing
northwards from the point with no shear, the
velocity must decrease and at last become
zero. Where the velocity becomes zero we have
a hyperbolic point with a stream-line inter-
secting itself, and forming a bow which represents
the last closed stream-line, Fig. 2 (in the dia-
grams cyclones are denoted by C). North of

the hyperbolic point we again get westerly winds.
If the hyperbolic point coinides with the point
where the vorticity is zero, the stream-line will
intersect itself at right angle. If the hyperbohe
point is above that point, i. e. if the vorticity
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at the hyperbolic point is anticyclonic, the angle
opening towards north (or south) must be the
greatest, while if the hyperbolic point is below,
i. e. if the vorticity at the hyperbolic point is
cyclonic, the angle towards east (or west) will
be the greatest.

The motion within and around & stationary
anticyclone can be analysed in the same manner
as for a cyclone. We arrive at the result: 4
stationary anticyclone will have a motion asym-
metrical in the south-north direction with the most
intense motion morth of its centre, where we have
westerly winds, Vig. 3 (in the diagrams anticyclones
are denoted by 4). Thus, both for a cyclone and for

Fig. 3.

an anticyclone the westerly winds will be stronger
than the easterly winds. Further: The hyper-
bolic point for an anticyclone will be situated
south of the centre, Fig. 3. South of the hyper-
bolic point we again have westerly winds. If
the vorticity is zero at the hyperbolic point, the

e
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Fig. 4 A.
Cyclones
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stream-line branches through the point will in-
tersect at a r'ght angle. Tf the vorticity is
cyclonic at the hyperbohe point, the angle
opening towards north (or south) must be the
greatest, while if the vorticity is anticyclonic at
the pomt, the angle opening towards east (or
west) must be the greatest.

We have considerel cyclones and anti-
cyclones with hyperbolic points above (north of)
and below (south of) the centre respectively.
Another arrangement which is also 2 possible
stetionary motion is to have the hyperbolic
points to the left and to the right of the centre.
We will then get stream-line patterns as shown
in Fig. 4. The asymmetry of the motion will
again correspond to stronger westerlies than
easterlies within the cyclones (anticyclones).
Along a latitude circle we will have a row of
only cyel or only anticycl . The cycl
divide between an easterly flow north of the
row and a westerly south of it, while the anti-
cyclones divide between a westerly flow north
of the row and an easterly south of it. The
stream-line patterns in Fig. 4 originate from
the same circumstances as do the “cat’s-eye”
patterns studied by Lord Kelvin [1]

The isobar patterns in the stationary cyc-
lones-and anticyclones will be similar to the
stream-line pattern. The centre and the hyPelh
bolic points will coinside in the two patterns.
On a stream-line the pressure must be lowest
where the velocity is greatest to give the required
accelerations along the stream-line. Hence, to
secure stationary conditions the isobar pattern
must have a less pronounced asymmetry than
the stream-line pattern in a cyclone while in an
anticyclone the stream-line pattern will have
the least pronounced asymmetry. (See Figs. 2
and 3 where the dotted lines represent the
isobars).
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Fig 4B.
Anticyclones.
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Fig. 5 A.

If the fluid is contained within for instance
a rectangular basin we will get a stream-line
pattern as drawn in Fig. 5 A when the vorticity
is cyclonic within the basin, and as that drawn
in Fig. 5 B when the vorticity is anticyclonie.
The problem to find analytic solutions for sta-
tionary miotions in such basins may turn out
to be a very difficult one on account of the
asymmetric conditions at the western and eastern
boundaries. This asymmetry prevents the ordi-
nary analytic continuations of the solution giving
east of and west of the basin motion in cells
identic with the considered basin with alter-

Fig. 5 B.

along the stream-lines. At the western part of
the basin we will have a motion towards the
south. Therefore the cyclonic vorticity here
will increase. At the eastern part, where the
motion is directed towards the north, the eyc-
lonic vorticity will decrease. The result is a
more intense motion at the western part than
at the eastern part of the basin. As is easily
seen, by the same reasoning, we will obtain the
same asymmetry if we start with an anticyc-
lonic vorticity. The results for a “free” stati-
onary circulation in a rectangular basin given
above do suggest, however, that also the exact

nately cyclonic and anticy lation. The
asymmetry found here for stationary motion in
rectangular basins seems to contradict the results
found by Stommel [2] and Munk?) who find an

sy try in the t t  direction with
most intense motion at the western part. There
is, however, no discrepancies between their re-
sults and ours. Stommel and Munk consider a
forced circulation with friction and disregard
the field accelerations, while we are considering
a “free” circulation and are taking into account
the field accelerations. A case more analogous
to the Stommel-Munk case will be to consider
the result of the following produced circulation
in the basin. Consider the fluid at rest in the
basin being subject to accelerations which after
a short interval of time render to every fluid
particle the same positive relative vorticity.
Then we will get approximately a symmetric
stream-line pattern with a cylonic circulation

1) Tn a paper not yet published

qQ for the case considered by Stommel
and Munk will lead to a slight asymmetry in
the north—south direction.

3. On P Cycl 1
Above we have discussed stationary cyec-
lones and lones, where stream-li and
trajectories coincide. We shall now discuss the
case when the stream-line pattern has a propa-
gation relative to the fluid, and we limit our
considerations to the case when the hyperbolic
point is above (eyclone) or below (anticyclone)
the centre. Let us for instance assume that a
stream-line pattern with some closed stream-
lines is propagating towards east with a velocity
¢, and that the pattern apart from this propa-
gation is unchanged. We shall denote this mode
of motion a permanent motion to keep it distinct
from the stationary motion. In a coordinate
system following the pattern we will then again

Anti
and 'y
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have a stationary motion with the asymmetry pro-
perties pointed out above. Now to get the
stream-line pattern in a coordinate system fol-
lowing the earth in its rotation we must add
an easterly flow (a westerly wind) with a velo-
city ¢. This velocity will intensify the westerly
field of motion, and weaken the easterly field
of motion. The points with velocity zero in the
coordinate system following the pattern will now
both of them be situated in the westerly part
of the flow in a coordinate system following the
earth. Hence, to an observer at rest relative
to the earth the region of westerly winds will
appear larger, and the region of easterly winds
smaller, than to an observer following the
pattern. From the considerations above, some
interesting results may be drawn.

1. Since the motion becomes stationary in
the coordinate. system following the pattern, the
stream-lines will also represent the paths or
trajectories of the particles. If then in this
coordinate system closed stream-lines exist, the
mass within the outermost closed stream-line
must be conserved.

2. If a cyclone with closed stream-lines is
propagated with unchanged pattern towards the
east with a moderate velceity (with moderate
velocity is meant a velocity less than say half
of the greatest velocity in the mean flow), it will
have more closed stream-lines when observed
from the coordinate system following the cyclone
than when observed from the rotating earth.!)
Thus a greater region around the center of the
cyclone than that within the outermost closed
stream-line observed from the rotating earth
will consist of the same airmasses which follow
the eyclone in its motion. If for instance the
temperature (assumed also steady in the accompa-
nying coordinate system) may be considered as
a quantity which is conserved, then the region
with closed isotherms will be greater than the
region with closed stream-lines. (This is, of course,
in our mcdel exactly fullfilled for the lines of
constant absolute vorticity).

%) For large scale motions we will i goneral have
small ions, and theref imatel

geostrophic wind in both systems of reference.
This is possible, in spite of the quite different
stream-lino patterns in the two systems, since wo
have different horizontal surfaces, and therefore
also different isobar patterns in the horizontal
surfaces in the two cases.

Geof. Publ.

3. A cyclone with constant area when
considered from the earth, will cover a larger
area in a system moving with the cyclone, the
higher its speed of propagation towards the east
(under the above defined limit). One should
therefore expect that cyclones, which cover a
very large area when considered from the earth,
should have the greatest chance to rest or move
west-ward.

4. A cyclone propagated towards the west
with unchanged stream-lines, will be of smaller
extent than the pattern shown in a cocrdinate
system following the earth. If the temperature
is a conservative property, then the region of
closed isotherms should also be of smaller extent
than the region of observed closed stream-lines.
Thus cyclones going towards the west should,
ceteris paribus, be of greater extent than those
going towards the east. For a sufficiently great
velocity of propagation towards the west, we
will have no closed isotherms.

5. For anticyclones we get results quite
analogous to those obtained for cyclones.

6. For an east-going permanent cyclone the
centre will in the accompanying coordinate
system be situated south of the centre observed
from, the earth, and the more so the higher the
speed of propagation toward the east. If again
the t e may be idered as conserved,
we will for east-moving permanent cyclones have
a situation as drawn in Fig. 6 A, while for west-
going cyclones we will have a situation as drawn
in Fig. 6 B. For icycl the corr di
situations are drawn in Fig. 6 C and D.

Above we have considered cyclones and
anticyclones propagated towards the east or
the west with unchanged stream-line pattern.
It is easily seen, however, that a slight depar-
ture from the stationarity conditions will not
alter much the north-south asymmetry. We
will still as a general rule obtain that cyclones
and anticyclones will have most intense motion
where the wind is towards east (westerly wind).
And if a cyclone or an anticyclone has a pro-
pagation towards the east or the west, with a
slow change of the stream-line pattern, we will
in a coordinate system following the pattern,
have a motion differing not very much from a
stationary motion. If in this accompanying
coordinate system closed stream-lines exist, the
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Fig. 6 A. Kast-movmg cyclone.

Fig. 6 C. East-moving anticyclone,

ON HORIZONTAL MOTION IN A ROTATING FLUID

Fig. 6 B. West-moving cyclone.

Fig. 6D. West-moving anticyclone.

Solid curves: stream-lmes. Dashed curves: isotherms (or lines of constant absolute vortieity).

air within the outermost closed stream-line must
for the most of this region be conserved. All
the above results deduced for unchanged stream-
line pattern, will therefore as a first approxi-
mation be true also for cyclones and anticye-
lones when the stream-line patterns are changing
slowly with time.

We return to the consideration of perma-
nent cyclones and anticyclones. We saw that
the air within the outermost closed stream-line
in the coordinate system following the pattern
was conserved, and would accompany the cye-
lone or anticyclone in its motion. For a cyclone
propagated towards the west we also saw that
this outermost closed stream-line would enclose
a smaller region than the outermost stream-line
observed from an observer following the earth

greater than the strongest easterly wind observed
in the cyclone or anticyclone, there will exist
no closed stream-lines in the accompanying
coordinate system. Then no of the air within
the cyclone or anticyclone will be conserved. It
will be transported towards the east relative to
the moving cyclone or anticyclone. For cyclones
and anticyclones propagated towards the east
we have seen that for moderate velocities of
propagation the outermost closed stream-line
will, ceteris paribus, enclose a greater region
the greater the eastward propagation. This will
be true as long as the eastward velocity of
propagation is smaller than the greatest east-
ward velocity north of (south of) the hyperbolic
point for a cyclone (for an anticyclone). We
shall not here discuss the possibility of greater
3 . .

in its rotation. If the pattern is prop
towards the west with a velocity equal to or

1 of propag
We saw in the preceding section that the
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hyperbolic points and the centres would coin-
cide for the stream -line patterns and the lsobar
in 1 and anticy
Thls will not be the case when we conslder a
(p ing) cyclone or anticyel
As is readily seen the centre and the hyperbohc
point in the stream-line pattern in a permanent
cyclone propagated towards the east will have an
acceleration towards the south. At these points
we must therefore have a pressure gradient
directed towards the south. From this it fol-
Jows that the hyperbolic point in the isobar
pattern will be situated north of the hyperbolic
point in the stream-line pattern while the centre
in the isobar pattern will be situated south of
the centre in the stream-line pattern. The oppo-
site is true for a permanent cyclone propagated
towards the west. Considering a stationary cyec-
lone with the corresponding pressure field, an
addition of a southward directed pressure gradient
may have as a consequence propagation of the
cyclone eastward, while the addition of a north-
ward directed pressure gradient may cause a

Fig. 7C.
South-moving anticyclone.
Solid curves: stream-lines.

In all the cases considered sma.ll devmmons
from the phic wind relati p app
to be necessary to keep the motion stationary
or permanent.

We shall in a later section see how this
will also appear from an analysis of the impulse
given by the Coriolis and pressure forces.

Geof. Publ.

westward propagation of the cyclone. An anti-
cyclone propagated towards the east will behave
in the same manner as a cyclone propagated
towards the west, while an anticyclone propa-
gated towards the west will behave in the same
manner as a cyclone propagated towards the east.
Thus an addition of a south-ward directed pres-
sure gradient to the stationary pressure field
may cause the il to be prop d
westward while the addition of a northward
directed pressure gradient may lead to a propa-
gation of the anticyclone towards the east.

We have hitherto considered a propagation
of permanent cyclones and anticyclones along
latitude circles. Since our results concerning the
propagation are based on purely kinemathical
reasoning, we can of course apply our method
for investigating propagation in other direc-
tions. For a propagation in the south—north
direction we obtain for instance the cases illu-
strated in Fig. 7 A, B, C and D corresponding
to the cases illustrated in Fig. 6 A, B, C and D.

Fig 7D.
North-moving anticyclone.

Dashed curves: isotherms (or lines of constant absolute voticity).

4. Some Exact Stationary Solutions of
Equation (1,9).

In this section we shall mainly consider
solutions of equation (1,9) representing statio-
nary motions. In a stationary motion the equi-
scalar curves for the absolute vorticity must
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coincide with the equiscalar curves for the
streamfunction v, i. e. we must have
(4,1) La=Ffw).
Introducing this in eq. (1,11) we obtain:
L4 2Qsing = [(y),
or since we have
{=—Viy,
.2 Tty = —f(y) +2Qsing.
This equation determines all stationary solutions
of equation (1,11).

The relationship (4,1) may be chosen quite
arbitrarily. We shall in this paper discuss only
the case that we have proportionality between
absolute vorticity and value of the stream-
function, i. e. we put
(4,3) I (y) = k.

Equation (4,2) then assumes the linear form
(4,4) Ty = — Py 4 2 Qsing.
This equation has the solution

5 p= \”‘ St P sin g) fsinm &

+ B cosm &] + Cy P, (sin ¢) +

a%i— 5 sm(p

P, is the associated Legendre function of
degree # and order m, with
(4,6) n(n 4 1) = a’k2
Owing to the periodicity of the motion around
latitude circles, m must be an integer. To
satisfy the conditions at the poles &k must be
chosen so that 7 is a positive integer. P, 1s
the Legendre polynomial of degree #. @ is the
angle of longitude, and 4,*, B,” and C, are
constants.

Before discussing the solution (4,5)!) we shall

%) I had originally wntten a special paper where T
had given the deduction and & detailed discussion
of the solution (4,5) and also the corresponding
solution for propagating waves. However, the same
day that the papers should have been presented
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consider equation (4,4) in the approximation
that # in equation (1,9) can be treated as a
constant, i. e. only the first order term in the
Taylor series developement for the induced vor-
ticity is taken into account. Furthermore we
neglect the curvature of the earth at the lati-
tude in question so that we can write the equa-
tion (4,4) in the form

Py tangéy _

(4,7) P @ by

—ky By,
where the axis X is directed eastward, the axis
Y northward. The last term on the left-hand
side of the equation represents a correction due
to the fact that in our Cartesian coordinate
system a line clement parallel to the X-axis
will represent a shorter real distance the further
north the element is situated.

Equation (4,7) has a solution with v, = 0
for y = 0 given by:

Yy = Ae o sml/(k“—u’)—v%)ﬁ-ysmpr
tan ¢ T tan? .
+Be%”[sinl/k27t%%g—y
_ 3, ftang
+0eosl/1c2 yJ+Fy W

Denoting by » the wave number in the Y-direc-
tion i. e. putting

tan? g
4a?

5 N tan? ¢
(48 2=kt —pr — =T or
2
Bt o Lau 4[)

we obtain

tan g
(4,9) y;=AeTn,” ysin vy sinpux

ta

+ Bei

for print, Mr. Eliassen drew my to a
paper by Richard A. Craig in The Journal of Me-
teorology [3] where the solution for propagating
waves was deduced. After that this seetion has
been rewritten to incorporate mainly those results
of my discussion which I don’t think has been
published before. In Mr. Craig’s paper the solution
for propagating waves corresponding to the solu-
tion (4,10) was also deduced.

g B tan g,
tanl ( 2+’2+t&n w) a

For the waves considered we will generally
assume

+
22

4
> o
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If then ¢ is less than about 60° we can with
an error of less than about 109, neglect the
terms containing tan ¢, and obtain

(4,10) y=Asinxzysinpux
+ B(sin /2 ity 4 C cos A2+ iity)
B
Taey
The differential equation (4,7) reduces to

Py @
%+$=—k‘w+ﬁy,

i. e. the “scale-effect” drops out.

0

(4,11)

We shall in
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the following only discuss cases where this effect
may be disregarded.

In the spesial case that the term periodic
in « is independent of y, we obtain:

(4,12) = A sinuz + B (sinuy -+ Ccos py) +/—§y

= Asinpa + B'sing (g +9) + Ly

where y is also a constant. For B’ =0 this
solution reduces to Rossby's well known sta-
tionary wave with stream-lines as shown in
Fig. 8 A. For B’ different from zero we get
stream-lines as those shown in Fig. 8 B, where B’

//—:\\

Tig. 8 A.

\_/

o
>
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Fig. 8 B.
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and y are chosen so that the velocity profile
takes the form shown at the right side of the
diagram.

Putting B equal to zero, the solution (4,10)
reduces to the solution given by Haurwitz [4].

When 4 <— we get stream-lines as

s
ACEYE)

Fig. 9 A.

In Fig. 10 are drawn the stream-lines in a
case when B and C are different from zero.
The corresponding velocity profile is again shown
at the right side of the diagram. If we haveno
rotation, # becomes zero, and the solution (5,10)
reduces to:
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=

those shown in Fig. 9 A. No closed stream-
__B
When A>”(%2 r
stream-lines as those drawn in Fig. 9B. In
the northern part of the layer cyclones appear,

in the southern part, at a longitude intermediate
bet the 1 3 lones appear.

lines appear. we getb

)

%

Fig 9 B.

(4,13) = Asinzysinuz
+ B (sin /2 + 2y + Ccos /& + 12 y).
Puttmg B equal to zero we refind the solution

Fjortoft, however, developed it for

Fig 10.
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infinitely small des of the disturb
of the mean flow, while our deduction shows
that it is valid also for finite amplitudes.

All the solutions given above will in another
system of reference represent propagating waves.
Let us, as an example, consider the case that B
equals zero in the expression (4,10). In a coordi-
nate-system where the fluid has no mean motion
we will then get the propagating wave given by

(4,14) p = Asinxysinu (& + ct)
with
(4.15) ¢

=mre

Since ¢ is always positive, the wave will
propagate towards the west. For a wave with
no closed stream-lines this fact is easily deduced
from the circulation theorem. Considering the
circulation of acceleration around the rectangle
drawn in Fig. 9 A, we see that

j %:—J~<§r>0,

if the motion shall be stationary. Introducing
this into equation (1,7) we obtain
f Boydo <0,

Hence, », must within the considered closed
curve be negative, i.e. directed towards south.
Consequently the fluid must move towards east
or the wave must be propagating westwards
relative to the fluid. To get a propagation
eastwards it would be necessary that the ampli-
tudes of the stream-lines should have a sufficient
increase northwards or southwards. Then at
most one rectilinear stream-line would occur in
the layer.

S

~

(

N =

Fig 11 A
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‘We shall now shortly consider the case that
all particles have the same absolute vorticity.
Then equation (1,11) is valid not only indivi-
dually, but also spatially. Making the same
assumptions as above, we then get

(4,16) Vi =—l + By,

where £, now is a constant.
Equation (4,16) has a solution of the form

py=X@+ Y@

given by

7 g B G
4,17) = 2x+6y 5 U5
where 7 is a constent of integration. The other
constants of integration are determined in such
a way that v, and v, vanish at the point 2 = 0,
y= 0. The stream-lines are drawn in Fig. 11.

The corresponding pressure is given by

(418) p=py+ql—n+202,) 5
2 0r 3 20y 4 T 208
2
where we have dropped a term — %— y% From this

formula it appears that the wind will be approxi-
mately geostrophic if the relative vorticity is
small compared to 242;,.

Equation (4,16), which in the considered
case is valid also for non-stationary motions,
is fulfilled also for

W19 p=—Lw — e Lyl

7

Fig 11 B.
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giving a propagation of the stream-lines with an
arbitrary velccity ¢. The velocity of propage-
tion ¢ may be positive or negative, giving cast-
wards as well as westwards propagation. This
is connected with the fact that our stream-line
pattern does not fulfill the conditions stated
above (p. 16) for waves with purely westward
propagation.

Corresponding to the solution (4,19) we get
the pressure (4,18) with the addition of a term
given by

cyy.
Thus, an additional pressure gradncnc towurds
the north cor ds to a d pr
while an additional pressure gmdlent towards
the south corresponds to an eastward propa-
gation, in accordance with what we deduced in
section 3.

The stream functions
(4,20) y = Asinh py sin uz + % A —-% y'
and
(4,21) = Asinhuysinu (v — ct) +%y"—ﬁy )
will also fullfill equation (4,16). The correspon-
ding stream-line pattern is drawn in Fig. 12.
The solutions given above for constant ab-
solute vorticity cannot exist as single solutions
in all space since the velocity will increase in-
finitely with increasing y (for the solutions (4,17)

\_/

\v<

>%
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and (4,19) also for increasing x). They can
therefore only claim to represent a solution in
a region limited in the south-north direction and
for the solutions (4‘17) and (4,19) also limited
in the east-west direction. Outside the bound-
aries enclosing the limited region, other con-
ditions must prevail. The vorticity may, for
instance, undergo a sudden change at the
boundaries.

We now pass to the discussion of the solution
(4,5). By a suitable choice of zero meridian
6 = 0, the solution for a definite value of m
may be brought to the form

(4,22) = A,"P,"(sing)sinm &

+0, P,(sing) +

20a?
AmF =2 sm(p
We shall discuss this solution separately in the
case that the motion is observed in a coordinate
system with no rotation, 2 = 0, and in the case
that the coordinate system has a rotation, 2 = 0.

a) 2 =0. The solution (2,8) then reduces to
(4,28)  p = A,"P,(sing)sinm 6 + C, P, (sing).

In the spesial case that

C, =0,

we obtain
(4,24) yp = A," P,"(sin ¢) sinm O,

giving stationary circulations within cells formed

Fig. 12.
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by latitude circles determined from the solutions
of the equation

(4,25) P,(sing) =0,

and longitude circles determined by

(4,26) sinm @ = 0.

The ecquation (4,25) has » — m solutions
between 1 and — 1, while the function on the
left-hand side of equation (4,26) has 2m zero
points around a latitude circle. Thus the solu-
tion (4,24) gives

(4,27) i=2mm—m-1)

cells on the sphere. Fig. 13 illustrates the cellu-
lar motions when n = 5, m = 2. (In the diagrams
we use the grap polar projection.) If
n —m is an odd number, the equator is a
stream-line.

The associated Legendre functions up to
degree 5 are:

P! =cosg,

P! =3singcosg, Py* =—3(sin?¢p —1),
Pyl = jcosg (5sin?p—1),

Py = — 15sin g (sin?p—1),
—15co08 g (sin®p—1),

in @ cos @ (7 sin® p — 3),
P2 =—"' (1sin'p—8sin*p + 1),
(4,28)1’!, = —105 sin ¢ cos ¢ (sin*p — 1),
Pt =105 (sin? ¢ —1)2,
Pyt = ¢ cos g (21 sint p— 14 sin?g + 1),
P2 =—145sing (3sin*p —4sinp + 1),
P =—14%cosg (9sin' p — 10sin?g + 1),
Pyt = 9458in @ (sin® p — 1)%,
Pg® =945 cos g (sin* g —1)%

i

¢=0
Fig. 13.

Geof Publ.

The velocity components are given by

(4,29) vy= % %’;: ‘ii;-"-ld‘; P, (sing) sinm O,
. 1 oy mAnr .
U= cos 2560~ " Goosp P, (sing)cosm @.

It is casily seen that for m>1 vy and v,
will vanish at the poles, i. e. for ¢ = +% But

for m =1 we will get finite velocities at the

poles. For n=1 and m=1 we obtain for
instance:

Ayt . At
(4,30) v, =— —d!- sin g sin 6, v,= —7EL cos O,

giving at the poles
(4,31)
Sy,

Al Ay
,=TF"Lsin6, v, ,=—"LcosO.
' a pety a

The finite velocities at the poles for m =1 is
possible, because in this case the poles do not
form an edge for the cellular motion since the
“length” of the cells is equal to 7. For m>1
the poles form edges for the cells, and vy and
v, must therefore necessarily vanish at these
‘points.

When C, is different from zero we have the
solution (4,22). The Legendre polynomials up
to degree 5 are

P, =sing, P, =% (3sin*¢p—1),
(4.32) P;=1sing (5sin®¢—3),
P, = 1 (35sin* g — 30sin*p + 3),
P, = Lsing (63sin*p—T0sin*¢ + 15).
Assuming for instance n =3, we get the
following solutions:
g = § Al cos @ (5sin g — 1) sin @
+ % sin @ (5 sin® ¢ — 3),
2 = — 15 A2 sing (sin®p —1) 8in 2 &
4,33 . .
(4:33) +%sm¢(5sm‘tp—3),
p® = —15 A3 cos g (sin*p — 1) sin 3 &
+ %’sin @ (68in® p—3).

If the coefficient of sinm © is zero on a
latitude circle @ = @,, this latitude circle will
be a stream-line. The number of zeros of P,”

between sing = —1 and sing =1 therefore
determines the number of stream-lines coinciding
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with a latitude circle (circular stream-lines) be-
tween the poles. The function y,!' gives two
(for @ = - arc sin /I = + 26,°6), the function
s one (the equn.tor) and the function %;* no
circular st The stre li corre-
sponding to the first and last of the solutions
(4,33) are drawn in fig. 14 A and B. Where
the velocity in the mean flow is zero, i. e. for
@ = +26,°6 we get cats-eyes. In the two last
cases, cats-eyes resembling those studied by
Lord Kelvin [1] and in the first case “‘cats-eyes”
resembling those studied by G. L. Taylor [7].
In this Jast case the velocity in the mean flow
is zero where the velocity v, is zero. From the
general expression for the velocity components,
VIZ.

A" d . . C
v = —a" dTp P,m (sing) simm O + —"P,“,
mA"™
= — A ,
vy, a ccmpP 7 (sin @) cos m
we see that for m =1, we will always get rows

of “cats-eyes” of the Taylor type, the number

(4,34)

Fig. 14 B,
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of such rows being equal to n—1. For m>1
we will also get n—1 rows of cats-eyes at the
latitudes where P,! is zero, now, however, not
of the Taylor type.

b) 240. When 2 is different from zero,
we have the solution (4,22). This solution has
a singularity for » =1 (the last term becomes
infinite) unless in this case 2 = 0. (This singu-
larity is due to the fact that a propagating per-
manent wave corresponding to the solution (4,22)
will for n =1 have a velocity of propagation
equal to — 2.) Thus for » =1 we must return
to the solution (4,23). In the following we there-
fore assume

n>1.
If C, is put equal to zero, the solution (4,22)
reduces to
(4,35) 9 = A,mP,(sing)sinm O
2Qa*

tam ) —zine
The relative mean flow is now a constant rota-
tion with the angular velocity

20
(4,36) V=
so that the mean flow in absolute motion is a

rotation with the angular velocity

n(n + 1)

(4,37) T =%

0,=0+4+0=0

The relative angular velocity for » up to 10 is
given in the following table:

n| 2|3 |4]5[6]|7]8]9]1l0
wlojolelalalelolole
|2 |5 |9 |1a|20|27|35 |4 |5

In Fig. 15 A and B we have drawn the
stream-lines (one wave length) on the northern
(or southern) hemisphere for the case that
n =05 m=3,1ie

p = — 19743 cosp (9 sin® p—10 sin2 - 1) sin 36

Qa®
+ Eva sin .
Fig. 15 A corresponds to a relatively small value
of the constant A Fig. 156 B corresponds to

a relatively great value of the constant Ag®
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—
Fig 15 B.

The number of circular stream-lines (stream-
lines coinciding with latitude circles) is

n—m = 2.
We notice that the smaller m, i. e. the greater
the wave-length, the more circular stream-lines
are obtained.

If C, is different from zero, we have the
solution (4,22). Now, if the mean motion shall
be symmetric with regard to the equator, » must
be an odd number. The possible values for w
up to m = 9 is therefore

n| 35|79
w| 21821212
5|1 | W i

The zonal velocities vg, at the earth’s equator
corresponding to these values of w are directed
towards the east and have the magnitudes

n| 3| 5 71]9

vo,| 93 | 38 | 17 | 10 | mfsek
The mean flow of the atmosphere has in general
two points at each hemisphere where the mean
zonal velocity vanishes. The value of n giving
a mean flow of that character is

n=>5.

Further, to get easterlies at equator and wester-
lies at temperate latitudes, the constant C,

EINAR HOILAND
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must be negative. Putting C, equal to 64a/3,
we get an easterly wind at the equator of
strength 7 m sek~?, and the solution

y = AMPg"(sin ¢) sinm O
8a . . N Qa* .
—Fsmzp(ﬁssm‘w—ms‘n*q;-)—15)+ 14 Sne

Assuming no transport across the equator, i. e.
assuming v, = 0 for ¢ =0, m must be set equal
to either 2 or 4. m = 2 gives only two wave-
lengths around the latitude circles. Since we
have always more than two quasi-stationary
highs at low latitudes, we put

m =4,
and obtain the solution:
(4,38) p=945A4*sin ¢ (sin>p—1)?sin4 O
8a . LQa*
o int o — 70 sin? i
3 sin @ (63 sint @ — 70sin? @ 4-15) 4 14 Sioe

The velocity profile for the mean flow corre-
sponding to this solution is shown in Fig. 16.
At the equator we have as mentioned above a
westward velocity of magnitude 7 m sek~'. At
about ¢ = 7° and ¢ = 55° we have no mean zonal
velocities. At about ¢ = 33° we have maximum
velocity towards the east (westerly wind) amount-
ing to 71 m sek~* and at about ¢ = 72° a maximum

A

“¢o =50 -40 30 20 1o o 20 30 4 50 60 76

Fig. 16.

veloeity towards the west (casterly wind) amount-
ing to 57 m sek~1. We see that by assuming weak
easterlies at the equator, the westerlies around
30° latitude in the upper part of the troposphere
are qualitatively correctly reproduced, but in
addition we get strong easterlies around the
poles, and these strong easterly winds do not
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fit with observations. A smaller value of the
constant O, giving westerlies at equator would
perhaps fit better to the observation in the
upper part of the troposphere. Our model is,
however, so simple, involving so many assump-
tions which we know are not approximately
fulfilled in the atmosphere that one should not
expect a too close agreement, with observations.
In Fig. 17 is shown the stream-line pattern
corresponding to the solution (4,38). At either
side of the equator we get four cells of high
pressure (anticyclones), the centres of which,
with our choise of the constant 4.4, will be
situated at about +-15° latitude. Further we
get on each hemisphere four cells of low pres-
sure (cyclones) with centres at about - 50°
atitudes. Qualitatively this corresponds to what,
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is observed for the mean average motion in the
atmosphere.

The strong westerlies at middle latitudes
and the strong easterlies at high latitudes are
caused by the large value of the last term in
equation (4,22) for n = 5. If by the action of
friction between earth and air this term is
essentially reduced, i. e. if the last term in
equation (4,4) is essentially reduced what would
very likely be a consequence of the frictional
effect, the westerlies and easterlies would be
correspondingly reduced. Then our velocity
profile would give a fair representation of the
zonal circulation observed at the surface of the
earth. In this layer our assumption of hori-
zontal motion should also be almost exactly
fulfilled. Of course, also in the free atmosphere
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a great turbulent friction must be acting which
would in due time destroy the motion. To com-
pensate this effect some sort of “instability”
arising from the absorption and emission of heat
must occur. If the turbulent friction had not
oceurred, this instability would produce an intensi-
fication of eyclones and anticyclones. It is very
probable that such an instability effect will always
be connected with a change of phase with latitude
of the waves (compare section 6). Thus we may
consider as one primary effect of the instability
which is necessary to compensate the effect of
turbulent friction, a change in phase of the
waves. This phase-change will in general alter
the longitudinal position of the anticyclones rela-
tive to the cyclones, so that the anticyclones
will no longer be situated on longitudes mid-
way between the cyclones.

5. Conseq of the Tmpulse Tt

The impulse theorem for horizontal motion
of a limited part of the fluid of unit thickness

(in the direction perpendicular to the XY planes)

takes the form:
dr _ T, o v
a =1 [',{/29'_261@

+Jﬂ2 Q,%dz ay] — ifpay +jfpdx,

X L L
where I is the impulse, X is the horizontal area
of the considered part of the fluid, L the closed

curve enclosing the area X, and 7 and j the unit
vectors along the X- and Y-axes respectively.

The expression for i—l may further in the ap-

proximation introduced in the preceding section
(disregarding the curvature of theearth) be written:

;’_t': —q [2:1,_;[[%6z6y+ﬂijjy§% o by

.‘T L[ @
+ 2!),,,{[/%1]26]/—{—#]1/5/3% Jz()g/]

—i§poy+j§pie,
or " H
o) =i flue e+ my—na)
) & $ 0@ St i)y —n1)

+i{ 1920+ 89y — 9oz +q [fy dady}.
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If the curve L is a stream-line, we can assumey = 0
at this stream-line, so that in this case the ex-
pression reduces to

(5.2) f{: —i § poy—i{§ pdw—q [[psziy}.
L L =

The last term here is the expression for the
forces on an isolated vortex given by Rossby [6]
and Davies [7]. They assume p to be a con-
stant on L, so that the resultant of the pres-
sure forces drops out, and we obtain simply

(5,3) %’:ﬂ[/ap dzdy.
As shown by the above mentioned authors the
impulse will for a cyclone get an increase direc-
ted towards the north, and for an anticyclone an
increase directed towards the south. The acting
forces is now only the Coriolis forces, and since
the Coriolis force for the same velocity is greater
the farther north the particle is situated, the
result is quite obvious.

As long as we consider L to be a stream-
line, we have no transport of momentum out
of the considered region, so that

ar oI e
6.5 = =—if ey
I3
—j{fpaz—q[jwwy}.
where % is the locally determined variation per

unit time of the impulse. If the motion shall
be stationary, this variation must vanish, i. e.
we must have

(5,6) fy.u)'y =0, fpdx = q/:f«p oz dy.

L L o

From this equation it is seen that the “Rossby
force” gives a measure for the departures from
geostrophic wind which are necessary to keep
the motion stationary. We see that in a cyclone
the pressure must on a stream-line be greatest
in the north, smallest in the south, while the
opposite is true in an anticyclone.

The results deduced above are in accordance
with those deduced in section 2 for the geo-
strophic departures in stationary cyclones and
anticyclones.
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6. Instability Waves.

From equation (1,9) we obtain the line-
arized equation

@y (5+ui) e (

neglecting terms of the second and higher orders,
and utilizing the simplification introduced in
section 4. U is the velocity in the undisturbed
zonal flow, y the stream function of the per-
turbations.

In the following we shall confine ourselves
to the case that U is a constant, say U,. Equa-
tion (6,1) then assumes the form

[ 2 oy _
N R R R

We shall now assume that we have some
source of instability outside the considered layer,
and investigate the kinematics of the instability
waves then produced in the layer. Two cases
shall be discussed: 1. That the perturbation
component v, is zero for y = 0, and 2. that the
perturbation component v, is zero for y= 0.

It is easily verified that
(6,3) y = Ae[cosh Ly cosxy sin u (z + ct)

— sinh 4y sin zy cos p (x + ct)]
is a solution of equation (6,2), and that it ful-
{ills the condition

v,=g—;=0for y=0.

We find
_ 2 phx o
O o= = e
_ i ]
U= Ay

The phase a of the wave is given by
(6,5)

from which we obtain

tana = — tanh Jy tanxy,

1 da

6.9 costady
o Ixy __[sinh2].y sin 2 zy
cosh? ycos®uy| 27y 22y |

The term within the brackets is positive definite,
so that we may write, since we without loss of
generality may assume x>0,

da

da_ 4o
(6,7) 3=k
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From the first of equations (6,4) we see that
>0 gives 6>, i. e. a wave with increasing
amplitude.

Hence, for a growing perturbation we get
da
ay
decreasing amplitude,

a >0 for y<0,

while for a wave with
L <0, we obtain

(6,8) 51;—‘< 0 for y>0,

de da
(6,9) »d;>0 for y>0, d_y<0 for y<<0.

The stream function
(6,10) o= Ae"[cosh Ay sin xy sin u (z + ct)
+ sinh Ay cos xy cos u (w + ct)]
also fulfills equation (6,2).
function we get

For this stream-

v,»:—%:()foryso.

The equations (6,4) is also valid in this
case. The phase is given by

(6,11) tana = tanh 1y cotxy,
from which

1 de
612) Cosrady =

. hry  [sinh2hy  sin2xy

cosh?Aysin®zy| 22y 2xy |
is obtained. Again the expression within the
brackets is positive definite, so we get the

same results for the sign of g—; as in the first

case. In both cases we will for growing per-
turbations for positive y have stream-lines as
drawn in Fig. 18 A, and for negative y stream-
lines as drawn in Fig. 18 B.

It is reasonable to assume that these laws
for the phase, deduced here for small distur-
bances, will hold good also for finite disturbances.
Then assuming a kinematics of one of the kinds

Fig 18 A.
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/
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—
Fig 18 B

discussed above, we would for growing (deepening)
cyclones, for instance, get an asymmetry in the
cast-west direction as shown in Fig. 19 A for
y >0 and in Fig. 19 B for y < 0. For a weake-
ning (filling) cyclone we should get the opposite
assymmetry.

The asymmetry obtained is of course de-
pendent on the somewhat arbitrarily chesen

&
=

Fig. 19 A. Fig. 19 B.
kinematic constraints for y = 0. I think, how-
ever, that the method used above seems to
indicate a ionship bet pening and
filling of cyclones and the asymmetry in west-
east direction of the stream-line pattern.

7. Waves in a Rectangular Basin.

We have in section 2 drawn attention to
the fact that the induced vorticity can produce
no standing oscillations. In this section we
shall investigate what kind of periodic motion
we will have in a rectangular basin. We put U,
equal to zero in equation (6,2), obtaining

e ap _
(.1 Vv BT =0

This equation is fulfilled for

Geof. Publ.

(7,2) = Asinxysinyzsiny @+ cf),
with
(7.3) y = 4/p® —x* and c=i

Tt
If our rectangle has sides given by

y=0,y=H, o=0,z2=1L,
we must have

2H =nx, aL= /1! —22 L =max,

where n and m are integers. From these equa-
tions we obtain for the wavelength

2HL

(7.4) 1= ey
This equation determines the waves which can
exist in the basin. They correspond to and
are a generalization of the ordinary standing
waves met with in the theory of gravitational
and inertia waves. The waves are propagated
towards the west with a velocity of propagation
equal to half of the velocity of propagation of
the Rossby waves.

The possible wave-lengths which can occur
are casily found. Put for instance » =1 and
m = 1. Then

2HL

9) 1=22%,

where D is the diagonal of the rectangular basin.
1is found by a simple construction, see Fig. 20 A.
This gives the greatest wave-length that can

occur. The velocity of propagation of the wave
is given by

B HL*
(7,6) C=5 g

For n =1 and m = 2, the construction of the
wave-length is shovn in Fig. 20 B, and for n = 2
and m = 1, the construction is shown in Fig. 20C.
It is easily seen how the other possible I-values
may be constructed.

The ordinary standing oscillations may
emerge from superposition of two ordinary
propagating waves. So also for the generalized
“standing oscillations” considered here. It is
easily verified that we have
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Fig. 20 A

Tig 20 C.

(7,7) A sin xy sin ya sin u (z + ct)
== } A sin xy [cos 4y (& + ¢,t) —cos py (2 + caf)]
where
_ e — B _ B
S HTT O T A T g
B8
(a7 2w + 2

and 72 = p2—u2,

(7,8) Hg =7, Cp=

relations which in section 4 are developed for
ordinary propagating waves of the type dis-
covered by Haurwitz.

Fig. 20 B.
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