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Introduction and Summary.

In the treatment of many meteorological
problems, it proves convenient to introduce
pressure as an independent variable instead of
height. This method has been used by many
writers in order to simplify the caleulations.
Thus in “Dypamic Meteorology and Hydro-
graphy” [2], pressure is used as a vertical co-
ordinate in the theory of vertical motions, and
also in a d:scussum of the prognostic value of
the In “Physikalische Hy-
dmdynamxk” (3], the method is used in the theory
of quasi-static wave motions in autobarotropic
layers, and also in the theory of turbulent
friction.

In the present paper, lt is shown that pres~
sure may be used i ly as an ind
variable instead of height, in any quasi-static
treatment of atmospheric motion, and that this
method has certain advantages. Thus the equa-
tions become simpler in many ways, and are
better suited for use in connection with the
aerological charts,

In chapter I, the quasi-static equations of
atmospheric motion are given in ordinary Car-
tesian coordinates. For simplicity, the following
assumptions are made: (i) The earth is flat and
¢ is a constant. (ii) Turbulent stresses and dis-
sipation of energy are negligible. (iii) The air
is completely dry.

It is pointed out that in the quasi-static
theory, it is possible to eliminate density and
vertical velocity, the instantaneous state and

motion of the being pletely
known from the instantaneous fields of pressure
and horizontal velocity. The possibility of prog-
nostic utilization of the quasi-static equations
is briefly discussed, but this method is found
to be unserviceable, at least as far as no further
simplifying assumptions are made.

In chapter II, pressure is introduced as an
independent variable instead of height. Formulae
are derived to transform the derivatives of a func-
tion, when 2, %, zand ¢ are independent variables,
into derivatives when the independent variables
are z, y, p and ¢. The geometry and kinematics
of the fields of the dependent variables in the
coordii x, y, p are di d, and it is shown
that the differential analysis in this coordinate
system is directly applicable to the isobaric sur-
face charts used in synoptic aerology. On the
same assumptions as were made in chapter I,
the hydrodynamic equations are transformed
into the system of independent variables z, y, p
and ¢ In this form, the equations prove
simpler than in the usual form; and some of
the equations become formally identical to the

for a homog and i ibl
ﬂqu Thus the density drops out in the hori-
zontal equation of motion, and the equation of
continuity expresses that the three-dimensional
velocity field is solenoidal. Some simple appli-
cations of the equations are shown.

Chapter III deals with the effect of the
earth’s curvature. The quasi-static equations
for an atmosphere in a curvilinear potential
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field are derived with geopotential as a vertical
coordinate. In these equations, pressure is
introduced as a vertical coordinate instead of
geopotential; and the use of pressure as a ver-
tical coordinate proves convenient also when
the earth’s curvature is taken into consi-
deration.

The effect of the curvature is to introduce
certain additional terms in the equations, thus
making the mathematical analysis more compli-
cated. As regards the tendency equation, the
effect of the curvature is shown to be relatively
small. When pressure variations are considered
from a fundamental point of view, the assump-
tion of a flat earth with constant g is thus
reasonable.

In Chapter IV, some simple gravity waves
are treated, partly with pressure, and partly
with the logarithm of pressure as a vertical
coordinate; and a criterion is given for the legiti-
macy of the quasi-static approximation.

Chapters V and VI deal with dynamic-
metcorologwal problems. In both chapters, the
I of is used i ly as a
vertical coordinate.

Quasi-static perturbations of a westerly cur-
rent are considered in chapter V. It is shown
that Solberg—Hpgiland’s stability criteria can be
derived from the quasi-static theory without
taking into consideration the curvature of the
current. Some simple solutions are found in the
case of a motion which does not vary in the
direction of the current.

Wave perturbations are considered in the
case of autobarotropy. The formulae for the
wave-velocity by Rossby and Holmboe are deri-
ved under more general conditions than those
originally assumed.

In Chapter VI a wind formula is derived,
on the assumption that the wind is approxi-
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forecasting, based upon the quasi-geostrophic
approximation, is suggested.

I wish to thank Dr. E. Heiland and Mr.
R. Fjortoft for their encouragement and for
many valuable discussions.

Note.

After having written this paper, I have be-
come aware of a recent paper by Sutcliffe [22],
where pressure is used as a vertical coordinate
in the di jion of cyel develop Sut-
cliffe writes the equation of continuity, as well
as the equations of motion and the vorticity
equation, with pressure as an independent vari-
able, and refers to a paper of Suteliffe and Godart
(Isobaric Analysis, Met. Off., London, S.D.T. M.,
No. 50, 1942), which has not yet been available
here.

CHAPTER 1. THE QUASI-STATIC EQUA-
TIONS IN CARTESIAN COORDINATES.

1. The hydrodynamic equations.

Assuming the earth to be flat, we choose
a Cartesian system of coordinates with the
z-axis. pointing eastward, the y-axis northward
and z-axis vertically upward. The unit vectors
along these three axes are denoted by i, j and
k respectively.

A vector quantity is given by its compo-
nents along these three axes. However, it proves
convenient to deal with horizontal components
and vertical components of vector quantities
separately. Therefore, vector symbols (heavy
types) are used to denote horizontal vectors only,
with the exception of the unit vector k, which
is vertical. Thus the horizontal wind velocity
w!ll be denoted by v = iv; 4 jv,; and the three-

mately geostrophic. This quasi-g ophic ap-
proximation is applied to the theory of wave
perturbations in a baroclinic, westerly current;
this leads to a differential perturbation equation
for the potential. The form of this equation
shows that the stability conditions for perturba-
tions which do not vary in the direction of the
current will be a factor of decisive importance
also in the case of wave perturbations,

A possible method of numerical weather

1 wind velocity may be written v - kw,
where w is the vertlcal velocity. In the same

way, V= i P 37 is the horizontal del-opera-

tor, and the three-dimensional del-operator is
a

V+kg

Individual differentiation with respect to

time is denoted by the symbol D In Eulerian

a
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representation with z, y, z and £ as independent
variables we have:

D @ @
A=E+p<v+ui—}z—.

(1) H

The horizontal component of the equation of
motion may be written:

(1.2) %’

;= s7p — 282, kX v — 282,wi.
Here p denotes pressure, s specific volume, and
@, and 9, are the components of the angular
velocxty of the earth.

The vertical component of the equation of
motion is replaced by the hydrostatic equation:

op 1>
13)  sp tg=0, 0r g="—"r5
where ¢ = % means density.

The quasi-static method is based upon the
assumption that this equation yields sufficient
accuracy, and also on the additional assumption
that differentiation of the hydrostatic equation
with respect to the independent variables is
allowed.

The equation of continuity may be written
in one of the two equivalent forms:

3(w) _

0w L+ ,

1
(15 qu+v vro=0.

Differentiating eq. (1.3) with respect to time,
and eliminating Z—Z by means of (1.4), we get

9 op
5(—5" + aqw) =—gV-(a),

id
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o
)
an  (2—gqw.=—of V-
:
Here the variable of integration is denoted by ¢,
to prevent confusion.

2. The thermodynamic equations.

In the following we will disregard the effect
of water vapor on the density and the specific
heat of the air, thus considering the air as
completely dry. Then we can take the two
variables p and ¢ to define the thermodynamic
state of the air.

The temperature 7' is defined as a function
of p and ¢ by the equation of state for an
ideal gas:

p 4T dp dgq

@0 =% T-2-7
where R is the gas constant referred to unit
mass of dry air.

The potential temperature ¢ is defined by:

=1 1
%

@2) g_m-pr @ _dp_di,
Ry’ % wp 4
where 7, = 1000 mb. and » is the ratio of

specific heat at constant pressure (¢,) to speci-
fic heat at constant volume (c,).

Designating by H the heat received by a
unit mass of air per unit time, we may write
the first law of thermodynamies:

. 1Dp 1Dg_ H

@3 At g a ol

or, by introducing the potential temperature:
1Dy H

2.4 -

24) F@t T

The first law of thermodynamics may be

when ¢ is co ed as a

between the limits z and oo, and applymg the
boundary condition at the “upper limit” (z = co)
of the atmosphere:

2
§=0, qw=0 at z=o00,

we obtain the well-known “tendency equation”:

(1.6)

bined, in different ways, with the equations

Thus, by expanding %?

in section 1. in  eq.

(2.4) according to (1.1), and putting
_lep leg lop 1 90
Tupot qot xpadt ' gqoz ot

in virtue of (2.2) and (1.3), we find:



8 ARNT ELIASSEN

oop , gaop
9 5o tpa
L S s S X
= p— v g =g

In this equation, the variation of pressure ten-
dency with height is expressed by the heat con-
veyed to the air, horizontal advection and ver-
tical motion.

We may also combine the first law of ther-
modynamios in the form (2.3) with the equation

of inuity (1.5) by eliminati D%between
them. There results then:

Dp_ow . »
(26) Gy =+ vptwy

= (ﬂ—l)qH—xpv-v—wZzl’~

Here vp, according to eq. (2.2), can be expres-
sed in terms of V¥ and Vgq:

)

Vp ==xp —ﬂ‘-l-v—q\

7/
Inserting this, we obtain the following formula
for the pressure tendency:

w —w@-l—(x—l)qll

en F=—vZ

&
— xpp- v—é—u.RTv%qv)— np%';-).

3. The vertical velocity.

The hydrostatic equation is deduced from
the vertical equation of motion by neglecting

the vertical acceleration (%l:f) and the vertical

component of the Coriolis force (292,2;). The
hydrostatic equation is thus an approximate
one, and its application does not mean that
the vertical acceleration and the vertical Co-
riolis force shall really vanish, which would
obviously lead to absurd results. Thus, it is
quite reasonable to deal with vertical velo-
cities and accelerations within the quasistatic
theory.

L. F. Richardson [18] has shown that in
the quasi-static theory, the vertical velocity is
given by the instantaneous distribution of the

Geof. Publ.

horizontal velocity, the variables of state and
the heat received by the air.

The matter may be elucidated by the fol-
lowing reasoning: Consider an air column in
hyd equilibrium, bounded by rigid verti-
cal walls. Snppose that this air column is per-
turbed in different ways: at some levels, we pump
air into or out of the column; further we remove
some air from the column and replace it by air
of different temperature; and finally we let parts
of the column be heated or cooled. As a result
of these processes, the static conditions of the
column are disturbed. To restore the equili-
brium, the parcels of air in the column must
undergo certain vertical displacements, which
can obviously be calculated if we know quanti-
tatively the perturbations initially given to the
column.

In an atmospheric air column, such per-
turbations are going on continuously: air is
conveyed to, or removed from every part of
the column, at the rate /- (go) per unit time;
parts of the column are by horizontal advection
replaced by air of different temperature, and heat
is conveyed to or from the air. Thus it may
be understood that the int of static
conditions within the column requires the air
parcels to have vertical displacements, varying
with time in accordance with the disturbing
effects mentioned above. In other words, the
vertical velocity in the column must be given -
as a function of these disturbing effects.

This is expressed by the equation of Richard-

son, which is obtained by eliminating g—f be-
tween the egs. (1.7) and (2.7)"):

@_H v 1

BN = Ty

V- (qv)

»
+Z—va~(qv)ri(-

At the surface of the ea.r(:}zx, which we
assume to be plane, we have the boundary
condition:
(3.2) w =0 when z=0.

') In this form, the equation is not exactly iden-
tical with the equation given by Richardson, be-
cause he took into consideration the curvature of
the earth, and also provided for tho water vapor
in the air.
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Hence we obtain by i
the limits 2 =0 and z = hA:

»
f—dz——« u-vﬂdz
&

c, T
( f - (an 2]

This exp yields a of w when
the instantaneous distribution of » and the
variables of state is known.
The first and the second term on the right
" express the effect of vertical expansion due to
heat conveyed to the air below the level z=h,
and due to advective supply of potentially war-
mer air below z=h, respectively. The third
term shows an effect of horizontal mass-diver-
gence below z = h, giving descending motion for
positive mass-divergence. The last term is an
effect of compressibility, expressing expansion
in the vertical direction due to horizontal mass-
divergence at higher levels; this term contains
mass-divergence below z =k as well as mdss-di-
vergence above z = h.
It is seen that the two last terms to some
extent are counter-acting, since they are affec-

of (3.1) bet

(3:3) W= =

%V-(qu) &+

1

g below the level z = h, and of hori-
zontal mass-divergence above that same level.
Inserting these expressions into eq. (3.3), and
noting that

according to (1,3) and (2.2), we find:

(3.4) Wean j’fi,dz—fu-%, dz
o o
—T}%fhwmu—qu,;i(fv~(qv)dz)dz
+Z (f 2) fv (00) &).

Here the effect of honzonta.l mass-divergence
below z=~h is shown by the third and the
fourth terms on the right-hand side. It is seen
that positive mass-divergence below z = & always
gives a negative contribution to the vertical
velocity at z=~h, if the stratification below

2= h is stable or indifferent (Zz—’ go). Tho offect

of horizontal mass-divergence above z=h is

ted in opposite ways by a mass-diverg be-
low z=~h. Therefore, it is not readily seen
whether the contribution given to the vertical
velocity by a positive mass-divergence below
z=~h will be positive or negative. A better
account of these things is obtained by a modi-
fication of the two last terms of eq. (3.3). Inte-
gration by parts in the third term gives:

A h
1 1
—f—v‘(qv)ll== ~—fv’((1v) dz
q .
0 0
) a

q,az(fv (00) &] 0=

The last term may be written:

%j(jv-(qu)dc}%=% :{fv (oot |2
+2 (%) o).
o A

showing separately the effect of horizontal mass-

ly by the last term.'

P

4. Prognostic use of the quasi-static

system of equations.

Egs. (1.2), (1.3), (1.7) and (3.3) form a com-
plete system of equations, when H is known as

fi ion of the independent and the dependent
variables. These equati d ine the future
motion, when the initial state and 'motion is
known (initial condition). The boundary condi-
tions at z=0 and z= oo are already taken
into consideration, being implied in eqs. (3.3)
and (1.7).

The main simplification attained by the
quasi-static treatment consists in the fact that
two of these equations, viz. egs. (1.3) and (3.3),
are free from time derivatives. For this reason,
these eq may be ch ized as “dia-
gnostic”, as distinet from the ““prognostic” equa-
tions (1.2) and (1.7), which involve time derivatives.
By means of the two ‘““diagnostic” equations the
quantities ¢ and w are computable from the
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instantaneous distribution of » and p!). Thus,
in the quasi-static theory, the hydrodynamic
and thermodynamic state of the atmosphere is
completely defined if we know the fields of
pressure and horizontal velocity, whereas density
and vertical velocity appear as merely auxiliary
quantities (which might have been eliminated).
The problem of weather prognosis may there-
fore be reduced to the determination of the
changes in the fields of pressure and horizontal
velocity, when these fields are known at a cer-
tain initial instant (initial condition). This is
d by of the p ic equa-
tions (1.2) and (1.7). This is what Richardson
called a “marching problem”, and it should be
possible to carry out the integration by using a
step-wise procedure, starting at the initial time.
Such a prognostic utilization of the quasi-static
system of equations entails thc use of the ten-
dency as & prog starting
with the observed mltml velocmes It is well
known, however, that the tendency equation is
unsuitable for this purpose, because it is impos.
sible to measure the wind with sufficient accu-
racy. This was shown by Margules [16]. The
equation of motion (1.2) is probably also un-
serviceable as a prognostic equation, because
the local acceleration must then be computed
from the deviations from the geostrophic wind,
which cannot be observed with sufficient ac-
curacy.

We may conclude, therefore, that weather
by 1i ion of the quasi-
statxc system of equations, starting from a cer-
tain initial state which is determined by obser-
vation, is impracticable, at least as long as no
further simplifying assumptions are applied than
those made in this chapter. It will be shown
later (section 33) that by utilizing the assump-
tion of quasi-geostrophic approximation, one ob-
tains a system of equations which may be better
fitted for prognostic use.

%) T and & should be interproted as functions of p
and ¢ according to egs. (21) and (2.2).
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CHAPTER II. THE QUASI-STATIC EQUA-
TIONS WITH PRESSURE AS THE
VERTICAL COORDINATE.

5. Introductory remarks.

In the preceding chapter, the equations of
motion were written down with z, y, z and ¢ as

independent variables. The ponding method
of three-di ional rep of the state
of the phere is the drawing of isopleths of

pressure, temperature, etcetera, at several fixed
levels (analysis of constant levels). By this re-
presentation, the different horizontal and verti-
cal ascendents, which occur in the equations,
can be evaluated from the charts in a simple
manner.

Another method of representation is the
drawing of level curves, isotherms, etcetera, of
several isobaric surfaces. This latter method,
including the technique of building up the ana-
lysis layer by layer, starting from the ground
chart, is worked out by V. Bjerknes and J. W.
Sandstrem [2]. As pointed out by these investi-
gators and later by Petterssen [17], the latter
method has many advantages as compared with
the analysis of constant levels. Therefore, the
isobaric surface analysis is the method used in
practiee in most countries.

The isobaric surface analysis corresponds to
the interpretation of pressure as vertical coordi-
nate instead of height. This also applies to the
aerological ascents, which give measurements of
temperature and humidity as functions of pres-
sure. Therefore, when the hydrodynamic equa-
tions are to be used in connection with the
aerological data, it appears convenient to have
the equations transformed into the system of
independent variables x, y, p and t. In this
chapter, the transformation will be carried out,
and the kinematics and dynamics in the co-
ordinate system @, y, p will be discussed.

6. The equations of transformation.

For brevity, the independent variables
x, y, 2, t will be referred to in the following
as “system z” whereas x, y, p, ¢t will be called
“system p”.




Vol. XVIIT. No. 3.

The new coordinate p is a function of space
and time,
(6.1) =P @y 1.
When =z, y and ¢ are constant, this equation ex-
presses a one-to-one relationship between p and z-
Solved with respect to z, it becomes:
(6.2) 2=z (Y, p1).
Thus, in the system p, z becomes a dependent
variable. It seems more convenient, however,
to introduce as a dependent variable instead
of z the geopotential

(6.3) D= (y,p 1),
defined by
(6.4) Ad = gdz.

Eq. (8.2) is the equation of transformation.
By substituting this function for z, we can get
any function of z, y, z and ¢ transformed into
a function of z, y, p and ¢. Hence, if ¢ is any
scalar function, we can write:

(6.5)

a=Ad@y z)=4@yz2@yp00)
=B (z,y, p 1)
Eq. (6.1) is used if the reverse transforma-
tion is desired.
Partial differentiation of eq. (8.5) with con-
stant z, y and ¢ gives:

éa _ da Op

A

(6.6) % o

31’

on account of the hydrostatic equation (1.3).
In partial differentiation of eq. (6.5) with

respect to z, y and ¢, it must be remembered

that the derivatives of the functions A and

oA 24
B are not equal. Thus w b expresses the
change of a in horizontal direction (with con-

stant z) whereas zf or g—gexpresses the change
of a along an isobaric surface (p constant). In

like manner, — o nges the change of « with time

at a fixed level (z constant), whereas 5? gives

the change of « at a fixed isobaric surface
(p constant). To prevent confusion, we shall
in the following denote by a subscript the
quantity which is held constant by the operation
in question; thus we write:
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==& 5-6) 7-().

oB_(2a) oB_ (a) B_ (o
ax \ex), o \ey ), & \at),

In this notation, all the derivatives with respect
to %,y and ¢, which occur in chapter I, must
be written with the subscript z.

Partial differentiation of eq. (6.5) with re-
spect to @ gives, according to a well known prin-
ciple of differential analysis:

da da oz oa
(a?)f &)+ (@)%

Writing here, according to eq. (6.4):

(&),=7 (%),

and applying eq. (6.6), we obtain:

&) &)+ ()5

In the same way we find:
2a 2a g
&)= ).+« (),
da

o (%)-(5), (@)%

The horizontal del-operator used in chapter I
must now be written, in accordance with the
notation introduced above:

L[ 2
ve=i(i), +5 (G

Similarly, we may in the system p define
a horizontal vector operator, expressing the varia-
tion along an isobaric surface:

v=il), +i (),

From (6.7) and (6.8) we find:

(6.7)

da

(6.8) o

(6.10)

(6.11)

(6.12) Via=Vya+q7,P

a
s

The quantity V,a is a horizontal vector,
denoting the increase of a along an isobaric sur-
face per horizontal length unit, and pointing in
the direction where this increase is greatest.
Ve can be evaluated from the isopleths of «
on an isobaric surface chart, in the same manner
as the horizontal ascendent v/.a is found from
the isopleths of « in an horizontal level chart.
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It is desirable to have a name for the vector
vya, and for lack of a better one, it will in
this paper be called the horizontal p-ascendent
of a. In the text book by Holmboe, Forsythe
and Gustin [11) the vector V,a, which is intro-
duced in order to simplify the thermal wind
equation, is called “the horizontal isobaric
ascendent”. I have not adopted that name here,
bceause it seems to be a little confusing.

By applying the operator Vv, to a horizon-
tal vector field A = A.i + 4,j, we may define
a horizontal p-divergence and a vertical p-vor-

ticity:
04.) 04,
)
o)) _(0A:
(6.14) k-, xA = (ax],,_' (M)p'
These q can be evaluated from a rep

tation of the field of A on isobaric surface charts,
in the same manner as the horizontal divergence
and the vertical vorticity are determined from a
representation of the field of A on horizontal
level charts. From (6.7) and (6.8) we find:

(6.15) v;'A=v,,~A+qv,,<p%‘,
(6.16) k-7, xA= k<v,,><A+qk~v,¢>x?%.

Egs. (3 12), (6.15) and (6.16) may be mterpreted
as i of an

PP P 1

(6.17) Vs + gV, @

Vi = 3”

7. Geometry and motion of scalar fields.

Consider a scalar function a =a (z, ¥, z, t).
The equation of an equiscalar surface at a cer-
tain instant is obtained by pnbtmg a constant
and ¢ then z b a fu of z
and y. Let us denote the ascendent of this
function by .z. This is a horizontal vector
pointing in the direction where z has the most
rapid increase, i. e. perpendicular to the curves
a = constant in the horizontal plane. The nu-
merical value of the vector is seen to represent
the slope of the tangent plane of the equiscalar
surface. Thus the orientation of this tangent
plane is represented in a very perspicuous way
by the vector \/.z. We may call this vector
the “slope vector” of the equiscalar surface. It.
is easily seen that:

Ceof. Publ.
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In the system p, an analogous considera-
tion gives the result that the orientation of the
tangent plane of the equiscalar surface is deter-
mined by the horizontal vector

=V
(7.2) Vap =— 7~

ap
. This vector is directed perpendicular to the
curves a= constant in the isobaric surface. Its
numerical value represents the “slope” of the
equiscalar surface relative to the isobaric sur-
face, expressed in millibars per meter. For lack
of a better name, this slope of a surface rela-
tive to an isobaric surface, expressed in mb/m,
will in the following be called “p-slope”, and
the vector V.p will be called the “p-slope
vector”.
Applying eqs. (6.6) and (6.12) we find:
(18) Va=—oVap+5 V0
99
=— ﬁ Vb + V2,
showing the relation between the “‘slope vector”
and the “p-slope-vector”. Here v,z is the slope
vector of the isobaric surface. It will be seen
that if the surface a = constant is much steeper
than the isobaric surface, then .z and V.p
point in nearly opposite directions; and this is
strictly true if the isobaric surface is horizontal.
Now let us consider the vertical motion of
the equiscalar surface a = constant. In the
system z, the vertical velocity of the surface is
given by:

(7.4)

On the other hand, in the system p, the quantity

O
op tﬁ]

(7-5) (at )., oo

op
gives the vertical velocity of the surface rela-
tive to the isobaric surface, expressed in milli-
bars per second. This quantity will be called
“the vertical p-velocity”” of the equiscalar sur-
face. From egs. (6.6) and (6.9) we find:




Vol. XVII. No. 3.

() -~ 7l#)+ (5,

where the last term represents the vertical
velocity of the isobaric surface.

Finally let us consider the horizontal motion
of the equiscalar surface a = constant. In the
system z, the horizontal velocity (c.) of a curve
a = constant in the horizontal plane is given by

(%a)zi-c.-v.a:o-
Only the component of c. perpendicular to the
curve a=constant isinvolved in this equation; the
component parallel to the curve a = constant is
seen to be immaterial. By usingegs. (7.1) and (7.4),
this equation may also be written:
a8 (%), +eve=

In the system p, we have an analogous
formula for the horizontal velocity (c,) of the
curve « = constant in the isobaric surface:

da.
(7.9) (_ac'),, + ¢p- Ve = 0.

By using egs. (7.2) and (7.5), this may also

be written:
(%‘?‘)“ +¢p Vap=0.

(7.6)

@’

(7.10)
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9. The fields of the thermodynamic quantities.

We have assumed that the temperature and
the p ial are functions of p and ¢
on]y Hence, if eq\udensxtv curves are drawn in
an isobaric surface, T' and ¢ will be constant
along these curves. In other words: in an iso-
baric surface, the isopleths of the various func-
tions of state will coincide. This makes the
representation of the state of the air by means of
isobaric surface charts very simple, as pointed
out by Petterssen [17).

The derivatives with respect to z, y and ¢
of the various quantities of state are also related
in a very simple way in the system p. If f(p,s)
is any function of state, then we have:

©.1) Vit =Z 70,

(&%),

Here, ;s and (g) may also be expressed by
»

(9.2)

the derivatives of @, using the hydrostatic
eqnation (8.1), Thus, from egs. (2.1) and (2.2),

Q
(03) 29,8 = 7 VT = 5Vb=—0;- %9,
T 1 (09 o (00
4 r{aﬂ “T(E), v(ia?) =% (Tt N

The relation between the derivatives of the same
with respect to p is

8. The field of geop ial
Putting a = @ in eq. (6.6), we obtain

(8.1) .

= —,
op
which is the form assumed by the hydrostatic
equation in the system p.

From eqs. (6.9) and (6.12) we get, by put-

ting a = p:
) _q (2
8.2) (3, =\%),
(8.3) Vp=q P,
showmg thnt the pressure tendency and the
d are ex ble in

the sysbem p as derivatives of @. Notice that
according to egs. (7.2) and (7.5), ¢v,® and

oD
(%),
vector” and the ‘“vertical p-velocity” of the
equipotential surfaces, respectively.

may be interpreted as the “p-slope

i d

1 s 19T 1 18y 1

S T p 0o wp "
By means of these equations, we can find the
“p-slope-vectors” md the vertical p-ve]ocmes
of the equids h 1 and i sur-
faces, expressed by the derivatives of ¢
Notice that in the case of barotropy,
V8 =0, and all the terms of (9.3) vanish. In
& baroclinic atmosphere, V,s==0, V,T =0 and

Vpd == 0.
10. Velocity components. Individual
differentiation.

In the system p, the horizontal motion of
the air will be rep d by the horizontal
velocity v, defined in the same way as in the
system z. This is because the same horizontal
coordinates (z, y) are used in both systems.

The vertical coordinate, however, is not the
same in the two systems, and therefore, the vertical
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motion will not be represented in the same way in
both systems. In the system z, we have used the

vertical velocity w=%z. In the system p we

use the individual pressure change:

(10.1)

w="=.

dt

This quantity represents the vertical velocity
relative to the isobaric surfaces, expressed in
millibars per second, and will be called the

vertlcal p-velocity of the air. Positive w means

di and negative o ding motion
relatively to the isobaric surfaces.

The vertical motions in the at here are

Geof. Publ.

The last term of eq. (1.2), representing the Co-
riolis effect due to the vertical motion, is very
small. Hence, it seems to be of negligible conse-
quence that we in this term have used the
approximate eq. (10.4), instead of the exact
eq. (10.3).

For most of the applications, the Coriolis
force due to the vertical motion can be neg-
lected:

Dy

S =—Vp® — 202k Xv.

(11.2) =

Here, the density has dropped out, and the
cor. ds formally to the equation

important especially because they cause indi-
vidual changes of state (e. g. condensation or
subsidence). Such changes of state are directly
related to ©, but not to w; this shows that the
system p gives a sunpler connection between
the th and the & of the
motion.

The Eulerian expansion of the individual
derivative becomes, by analogy to eq. (1.1):

D 2 2
102 = (5)»—!— vV + 5y
Applying this formula to @ and providing for
eq. (8.1), we find:
=1?T;0_ (M)) +vV,P—sw,
showing the relation between w and . The
two first terms on the right-hand side corre-
spond to vertical velocities which seldom exceed
1 cm per second. Thus, if no great accuracy
is needed, we may write:

(10.4)

(10.3)

W= ——,

99

11. The equation of motion, Vorticity
equation.

We are now able to transform the hydro-
dynamic equations into the system p, and we
start with the horizontal equation of motion
(1.2). By means of egs. (8.3), (10.2) and (10.4),
this equation assumes the form:

= — ;@ —29k xv +%wi.

(11.1)

oi motion for a h and incompressibl
fluid with pressure @ and density 1.

From (11.2) we derive the equation for
“vertical p-vorticity” ¢, = k-V,Xv by applying

the operation k-V,X. Since k- v,x%’ =

(k-5 %9) (V5 0) + k- Fp0x 2,

D
Et—(k-vva)+ s

we find:

s Zea o

=—(o +E:»)Vp‘v~k<v,,w><%.

This equation is quite analogous to the
equation for vertical vorticity in the system z,
except that the solenoid term is absent. This
is not surprising, since an isobaric surface can
obviously not be intersected by solenoids.

12. Geostrophic wind.

Patting in eq. (11.2) % = 0, we obtain

the formula for the geostrophic wind:
(12.1) V,@ = —2 2 kXv,,

or vy, = élv_Q‘ kxv,®
which is simpler than the corresponding formula
in the system z. Writing eq. (12.1) for two
different points on a vertical line, and subtract-
ing, we get the well known relation between
thermal wind and thickness of an isobaric layer.

Differentiating eq. (12.1) with respect to p
an using (9.3), we find:
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12.2 ——k
(122) A
1 s o
=Tag XV
9
or =%’—=2!1,qu€%.

Thus the variation of the geostrophic wind with
height is determined by the horizontal p-ascen-
dent of any quantity of state. And, conversely,
if we content ourselves with the geostrophic
wind as an approximation to the true wind,
the horizontal p-ascendent of any quantity of
state can be evaluated from the wind observa-
tions and the ascent curve. With the same
approximation, we are also able to determine
the “p-slope vectors” of the equidensity, isothermal
and isentropic surfaces, when the ascent curve
and wind observations are available. For in-
stance, we have for the p-slope vector of the
isentropic surfaces, according to eq. (7.2)

W 284, O,
(12.3) Vp= £ = i?‘?k x%.
op 9 op

This method may be useful in drawing of cross-
section diagrams.

Taking the isobaric divergence of the geo-
strophic wind, we get

Vo 2
0,

Thus v, v, is due to the variation of the Co-
riolis parameter with latitude, and vanishes if
0Q, is considered as a constant. In the system z,
this quality is attributed to ¥.-(gw,); and in
fact we have ‘
(12.5)

(12.4)

Vi 0y =—10,"

Vs (qv) = qVp 0y

which is easily verified by means of the equa-
tions of transformation.

13. Surface of discontinuity. Orientation and
movement of a frontal surface.

A frontal surface may, approximately, be
considered as a surface of discontinuity (of the
order zero) in the air. At a surface of discon-
tinuity, the dependent variables must satisfy
the dynamic and ki boundary diti
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(see “Physikalische Hydrodynamik” (3]). Thesc
conditions will now be written down in the
system p. Let v, w,, @y, 8, and vy, @y, Dy, 5;
denote the dependent variables on the two sides
of a surface of discontinuity. The dynamical
boundary condition expresses that the pressure
field, in the system 2, is continuous at the sur-
face of discontinuity. In the system p, this is
expressed by:

(13.1) F=0;(z,5,p0)—P(@,9,pt)=0

at the surface. This equation may be inter-
preted as the equation of the surface of dis-
continuity.

From (13.1) we may deduce formulae for
the orientation and movement of a frontal sur-
face. Thus we find the p-slope vector of a
frontal surface, by putting a=F in eq. (7.2)

Vo @y — V, Py
13.2 Vpp = — T .
1s.2) b oD, o0,

By means of the hydrostatic equation (8.1) and
the geostrophic wind formula (12.1), this equa-
tion may be rewritten as:
20,k X (0, — V)

8 — 8, )

(18.3) Tpp = —
According to (7.5), the vertical p velocity
of the frontal surface is expressed by:

(3_“5) ﬁ{@z)
(13.4) (?2) V) \e
otjr 88
The horizontal velocity of the front in an iso-
baric surface is seen from (7.9) to fulfil the
condition

(13.8) (&), + ek =0,

or, dividing by z—Fp,

op ~ .
(&t evrr =

(13.6)
In these two equations, only the component of ¢
perpendicular to the front in an isobaric surface
is involved.

The ki 1 boundary condition expresses
that the surface of discontinuity (frontal surface)
all the time consists of the same air particles.

In math tical form, this may be written:
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DF
n =0 when F =0,

applying to particles on either side of the
surface.

Expanding the operator
(10.2), we get:

7 according  to

oF or
(E) PR 11)137=0

(13.7) oF when F=0.
( ) + v Vo F + ""‘Zk =0
Dividing by@ , we obtain
wy, = (%)F+ vy VEp
(13.8) when F=0.

o
@y = (?5’1,+ vy Vrp

In this latter form, the kinematical boun-
dary condition could have been derived directly
by geometrical considerations in the z, y, p-space.

Using (13.6), egs. (13.8) may also be written:
39 =@ _c)'v”?}whcn F=o.
0y = (v3—¢€)-Vrp

Egs. (13.7), (13.8) and (13.9) are equivalent
forms of the kinematical boundary conditions
for a frontal surface. Subtracting the two eqs.
(13.8), and using (13.3), we obtain:

13.10) 0 — o = (0, —v)- Vp
20,
— (0:—2,) kX (v, —v,,)

when F

From this it will be scen that if the wind is
seostrophic on both sides of the frontal surface
vy =y, v;=1y,), then ©, — w, must be zero,
- o. the individual pressure changes are equal
n the two air masses near the front. Hence,
f ©; —w, is different from zero, there must be
leviations from the geostrophic wind. Denot-
ng by v; and v, the deviations from the geo-
trophic winds, eq. (13.10) may be written:

13.11)

0.

Wy Wy

= (v'y—v') - Vrp.

Thus w, — w, is related to the component
f (v’ — v’;) perpendicular to the front. If the
rajectories of the air are anticyclonically curved
1 the warm mass and cyelonically curved in

Geof. Publ,

the cold mass, this will mean that o, for a
warm front, is smaller in the warm mass than
in the cold mass, corresponding to upsliding
motion of the warm air relative to the cold
air. For a cold front, the converse is seen to
be true, corresponding to subsidence in the
warm air. Isallobaric winds directed towards the
front in both air masses are seen to imply that w,
for all types of fronts, is smaller in the warm air
than in the cold air, corresponding to upsliding
motion of warm air relative to cold air.

14. Boundary conditions at the earth’s
surface and the upper limit of
the atmosphere.

The surface of the earth, while a rigid sur-
face in the system 2, is moving in the system p.
If the earth’s surface is taken as the zero lovel
of geopotential, then

(14.1) @ (@,y,p,9) =0, or p=p, (z,9.%)
is the equation of this surface in the system p.
The ki tical boundary dition at this
surface is:
(14.2) D —s0 =0

when p = p,.

The form of this boundary condition is seen
to be more complicated in the system p than in the
system z, because the earth’s surface is moving
in the system p. This difficulty may perhaps
in some cases counter-balance the advantages
attained in using the system p

Consider now the upper limit of the atmos-
phere. The equation
(14.3)

may be interpreted as the equation of this upper
limit, which is thus seen to be a well-defined,
“rigid” surface in the system p. The boundary
condition at this surface becomes:

Dp
aw =0=0 when p = 0.

p=0

(14.4)

In the system p, we may formally inter-
pret p as a vertical, geometrical coordinate, and
hence, » as the vertical velocity. Furthermore,
D, on many accounts, plays the role of pres-
sure (see for instance egq. (11.2)). Hence, we may
interpret eq. (14.2) as the boundary condition
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at a free surface, and (14.4) as the boundary
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It ma,y be convenient to satisfy eq. (15.2)

condition at a rigid, b tal bounding plane.
Thus we have the following paradox: In the
system p, the plane surface of the earth corre-
sponds to a free surface, whereas the upper
limit of the atmosphere corresponds to a rigid
bounding plane.

15. The equation of continuity.
Tendency equation.
With the notation of this chapter eq. (1.4)
becomes:
] 3(?"’)
(6IJ,+ Ve (qu) + —
This equation will now be transformed to the
system p. From (6.15) and (8.1), we find:

(15.1) V. (qo) = ¢V~ v+qa (qv- v, P).

Applying further egs. (6.6), (6.9) and (10.3), and
assuming g to be a constant, we arrive at
(15.2) v,~v+zi;=0

This is the remarkably simple form assumed by
the equation of continuity in the system p.
The simplicity is due tu the fact that the co-

di p, with tant g, rep the mass
per unit area of the air above the corresponding
isobaric surface.

Eq. (15.2) can be derived more directly by
geometrical considerations in the =,y, p-space.
Consider a fixed infinitesimal parallelepiped in
the z,y, p-space with side lengths dx, dy and dp.

The mass of air contained in it is ida:dgydp =

constant. The net outflow of mass from the
parallelepiped, which can be shown by simple
geomettica] considerations to be

(V, v+ am)

Interpreting p as a vertical, geometrical
coordinate, and hence, o as a vertical velocity, eq.
(15.2) is seen to express that in the z, y, p-space,
the air moves as an incompressible fluid. Owing
to this quality, the mathematical treatment of
the motion may be considerably simplified by
using the system p.

dadydp, must then be zero.

by i ing a vector p ial, and it can
be shown that this vector potential may be
chosen horizontal, without laying any restrictions
upon the velocity field. Denoting this horizontal

vector potential by A, we have:

u=k><ZL:, » =k -V,X A

Integrating the ion of y be-
tween the limits 0 nnd p, we obtain, on account

of the boundary condition (14.4):

(15.8)

3
(15.4) 0=— [V, vin,
I

where the variable of integration is denoted by
to prevent confusion. This equation shows that
the field of w is determined by the field of v,
and is the parallel to the complicated expres-
sion for the vertical velocity (3.3) in the sy-
stem z.

Combining (15.4) with (14.2), and denoting
the values at the ground by the subscript 0,
we find

(15.5) (sa_a;,q: —

This is the equation in the system p for the ten-
dency at the ground, corresponding to eq. (1.7)
in the system z. It should be noted that in
(15.5), the tendency is expressed as an integral
effect of /v, whereas in eq. (1.7) the integral
effect of V.- (qw) occurs.

o
o (V5 Pl — 0 [ V- vidp.
o

7
Since [vdp is a function of @, y and ¢ only,
0
we have:
7 n
V- fodp = sy [Vyrvdp A ve-86ap

o o n

= 8 [ Vo vdp+vo- (Vo®)0
o

in virtue of (8.3). Hence, eq. (15.5) may be

rewritten as

(16.6)

0D o
-a—)m =8V g vdp,

in accordance with a formula given by Petters-
sen [17).
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16. The first law of thermodynamics.
When 1:“—3 is expanded according to (10.2),
eq. (2.4) becomes

v,, Y

1 a8
40V Lo oy _ H

1

ey (%) e T
which is the first Jaw of thermodynamics, written
in the system p. By using (9.3), (9.4) and (9.5),
the derivatives of ¢ may be replaced by the
derivatives of other quantities of state. Using
(9.4), we can also deduce a formula for the
variation of tendency with height:

29 -

(16.2) +3 (u V,t?«f-wf—)

=7
—1H R 1
=__"_n__;+ i (v (7,-‘-}—4(77)
m x P"
This equation is seen to be simpler than the
corresponding equation (2.5) in the system z.
Integrating (16.1) between the arbitrary pressure
values p; and p, (p, < p,), we get:

% 4
J%
P

Y llp

®
- = (v Vit oz )%
Ty = ?"

»

expressing the variation with time of the dyna-
mic thickness of an isobaric layer. It is seen
that the thickness may increase for three reasons:
(i) heat conveyed to the air, (ii) “isobaric” ad-
vection of warmer air, and (iii) individual pres-
sure increase (with stable stratification), i e. sub-
sidence.

Putting in eq. (16.3) @, = @y and p, = p,
(where subscript 0 denotes values at the earth’s
surface), and applying eq. (15.5), we find an ex-
pression for the tendency at the arbitrary
level p;:

v (3),,-

x—1
+E f B
p*
Eq. (15.5) is a spel'xa.] case of this equation,
obtained by putting p, = po.

Vo

— 0y (V3@)o—2 | Vy-vdp
§

d.)) dp
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17. The i

In section 4, we considered the complete
system of equati which control
tho state and motion in the future when the initial
state and motion are known and H is known
as a function of the independent and the de-
pendent variables. The equations were then
written in the system z; now we will consider
the corresponding equations in the system p.

system of

P q

i-stati

From a fundamental point of view, it is
obviously of no consequence whether we operate
in the system z or in the system p; the system
of equations will in both cases express the same
physical meaning, and nothing can be deduced
from the equations in the system p, which could
not also have been found in the system z. But
even though the equations have the same
meaning in both cases, they will not have the
same form; and the system p seems to be pre-
ferable in most cases, on account of its greater
simplicity.

In the system p, the quasi-static system of
equations consists of egs. (8.1), (11.2), (15.4) and
(16.4). The boundary conditions at the earth’s
surface and at the upper limit of the atmosphere
are included in eqs. (15.4) and (16.4).

Two of the equations are of the “diagno-
stic” type, viz. the hydrostatic equation (8.1)
and the equation of continuity (15.4). The
hydrostatic equation is used in synoptic aero-
logy to find the instantaneous field of @ when
the instantaneous fields of 7' and p, (pressurc
at the ground) are known from the observa-
tions:

P P
a)-.=<b,,+fsdp=¢.,+1ef1'd—;'
» r

Conversely, the instantaneous field of s (and
hence, the field of 7' or ¥ or any other func-
tion of s and p) can be determined from the
hydrostatic equation, when the field of @ is
known at the same instant. In similar manner,
the instantaneous field of w is determined, from
eq. (15.4), by the instantaneous distribution of v.
Therefore, the instantaneous state and motion
of the atmosphere is completely determined, if
the ficlds of @ and v are given at the same



Vol XVIT. No. 3.

instant (or, alternatively, if the fields of p,, 7'
and v are given).

The variation with time of the fields of @
and v is lled by the “p equa-
tions (11.2) and (16.4). These equations are
not better fitted for prognostic use than the corre-
sponding prognostic equations in the system z.
What was mentioned about this in section 4
applies here too.

18. The quasi-static equations with —Inp
as the vertical coordinate.

If the linearized equations, which apply to
atmospheric wave motions, are written in the
system p, then the coefficients of these equa-
tions appear to vary with p. In order to attain
constant or quasi-constant coefficients, it proves
convenient to use
(18.1)
as a vertical coordinate!). With a view to later
applications, the equations will now be written
with P as an independent variable.

From (18.1) we find
a 1 0 p 0
= —— -eP =
ap p oP oP
The partial derivatives with respect to z,y ort
are the same, whether p or P is used as the ver-
tical coordinate. Denoting by ' the individual
variation of P,

DP )

== R

the formula of individual differentiation (10.2)
becomes

D_(2 [
84  F= (Et),+”'v"+"'aT"

The hydrostatic equation (8.1) becomes

P=—Inp

(18.2)

(18.3)

(18.5) @ __ pp.

Hence, in an isothermal at; h P
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The equation of motion, written in the form
(11.2) is unaffected by the change of variable.
The vorticity equation (11.3), however, assumes
the form

D
(18.6) E(ZQH— GV =—Q%+4) Vv
2
—k»v,u'xﬁr
The formula for geostrophic wind (12.1) still

holds, but the variation of geostrophic wind with
height is now, in virtue of (18.5), given by:

w, 1 oD

(18.7) = i_quv"é}s
R RT
= 2_!ka T = 50,9 kx7,9.
The ion of ity (15.2) the
form:
o

(188) Vv gp— =0,

and finally, the first law of thermodynamies, in
the form (16.2), becomes:

o (oD
op \ot ),

R 9 2 1
= H—BT (u-v,,ln.ﬁ + 0gpn J).

(18.9)

We shall return to these equations later.

CHAPTER IIl. THE EFFECT OF THE
CURVATURE OF THE EARTH.

19. The quasi-static equations with @
as the vertical coordinate.

In the preceding chapter, we have empha-
sized the simple form assumed by the hydro-
dynamic equations when pressure is used as an
independent variable. The geopotential surfaces
were then, however, assumed to be parallel pla-
nes, and the force of gravity was considered as a

tant. The question now arises whether it will

the true height above a certain isobaric surface.

Lo get corroct dimensions, the formula should have

been written P = — ln%, where , is a constant.
3
Howover, this constant may just as well be put equal

to the pressure unit, sinco its value is unmaterial.

still be convenient to use pressure as an inde-
pendent variable when these simplifying assump-
tions are given up. This question is considered
in the present chapter.

We start by writing the quasi-static equa-
tions for a curved earth, with geopotential as
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vertical coordinate. The other coordinates are
curvilinear di in the P ial sur-
faces (e. g. latitude and longitude). These hori-
zontal coordinates must be defined in such a
way that they are constant along a vertical
line (p dicular to the ial surfaces).
In the following, the choice of horizontal co-
ordinates will not be specified.

As before, we introduce a unit vector k,
directed vertically upwards. On account of the
curvature and divergence of the vertical lines,
k points in different directions at different pla-
ces, and, therefore, cannot be treated as a
constant.

Let v denote the horizontal velocity. The

N ... 1 DD
vertical velocity is 7—- Hence, the three-di-
mensional velocity may be written as

vt 1 Sk

(19.1)
In similar manner, we write the three-dimensional
del-operator in the form:
a

(192 Vot ko5
Here, /g is the horizontal del-operator, which
may be defined by:
(19.3) dr-Vp=dg,
where dq,denotes the change of a quantity in

ding to the hori-
zontal lme element dr Tbe suffix @ is used
to denote that @ is const&nt by the opemtlon
The formula of indivi

D
(19.4) 7=

[} )
57’ +{v+ 7 fd;k} (v0+kga—¢)

@ DO 2
= .ﬁ)o+ v Vot Z e

We are now able to write down the hydro-
dynamic equations with @, ¢ and two horizon-
tal coordinates (not specified) as independent

variables. We start with the hydrostatic equa-
tion, which becomes:
(19.5) »__q

oD

To find the form of the horizontal component
of the equation of motion, consider the three-
dimensional acceleration:

Geof. Publ.
D 1 DD
W("*’?Tt")
Do 1 DODE 1 DO
~a¢+?m‘z+"¢z 7?'

Here the first term on the right involves both
a horizontal and a small vertical component;
the second term is strictly horizontal, and the
third term is strictly vertical. Neglecting the
second term, which is very small, the horizontal
acceleration may be written as the horizontal
component, of D—v whlchwnllbedenotedby( 7 )1

o
Neglecting also tha horizontal Coriolis-acceleration
due to the vertical motion, the equation of
motion in horizontal direction becomes:

‘Dy) 00 v
a00) (5], = (o) + o vaoma+ 5208
=—8Vop—28LsingkXuv,
where ¢ is the angle between k and the equa-
torial plane.
The developed form of the term (v Vgv)nor
in spherical coordinates, is given in section 21.
The first law of thermodynamics, written
in the form (2.3) or (2.4), is unaffected by the
earth’s curvature.
The equation of continuity, however, requi-
res a-more thorough examination, The three-
is obtained by
forming the scalar ptoduct, of the three-dimen-
sional del-operator (19.2) and the three-dimen-
sional velocity (19.1):

(Vm+kga%)-[v+~l—p—q)k)=vm-v+—a-1—)9
+ l;?va,kwk +g”(l}m

Here Ve v is the horizontal divergence, which
may be defined as the relative increase per unit
time of a horizontal substantial area. The de-
veloped form of 77 P4 in spherical coordinates is
given in section 21. Notice further, that although
the vectors Vo and k are formally orthogonal,
the expression 74,k does not vanish, because
the derivatives of k are horizontal. Sincek.p=0,
PR v AR ok —o,

so that the three-di 1 velocity-diverg
may be rewritten as
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o DD
o di
1 Do o9 ok
+ Ta (vak~ﬁ} —9v - 5
It will now be shown that the derivatives of k,
which occur in this formula, can be expressed
as derivatives of g.

Consider the forco of gravity, — gk, which
involves the centrifugal force owing to the
earth’s rotation. The three-dimensional diver-
gence of —gk is due to the centrifugal force
alone, since the force of pure gravity may be
considered as solenoidal on account of the small
density of the air. Thus we have:

(197) Vv +

(Vm+ kya%\} (—gk) =22,
or

(19.8) G2

Vok=—jsp— 0

The three-dimensional vorticity of -- kg must
vanish :

ort)
(19.9)

By means of (19.8) and (19.9), the three-dimen-
sional velocity-divergence (19.7) becomes:

. 9Dp DD 1
(19.00) Vo0 455G + ¢ 7 —5 ¥ Vgl
where
289 200
(19,11) RirT
C quently, the equation of
the form:
1 Dg 2 Do
(19.12) 7'd?+v,,)'v+ ik
Do Vog
-—-—EW‘-{-v 7

Y) We got first:

%k

V@I ¥ k9 g ><k+r/'k><a;
Hence, cross-multiplicating by k:
ok

Vgt +9 (Vok) k—gk - Vgk—0' 75

Hero (V k) k = 0, because any derivativo of k
is horizontal. Further, k- Vwk =0, and we arrive
at (19.9).
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The first term on the right is partly due to the
divergence of the vertical lines, and partly to
the use of @ as measure of height. The second
term on the right is due to the convergence of
the geopotential surfaces towards the poles.
The corresponding form of the tendency
equation is:
o _ DO

w
i T wa'(llv) o
D

*po P Tl
—fsthdfp-rf ;’ qd®.
@D D

Here the second and third term on the right
represent the effect of the curvature. Since &
is positive, the second term gives pressure de-
crease at the ground for ascending motion, and
pressure increase for descending motion. The
third term is positive for motion towards the poles,
and negative for motion towards the equator.
To estimate the magnitude of the tendency at
the ground represented by the two last terms
of eq. (19.13), we insert some reasonable numeri-
cal values. Putting
g = 9.8 m/sec?,

(19.13)

% =-—0.315-10"*m™, Q= 0.729 - 10~* sec?,

we obtain:
&= 0.642-10~7m™2 sec®,
Since ¢ is nearly constant, we may write the
second term on the right of eq. (19.13):
5
——dp = —¢ ar Do

= 1 m?*fsec?, corresponding to a mean

vertical velocity of 0.1 m/see, and p, = 1000 mb,
we obtain:
©
Do

ar qd® ~ 0.6 millibars/3 hours.

The vector%vwg is directed northwards (or

the northern hemisphere) with a maximum valuc
of 0.83.10-m~* at 45° latitude. Adopting this
value, we get for the last term of (19.13):

»
0.83.10-*m vy dp = 0.83 10-*m~10y p,,
0
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where v, is the northwards velocity. Putting
vy = 20 m/sec, we find:

Y
fu- ‘09 qd®P ~ 0.2 millibars/3 hours.
D 4
These figures must be considered as extreme

values, since the values of and ¥, have

dr
heen chosen very large. The two last terms of
eq. (19.13) represent therefore, as might have
been expected, very small effects, which may
be neglected, since the tendency equation cannot
be used anyhow for accurate calculations of the
tendency.

Tt will therefore be sufficiently accurate to
write the tendency equation on a curved earth
in the form:

a0y 220 fva, (@) o,

in agreement with the usual form (1.7). In the
same approximation, the equation of continuity
assumes the form:

1Dg, _ 2 Do
(19.15) 7ﬁ+\7w*v+ﬁw—0'

which corresponds to (1.5). Using these approxi-
mate equations, we can also derive an expres-
sion for DWG), which corresponds to eq. (3.3) for
the vertical velocity.

20. Pressure as the vertical coordinate
on a curved earth.

Now let us introduce p as independent
variable instead of @, in the case of curved
geopotential surfaces. The dependent variables
will then be interpreted as functions of p, ¢ and
two horizontal coordinates. Partial differentia-
tion with constant p will be denoted, as before,
with a suffix p.

Differentiation with respect to the horizon-
tal coordinates may be expressed, without spe-
cifying these coordinates, by means of the
horizontal del-operator ¥/,, defined by:

(20.1) ar-v, =d,

Geof. Pabl,

where d, is the change of a quantity in an
isobaric surface, corresponding to the horizontal
line element dr. The formula (10.2) for indi-
vidual differentiation is then valid also in the
case of a curved earth. Also the formulae in
section 7 for the “p-slope-vector”, the “vertical
p-velocity” and the horizontal motion of equi-
scalar surfaces are still valid in the case of a
curved earth. The hydrostatic equation assumes
the same form (8.1) as before, and what was
said in section 9 about the geometry of the
fields of the thermodynamic quantities is
still true.

The equations of transformation are ob-
tained in the same way as in section 6, with
the result:

20.2) =0y
(20.3) Vo= Vs + 4V,
o {2l (o o5

in agroement with eqs. (6.6), (6.12) and (6.9).
ion of the equation of motion
in the form (19.6) gives:

(20.5) _(%)p-}- (v V0o + @ l%}w
=—7,0—22singkxuv.

The equation above corresponds to eq. (11.2)
in the case of a flat earth; and it follows that
the expression (12.1) for geostrophic wind and
(12.2) for thermal wind are still valid in the
case of a curved earth.

Transformation of the first law of thermo-
dynamics can be carried out in the same way
as was done in the case of a flat earth, and
the equations of section 16 are valid in the
case of a curved earth as well.

Transformation of the equation of continuity
in the form (19.12) gives

ow
vl —
'”+6p

=_5[.

Here 7,g is not transformed into 7,9, since g is
most conveniently interpreted as a function of @.

(20.6)

v,
v~v,®—sw]+v»—?—q~
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Comparison with eq. (15.2) shows that the terms
on the right are due to the curvature of the
earth. As was shown in section 19, these terms
are small and may be disregarded, if the accuracy
needed is not very great. Doing so, we arrive
at the same equation (15.2) as was found in
the case of a flat earth with constant g. We
may therof lude that p may be
used as the vertical coordinate also when the
earth’s curvature is taken into consideration.
For the sake of completeness, some remarks
on the offect of the right-hand terms of (20.8)

will be added. Neglecting (g

and p- 7, ® com-
»
pared to sw, eq. (20.6) becomes:

2w Vay

Vvt =80t v =

P o [
When ¢ is considered as a constant, this equa-
tion can be integrated to:

(20.7)

“ ./’um
(20.8) w=—f[Vp'v—v-vT@g e™ dm,

0
where the pressure, as a variable of integration,
is denoted by n. This equation yields a com-
putation of w, and replaces eq. (15.4) which
was found in the case of a flat earth.

Equation (20.8) can be combined with the

boundary condition at the ground, to give an

equation for the tendency (ag) at the ground,
»

corresponding to eq. (15.5) in the case of a flat
earth.
»
e fade

The weight function ¢ *  is equal to unity
when 7 = p and increases slowly as x decreases.
Thus, for instance, in the case of an isothermal
atmosphere we find

»
a{id«l (2')““,
e = .
n
With R =287, T = 240, &= 0.642.107, and
hence eRT = 0.00443, we find a very slow in-
crease of the function, as shown in the follow-
ing table:

1 0.001| 0

alp

05| 03| 02
(p[)0.00483

0.1 | 0.01

1]1.003] 1.005 1.007| 1.010} 1.020]
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With another temperature distribution, nearly the
same figures would have been found. The effect
of this weight function is to make the diver-
gences in the upper atmosphere slightly more
“effective” in producing pressure changes than
the divergences in the lower atmosphere.

21. Hori 1 diffe ial i in

As the meaning of the symbols V't
(2 VgPhor, Vp-v and (v V,w)nor used in  this
chapter may perhaps not be quite clear, the
developed form of these expressions will now
be given.

As to the differential operations in horizon-
tal direction, it is sufficiently accurate to
assume the geopotential surfaces to be spheres.
As coordinates on these it is appropriate to
choose longitude, 4 (positive in easterly di-
rection), and latitude, ¢ (positive northwards).
Further we introduce two unit vectors: i
pointing ds, and j pointi north-
wards. These are functions of 1 and ¢, and by
geometrical considerations we find:

i‘) —';’ k AT i si
(8/1 o= one—keosy, || =—ising

(%)m= 0 ! (%)w= —k
In eq. (19.3) we have

dr=ia cospdi+jadp,

where a is the radius of the earth; and hence
ol HE,

The horizontal velocity may be written:
(21.4)

By means of these formulae we find for the
horizontal divergence:

(21.1)

(21.2)

(21.3)

v=1ive+joy.

i (@ jle) L.
Vw-v=[—(—,-) +—[~] ]‘(wr:‘l—]‘hv)
(21.5) acos@dllyp  a\dplyp
- lf(aﬂ) Lo oa_
acosglddip ' a\dplp acotgy
and similarly for the horizontal convective

acceleration:
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(216) (@ Vgohhor= |

ve (o) va(ﬁv, VVy
acosp\ 9 |gp o o acotgrp

vy [Ovy vy vt
+7 [a cos tf( A )o+ (677 )w+ acotg q:|

In the above equations, it is permitted to re-
place the suffix @ by the suffix p, and so we ob-
tain similar formulae for the quantities /,-v
and (v Vy0)hor-

We may conclude that there are three dif-
ferent effects of the earth’s curvature:

(i) The Coriolis parameter varies with lati-
tude. This effect may be taken into account,
without introducing a curvilinear coordinate sy-
stem, by interpreting Q. as a function of y.

Geof. Puabl,

Assuming piezotropic changes of state, ¢/ =yp,’, or
(22.2) ¢ =—gat+rp

where y is the coefficient of piezotropy. By using
(22.1) and (22.2), the equations of motion for
small perturbations become, when the vertical
acceleration is taken into consideration:

2s o

- i =—L

U
i =— _1? — g9 —(I'— g3t

From these equations, Hoiland [12] has derived
a frequency formula for standing oscillations
along rigid Ii by ing a idal
time depend and taking the line integral

(u) The f lae of I 1 diffe ial

e. g. horizontal 1 and

honzonta,l divergence, are more complicated than

the corresponding formulae in plane coordinates.

(ili) Certain additional terms appear in the

equation of continuity and in the tendency

equation. These additional terms are, however,
small and may be disregarded in most cases.

CHAPTER IV. ON QUASI-STATIC GRAVI-
TATIONAL WAVES ON A NON-
ROTATING EARTH.

22. The legitimacy of the quasi-static
approximation.

Consider a fluid at rest in a constant gra-

along a c]osed curve. The local pressure per-
, is not, letely eli
by this method, except in the case of incom-
pressibility.
A complete elimination of p’' can be at-
tained in all cases by multiplying the equations
z

Sroaz
of motion by the integrating factor e* before
taking the line integral. There results then

. ./;vd:
(22.4) »fge’  (sdev+0da)

oo
= f I —n e tas,

where » denotes the frequency (or v the
«“flight frequency” in the case of instability).
This equation may be considered as an im-
proved form of Heiland’s frequency formula,

vity field. Denoting by p and § the p

which d the fr when the kine-

and density in this state, we have:

% =—TIygq,

where I'is the coefficient of barotropy.
Consider now small oscillations of this fluid

in the zz-plane. Let £ and { denote the hori-

zontal and vertical displacements respectively,

and let p’ and ¢ designate the local perturba-

tions of pressure and density. The individual

ap _
ey L=—yga,

matics of the motion is known.

The left-hand side of the equation repre-
sents the inertia forces, and the right-hand
side is the stabilizing effect of gravity. When
the line of integration intersects a surface of
discontinuity, then a term representing the sta-
bilizing effect of this surface must be added on
the right-hand side. We may, however, avoid
such additional terms by considering a sur-

perturbations of pressure and density may then
be written:

o o=p —gil, o =q—TI9q

face of di as a thin layer of rapid
transition; then the total stabilizing effect is
represented by the right side of (22.4).

The quasi-static approximation ignores the
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vertical accelerati The correspondi

static frequency formula is therefore

quasi-

Siods Sioas
(225) g & fdu= §(I'— ) " "

By similar kinematics, the quasi-static method
will give the same frequency as the ‘“‘exact”
method (22.4) if

. .
Sy S
(22.6) |fﬁe'”dtdz;<<|fﬁe‘y”;dzl,

which may thus be considered as a criterion
for the legitimacy of the quasi-static method.
It should be noted that if the stability
factor (I"—y) varies with 2, the above criterion
does not apply to an arbitrary closed curve.
The criterion applies to a streamline, or to a
curve intersecting the layers where the stability
factor (I'—y) is greatest. When applied to a
curve which contains indifferent (or nearly in-
different) layers only, the criterion is obviously
erroneous. Such a curve will also be unfit for
frequency determination from (22.4), because a
slight variation in the kinematics will greatly
affect the value of the computed frequency.

23. The perturbation equations.

Quasi-static wave motions in autobarotropic
layers have been treated by V. Bjerknes[4] andin
Physikalische Hydrodynamik [3], in the Jatter
case by using pressure as an independent vari-
able. As an illustration of the methods deve-
loped in chapter II, we will now deal with
quasi-static waves in stable layers, using pres-
sure as an independent variable. The results
thus obtained are of course not new, since the
quasi-static waves are a special case of the more
general non-quasistatic waves which have been
thoroughly treated by many writers.

It should be noted that in the case of small
perturbations of the equilibrium state, it is not

y to distinguish L the operati

(a%)pand (a%), or between (%)pand (%):, since the
difference between them will be small of the
second order. As independent variable, p
may therefore in this case be considered as
a function of z only. For this reason, the
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derivatives with respect to z and ¢ will in
this chapter be written without the suffix p.

The equation for the equilibrium state in

the system p is

o_ 14 _
op g
where I is the coefficient of barotropy, and &
and ¢ denote the values of @ and ¢ in equili-
brium.

Let &(z, p, t) be the horizontal displace-
ment, and n'(z, p, ) the individual pressure
perturbation in the perturbed state. Then &
and #° may be interpreted as the components
of displacements in the zp-plane. These dis-
placements must fulfil an equation of conti-
nuity of the same form as eq. (15.2):
ok | on'
o op

(23.1)

(23.2) =o0.
This equation will be identically satisfied when

£ and 7’ are expressed by a stream function F,

oF oF

E=— =

(23.3) f=g =
The horizontal acceleration is seen to be
P8 0 oF
2= ip when second order terms are

omitted. Further we denote by @’ the pertur-
bation of geopotential in a fixed point in the
ap-plane; this will in the following be called the
“local” perturbation. For Q =0, the horizon-
tal equation of motion (11.1) then assumes the
form

(23.4) R
The hydrostatic equation for the perturbed
state is
(23.5) g
where ¢’ denotes the local density perturbation
in the zp-plane. Since the individual density yer-
turbation is ¢’ 4 I'a’, the equation of piezotropy
may be written in the form

’ . , . oF
@) ¢ =—(—pa = (=N,

in virtue of (23.3). Here y denotes the coeffi-
cient of piezotropy. Elimination of ¢’ between
the last two equations gives
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(23.7) -
Eqgs. (23.4) and (23.7) permit a solution of the
form "
[ F=F(p) Az —at),
| @ = d(y) 4'(x —ot),
where A represents an arbitrary wave profile
and c is the constant wave velocity; A4’ is the
first derivative of A. This form of the solution
is possible owing to the non-dispersive character
of the quasi-static waves; si idal waves of
all wave-lengths travel with the same speed, and
may therefore be added to form a wave of
arbitrary profile.

Inserting (23.8) into (23.4) and (23.7), we
find

(23.8)

o
c? % =—&

(23.9) FT p o Ldé
q* P

Elimination of & gives the differential equation
of the stream function,

@F  I—y
(23.10) P + T F=o.
To late the boundary ditions, we in-

troduce the individual geopotential perturbation

@/ =@ — L. Then, from (23.3), (23.8) and
(23.9),

(23.11) { 7 = A(p) A'(w—ct)

/= bp) 4@ —al),
‘where
F=—F
(23.12) (5‘=f__cx@.
q dp

# and &, must be continous at an internal sur-
face of discontinuity; 7 must vanish at a free
surfaco, and &; must vanish at a rigid horizon-
tal boundary plane.

Geof. Publ.
3 =gsm2n% cos 2n%
(23.13) 5 o
27 o z
D/ = T i cos 27 I cos 27 Al

in virtue of (23.8) and (23.11). Suppose that
the fluid is bounded by two rigid planes at
heights corresponding to the equilibrium pres-
sure values p, and p,. Then there will be one

lar i of the hori-
zontal lines p = p; and p = p, and the vertical
lines « = 0 and z = {L. Applying the condition
(22.6) to this streamline, we obtain the result
that the quasi-static solution is valid only for
those wave-lengths, which are great compared
to the quantity L, given by

[ et
(23.14) L,,'=4?’f [ S —|
[A . S ab |

d P

This formula holds in the case of a free surface
also, provided that the upper horizontal line is
chosen above the free surface.

For wave lengths comparable with, or
smaller than L,, the vertical accelerations become
important. L, can be evaluated if # is known
as a function of p.

Since the travelling sinusoidal wave may be
considered as the sum of two standing oscilla-
tions, it follows that this condition applies to a
travelling wave as well.

If not a sine function, 4 may be decom-
posed by Fourier analysis into sine functions,
the wave lengths of which must all be great
compared to L.

24, Sol for a q g layer.
In the derivation of eq. (23.10), nothing

The solution (23.8) is mot p for

was d ing the variation of stabi-

all forms of the function 4. To see this, sup-
pose first that 4 is a sine function with wave
length L. The travelling wave may then be
split up into two standing oscillations, the
kinematics of which is given by

lity and density along the vertical. The validity
of this diffe ial ion is therefore quite
general.

In the case of autobarotropy (I'—y = 0)
it followsfrom  (23.3) and (23.10) that Fand n’

q
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are linear functions of p, whereas ¢ is indepen-
dent of p.

If I'—y is constant, it will be suitable to
return to height as an independent variable,
whereby (23.10) transforms into

2. F (I— ) g
IF gl U0,

(24.1)
This equation has constant coefficients and can
easily be solved.

On the other hand, pressure will be the
suitable independent variable, if

T—7_ constant.
7

(24.2)

The solution of (23.10) is then

(24.3) F = Ksinalp—p),
where

Ir—y
(24.4) =

and K and p, are constants of integratioxi. The
corresponding solutions for # and &, are obtained
from (23.12):

[ # =—Ksina(p—p,)

)| b= [t —m)

—y -
rY o8 a(p — p)|-

When a is real, & will vanish for the equi-
distant values of p

(246)  p=p, + f‘;" (n an integer),
corresponding to a cellular motion in the zp-
plane. @, will vanish for the values of p which
satisfy the equation

(24.7) g a(p — po) =
It will be seen that there will always be one
zero of @, between two successive zeros of .
The motion is therefore cellular also in the az-
plane, when a is real; but the cells in the z-
plane are displaced and distorted relatively to
the cells in the wp-plane.

When @ is imaginary, 7 will have one zero
only, or no zeros at all, and the same applies
to &,. The motion is then non-cellular.
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From (24.4) it follows that in the case of
cellular motion, the waves will be stable (c? > 0)
when I'—y is positive, and unstable (c* < 0)
when I'— y is negative. For non-cellular motion,
the opposite is seen to be true.

The supposition (24.2) generally involves a
rather artificial distribution of density along the
vertical. The solution (24.3) is therefore of
limited interest, except when the density varia-
tion within the layer considered is slight in
comparison with ¢. In this “quasi-homogeneous”
case, we may consider g approximately as a con-
stant, and the condition (24.2) may as well be writ-
ten I'— y = constant. Then it follows from (24.7)
that two successive zeros of @; will have the

. n
constant pressure difference = Hence we ob-

tain for a layer bounded by two rigid horizon-
tal planes, when the pressure difference between
these planes is denoted by Ap,

q e
< = i'——Ay.C (n a positive
integer) or

(24.8)

Since 7 is assumed to be nearly constant, this
formula may also be written:

(24.9) o= ‘QMLV gH,

where H is the depth of the layer. Inserting
this value of ¢ and the corresponding formulae
for @ and F into (23.14), we find

2H

=22

(24.10) =

s
showing that the solution is valid for wave
lengths which are great compared to the height
of the cells.

Now suppose that the layer is bounded
above by a free surface. In virtue of (24.6),
the boundary condition at this surface will be
satisfied if we take p, equal to the pressure at
this surface. The boundary condition for a
plane bottom at p = p, + Ap then is, according
to (24.7),

(24.11)

(@ Ap)tg (@ Ap) = (IVT'?Y)QP‘
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When (aAp) is considered as the unknown
quantity, this equation has an infinite number
of roots. The right side of the equation
will be a small quantity in the quasi-homo-
geneous case, provided that y is not of greater
order of magnitude than I. One of the roots
will then be small, and this root can be deter-
mined approximately by replacing tg (a« Ap) by
a Ap; this gives

L—y
2 =
“ =
or L
(24.12) c= ]/% —+/7H.

This is the Lagrangian wave velocity for long
waves in a shallow layer. The kinematics of
this kind of wave motion is such that the great
stability of the free surface will dominate against
the slight internal stability. These waves are

Geof. Publ.

which corresponds to that of the actual at-
mosphere.

Gravitational waves in an isothermal layer
are thoroughly treated in Physikalische Hydro-
dynamik [3]. We will here only show that the
stream function introduced in section (23) can
be applied in this case also, by introducing

(25.1)
as a new vertical coordinate (compare section 18).
With the notation

P=—Mnp, p=e’

aln0
T ep
where # is the potential temperature in the
equilibrium state, we find from (2.2)

(25.2) o=

c
IF'—y=—
"E R

where 7' is the equilibrium temperature. When 7'

is d to be tant, it follows from (2.1)

(25.3)

therefore, in first approximation, ind d
of the magnitude and sign of the qusmtn;y r—
‘When applied to these waves, formula (23. 14)
gives
(24.13) Ly==4/2 H.
The quasi-static solution is therefore valid for
wavelengths which are great compared to the
depth of the layer.

The further roots of (24.11) correspond to
internal cellular waves, the velocity of which
are approximately given by (24.8).

25. Sol 1 1 g: layer.

Hoiland [14] has pointed out that one may
replace a non-homogeneous fluid by a homo-
geneous fluid without losing the main features
of the motion, provided that the correct stability
effect is taken into account. A slight change in
the density distribution, which does not affect the
stability, will therefore be of very little im-
portance to the motion.

The density distribution in the atmosphere
may be characterized as quasi-isothermal, since
[N VAN
alnp
troposphere). In dealing with wave motion, we
are therefore justified in replacing the actual
atmosphere by an isothermal atmosphere, provi-
ded only that we reckon with a static stability

for an i

is a small quantity (about 0.2 in the

and (2.2) that

1
(25.4) o=1—,
so that we may obtain any stability wanted by
assuming an appropriate value for x.

Instead of the pressure perturbation =’ con-
sidered in section 23, we introduce the indi-
vidual perturbation of P, which will be den-
oted by II':

(25.5) = pll' = — ¢ PIT".

Using (18.2), the variable P may be intro-
duced into the equations of section 23. Egs.
(23.3) become

oF oF

£ [

(25.6) = ey, 11 =
For a solution of the form

F =F(P)A(x—cl)

@ =B (P) A'(x— ol)

I’ = [1(P) A"(x — ct)

D= B,(P) A'(w—ct),

the equation of the stream function (23.10) as-
sumes the form

(26.7)

aF RT

(25.8) P, r Ll B+ =0.

The other variables in the solution are given by
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[ =c‘e"j——£
I =erF ”
@‘_—_e"(BZT'ﬁ—(— cﬂ‘;—PJ,

in virtue of (23.9) and (23.12).

Eq. (25.8) has constant coefficients when ¢
is assumed to be constant. The solution may
be written as
P =KeiPsina(P—Py)
fl = K ei? sin a(P — Py)

B, = K P [(RT — 4¢2) sin a (P —Py)
+ ac® cos a (P — Py)]

(25.9)

(25.10)

in the cellular case, and

P = P (K, el + Kye—tP)

11 = e (K, e? + K, eiF)

By= P [(RT —c* (} — ) Ky o'”
+(RT — & (3 +8) K. 9*“’"]

for non-cellular motion. In these expresslons,

K, P,, K, and K, are ts of integ

(25.11)
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25.1 " i
(25.14) [ [ p—or (Rfl'i‘ +e “—} ar
4n® = Py
L= — RT p
f [e(l—-:)r daF J
|
For the cellular solution (25.10), this formula

becomes, when the velocity formula (25.13) is

utilized,
l/ 1+

When H is small compared to BTT , we ob-

2mc
(26.15) Lo = —‘,’;'

tain Ly~ 2H; therefore, these waves may be
considered as quasi-static when the wave length
is great compared to the height ot the cells.
When H increases, L, will increase at a slower
rate, and as H ->co, L, approaches the limit
(25.16) I 4nRT

Omax — g

which for at; heric diti will amount

and a and 8 are given by

(25.12)

For stable waves, we have

cellular motion when ¢* < 4 oRT
non-cellular motion when ¢*>4 oRT
In the case of cellular motion, 6:,. vanishes at
equidistant values of P. The distance AP be-
tween two successive zeros of & is given by
a AP =m. Hence, from (25.12)

(5.13) “l/ RTAP
E’[‘ 1
+ 27

where H = RTAP is the geometrical height of
the cells. This formula is in agreement with
the formula for “long cellular waves”, Physi-
kalische Hydrodynamik’ [3], eq. (20) p. 341.
Introduction of P into formula (23.14) gives

to about 100 km Cellular waves with wave-
lengths considerably longer than 100 km. will
therefore always be quasi-static.

CHAPTER V. ON THE THEORY OF PER-
TURBATIONS OF A WESTERLY
AIR CURRENT.

26. The basic current.

In this chapter we shall deal with some
problems concerning perturbations of a westerly
current, on the basis of the quasi-static equa-
tions. The variation of the Coriolis parameter
with latitude will be taken into consideration,
but the further effects of the earth’s curvature
will be neglected.

In the horizontal plane we will use a
Cartesian coordinate system with the a-axis
eastward and the y-axis northward. P=—Inp
is used as a vertical coordinate.

The fundamental state is chosen as a steady
linear westerly current defined by
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(26.1) 5=a(y, P)i, y=0 D=8y P),

=T (y).
The potential temp 3 then t a
function of y and P. The following abbrevia-
tions will be used:

2lnd| dnT
6.2 ( ) _ -
(26.2) Rl

B

The atmosphere may be given any desired sta-
tic stability by choosing an appropriate value
of . The quantities b and o will be considered
as constants; In T is then a linear function of y,
and InJ is a linear function of y and P. The
state is baroclinic when b <=0, barotropic when
b = 0, and autobarotropic when b = 0 and o= 0.

For the basic current, the equation of
motion and the hydrostatic equation assume
the form

oD -
26.3 acd R —
(26.3) (31/),, fu, b RT,
where f = 2£, is the Coriolis parameter. The
flow is g phic, and by eliminati @ we find
the thermal wind equation
(26.4) %= —R';—T — RFb.

27. The perturbation equations.

In the perturbed motion we denote the
deviations from the basic current by primed
letters:

Y= Yy
O=D+ D

©1.1) { u=tto

v = v
Assuming adiabatic changes of state, we find the
perturbation equations from egs. (11.2), (18.9),
and (18.8) by utilizing (18.4), (18.5) and (26.4)
and neglecting terms which are small of the
second or higher orders,
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=)
+ 50 1[5 =0

(%} +o (),

2 » o w4 P2

(©1.2) lat},,*' u lax)p—i-fu +| By),,_o
2 o' o 20" T | p
(ﬁ F)+ (ﬁ 5}7)"— RTb' -+ BToy' =0
o\ o\ oy
il TR L — ) =0.
(h){'— & ],,+ v

The boundary condition at the ground is

‘%(@-{-(D'):O when @ =0, or

(27.3) (%),, +a '?—;)v— fuv' + BTy =0
when P = P,,
P, being the value of P at the ground. In the
first approximation, P, may here be replaced
by a constant.
The boundary condition at the upper limit
of the atmosphere becomes

(27.4) lim (e~Py') = 0.
P

28. Baroclinic current, perturbations inde-

pendent of x. Stability criteria of
Solberg—Hoiland.

Consider a perturbed motion which is inde-
pendent of z,
a
=

The perturbation equations (27.2) then become
2 il RTb
)l )+ v

6"
(at) + +( ) =90

oy
_a_'a%) — RT0v' 4+ RT oy’ =0

e

Elimination of u’ between the two first equa-
tions gives

(28.1)

(28.2)

—y' =0.
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(28.3) (?_’1') -

ot |y (abﬁ’)

g e

We write the third equation of (28.2) in the fol-
lowing way

(284) 0= -57,(90) + RTbv — RT oy,
From these equations, the stability criteria can
be derived by a method analogous to the method
introduced by Heiland [12], [13]. Multiplying
(28.3) by dy, (28.4) by dP, adding and inte-
grating along a closed curve in the yP-plane,
@' drops out'), and we find

@0 G- = =]

—RTb (y dy -+ dP) + RT oy’ d P).
Now suppose that the motion takes place along
rigid, closed streamlines in the xP-plane. Choos-
ing a streamline as the curve of integration, we
may write

v _aP_
(28.6) Faat i k,
where k represents the slope of the tangent of
the streamline in the yP-plane (in the following
denobed by “P-slope”). Further we assume a

idal or exp ial time depend Y

o [
(28.7) L at'),,
where » is the frequency in the case of stable
oscillations (»2>0). In the case of instability
(2 <0), iv is the “flight frequency”.

Hence, (28.5) may be written

wfv = §lrl-{))
— 9RTbk+ RTak’ju’ y,

=—»2,

(28.8)

—2RTbk +BTuk‘j,,.,

%) Tt is interesting to note that one here attains a

complete climination of @. When the correspon-

ding method is used in the system z, however,

tho pressure tendency is not completely climina-

ted, oxcept in tho incompressible case. Compare
Hoiland [12), (13).
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where the subscript m denotes a certain mean
value along the streamline considered.

The stability conditions can be deduced by
considering the expression

(28.10) »2 =f[f—(%) )_ 2RTbk+RT ok,
»
If »2 is positive for all values of k, then »? will
be positive for an arbitrary closed streamline,
and the basic current is stable for perturbations
independent of z. If »? is zero for one value
of k, (k= k), and positive for all other values
of k, then »? will be positive for all closed cur-
ves; but »* will approach zero if the shape of
the streamline is such that the motion takes
place mainly in the direction k,. The basic cur-
rent may be said to be indifferent. If »2 is
positive for some values of k and negative for
others, then the sign of »? depends upon the
shape of the streamline. »® will be negative if
the shape of the streamline is such that the
motion is directed mainly in the sector where
#? is negative. The basic current is said to be

unstable.
Assuming static stability:
(28.11) 6>0,
we find from (28.9) the stability criterion:
(28.12) f(f—(%) ):.% RTH  btforont
21y unstable.

Hence, great meridional temperature gradient,
slight static stability and great anticyclonic
wind shear in an isobaric surface are destabili-
zing factors.
In virtue of (26.4) the stability criterion
may be rewritten as
) s
indifferent
o op|> unstable.
Here the left-hand side represents the variation
of @ along an isentropic surface. Denoting this

variation by (g;i) , we find the criterion:
o

stable
(28.13) ["ifi) S/ indifforent
%y |o unstable.

The fundamental state is therefore unstable
when the wind shear, measured on an isentropic
chart, is anticyclonic with a 1 value
greater than f.
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Consider the quantity
(28.14) U=2u+u,
where , is the absolute velocity due to the earth’s
rotation. The value of U in the fundamental
motion is U = 2u, 4 @. We may consider u, as

a function of y, and find (%) = —1}f. Hence:
»

(28.15) 9_) - (%} oU _on _ BT
o oyl 9P P ]
The first equation in the system (28.2) is seen
to express that U is a conservative property;
but U has generally different values for the
different particles. In the basic current, the
surfaces U = const. will be parallel to the z-axis;
the P-slope of these surfaces is represented by

[l tl—51)
22 RTH
oP

(28.16) ky— [g)v:

In like manner, the P-slope of the isentropic
surface is given by:

(2817)  ky= {@)

Utilizing these expressions, (28.10) may be written
in the form

Geof. Publ.

In the unstable case, the directions (k = k)
which separate the unstable sectors from the
stable ones are given by

(28.21) w2 =0, or ko= ks +Vks (ks — k) ,

showing that the isentropic surface lies within
the unstable sector, provided the atmosphere is
statically stable. In the indifferent case, the
i surface ts the indifferent

direction.
The stability criteria for a baroclinic circular
vortex subjected to vortex ring perturbations
have been derived, in general form, by Solberg
[20] and Hgiland [12], [13]. Fjertoft [8], [9] has
applied the theory to atmospheric conditions
and thus derived the stability criteria of a
zonal current. The corresponding stability eri-
teria for a linear current on the rotating flat
earth have been derived by Kleinschmidt [15].
The stability criteria for a linear current prove
to be nearly the same as the stability criteria
of a curved zonal current, except near the pole,
where the curvature of the zonal current is great.
The analysis given in this section shows that
the stability criteria for a linear current are
arrived at even by using the quasi-static ap-
proximation.
The theory of Solberg and Hpiland is based
upon the conservation of circulation (or angular
) of every individual zonal circle.
Applied to a statically stable atmosphere, whose
temperature decreases northwards, the theory
shows that the condition for instability is that
the surf: of circul are less steep

(28.18)  »2 = RTo (k* — 2 kol -+ koky) ,
and the stability eriterion may dingly be
written:
> stable
(28.19) ks (kp —ks) = 0 indifferent
< unstable

Under normal atmospheric conditions, we have
ks3>0, and the condition for instability is that
the surface U = constant is less steep than the
isentropic surface.

The direction (k,,) of minimum stability, or
maximum instability, is given by:

d@e) _ .

(28.20) g =0 o kn=ky,
and is thus represented by the slope of the
isentropic surfaces.

than the isentropic surfaces. This is almost the
same criterion as (28.19), the only difference
being that the slope of the surface of constant
circulation is replaced by the slope of the sur-
face U = constant. This difference is due to the
neglect of the curvature of the zonal current
and of the vertical Coriolis force. Provided that
the surface of constant circulation are quasi-
horizontal, and the region near the pole is ex-
cluded, the difference is, however, unimportant,
because the surfaces U = constant are nearly
coincident with the surfaces of constant circu-
lation, as will be easily verified. It is also easy
to show that for small meridional displacements,
it is of no consequence whether U or the circu-
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lation is considered as conservative. Hence, the
stability criteria found by the quasi-static method
for a linear westerly current are approximately
the same as the stability criteria found by the
“exact” method for a curved, zonal current,
provided that the surfaces U = constant are
quasi-horizontal; and this is normally the case
in the atmosphere when instability of this kind
oceurs.

The frequencies computed by the quasi-
static method from eq. (28.9) will not be strictly
correct, but the error will be slight when the
motion is mainly quasi-horizontal.

Formulae (28.20) and (28.21), which define
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2

= :
RTbH RTH’
Eq. (28.24) can be simplified by introducing &
new variable Y, defined by:
(28.26) Y=Y+ %,

This gives a skew coordinate system (Y, P),
where the “P-slope” of the lines Y = constant
is equal to ¥. When transformed into this

(28.25) ¥ =

—=ky—

system, the differential (28.24) b
oF | K —ky *F

(28.27) aP2 +6P + Ol el 0.

By sep we find sol of the form

the unstable sector and the di of
instability, will be nearly correct when the surface
U = constant and the isentropic surface are
quasi-horizontal.

We will now consider some simple sohmons
of the eq (28.2).The equation of
which is the last equation of the system (28.2), w111
be identically satisfied by putting:

, oF oF

(28.22) o' = _‘Pﬁv Y= e”{ayj,,
F being the stream function in the yp-plane.
Substituting this into eqs. (28.3) and (28.4), and
assuming a time dependency as expressed by
(28.7), we obtain:

o o0 o8 o] »oF
~ % -Gl
oF"
28.23 RTver (o ) =0
( ) + P
o (o0 oF F)
— | =] —RTbe ——RTae’ =0.
P t a ),, % I
For simplicity, the coefficients of these
ions will now be idered as This

q
of course is not strictly correct, since 7' is assumed
to vary in the y-direction; but the main effect
of this variation has already been taken into
consideration.

By eliminating @' between the above equa-
tions, we find the differential equation for the
stream function:

1 ( ’F)
9 2

k'k
oF
+apt

(28.24) 3P2+ ¥ (;}:’fy) +

with the abbreviation

(28.28) F = Ke—iPsin a (P — Py) sin § (¥ — ¥,),
where K, P, and Y, are constants of integra-
tion, and
(28 29)

EFEEN Sl YT

k"k
We assume that ¢ is real. When a is real too,
the motion will be cellular, taking place within
skew parallelogrammatic cells in the yP-plane.
The “P-slope” of these cells is %', and thus
depends upon the frequency. The breadth of

the cells is B = %, and the depth, measured in

the coordinate P, is 4 = i:—.

On the other hand, if o is imaginary, the
motion is non-cellular; such a motion is possible
only when there is an exchange of energy at
the boundaries of the system considered.

If the dimensions of the cells, and hence
a and B, are given, then the frequency can be
computed from (28.29), by inserting the expres-
sion (28.25) for &’. This gives an equation of
the second degree in »%. To either of the roots,
there corresponds a certain slope of the cells,
computable from (28.25).

With a view to applications to the atmo-
sphere, we are most interested in the case of a
slight stability or instability, in the sense that
the surf: U= and 9 = are
nearly coinciding, so that | ky—ks/| is small. The fre-
quency equation will then have one root which is

small compared to flf—[%) ] In the follow-
B

ing we will consider this root only, since it is this
root which gives the instability.
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The small root can be approximately de-
termined by putting k2 = ky? in the denominator
in the third term of (28.29), whereas the formula
(28.25) is used in the numerator. This gives

v

(28.30) a4} 4 (1_(_)“J Sp =0,

v
where ™
_t—k
(2831) 8= Totky
RT
and

(28.32) »,2 = RTb (ky—ky) = RT o ky (kv — ks).
It will be seen from (28.19) that S and »,2 will
both be positive for a stable current, negative
for an unstable current and zero in the indiffe-
rent case. », is the limiting frequency for in-
finitely narrow cells (8= o), and »,* is the
smallest possible value of »* by real a. The
2

(=9
2 i 42,
V34302,
V22p2
A
sp®
1 2
- 7%
-
/
/ 4 (/) o
-2
/ VEe-v2
V3202

Fig. 1. Lines »* = constant for a stable current.
Hatched area: unstable motion.
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aa
2 vEe-2u
2 2
VRe-uB
vi-o
4
/// / sp?
[ —r—r
4 s/ R),
-4 e VA Vg,

-2 / )
/ )
’ /

Fig. 2. Lines »* = constant for an unstable current.
Hatched area: unstable motion.

2
7
V24,

slope of the cells will in this case be approxi-
mately given by the slope of the surfaces
§ = constant.

The relation (28.30) between »?, a* and f*
for different values of S and »,% can be repre-
sented graphically. In figs. 1 and 2, the dimen-
sionless quantities (Sf?) and «® are used as

. . v \?
coordinates, and lines (T) = constant are drawn.
m]

These are straight lines running through the
point 88 =0, o* = — {. Fig. 1 applies in case
of stability (§>0, »,2>0), fig. 2 in case of
instability (8 <0, »»*<<0). In the stable case,
»? is seen to be positive for all positive values
of a®. In the case of instability, »? is seen to
be negative for cells which are sufficiently nar-
row compared to their depth. The line »* =0
separates the region of stable oscillation from
the region of unstable motion.
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29. Wave perturbations in an auto-
barotropic current.
Consider now wave perturbations of the form
w = (y, P)ente—e
v =7 (y, P)einte—t
! = (y, P) gine—et)
= B (y, P) ¢iwto—et)
where u denotes the wave number and ¢ the
wave velocity. Inserting these expressions into
the perturbation equations (27.2), we obtain

(29.1)

(i = i—f— (%}};)T'Z

+ g+ i =0

@2} fitin@—os+ [g),

iu(i—c): -é—Rf'b3+RTu';=0

=0

3|p/~

o,uu+ = 0.

il

The boundary conditions (27.3) and (27.4) be-
come

(29.3) iu(a—c) B —fav + RTp =
(29.4)

0 when P=P,
lim (e~Pp) = 0.
P

The system (29.2) shows that w' and @ have
the same phase, and also that v and v’ have
the same phase, whereas there is a phase diffe-
rence of jn between u’ and v’

In this section, we will only deal with the
case of autobarotropy
(29.5) b =0,

o=0, —0 = a(y).

31’
The perturbation equations (29.2) then become

[ ay(a—c)a—(/—%']ﬁ fid=0

fatin(@—a)p +[§) =
(29.6) ob ’
i (@ — c) -=0

iudh + {6;/) +55 @5y

If there is to be an autobarotrapie transition
from the basic motion to the perturbed motion,
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then the local!) perturbation of specific volume
must vanish; this gives

o®

(20.7) i

=0.
Differentiating the two first equations of (29.6)

with respect to P, we find, in virtue of (29.5)
and (29.7)

o) &
h)ﬁazo

fa,,+m(u—c)~— 0.

(20.8) -',L(a—c)g%_(f_ “

Hence, if 4 and o vary with P,
du)

@09 wa—or =5

Here {f—:%i) is the absolute vorticity of the

basic current, and the right-hand side equals the
square of the limiting frequency found by V.
Bjerknes [5] for pure inertial oscillations in a
circular vortex rotating with the angular velo-
city §f. The orbital frequency s (%—c) in the
wave motion is thus determined merely by the
inertia stability.

The inertia stability becomes inactive when
there is no circulation in the meridional plane;

in the quasi-static theory, this means that aa—-;,

is zero. This case has been investigated by
Rossby and Coll. [19], J. Bjerknes and Holm-
boe (1], and Charney [7). It will now be shown
that their results can be deduced from the
system (29.6) together with the boundary con-
ditions.

When o is assumed to be independent of P,
it follows from (29.8) that 4 is also independent
of P. The last equation of (29.6), together with
the boundary condition (29.4) then shows thaca
is independent of P. This entails that the con-
dition (29.3) for horizontal motion at the ground
will be valid for all values of P and the motion
is, theref strietly horizontal. It follows
that the dependent variables, which are now
functions of y only, must satisfy the following
system:

}) i e. by constant z, y and P.
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ula— o a—{f — 55 + b0
dy@
(29.10) fﬂ+ty(u-—c)v+———0
v
ipd + ;l_y- — yJ =0
in (@ —c)®—fav+RTp=0.
Eliminating v between the two last equa-
tions, we obtain the tendency equation for this
particular kind of motion,
(@0.11) in(@—c) b= fuv—RT(n,uﬂ,-}-d )
Here the parenthesis in the last term on the
right the h g
Eliminating & between the two first equa-

tions of (29.10), we find the equation for the verti-
cal p-vorticity,

1 d*
. _qu[d—c—u,,-i- .zquv_ 0,
where
1df
(29.13) T

ig called the “critical velocity” by J. Bjerknes
and Holmboe.

Rossby’s result is obtained by making the
following assumptions:

(i) the horizontal p-divergence (t,uﬂ + dy) is
equal to zero;

(ii) 4 is independent of y;

(iii) the baslo current has a constant vorticity,

so that a—, =0.
The vorticity equation then simply becomes
/L’[ﬂ—c—u,]$= 0,

and so we find
(20.14)
which is Rossby’s formula. It was obtained by
Rossby from the equation of vertical vorticity
by use of similar assumptions. The equation
states that the wave is stationary (¢ = 0) for
a certain “stationary wave length”

¢ =0,

(29.15) L=2x

&&=
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Waves with wave lengths smaller than L, are
propagated eastwards, whereas those with wave
lengths greater than L, travel westwards.
Rossby has also discussed the effect of a
variable vorticity in the basic current. From the
mean wind distribution over North America he

finds that lg—;l is about 25 9, of —-y

this gives
in the formula (29.14) a correction term, which
is about 25 %, of u,.

In this case, however, it seems to be more
correct to base the considerations on the quali-

ties of the i wind distrik ; and
by i i of actual logical charts, one
finds that is very often of the same order

of magnitude as % This is especially true in

the vicinity of a strong west-wind maximum. The

2,
%yl: will then

be of the same order of magnitude as u.. In
this case, we cannot obtain a correct estimate
of the wave velocity by assuming that 4 is
independent of y. This assumption means

correction term in (29.14) due to

that at every point the zonal &hear% has

the* same value in the perturbed motion as
in the basic current. For instance, if the zonal
wind in the basic current has a maximum
along & line ¥ = Yumex, then this line will
also represent the maximum zonal wind speed
in the perturbed motion. This does not agree
with the observed wave patterns; on the
contrary, the observations show that the lines
of constant zonal shear, e. g. the line of maxi-
mum zonal speed, assume a waveshaped pattern
in the same way as the contour lines, or the
isotherms. Thus, the observations contradict
the assumption of local conservation of the zonal
shear. From the observations, one should rather
suggest that there is a tendency for the zonal
shear to be individually conserved; i. e.

(29.16) E%(a + )~ 0.

This may also be written:

(29.17) g u—c)dy-i—lv,\/l)
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This means that in the vorticity equation (29.12),

the term involving gy‘ will have a tendency to

be balanced by the term involviug @ The as-

sumptions % =0 and %%:: 0, which were made
at the outset, may therefore be replaced by the
single assumption that the zonal shear is indi-
vidually conserved; and this assumption seems
to be more justified than the former ones.
There is therefore reason to believe that Rossby’s
formula (29.14) may be approxlmately correct,

is of the same order

dy’
Strictly speaking, since ¢ is

even in cases when

of magnitude as "

considered as a constant, the formula (29.14)
can be valid only when @ varies with y in the
same way as «. It is, however, reasonable to
suppose that the formula will be approximately
true even when this condition is not stnc(:ly
fulfilled.

Rossby [19] has generalized the formula
(29.14) by taking into consideration the horizon-
tal divergence, assuming the air to be homo-
geneous and incompressible. Holmboe [11] has
denved the cortespondmg formula for an auto-

it h by making

the assnmphons
(i) 4 and ¥ are independent of y
(ii) % is constant.
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root which is small compared with VET is of
meteorological interest. As pointed out by Char-
ney, this root can be approximately determined
by disregarding (4—c)® versus RT; this gives

(29.21)

This formula is discussed by Holmboe; he finds
that the difference between this formula and
Rossby’s formula (29.14) is slight, except for
extremely long waves.

Charney (7] has shown that the velocity
formula (29.21) implies that the meridional wind
component is nearly geostrophic, and conversely
that the approximate solution (29.21) of (29.20)
is arrived at directly by assuming geostrophic
wind in the y-direction. This assumption there-
fore automatically eliminates the great roots of
(29.20), which correspond to fast-moving gravi-
tational waves of little meteorological importance,
so that only the meteorological important solu-
tion remains.

It will now be shown that eq. (29.21) holds
dlso when # and # vary in the y-direction, pro-
vided that the meridional wind component can
be considered as geostrophic, and the zonal shear
is individually conserved.

The condition for geostrophic wind in the
y-direction is
(29.22) iud=fo.

If there is no horizontal p-divergence, the ten-
dency tion (29.11) t

With these assumptions, the vorticity eqs
(29.12) becomes

(29.18)
By eliminating & between (29.11) and the first
equation of (29.10), we find

(29.19) i u[RT —(@—c)*| 4 —fcv == 0.
These two equations form a linear and homo-
geneous system, whose determinant must vanish.
This gives

(29.20)

fiptl—p2 (G—c—u)®=0.

r__o
WRT — (i—c)

This equation is identic with the formula for
autobarotropic waves found by Charney [7],
eq. 31, and approximately identic with the equa-
tion found by Holmboe [11], eq. 12.07,6. Eq.
(29,20) is of the third degree in ¢, but only the

G—C—u;=

(29.23) ip(@a—c) @ =fav.

Comparison with (29.22) shows that the meridi-
onal wind will be geostrophic for the stationary
wave, but for wave-lengths considerably smaller,
or greater, than the stationary wave-length, the
meridional wind will differ considerably from
the geostrophic wind.

By combining (29.11) and (28.22) we may
compute the horizontal p-divergence necessary
to secure that the meridional wind component
be geostrophic for all wave velocities, We then
obtain

(29.24) e Jo g

@ _
iptd 4+ —
MOt =TT kT
Inserting this in the vorticity equation (29.12),
and assuming further that the zonal shear is
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nearly conservative, so that the term involving

:3 is nearly neutralized by the term involving

g?, we find
di)
f( dy} 3
T c—pd(i—c—u) |v =0.
Hence
(29.25) (= BT Y

14

WRT

which for % = constant is identical with Holm-
boe’s equation. It is very interesting to note
that the potential field (pressure field) and the ten-
dencies in this diverging wave are very different
from the pooentlal field and the tendencies in
the diverging wave idered by Rossby,
although their speed of propagation are approxi-
mately the same (except for extremely long
waves). This illustrates the important fact that
a horizontal p-divergence which is small com-
pared to the other terms in the vorticity
equation, may be one of the main terms in the
tendency equation. As to the speed of propa-
gation, it is therefore of very little importance
whether eq. (29.22) is considered as strictly
fulfilled, or as a mere approximation.

The solutions considered in this sectmn are
based upon more or less artificial p
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k _ D
(30.1) v=o, 4% 5=
‘where P
(30.2) v=F X V@

is the geostrophic wind. We assume that the
horizontal acceleration can be approximately
written (compare eq. 18.4)

Do

@03 7 =% + 0,900+ v 32,

i e. thel 1 leration is puted as if
the hori 1 wind were g phic. Using the
notation

(30.4) b=—v,ln0=—v,InT
1 2
—z7rap VP
and neglecting the variation of f with latitude
in the term v,-V,v,, eq. (30.3) may be written,
in virtue of (18.7),

Dy &k 0D
W g =7 x [z

+v,- VoV @—RTyb |
Inserting this into (30.1), we obtain the quasi-
geostrophic wind formula

1 o0
600 v =0, —[ (w7,
+ 0, VoV, P— BT wb)].
by which the velocity is expressed in terms of the

concerning the kinematics of the motion. A
physxcally satxsfymg theory ls possible only by
also at the
lateral boundane.s Of the stream, and solving
the boundary problem thus arising.

CHAPTER VI. ON THE THEORY OF
QUASI-GEOSTROPHIC MOTION.

30. The quasi phi

q &

wind fc la.

In this chapter we shall consider the simpli-
fications gained by assuming the wind to be
approximately geostrophic.

The equation of motion (11.2) may be
written in the form

¥ ial field (or p field) and its varia-
tion with time, the temperature field and the
“vertical P-velocity” y. The term within the
brackets corresponds to the geostrophic depar-
ture. The first term in the parenthesis is the
“isallobaric wind”. Hesselberg [10] was the first
to realize this effect, which was later discussed
by Brunt and Douglas [6]. The second term
represents the effects of curvature and diver-
gence of stationary contour lines. This term
gives a contribution in the direction of p, for
antxcyclomcal.ly curved contour lines, and in the

for ically curved con-
t,our lines; it also ng% a contribution along
Vy® when the contour lines diverge in the
direction of p,, and a contribution along
—V,® when the contour lines converge in the
direction of y,, The third term in the paren-
thesis corresponds to the term introduced by
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Sutcliffe [21]. This term is directed along b
(towards colder air) for ascending motion (rela-
tively to the isobaric surfaces), and along —b
(towards warmer air) for descending motion.
It is possible to attain a still better ap-
proximation by writing, instead of (30.3)

Dv_ Dv, _ (v, v,
on) 0=l ) uv, gy
k 80\
= 7 X [v,(.an.;.v.vpv,,w—RT quJ.
This has the ad agy d

to (30‘.141; that the due
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fe + k X Zpv,. The formula (30.9) becomes un-
serviceable when this determinant is zero.
Formula (30.9) will probably give a better
approximation to the true wind than (30.6), but
owing to the intricate form of (30.9), caleula-
tions with this formula are often very cumbersome.
In cases where the convective acceleration due
to the geostrophic deviation is slight (i. e.
(v—w,)- Vs, is slight) the two formulae (30.6)
and (30.9) will give nearly the same result.

. 3.

to a horizontal shear of the geostrophic wind is
taken into iderati This leration term
is important when the inertial stability of the
wind field is examined. For instance, suppose
we are dealing with the convective acceleration
in a frontal zone parallel to the contour lines,
due to the upsliding motion along the frontal
zone. In this case, formula (30.3) gives the
convective acceleration due to the vertical motion
only. The result is obviously wrong, because
a parcel moving vertically through the frontal
zone will have a convective acceleration com-
pletely different from that of a parcel moving
along the frontal slope. This difficulty is avoided
by using the acceleration formula (30.7), which
must therefore be considered as a much better
approximation.

When (30.7) is inserted into (30.1), we find

(80.8) (v —wy)- (fe— Vp (kXDy))
> .
! [vp(%‘—]ﬁw -V ®— BTy bJ.

!
where & is the unit tensor. This veetor equa-
tion involves two linear equations for the com-
ponents of v —w,. Solving with respect to v,

we obtain
1 fet+ kX Vo,
30.9, =
BOD) v =0 = [ kX T
[9b[), + 0 Twr0 BT yB ),
where
|fe+k X T,

~{r+ () b+ (), &)

is the determlmmb corresponding to the tensor

31 Qu motion with rectilinear

8 P

contour lines.
Suppose that the potential is independent
of z,
(81.1) D =D (y, P,t).
The contour lines are then straight lines parallel
to the z-axis. From (30.4) it follows that

Lo (o
(81.2) b=lj, b=— (a? In .9]?.
The geostrophic wind is

(31.3) v, = i, U=

f
The motion will be essentially the same as
that treated in section 28; but the motion will
now be cousidered by means of the quasi-geo-
strophic wind formula (30.9), which assumes
the form
(3l4) u=1u,
2y [l
=)
Here we have assumed that f is independent

of , so that é;—’;—’ =: 0; this is strictly true only
»

when the contour lines are zonal.
The last equation of (31.4) may be written

ayat) f(f l HH-RTb.,,—-o

Comparison with eq. (28.3) shows that the quasi-
geostrophic approximation in this case means to
neglect the accoleration in the y-direction. It fol-
Tows that considerations concerning the stability of
the motion for perturbations independent of =
can not be based upon the quasi-geostrophic

(31.5) —
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approximation. From this approximation one
can only find the kinematics of the motion
when »2 = 0, corresponding to the line »* = 0
in the diagrams figs. 1 and 2.

32. On quasi-geostrophic treatment of waves
in a baroclinic westerly current.

Consider wave perturbations of the basic
current defined in section 26. In the perturba-
tion equations (29.2) for a baroclinic current,
the equations of motion will now be replaced
by the quasi-geostrophic equations (30.9).

In the basic current, the value of the tensor
fe-tkx7yw, is seen to be (f—— (?) ) ii + fij,
2,
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(32.4) in [(n 0 (2—‘534- Icl_, (g)v) 7%’@]

Here kyis the P-slope of the surfaces U = con-
stant (eq. 28.16), and S is the stability factor
for perturbations independent of x, defined by
(28.31).

‘When eqs. (32.3) are inserted into the last
equation of (29.2) (the equation of continuity),

it will be seen that(%;— will give a great many
»

terms, since f, @ and 7' are all dependent on y.
To simplify the analysis, we will assume
the two last terms in the expression (32.3) for
 to be small in comparison with the first term.
We may then disregard the variation with y of

and the perturbation eq:
to (30.9) become

@2y =" *}(/j_?@;)
% /»

[+l ),

o == (5) 4o 7 (@),

For wave perturbations of the form (29.1) we
obtain

corresp

h = — (1t —c)

TR
) )
RTH

_du@—o) o RTH .
)

We may use these expressions to eliminate 4
and . Inserting for 4 and v into the third equa-

tion of (29.2) (the equation of piezotropy), we
find

(32.3)

o0 .
a + (7w
the Y f(f (%),;) in the two last
terms. Neglecting further the variation of T in
the last term, we obtain

=g (29)

(32.5) o

a (@)
5 [1._0_1"" iy o, 1 5

w1 32) =
ko, P

This is the form assumed by the vorticity equa-
tion in the quasi-geostrophic approximation.
Rossby’s formula (29.14) can be deduced from

this equation by putting = 0,( =0 and
P

o

="

By eliminating 3 between the equations
(32.4) and (32.5), we obtain the differential
equation for d. In doing so, we will assume,
for simplicity, that the coefficients of (32.4) are
constants, except the term (@ —c), the varia-
tion of which is obviously of decisive importance.
This assumption will not affect the coefficients
of the second order terms in the differential
equation for &, which then becomes:
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' od
(32.8) (% —c) I:EP‘ + Ic”(aPBy]

1\@d) @ 10 _ff(%z‘l, e
o+ sl w1 )
i (o

+ (;f; 1Y -

When transformed into the coordinates y, z, this
equation becomes identical') with the differential
q for the p turbation found by
Solberg [20], eq. 16, provnde/d that the following
conditions are fulfilled: (i) the orbital frequency
is negligible in comparison with the frequency

of vertical oscillations (R_>, and (ii) the orbital

frequency is negligible in comp with the
frequency of inertial oscillations in horizontal

N . on

direction f(j (ay)P)A

The first of these conditions is due to the
quasi-static approximation, and the second is
due to the quasi-geostrophic approximation. Eq.
(32.6) can be used in such cases only, where
both conditions are fulfilled. From this it follows
that the quasi-geostrophic assumption is justified
in the study of the long waves in the upper
westerlies.

By constant k¢, eq. (32.6) can be simplified
by introducing a new variable Y, defined by

(32.7) y=Y+ f

v
This gives a skew coordinate system (Y, P), with
the surfaces ¥ = constant coinciding with the
surfaces U = By this transfs
eq. (32.6) assumes the form

S
(32.8) (1—0) [%}‘Z~§% s(gl]‘,’i,_ v_be/‘,a):l
4 _za
+ (,cib 1y -r‘fﬁﬂyl) &=

Ty
1) At loust as far us tho sccond ordor terms aro con-
cerned.
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It is interesting to mnote that the static
stability does not occur alone in this equation,
but only combined with the inertia effect in the
factor §, which represents the stability for per-
turbations independent of z. The equation is
of the elliptic, parabolic or hyperbolic type, ac-
cording as S is positive, zero or negative. This
shows that the stability of the current for per-
turbations independent of z will be a factor of
decisive importance also for wave perturbations.

When & and @ are supposed to be inde-
pendent of y, eq. (32.6) becomes

(32.9) (@—c) (aﬁ—g—,ﬁsé)

(f +sY ) —o.
When the height 2z xs mtroduced as a vertical
dinate, this eq identical with

the differential equation for the meridional velo-
city derived by Charney [7], eq. 58, except that
Charney’s equation involves the static stability
instead of the combined stability factor S. This
is justified when a smooth temperature distri-
bution between low and high latitudes is con-
sidered, since b then will be of the order of
magnitude 2.10-8 m~?, so that the term RT)*
of eq. (28.31) becomes slight in comparison with
the term involving o. On the other hand, it is
a matter of fact that these two terms are
nearly equal in the frontal zones, corresponding
to small positive or negative values of S. In
these zones, which are closely associated with
the region of maximum zonal speed, it will
therefore not be justified to replace the sta-
bility factor S by the static stability. The as-
of t stability diti in the
mendlonal plane thus seems to be a too rough
approximation. To get a model consistent with
the atmospheric westerlies, one has to consider
a narrow zone where S is nearly zero, bounded
on both sides by layers with great positive
values of S. The mathematical treatment of this
problem is of course extremely difficult.
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33. A method for numerical weather prog-
nosis based upon the quasi-geostrophic
approximation.

It was mentioned in Chapter I that a prog-
nostic utilization of the quasi-static equations
without making any further simplifying assump-
tions, seems to be impossible, since the hori-
zontal divergence cannot be computed with
sufficient accuracy from the observational data,
This difficulty may be overcome by eliminating v
by means of the quasi-geostrophic wind formula.
Since the wind formula (30.9) will give a very
complex analysis, we will content ourselves with
using the simpler formula (30.6).

From this formula, we obtain

Vo 0=V, (f X Vp )
— Ve [ ﬁ(v,, (ﬁ)ﬁ v, v,,vﬂ—Rwa)}

For simplicity, we will provide for the variation
of f with latitude only in the first term on the
right, whereas f is considered as a constant in
the second term. It can be shown that this is
justified when the geostrophic departure is small.
Thus we find

of 1

7l (%),

(83.1) Vyoo=—u,

+ 0, V59,0 BTb- Vyy— Iy b— V. |

Egs. (30.6) and (33.1) will now be substituted
into the first law of thermodynamics (18.9) and

the equation of continuity (18.8). There re-
sults then
[ RTb*
o+ ] e
=~H+RTb-(vy % vap)

(33.2) "fﬂ 2 (M) +(a‘;+ I;, b vp)
—(H?—,T(b*—vy-b))w
i

g

~

fz s Ve V@
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This is a system of linear differential equations

for the two variables (‘;‘:) and y. Together
?
with the boundary conditions, these equations

determine (%5) and p when the -coefficients
v

3
at the earth’s surface (P = P,) may be written,
when v is eliminated by means of (30.6),

)

— 0 T @0+ BT 142 5,0 |~ 0.
P=P,
The boundary condition at the upper limit of
the atmosphere is

(33.4)

are known. The boundary condition (IE = 0)

lim (¢Py) = 0,
o

When H is known as a function of space and
time (or as a function of space and time and
temperature), then the coefficients of these equa-
tions can be determined from observations of
pressure and temperature only. When these
coefficients are determined from the observations

at a certain initial instant, the tendency (%?)

at this instant can be computed by solving the
boundary problem. From this tendency, we may
compute the field of @ a short interval of time
later. The corresponding temperature field fol-
lows from the hydrostatic equation. From this
new distribution of @ and T, we can compute
the new coefficients of the equations, and by
solving this new boundary problem, we obtain
a new tendency distribution at this later instant.
Proceeding in this way, we obtain an integration
in small steps of time. With each step, we also
get the distribution of y, which determines the
physical changes of state which are taking place.
From a fundamental point of view, it is thus
possible to use the quasi-geostrophic equations
as a basis of a numerical computation of coming
weather. However, it remains to be seen whether
the method is sufficiently accurate for practi-
cal use.
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List of the main symbols used.

x, Y horizontal Cartesian coordinates
(z-axis eastwards, y-8xis north-
wards). .

2 vertical coordinate.
1 time.

i J horizontal unit vectors (pointing

eastwards, northwards).
k vertical unit vector.

L0, .0 .
v=i ax+ Jj oy horizontal del-operator.

Vs (%) derivatives by constant z.
+

Av2N (—gt—)p derivatives by constant p.

System z  system of independent variables
z, Y % t.

System p system of independent variables
x, Y P b

—% individual derivative.

v (with components % ) horizontal
velocity.

v, (with components g, v,) geo-
strophic wind.

@ velocity of the basic current.

W', v velocity perturbations.
u, velocity due to the earth’s rotation.
U = 2u.+ %
w vertical velocity.
@ geopotential.
p pressure.

pP= —lnp
Dp
dt
DP
Y= w
g density.
8= Lq specific volume.

T absolute temperature.
& potential temperature.
H heat received per unit mass and
unit time.
R gas constant.
¢y, Co specific heat of air by copstant
pressure, volume.
7 = Cplts
T coefficient of barotropy-
y coefficient of piezotropy-
aln ¥
TP
b=—V, 0¥
¢ wave velocity.
u wave number.

L= 271‘— wave length.

» frequency.
F stream function in the ap-plane.
Q (2, 2.) angular velocity of the earth.
f=2% Coriolis parameter.
g acceleration of gravity.
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