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CHAPTER 1L
THE STABILITY PROPERTIES OF THE
STATIONARY CIRCULAR VORTEX FOR
VORTEX RING PERTURBATIONS.
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an incompressible fluid.

In this paper certain hydrodynamical pro-
blems for an incompressible and inviscid fluid will
be f¢ lated as variational probl We will
then meet with identities of the form
(L.1) '/'A-S =0 (S = arbitrary)

Here, 7 is a space domain of integration. 4 is a
vector function of space to be determined closer
from the considered variational problem. § is
any arbitrary vector function of space satisfying
the solenoidal condition

(1.2) V:§=0

and the following conditions at the boundaries
of the fluid, 8, denoting the components of §
normal to the boundary:

a) At a rigid boundary: S, = 0.

(1.3) b) At a free surface: S, = arbitrary.
¢) At inner surfaces of discontinuity:
8, = arbitrary, AS, = 0.

In the cases to be considered § will be
identical with or proportional to infinitely small
displacements of the fluid particles. Conditions
(1.2), (L.3) are therefore the kinematical condi-
tions which the incompressible fluid must satisfy
in the inner and at the boundaries. It should
be noted that in the conditions (1.3) b) and c)
8, = arbitrary only so far as this is consistent
with the condition of incompressibility. For by
integrating (1.2) over the fluid, we obtain,
using (1.3):

At a free surface: ['S,dF = 0
¥

At ‘surfaces of discontinuity: [S,dF = 0.
¥y

We shall now show that the sufficient and
necessary conditions for the identity (1.1) with
the side conditions (1.2), (1.3) are

a) A = laminar = — V4,

(1.4) b) A = constant at the free surface,

¢) AL =constant at the surfaces of dis-

continuity.

It is easily seen that these conditions are
sufficient. By substituting for 4 in the identity
(L.1) the laminar vector — /4 and thereafter
transforming the volume integral to surface inte-
grals by means of the theorem of Gauss, we
obtain

(15) [A-Sdr=[18,dF + [AL-8,dF,
T r Fq

having used the boundary condition (1.3) a).
According to (1.4) b) and c) the last equation
may be written

JA-Sdr=1 [8adF + Al [, dF.
T Fp Fg

As pointed out above each of the right-hand-
side integrals vanish. Therefore it appears that

[A-Sdr will vanish identically if A satisfies
T

conditions (1.4).

To prove that these conditions are neces-
sary as well, we start proving that the first of
these conditions, 4 = laminar, is necessary. For
this purpose we choose the fields of § such that
the components of § vanish normal to a con-
tingent free surface. The identity (1.1) will then
be one of less generality. This, however makes
no difference as long as the problem is to find
necessary conditions only for the identity (1.1).
With this limitation as to the vector fields of S,
the solenoidal condition requires that the vector
lines for § must be closed curves. We divide
now the volume 7 into infinitesimal yolumes by
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a system of surfaces, f(#,y,2) = const and the
clementary vector tubes for §. We may then
write dr=|[df-dI|, df denoting the infinitesi-
mal vector surfaces which the vector tubes cut
off from the surfaces f (x, y, z) = const, and df the
line elements along §. The identity (1.1) may
now be written, interchanging the parallel vectors
§ and dl

JA4-dl|s - df|=o.

Owing to the solenoidal character of §, §-df is
a constant along each tube. If therefore f, is
the one among the surfaces f(z,y,z) = const
which crosses a 11 vector tubes of §, and if §,
represents § in this surface, we may write the
last identity

JTfa-dl|s,- df,

where the surface F to be integrated over con-
sists of all surface elements df, cut off once
by the vector tubes of S. On account of the
arbitrariness in the choice of § at the surface F,
this identity will be satisfied if and only if

$4-di=o.

This equation must be fulfilled for arbitrary
closed curves, since it will always be possible
to choose the vector function § such that a
prescribed closed curve becomes a vector line
for 8. The above equation is therefore itself an
identity, and is satisfied as is well known, if
and only if

(=0,

A = laminar = — 1.
Having thus proved that 4 necessarily must
be laminar, the two remaining conditions (1.4) b)
and c) are proved to be necessary almost im-
mediately from the identity

S48, dF - [ AL-S, dF =
Fy Ty

2. The equations of motion by axial sym-
metry in an incompressible and inviscid fluid.

Suppose now that we have an axis, z, of sym-
metry for the potential ¢ of the external force
and that the distributions of velocity and den-
sity at a certain instant are also symmetric with
respect to this axis. It follows then already
from reasons of symmetry that the motion must
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maintain its original symmetric character at all
later instants. The meridional and zonal equa-
tions of motion are!)
v . u*
q(a+v-\70’=—Vp——q\/qJ+ Q—ERJ

uvn

= + v VUt =
Integrated 3long zonal cu‘cles, R = const, the
latter equation may be written

(2.1 %+v»vo-—

Here ¢ denotes the velocity circulation along
zonal circles,

(2.2)

c= / wRdy.
b
The equation of continuity is

(2.3) %J.-!th: 0.
Multiplying (2.1) by 2¢g-¢ and (2.3) by ¢* and
adding we obtain

>
(2.4) f’% +o-vge = 0.

From (2.2) we get u = ‘With this expres-

¢
St
sion for » substituted in the last term of the
meridional equation of motion, this may be
written

25) ¢ l_% +o- vv) + gV + g6 Vgo=—Vp

where @, is defined by
1
o= gag
It is seen that — gc*Vg, is to be considered as
an additional force per unit volume for the meri-
dional motion, and that this force obeys a law,
as to its local time variations, which is ana-
logous to that for the external force.
To get the plete hydrod,
we have to add the dynamic boundary cund:tmns

26) a) p=0 at a free surface
"7 b) Ap=0 at surfaces of discontinuity,
and the condition of incompressibility, which in

the axial-symmetric motion can be written

(2.7) Vo0=0.

%) Throughout this chapter v denotes the meridional
velocity, and ¥/ the corresponding nabla operator.
As to other notations, see the beginning of Chap-
ter 11
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The meridional equation of motion written
in the form (2.5) expresses that the sum of the vec-
tors on the left-hand side has no vorticity, while the
dynamic boundary conditions on the other hand
express the vanishing of the gliding vorticity of
the same vector quantity at surfaces of discon-
tinuity.!) These equations are therefore intima-
tely related. This will become still more clear
in the next section where the equation of motion
and the dynamic boundary conditions are to be
derived from a single variational principle.

3. The equations of motion by axial sym-
metry derived from a variational principle.

To represent the meridional positions of
the fluid particles we shall use the coordi-
nates R, z. To represent on the other hand
the individual zonal rings we shall use the
coordinates R,, z, which give the wmeridional
positions of the particles in some constellation
of the fluid. In an actual motion R, z w1ll, in
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dr, denoting a volume element in terms of the
Lagrangian particle variables. Further, let K,
denote the total kinetic energy of the zonal
motion. K, may be written

(3.2) K, = [q(re) ¢ (o) g () dry.

It is understood that K,, as @, only depends
upon the positions of the fluid particles. Sup-
pose H (r) to be given by

He= ] [ f Ta(r) (aa_'t)”dro~¢—-x,] i,

As an introduction to the problem of the sta-
bility of the stationary circular vortex we shall
derive the meridional equation of motion and
the dynamic boundary conditions from the varia-
tional problem

(3.3) OH =0

with the side conditions (1.2) and (1.3).1)
Let us suppose that r =7 (r,,?) represents
a quite arbitrary motion of the ﬂuld in the
idional plane the p =7

bet:

our axial-symmetric motion be fi of
R,, z, and of time
R=fi(Ry, %, 1)
z =f3 (Ry. 20, 1)
With the vector notations » and », defined by
r = RR; + 2z, and ry= RR; -+ z,2;, this funec-
tional dependency may be written shorter,
@1y
The equation of continuity (2.3) expresses the
individual conservation of density. Density is
therefore a function of R, z, but not of time:
4= q(Ro, 2) = g (ro)-
The zonal equation of motion written in the
form (2.1) expresses the individual conservation
of velocity circulation along zonal circles, and
may thus be written
= c(By, 20) = ¢ (ry).
‘We introduce the notation @ for the total po-
tential energy of the fluid. @ is given by

@ = [qlry) ¢ (r)dn,

3.1)

r=r(ry,1).

1) This interpretation of the dynamic boundary con-

dltmns have been \\b]lmed by IIanlu.nd (1) for the

of the ity surfaces,

m a sence which 1s sumlm to the utilization of the
circulation theorem for continious fluids.

at time ¢, and the positions r = r, at time %,,
and further that f(ry, t) is a particular of these
functions for which H (r) becomes stationary:
Thus
(3.4) OH (r) = 0.

r=f

In order now to make possible a continious
transformation from any of the arbitrary func-
tions 7 =7 (ry, 1) to the special one f(r,,7), we
suppose that r is a function also of a para-
meter ¢,

(3.5) r=r(r,l¢),
and that
(3.8) 7 (ro, t;0) = f.

1) Tt is rather woll known that the equation of mo-
tion for a compressible, wviscid fluid is identical
with the condition for stationarity of the timo inte-
gral of the Lagrangian function belonging to the
fluid system. Less known, it appears, is that Lag-
range has derived the equation of motion tor the
incompressible and inviscid fluid from the similar
variation principle. In his derivation the pressure
is, save for a space constant, identical with the
L iplier function mtro-

duced into the variational problem from the side

condition of incompressibility. I was myself not
aware of this until recently dr. Hoiland at the

University of Oslo called my attention to it.
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The conditions for the satisfying of (3.3) may
now be found from the conditions for the identity
3.7
Apjlying here that the limit positions r; and 7,
are uneffected when H is varied, we arrive at
the following identity:

“
- Pr 2 or —
[

Ty
A necessary and sufficient condition for the
satisfying of this identity is

3 or
69 [[ogr+avp+a0ve -G an=
Ty E=0

We use the notation § for the vector defined by
§= rrtie)
3

Substituting here R, z instead of the variables,
Ry, % we get

S= S (r,t e)
§ must satisfy the L i diti
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free surface and of AZ at the surfaces of dis-
continuity, the equations (3.9) must be identical
with the meridional equation of motion and the
dynamic boundary conditions.

4. The stationary circular vortex

as an extreme motion.

If t d di d which

exclude a supply of work to the fluid from out-
side, we have the energy equation

S vqdr, + [ uigdry = — @ - const.
7o 7o

With the notation K, for the total kinetic energy
of the meridional motion and the former nota-
tion K, for the energy of the zonal motion, the
energy equation may also be written
(41) m=—[® + K,] + const.
We have seen that K, only depends upon the

speci-
fied in (1.2), (1.3).

Now, by substitution of R, z in (3.8) instead of
R,, z,, this identity may be written, having dz,=dz,

f[qaa—'; + g0 Vo +qVp +95’VWe]‘s:-odlE“-

This belongs to the class (1.1) examined in the
first section. Consequently, as shown there, we
must have
o
a) ¢ (5v+o-vo)+qV¢+q¢’V%=—Vl,
(3.9) b) 4= const at a free surface,
c) AL = const at surfaces of discontinuity,
For the determination of the scalar 2 we have
the partial differential equation
0)v*A— ngv +qV-[Ve+ V.o Vo] =0
and the boundary conditions (3.9) b) and c)
together with that valid at the rigid boundary:
or
—m = UVP+ Vet Vol
The differential equation (3.10) is arrived at by eli-
minating "%, performing the scalar multiplica-

tion /-on each of the terms in (3.9) a). Since
now the Jaminar vector /4 is unigely determined
from this equation and the boundary conditions
whatever are the constant values of 4 at the

of the fluid particles, so that @ 4 K,
p]nys the role of a potential for the meridional
motion. The problem to find the conditions
which must be satisfied if @ + K, shall assume
extreme values, is a simple subcase of the more
general problem solved in section 3. Thus, they
turn out to be

8) QVe +QC*V g.=—V4,
(4.2) b) 2= const at a free surface,

©) A= const at surfaces of discontinuity.

The special distribution of density and circula-
tion making @ + K, stationary are denoted by
capital letters. The above necessary conditions
for extreme values of @ 4 K, are fulfilled in a
stationary circular vortex, pressure then replacing
4 in the above equations. Vice verea, an initially
circular vortex will be stationary if the distri-
butions of density and circulation satlsfy eqs.
(4.2).) The conditions (4.2) for of

1) To see this, we can substitute the laminar vector
— Vi for g\ 7 +¢¢*\Vyein (2.5). Since v is vanishing

in a circular vortex, we obtain then initially
b .
Q5p = —V r—i).

Eliminating "", we obtain
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@ + K, are therefore also the conditions for
balance in a circular vortex.

The problem to find the positions of the
fluid particles furnishing @ + K, with extreme
values, may be relatively easily solved if we
know the spondi space distributi:
Q(R,z) and C(R,z). However, so far no ex-
plicit expressions for these distributions have
been found, but only certain equations which
these space functions must satisfy. To arrive at
the explicit solutions is a difficult problem in
the general case. In two cases the problem can
be solved easily. In the first case the circula-
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Hence. by eliminating 4,
VRC*x 7 p. = 0.

This equation together with the second and third
equation above, shows that in the balanced cir-
cular vortex with no external force, the surfaces
of equal values of QC? the free surface, and
the surfaces of discontinuity must coincide with
surfaces @, = const, i. e. cylindrical surfaces,
R = const. The surfaces gc® = const being sub-
stantial, the problem to find from an initially
arbitrary distribution of circulation and density
and for given boundary conditions the specially

tion ¢ is assumed to be zero througt the
fluid. Then @ + K, reduces to @, and eqgs. (4.2) to

QUp=—vi,
7= const at a free surface,
A = const at surfaces of discontinuity.

Hence, by elimination of 7,
V@xVe=0.

This relation together with the second and third
equation above, gives the well known conditions
for absolute equilibrium, viz. that the surfaces
of equal density, the free surface, and the sur-
faces of discontinuity must coincide with sur-
faces of equal potential. By means of this and
the equation of continuity it is relatively easy
to determine from an initial arbitrary distribu-
tion of density and for given boundary condi-
tions the function @ (R, 2).

In the other case no effects from the ex-
ternal force are supposed to exist. Then & - K,
reduces to K, and eqs. (4.2) to

QC*V @o=— V1,
4 = const at a free surface,
A4 = const at surfaces of discontinuity.

With the boundary conditions

2@=2 ¢ a4  rigid surface,
"

p-—/i = const at a free surface,

Np—17) = const at surfaces of discontinuity
this equation has as the only solution,

p—7% =const.

o

ot
also for all higher time derivatives,

So, ¥ 1s initially zero, and this will be the case

distributi Q(R,7) and C(R,z) which make
8K, =0, is solved in the same way as in the
former case. i

In the general case, when two sets of sub-
stantial surfaces, ¢ (R,z) = const and ¢ (R,z) =
const are given initially, eqs. (4.2) do not im-
mediately provide us with ‘the necessary means
to determine the distributions of density and
circulation making @ 4 K, stationary.

5. The value of @ + K, in the neighbourhood
of the extreme values.

Let ' denote the meridional positions of
the fluid particles for which @ + K, assumes
extreme values, and dr the displacements r—1".
In (3.5), (3.6) » now takes the place of f, and ¢
drops out as variable. According to these equa-
tions we can write
& &r
5 jﬂ— R +....

(5.1) =

Let us denote [®(r) + K.(r)]—[P (') + K. (r)]
by A[® + K.]. Developing, we obtain

(6.2) A[@+K]= [[qVp +gc* 7 9.l - drdr
+1 [lgdr- vV g-dr +gcdr - T ge- ] dx,,

neglecting terms of higher order than the second
in dr. Substituting here for dr from (5.1) and
applying the conditions for balance, and well
known transformation theorems we arrive at the
following expression for A [® + K.]:
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AP+ K. )=} [dr[TQ7p+vQ0* Vo drde

+tp{f Q[ Je+ 05| ar

—érf .’I:AQ~ Z—j+aw~§lﬂw,

(5.3)

on denoting the value of dr normal to the boun-
daries.

6. The criterion of stability for vortex ring
of a bal d circular vortex.

P
From eq. (5.8) we see that if
a) dr [VQUe+VQC™7g.| - dr < 0 for all dr,
(6.1) b) Q@+ QC? Q’zo at a free surface,

c) AQ- d¢+ A QCE- d"’“go at surfaces of

discontlnmty,
then A[® + K,] will have a positive definite
sign. In this case [d)+K ] will represent a

minimum [@ + K.], of o + K In complete

accordance with th':n well known proof for the
stability of a i 1 system ch

by a minimum of its potential energy we may
now equally well prove that a stationary circu-
lar vortex is stable for vortex ring perturbations
if the vortex is characterized by a minimum of
@ 4+ K,. In Chapter II some stability criteria
for linear flows will be derived which are based
on a similar principle. So, it will prove useful
to demonstrate shortly the proof. In doing so
we shall give it in such a way that it will be
valid also in the case in which [@ + K,‘] is only

min

one of several existing minima, and mnot the
smallest one.

Expressing the constant in the energy equa-
tion (4.1) by corresponding values of velocity
and positions, v, and r;, the energy equation
becomes
(62) Kn=—[0+ K]+ [1oledn+ [0+ K]

or, by adding and subtracting [® + K]
min

62) Kn=—Al0+K))
+[ ol

Suppose now " 7, to represent positions of the

+lo+K]—[0+K).
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fluid particles for which [o + K, ]2 (@ + K,]

(If [o + K,] is an absolute nummum of ® -+ }I(“

this relahon is evidently always satisfied). Fur-

ther, let us suppose that the pamcles are in the

hbourhood of the idered posi-

tmns so that ® 4 K, has to pass at least a

value N > [0 + K,]‘ before the fluid can appro-
nin

ach one of the contingent other lower minima.
Since now K, is positive definite we conclude
from (6.2) that

Jrovadn oK)

is the greatest value which @ -+ K can assume.
Suppose now that the velocities »;, have been
chosen so small and the positions 7, so near to
the minimum positions that the above sum is
below N. Under these conditions the considered
minimum is certainly the smallest value which
@+ K, can assume. The following relation
exists,
@+ K. < [$otqdn + [ + K;']-
75 =n

By subtracting [@ -+ K,] at both sides, we
arrive at i
(63) A[P+E.]S [ 1ol

' T bt m k)
Substituting here from (5.3), putting dr equal to
ol;, where Z; is an unit vector, we obtain

—§flz~(VQV(}J-FVQC"V%]'IIQWI
+1 o2+ 0 i) orar
Ty

(6.4)
—éﬂw%’; +0Qon 3| g ar

< f foledn + [0+ K)— [0+ K.

Here, the functions before o> and o,® are posi-
tive, or not all of them are zero, according to
the relations (6.1). So, we are able to draw
the following conclusion as an expression for
the stability in the present case of the stationary
circular vortex for vortex ring perturbations:

‘When

v, -0, r,->7" (the minimum positions),
then at all times o2 in the fluid and o,* at a
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free surface or at surfaces of discontinuity must
tend to zero.

Condition (6.4) being an integral condition,
exceptions may of course exist for certain parts
of the fluid, the free surface, and the surfaces
of discontinuity, where the displacements do not
tend to zero. However, these parts must di-
minish to zero simultaneously with v, and 7, —7',
and so these exceptions cannot change the stable
character of the stationary circular vortex cha-
racterized by eqs. (6.1).

Having found above that any minimum
value of @ + K, under suitable initial conditions
will represent the smallest available value of
» + K, , it follows from the energy equation that

(©5) DK, =[0+K] —[0+K]

determines the greatest possible increase in the
kinetic energy of the meridional flow. In the
second place therefore, the stability of the ba-
lanced circular vortex implies that the increase
in kinetic energy of the meridional flow can be
made arbitrarily small at any time by assuming
the initial velocities sufficiently small, and the
initial positions sufficiently near to the positions
in the balanced vortex.

7. The conditions for in3tability of the
stationary circular vortex by axial-
symmetric perturbations.

Reversing the unequal signs in (6.1) we
obtain

a) dr-[VQVe-+VQC™V ¢ ] -dr >0 for alldr,
(7.1) b) dW-{-C‘dW <0 at a free surface,

) AQ- ZZ+AQC‘ 2 >0 at surfaces of
discontinuity.

In q of these rel , Ao+ K]

is given a negative sign in eq. (5.3) for all dis-

placements dr, sufficiently small. Therefore, under

the conditions (7.1), @ + K, assumes a maximum

value, [® 4 K,). The greatest possible increase
max

in kinetic energy of the meridional flow is
given by AK = [rI)+K,] —[o= ,], ‘where

[® -+ K ] now is the value of the lowest; mini-
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mum. This increase is the greater the nearer
are the initial positions to the positions for
which @ 4 K, has the maximum value. In
this respect therefore, the conditions are quite
different from those in the stable stationary
circular vortex. On the other hand, however,
the energy equation alone does not exclude the
possibility for a stationary circular vortex to
behave also in the present case as a stable
vortex, since nothing prevents this equation to
be fulfilled also for motions taking place arbit-
rarily near to the equilibrium positions. It is
however easy to show that a stationary circular
vortex characterized by a maximum of @ + K.
cannot be stable in the sence defined in the

preceding section. By derivating f Lo%qdr, twice
with respect to time we obtain for small motion

near the motion in the balanced circular vortex,
neglecting terms small of a still higher order:

Lhe~ [o-(v@ve+ 700 )0t
~ fecte o] qur
*r

(7.2) +/.v"‘ [AQA %’%+AQC*-%}

Ty

+f (Z_:’)"ch.

So, the conditions (7.1) for maximum of @ + K,
are also sufficient conditions for positive values
of LK
e
meridional flow will therefore in general exceed
any (small) limit. The only exception from this
rule will present itself for a singular motion in
which the kinetic energy, K,,. decreases to zero
simultaneously as the fluid particles approach
ically the p in the bal d

The increase in kinetic energy of the

vortex.
Having now shown that it is in general
impossible to obtain arbitrarily small variations
in the kinetic energy of the meridional flow, it
follows immediately from the energy equation,
written,
MK =[0+K]—[0+K]

that it will in general also be impossible for the
fluid particles to remain in the neighbourhood
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of their positions in the balanced circular vortex.
And therefore, both with respect to the varia-
tions in kinetic energy of the meridional flow
and with respect to the variations in the posi-
tions of the fluid particles, the balanced circular
vortex will in the present case when it is per-
turbed by axial-symmetric perturbations behave
diametrically different to the stable vortex.
Taking this as definition of instability, the con-
ditions (7.1) will represent the necessary and
sufficient conditions for instability by vortex
ring perturbations of a stationary circular vortex.

8. The stationary circular vortex indifferent
for vortex ring perturbations.

P+E—[P+K,)

for all » in a neighbourhood of the equilibrium
positions, 7', the balanced vortex reacts indiffe-
rent for vortex ring perturbations. The condi-
tions for indifference are found from the relations
(6.1) by applying there equal signs instead of
the unequal ones. In the indifferent vortex we
obtain then from the energy equation that
(8.1) AK,=0.

By indifference therefore, the fluid particles may
move finite distances from the positions in the
balanced vortex without any change in the
kinetic energy of the meridional flow. So, the
vortex in this case behaves in one respect as
an unstable vortex, and in the other as a
stable one.

9. The criteria for kinematically conditioned
instability by vortex ring perturbations
of a stationary circular vortex.

This case will be defined in the way that
the sign of A[® -+ K,] may be positive as well
as negative depending upon the nature of the
displ ts dr. Such diti will exist if
the fluid contains stable as well as unstable
regions. For as a result of such conditions,
A[®+K.]>0 or <0 according as the dis-
placements are concentrated to a sufficiently
high degrec in the stable or unstable regions,
respectively. In the first case the vortex will
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behave stably. In the other it will behave un-
stably, “potential’” energy then being transformed
to kinetic energy of the meridional flow.
Similar conditions will also exist if
A[D+ K,]>0 or <0
upon the directi of the displ
ments. The expression (5.3) for A[® + K,] is
a quadratic expression in gp, o, (the components
of dr along R; and z;). The coefficient of the pro-
duct term gz-9. may be brought to vanish by
turning the coordinate system a suitable angle
« which generally will be a function of R and z.
Let 5, { denote the coordinates along the lines

1 1

forming the angles « and « - % with for in-

stance the z-axis, and o,, o; the corresponding
components of dr. Eq. (5.3) may then be written

Al® +K.] = [lao? + bo?] Qdr

@yt fel o e
¥,

f
(i ng ap.
J o [AQ + AQee- } ar.

The conditions supposed to exist now require
that the quantities a, b must at some localities
be of opposite signs. Suppose that a is the one
which is negative. Then the balanced circular
vortex will behave unstably or stably according
as the displacements are directed mainly in the
directions % or in the directions {. These direc-
tions will therefore be denoted the unstable and
stable directions, respectively.

In the two cases studied above or in cases
where both these conditions are present, the
vortex will therefore be unstable for vortex ring
perturbations, only if certain kinematical condi-
tions are fulfilled. It will now always be possible
to start with such a kinematics that initially
“potential” energy is transformed to kinetic
energy of the meridional flow. To secure the
mstublhty however, we must be sure that thls

can be i d for a suffici
long time, thus preventing a stable kinematics
to be established within arbitrarily small time.
So, the problem to prove the instability in the
present cases reduces to the problem to find a
system of perturbations which maintains for a
sufficiently long time a kinematics for which
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the kinetic energy of the meridional flow increases.
This will now in particular be the case for a system
of ‘perturbations having an unvariable system of
streamlines satisfying the kinematical conditions
for instability. Such a system must have ac-
celerations given by d¥ = — v,}dr where »,? is
constant. The solution of this equation is given by

(9.2) dr = a, (R, z) cos v, (t + az)

and represents in the stable case a simple oscil-
lation with the frequeney »,, in the unstable
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We shall now postulate the existence of an .
infinite number of solutions of the form (9.2)
by means of which it shall be possible to find
by superposition, the quite general solution of
(10.2)

.
(10.3)  dr= D au(R,2) cosva (t + a).

n=1
Physically this postulate seems reasonable since
the equations (10.2) developed by varying an
integral, whose integrand is a quadratic function

case a flight away from the equilibrium p
with the i 'y fi 'y va, or the f
of flight — dvg.

10. The equations by axial symmetry for
small motion near the motion in the
balanced circular vortex.

In section 3 we have derived the meridional
equation of monon by axial- symmetry and the
'y di by varying

the mt,egz'al

j[[ﬂ (%Ju dry—@ ~K,] .

Here we can write dr instead of r, and A[D + K]
instead of @ 4 K,. In doing so we obtain the
variational problem

(10.1) dj[fq}(a—;!)zdro—A [(17+K,]] dt=

with the kinematical conditions for dr given in
egs. (1.2), (1.8). Substituting for A [@ + K,] from
(5.3) we obtain as sufficient and necessary con-
ditions for the stationarity of the above integral,

2) Q2 iy [VQVp+ VRO = —T A,

(10.2) b) Qdr- [V +C*V @] — L = const at a free
surface,
¢) dr-[AQ Vg +AQC? V g] —Al = const
at surfaces of discontinuity.
These equations represent for small motions near
the motion in the balanced circular vortex:
a) the meridional equation of motion b) and c)
the dynamic boundary conditions at a free sur-
face and ut surfaces of discontinuity.

of the i I tsdy. Thus,

P %tandthe displ
the present condmons are the counterpart for
a i to the diti a
system of material points moving near the posi-
tions of extremum of its potential energy. And
as is well known, the quite general motion of
this latter system may be described completely
by superposition of a finite number of ‘“‘eigen”-
lutions with a tri, tric time dep

Let us suppose thabt @, €08 vy (¢ - ) amd
@, 008 v, (t - an) represent two different “eigen”-
solutions of (10.2). Substituting these in (10.2)a)
we obtain
—Qv.ta,
and
—Qrtantan VOV + VR Vel=—V 1
By scalar multiplication of the first equation by
a and of the other by a,,, followed by an inte-
gration over the fluid, we obtain by subtraction

1) [ Q@ @ndr + [@n [V QW 0

+ VRC*V ¢ - audz
104y — [a,-[VQV Y + VROV andr =
¥

4+, [VQVe + VQC* Vgl =—V i

— (=

— [V @yl [ - @ .

From the condition of balance (4.2)a) we ob-
tain by eliminating V4

(10.5)  V@x Vg + VQC*x V.= 0.

This is the condition also for symmetry of the
tensor V@V + VQC*V¢.. Owing to this sym-
metry an interchange of @, and @, in for in-
stance the second left-hand side integral in (10.4)
will not effect its value. Therefore, the two last
left-handside integrals in (10.4) cancel out. Further,
evaluating the right-hand side integrals by means
of the theorem of Gauss we obtain
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— [ - @il + [ B il =
4 L
= [(hnan—inty] - AF — [[Adn@n —0 In@y] - dF.
¥y ¥y

Substituting here from the dynamic boundary
conditions (10.2) b) and c) these integrals are
seen to cancel out, so that we obtain from (10.4)

— (12— %) [ Q@ andr = 0.
It follows from this that

(10.6)  [Qay-andr =0, mn.

Suppose now that dr represent at time t=0 a
quite general system of meridional displacements.
According to the postulate (10.3) we may then
write

©
(10.7) dr = D caan,

=1
where ¢, = €08 v, an.

The corresponding equation of motion (10.2) at
time ¢ =0 may be written

- EQ%.‘M» =dr-[V @V ¢ + V0] —Vi

Mnltlplymg scalarly by dr followed by an inte-
gration over 7, we obtain in consequence of
(10.7), (106 ), (10.2) b) and c), and (5.3):

- 2 e [Qetatadv=—2 A(@ + K,).
n=1 T

If now the conditions are those considered
in the preceding section, according to which
A[®+ K,] could be positive as well as nega-
tive depending upon the nature of the displace-
ments dr, then in consequence of the last equa-
tion “eigen”-solutions must exist with positive
as well as negative values of v,%. A stationary,
circular vortex wxbh shable as well as unstable
regions or di is ble for
general vortex ring perturbations.

(10.8)

11. The explicit stability criterion in a
particular case under terrestrial conditions.
In section 9 we defined quantities, a, b by
means of eq. (9.1). It can be shown that these
quantities must satisty
(11.1) a-b=vQxVQC* VpX e
The criterion of instability which depends upon
the di of the displ ts is theref

Geof. Publ.

(11.2) VO x QO 7 x . < 0.
Utilizing the condition (10.5) for balance, this
criterion can under terrestrial conditions be

written approximately
au
20, —
dy g @

au
(11.3) (dz) >T"5n, Q&
U denoting the relative zonal velocity.

By replacing — 2 aQ by — éig we get the corre-
pondi; iterion for the adiabati ph

12. On the meridional displacements that,
by instability, correspond to extreme
values of the acceleration.

In section 10 the existence of a complete
system of “eigen”-solutions were postulated. A
question which presents itself is whether these
simple solutions have an other importance than
this pure mathematical one. For the unstable
solutions at least this seams to be the case. The
reason for this is that the system of displace-
ments which corresponds to solutions with a
time y are the sol
of the following isoperimetrical problem: For a
constant value of ['Q3% (dr)*dr we shall find the

£, d 3

T
system of displacements giving extreme va-
Iues, or less restrictively, stationary values to
A[®+ K,]. The conditions which must then
e satisfied are found from the variational problem

(12.1) 8[* [Q}@r)de—A (P + K) =0

with the side conditions (1.2), (1.3), and turn
out to be
a) — Qptdr —dr-[VQVy + VQOVp] =—Vi,
b) Qdr-[Ve + C*Vq]— 4 = const at a free
surface.
©) dr-[AQ-Vp +AQC*-V ¢ —
surfaces of discontinuity.
This is the same system of equations which will
obtain if we substitute dr = a, (R, z) cosw (¢ + @)
in the (10.2). Particul th
if there exists under unstable conditions a sy-
stem of displ ts which for a va-
lue of [Q} (dr)2dr accelerates the motion in the

A= const at
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meridional planes more than all other systems do,

this system must generate a motion which re-
presents an “eigen”-solution.

13. A th on the problem of
ment of a new equilibrium by perturbation
of an unstable circular vortex.

1f the perturbed balanced vortex is m an
unstable state for vortex ring per
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CHAPTER TIL
ON THE STABILITY OF THE CIRCULAR
VORTEX FOR NOT AXIAL-SYMMETRIC
PERTURBATIONS.

14. G 1

In this chapter we shall deal with a motion
of an incompressible, homogeneous, and inviscid
fhud supposed to be enclosed within fixed

P

and d

P

there will be a tendency for the fluid particles
to move towards the positions of a lower ex-
tremum of @ -+ K,. Suppose now that @, C repre-
sent the distributions of density and circulation in
the original equilibrium and @*, C* the distribu-
tions in one of the other equilibriums which
can be established from mere axial-symmetric
displacements of the fluid particles. In these
new equilibrium states the quantities a, b defined
from (9.1) assume values which we denote by
a* b* These quantities satisfy (11.1), so that
besides -
a-b=QxVQC*-Tpx V.
we have in the new equilibrium
a*-b* = VQ* x VQ*C** Vo X V..

The iso-surfaces g = const, ¢ = const being indi-
vidual surfaces, it follows immediately from rea-
sons of continuity that the direction of the vector
product Vg x<7ge* cannot change during the
displacements of the fluid particles. So, the
direction of VQ*xv@*C*: will be equal to
the direction of V@ xVQC? and accordingly
since g x V. is a vector unvariable with time,
the sign of a*-b* must be equal to the sign of
a-b. This result may be thus stated: By mere
displacements of the fluid particles it is not
possible to arrive from an unstable state cha-
racterized by a-b<0 to a stable state in which
@ + K, has a minimum value, but only to new
unstable equilibriums.

If a statically stable atmosphere is unstable
according to the criterion (11.3), the unstable
directions will, as shown by H. Solberg (2), be
approximately along the isentropic surfaces, pro-
vided these are quasihorizontal. By the breaking
up of this atmosphere, the above theorem im-
plies that there will be a tendency to establish
new unstable conditions, with approximately ver-
tical unstable directions.

1 with respect to an
axis z. Supposmg further that there is no
effects from external forces the hydrodynamic
equations are

Doy
(14.1) @ =—Vr
(14.2) Voo=0
having i duced di ional

and put density epual to 1. We shall in the
following not be interested in finding exact
solutions of these equations, but shall derive by
means of some integral theorems sufficient cri-
teria for the stability of certain simplified fluid
motions.

With R, y, z as cylindrical coordinates, and
v, %, v, a8 the corresponding velocity components,
the velocity may be written v = vpRy + ui+-v,2;
or, with the notation v, for vzR;+v, 2
v =10, +uil) We define average values of
the velocity components according to the fol-
lowing equations:

(143)  b)

°)

For convenience we adopt the notation v, for
pR1 + 9.z;. The irregular velocities o’ are de-
fined by

1) Tt should be remembered that v in this chapter
denotos the general velocity and not tho meridional
one as in the preceding chapter.
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(14.4) =1+ 0y + 0.

@, o, and 9, are independent of the y-coordi-
nate so that an arbitrary velocity field of a
fluid enclosed within the chosen boundaries may
be idered as being d of a pure ro-
tating velocity field, @i, with z as the axis of
rotation, a meridional axial-symmetric field, ,,
and one irregular field »’. The additive velo-

city components must satisfy
2

3 2 2
(14.5)  [wdp= [vi'dy= [v/dy=0.
o 0 0

The integral principles ‘which form the base
of the developments in this chapter are those
of conservation of total kinetic energy and total
angular momentum, both certainly being true
under the assumptions made for the considered
fluid. With z denoting the total volume of the
fluid, these principles are

f 4 v* dr = const,

and
f u Rdr = const.
b

Substituting © = 4 + 9, + o’ in the former and
u =@ in the latter of these equations we
obtain, using (14.5)
(14.6) [30%dx + § B2 dr = — [} dr +- const,

i 7 'r

(14.7) const = [@ R dr.

*
In the form (14.6) the energy equation allows
for the interpretation that the mean “zonal”
flow is the only source for the kinetic energy
of the irregular flow and the axial-symmetric
mean meridional flow.

Now let ¢ denote the velocity circulation
along an arbitrary circle symmetrical with re-
spect to the z-axis. Hence, if R is the radius

of this circle,
2

c= f wRdy.
o
So, according to the definition of .
¢
2aR’
Substituting this into egs. (14.6), (14.7) we obtain

(14.8) f 1o dr + f 1,2 dn = — f % + const,
: ¥ ?

(14.9)

b=

[ edr = const.
b

Gleof. Publ-

Suppose ¢, to denote the velocity circulation

when £= 0. The constant in the last equation

may then be written fc,, dr, and the equation
:

itself
(14.9) Jle—cp)dr=0.
Let us suppose that the velocity distribution
initially is known and given by

v =v,(Ry2),
t=0

and let dr denote the displacements up to time ¢
of the fluid particles
dr =7 (r,, 1) —r,

where r, is defined by 7, = r.—o. We consider now,
at time ¢, a circle symmetrical with respect
to the z-axis. The particles forming this circle
will at time ¢ = 0 form a certain closed curve
which we denote by L. In consequence of the
theorem of conservation of velocity circulation
along physical curves, the velocity circulation
¢ along the circle at time ¢ must be equal to
the velocity circulation along L at time f==0.
This may be written

(14.10) ¢ = ¢v,-Or.
L is completely determined when the displace-
ments dr and the position of the chosen circle

are given. We may therefore write
c=c(dr;vy; R, 2).

Substituting this into the right-hand integrals
of eqs. (14.8), (14.9), the parameters R,z drop
out under the integration over 7. These integrals
are therefore, when the velocity field is given
initially, only depending upon the displace-
ments dr.

In the following the main problem is to
use eqs. (14.8), (14.9) to find conditions for a
not arbitrarily small increase in the kinetic
energy expressed by the terms on the Ieft-
hand side of eq. (14.8). The notation “arbit-
rarily small” will be explained in the later
developments. In the case of complete axial
symmetry this problem has been considered al-
ready in Chapter I. By axial symmetry o' =0,
Dpn = D, SO that in this case eq. (14.8) reduces

2,
to f\}u‘m de = aid
2

ey + const, which is a




Vol. XVII. No. 6.

special case of the general equation (4.1). In
the following we shall only examine cases where
we can at the outset exclude the existence of
axial-sy i idional velocities, giving thus
the conditions
(14.11)

Under this condition the energy equation (14.8)
reduces to

.
(1412) fg, o= __fs;g; + const.
; ¢

We now proceed to develop explicit expressions
for ¢ in the depency upon the displacements
and the initial velocity field. By substituting
0, = i + v, in (14.10) we obtain

= fiigi-dr4 §ovy - or.
¢ Ljﬁnt +lfv.,

=7, =0.

(14.13)

The velocity field being known for the initial
positions of the fluid particles, we can from
the principle of conservation of velocity circula-
tion along physical curves, or if we will, from
the principle of “moving with the fluid” of the
vortex tubes, determine uniquely the distribu-
tion of vorticity for any other positions of the
fluid particles. The well known differential ex-
pression for this is
a%:v=An»vv X0V X0 V.
Let us suppose that 7 x v* denotes the vortici-
ties which would obtain owing to a “moving
with the fluid” separately of the vortex tubes
of the initial mean flow, 4, so that

(14.14) T X0* = Xl
=0
and
*
(15) VX .97 x0* + 7 x0T,

Especially, we must have
21

(1415 [o* (Rapzt) - iRdy = foy*- or
0 I

From (14.15) we obtain

*
a—f—:cxvxv‘+'7/l

(14.16) =

where 7 4 is some ascendental vector the closer
determination of which we are not interested in
here. Derivating this equation locally with re-
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spect to time and substituting from (14.15) we
obtain

Fov* v "
(14.17) T _aTx\7xv
+ o X [—0- VY X 0¥y xv’ﬁvv]«]«vg.
According to (14.14), »* and %, contingently
t=0

only differ with respect to a field with a cyclic
constant, so that

14.18 * o= i-or + K.
(1418)  for o= fugi-or+
Using (14.15") we thus get
2
);ani -dr = [v* iRdy—K.
L 0

Substituting this in (14.13), and expanding v*
in powers of ¢, we get
2 2

ov*
(14.19)c =— K+ u*,-u»iRd.pJ.-tfaT-iRdw
<0
0 0

21
[ v*
| =1 o Foy o
+ 2,[6!‘;_.; iRdy +....+ $v, - 0r.
o L

At time ¢ =0 the closed curve L coincides with
the circle with radius R. This gives in connec-
tion with (14.18),
ar 210
(14.20) [0y iRdp=[aoRdy + K = ¢ -+ K.
o o
We have
(14.21)

Do
2 P

=0
Substituting in (14.19) from (14.20), (14.16),
(14.17), (14.21), and using (14.14) and the con-
ditions (14.11), we obtain

dr =95t + %

2t
(14.22) o=+ [[—dr, V'V xiyi
o
A\ X gt - T ) - E % i, Ry

+ [h0 Ry + oo,
o A

dr having been replaced by the meridional dis-
placements dr.,, since it will be only these com-
ponents which must be taken into account in the
first right-hand-side integral. & (0) denotes terms
of still higher order in dr.

Quite generally we must have

(14.23) lfv‘,'»ér—»o when 7 x v, -> 0.
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This is a simple q1 of Stokes tk
Suppose for instance that R, is the radius of a
circle at the boundary, symmetrical with respect
to the z-axis. Let f be some surface enclosed
within this circle and the closed curve L. Then
from Stokes theorem

20
fv',,-d’r—-f’l:’oRl dy = [V x 0 Of.
Z 0 7

2t
Since now, according to (14.5), [uy'Rydy = 0, we
0

obtain (14.23) from the last equation. For suffi-
ciently small v x', eq. (14.22) therefore re-
duces to

20
(14.24) o=co+ 3} [[—drp V7 x @i
0

2r
+7 X AgE - T dry)- i X draRdy +fh(0) Rdy .
0

This formula determines the variations in ¢
which are caused by the transport of the vortex
tubes of the initial mean flow.

The infinite flow between straight, parallel
ies may be idered as a limiting case
of the flow hitherto examined. For, if By and R,
denote respectively the longest and shortest di-
stances from the z-axis to the walls we obtain
the infinite flow in a straight channel by letting
Ry and R, tend to infinity, Ry — R, simultane-
ously remaining finite. We define directions
2, y, z in the straight flow from — Rdyp —dz,
dR —~dy, z=2The velocity is written o = ui
+ 0,31 4 v 2. Let a denote any of the variables
or expressions derived from the variables of our
hydrodynamic equations. Then averages are
defined according to

1 a

./'1uRlep

= —1ime %
= RI:,TO 2aR

We write a =a -+ a’. As previously, we obtain
ar = 0. With the assumption (14.11), 3,=9v, = 0,
the equation of energy becomes

(14.26) [} o2dr =— [} @dr -+ const,

(14.25)

where 7 stands for the infinite volume of the
fluid. Instead of the condition (14.7) for constant
angular momentum we obtain now a condi-
tion for constant total momentum

(14.27) [@dr = const.

Geof. Publ.
or
(14.28) J@— i) dr = 0.
"
From (14.25) wo obtain @ = — lim 5. Substi-

> o027 R
tuting here for ¢ from (14.22) and using the
symbol of averages, we arrive at

=T+ 5[ — Ay /7 X T+ X gt ¥ - £ X A
(14.29) fv’n' Sor
. 3

+h(0) —lim Zorms

having used the notation dr,, for the displace-
ments in the y, z-planes: drn=0,¥r + 0, 2r- Again
for sufficiently small 7 x @y, the last term in the
cquation above may be neglected in comparison
with the others, so that in this case

(14.30)

AN, VY X g+ X i -] -1 % A+ R(0).

=1,

15. Definition of stability and instability.

We have hitherto considered a motion which
apart from the chosen boundaries and the limit-
ation expressed in (14.11), has been allowed to
be a quite general one. In the following we
shall make the special limitation that in the
initial state the irregular velocities together with
their space derivatives are small in comparison
with the corresponding quantities in the mean
flow, so that the initial motion is simply a per-
turbation of a circular vortex. The assumption
that also the space derivatives are small is es-
sential for the arguments in the following. For
it implies particularly that the vorticities V x v’y
are small compared with those in the mean flow,
so that we can use the simplified expressions
(14.24), (14.30) for respectively ¢ and @. It
should be noted that the assumption that the
additive velocities are small not of necessity im-
plies that their vorticities are small, since by
suitable space variations of the additive velo-
cities their vorticities can become arbitrarily
great.

A circular vortex will be said to be stable
if the meridional displacements up to any time,
however great, will remain arbitrarily small, at
least on an average, if the additive vorticities,
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7 X0, are assumed arbitrarily small. We may
express this as follows:

General criterion for stability:

(15.1) [ (d@rp)*dr—~0 when 7 x 2’y 0.
¥

A simple consequence of the stability of a
circular vortex will be that the increase
f 10%dr — f }vy2dr in the Kkinetic energy of

the m‘eg‘ulax flow up to any time will become
arbitrarily small with ¥ x2's:

(15.2)  f1o'tdr— [}, dr 0 when 7 x /o> 0.
b :

This is seen from the energy equation (14.8) if
one takes account of the continious dependency
of ¢ upon the meridional displacements. However,
it is not always allowed to conclude in the re-
verse way that relation (15.1) will be a neces-
sary consequence of (15 2). In mean ﬂows
where finite displ in ional di

are possible, simultaneously as f }o%di— f%u‘,"dz

can be made arbitrarily small with v x’y, the
circular vortex will be said to be indifferent for
the considered perturbations. If neither of the
relations (15.1), (15.2) can be satisfied, the circu-
lar vortex will be defined as unstable. The
following criterion for instability is sufficient
and necessary:

Criterion of instability:

An increase in the kinetic energy of the
irregular flow shall exist which cannot be made
arbitrarily small with ¥ x2%,. From the energy
equation it follows then that the meridional
displacements cannot remain arbitrarily small.

16. Two-dimensional motion in planes
perpendicular to the z-axis

Suppose at time = 0 that
a, ou
(16.1) u,:E"=67—o,

and that the boundaries are concentric cylinders
symmetrical with respect to the z-axis. Tt fol-
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Jows then from reasons of symmetry, already,

that (16.1) will be satisfied at all times, im-

plying that the motion will be completely de-

scribed if we know it in an arbitrary plane,

z=const. As a consequence of the condition

of incompressibility and (16.1) we obtain
2

f vpRdy = 0. Therefore, the axialsym-

o

metric mean meridional motion disappears from
the equations, and we can use the energy equa-
tion in the form (14.12) and the expression for
¢ as given by (14.22). Now, let us consider a fluid
mass within a sheet of unit thickness perpendi-
cular to the z-axis, and let F denote the total
area between the cylinders. This fluid is un-
capable of receiving work or angular momentum
through its boundaries, so that the energy equa-
tion and the condition for constant angular
momentum may be written

z+1 21 2
/f% v'2dF dz = —ffcsiflf -+ const,
z ¥ z I

nd

a1,
Jf (¢— co) dF dz = 0.
z F

Since now v is assumed to be independent of z,
we obtain from these equations

(16.2) fév’“ aF = —f%f% -+ const,
r ¥

(16.3) Je—eq)aF =o.
¥

In the motions studied now the expression
for ¢ in (14.22), using the notation gp for dr- Ry,
reduces to

(16.4) c=co+ Jz.f;,x d,v_xa;i;:-z,’mw
4

21
+.}'h (0) Rdy +j - or
0 %
5 . L adry .
since 7 X ot V¥, =< X Ui+ 21 e which becomes

zero according to (16.1). This simplification in
the expression for ¢ is a consequence of the fact
that the vorticity is individually conserved in
xv

a two-dimensional motion: ¥
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17. The Rayleigh-Taylor criterion of
stability.
Substituting from (16.4) in (16.3) we obtain

A7 X gt - 2)
(17.1) 0= ﬂfelz” '—-V?—(ﬁ—] RiF

v

+ 2z [BO) RAF + [ fo) - srdF.
¥ b

Let us suppose that the circular vortex with
velocities #,f has either steadily increasing or
steadily decreasing vorticity between the boun-
daries, so that

(17.2)

is of one sign throughout
the fluid.

a9 x -
"dR

Then the first integral in (17.1) has a definite

sign. whatever are the displacements op. Its

numerical value will tend to zero if, and only

if ./'92“ dF --0. The second integral is small in
4

comparison with the first one for sufficiently
small oz. The last integral represents the effect upon
/’(c —¢o) dF from the “moving with the fluid’
v

of the vortex tubes belonging to the additive
field, v';, and becomes small with v xv,, as
shown in (14.23). Due to these facts we obtain
from (17.1) that under condition (17.2),
(17.3) Jor? dF >0 when v x vy’ 0.
i
Therefore, a circular vortex in which the con-
dition (17.2) is fulfilled, must be stable for two-
dimensional perturbations. This was at first
indicated by Rayleigh (3). The proof as given
above, is essentially T'aylor’s (4) proof for this
stability, differing however from his in stating
V X9y — 0 as a necessary base for the proof. If
the vorticities 7 xv," are finite nothing can be
proved with respect to the stability from mere
iderati of the for an-
gular momentum. When turbulence is formed in
laminar flows, it may well be that the vortici-
ties V xwv,” are of the same order as or even
greater than the vorticities of the smoothed
flow, even if o'y is small compared with 4. I
hope to return to the question as to what will
happen if 7 xz," is finite, in a later paper.

Lits
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It was found above that under the condi-
dition stated in (17.2) the two first right-hand-
side integrals in (16.4) contribute to a change of a
definite sign in ¢, at least for small gp. We shall
show that this result is correct however large
are the radial displacements. Let the stippled
curve in fig. 1 represent the closed curve I

Fig. 1.

which under certain displacements transforms to
the circle drawn’in the same figure. Let further
A, denote the total area moved into this circle
and 4, that moved out of it. The motion

being d two-di 1, the condition of
incompressibility requires that
(17.4) A, = 4,

From Stokes theorem we obtain

(17.5)  faoi - or ——-.2[’.'12.,Rdw =
L o

' Xt zrdA— [ x i zydA.
Ay Ay

This equation in connection with (17.2), (17.4)
shows that the changes in ¢ caused by the
transport of the vortex tubes of the initial mean
flow, will be of the same sign everywhere in
the fluid, however large are the radial displace-
ments of the fluid particles.




Vol. XVIL No. 6.

18. An other form of Taylors proof.
From the condition for constant angular
momentum

3
const = ['¢dF = 2z [¢cRdR
F R

we obtain, when integrating by part:

(18.1) const = 2z[3 R ¢ (By) — 3 B2 ¢ (Ry)]

R.
? d—RR’ dR.
R
Ry, R, denote the radii of the inner and outer
cylinder, respectively. We have

2w 27
d | u
='TfuRd1p=fB(ﬁ+§)d¢
u 4

or, since 7 xv~z1—5§4—§—% and

f Py =0,

m—fvxv 27 Ry.

Substituting from this into (18.1), and noting
that ¢ (Ry), ¢(R,) are independent of time since
they represent velocity circulations along physi-
cal curves, we arrive ab

—27

const =J';‘R‘ aF,
W

having written ¢ for 7 xo-2;. For the plane
motion now considered, { is individually con-
served and may therefore be considered as a
function of the Lagrangian particle variables,
only. Tf these variables are substituted in the
last integral we obtain

(18.2)  const = [ (r)) R*dF, = G (r).
#

This integral being fcx-ma.lly equal to the total
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of @ (r). Thus, if Z denotes this particular distri-
bution of vorticity, then
ZgR =
is the condition for stationary values of G (r). The
vorticity thus being a function only of R, the
ing motion is in tric circles. The
two. 1 motion, pendent of 2z, in
concentric circles will be denoted a cylindric
flow. If the vorticity in the cylindric flow is
steadily increasing or steadxly decreasing wtth R,
the is a i or a
£ i ‘J ’ £ di o to @ i g a
i g as the

laminar = — 7 1

Orresp

P

or mini value
density increases or decreases steadily with ¢.
Suppose now that a cylindric flow characterized
by either a maximum or minimum of @ (r), is
disturbed by superimposed small vorticities.
The isolines for vorticity will then be but
slightly different from circles R = const. Ac-
cordingly, small displacements are sufficient to
bring the fluid particles to the positions for
which @ (r) assumes an extreme value. The
constant in (18.2) is therefore slightly different
from a maximum or minimum value of G, and
we obtain
(18.3) G (1) = Gont ¢,
where the constant ¢ now is a small quantity.
This equation can only be satisfied if the fluid
particles remain. at least on an average, in the
ighbourhood of the p for which G (r)
obrf.su.us its maximum or minimum value. This
expresses the stability of cylindric flows charac-
terized by either steadily increasing or decreasing
vorticity between the walls.!)
It may be useful to conmsider shortly the
analogous conditions for a material point moving
in a 2, y-plane and satisfying the condition

[ (z, y) = const.
Let us suppose that f(z,y) assumes an extreme
value in the point z;, y,. We may write the
above condition
Fly) =Flenm) +e
£ being a constant. Suppose @, to be a

potential energy of an incomy fluid,

D(r)= J q (1) pdry, we may from a comparison

with the results derived in Chapter I determine the
space distribution of vorticity for extreme values

This proof for stability was derived without know-
mg Taylors proof. On the whole, it seems as if
Taylors proof has called but slightly attention in
spite of its, after my opinion, great theoretical
interest
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maximum or minimum point for f. Then the
curves f(x,y) = const must be closed curves in
the neighbourhood of #,, ;. If therefore at a
given instant the material point has a position
near to @, y; so that the quantity e is small,
it must at all times move at a closed curve in
the neighbourhood of the point ;. ¥, fig. 2a.

Je
o,
<3

&

Fig. 2a.

If, however, the extremum is a saddelpoint,

Geof. Publ.

partly increasing and partly decreasing between
the walls, giving a “saddelpoint”-extremum to G,
or the isolines for vorticity in the disturbed
state are far from having the shape of concentric
circles, giving thus a finite value to the quantity
s in (18.3).

It is interesting to note that the above

)

Fig. 2c.

developments show that a motion in two dimen-
sions beb tric cylinders which is not

fig. 2 a, or if & is not a small quantity,

7

(’ﬁ,‘h)

Fig. 2b.

fig. 2 e, then the material point may change its
position considerably without violating the con-
dition f(x,7) = const. In the corresponding
cases for the cylindric flow the vorticity is

a pure cylindric flow can generally not become
so at any later stage. For in this case the
constant value of & will generally be different
from a stationary value. If therefore the mo-
tion should become a pure oylindric flow, &
would have to change its value, and thus to
violate the condition of constant angular mo-
mentum. For the same reason it is generally
not possible to have a motion in which all
particles oscillate at the same rate and with the
same phase around the circles, R = const, along
which they are moving in the mean.

19, The general criteria for energy
transformations.
Inserting for the constant in the energy
equation (14.12) the value obtained from initial
values of o' and ¢, we obtain

f 0% — [ v, dr =
* T

c*dr ctydr
tm T )

By substituting here ¢ == c,, + (c-c‘,) it follows
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f Yot di— f 102 =
! ‘ j‘n (c;]c;,;)dr

o
27’

f(c —)*dr
saR

We have
Cy .
imRE
@, denoting the average angular speed along the
circles R == const at time t=0. Thus

(19.1)  [H0?dr— [yotdr=

1 [(_ (¢ —cp)? d
——ﬁf«u‘,(c—c‘,)(lr—f( Sﬂ;’})e,l.

We divide 7 into two parts, 7y, 7,, in which
¢ —c, has opposite signs. Let 7, be the volume
where ¢—¢, is negative and 7, the volume
where ¢ — ¢, is positive. Integrating in the first
right-hand-side integral of (19.1) at first over r and
then over 7,, and putting suitable average values
of @,, respectively w,(R,,?z) and @, (Ry,z,)
outside the integral signs, we obtain

févl’ d ,_fgvnnd,=_ﬁi‘!,(;%’.fﬂ‘/.(c—cn)d1
’ _%‘;‘éﬂ_x)ﬂc_cﬂ)d:——f%%’u

It follows from t;he condition (14.8) for constant
angular momentum that

f(c—c,,) dr= —f(c—c,,) dr.

“ ‘2

Substituting from this in the last equation
we get
(19.2)  [rodr— [to2dr=

1 -

3210 (Buys) =y (R, 2] f o r)lr—

s T

The analogous equation for the infinite flow in
a straight channel is obtained from eqs. (14.26),
(14.27) by a similar reasoning

(19.2) fg o' dr —J‘g 02 dr =

(@ (y1,21)— o (Y2, g)]j(“* un)df—/ (@ — @) dr.
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From these equations we can state the following
rules:

If all values of @,, respectively , in 7, (the
region where the mean velocity increases with
time) are greater than all values of @,, respec-
tively @, in 7, (the region where the mean velo-
city decreases with time), the kinetic energy of
the irregular flow is destroyed and transformed
to kinetic energy of the mean flow.

For in this case @, (By, 2)— w0y (Ry,2;) and
Jle— o) dr, zespeotively o (y1,7:) — 7 (g2, 22)
72

and / (i — 1) dr must have opposite signs, so

7
that both right-hand-side terms in (19.2) become
negative.

On the other hand:

If all values of @,, respectively @, in the region
where the velocity increases with time are
smaller than all values of @,, respectively %, in
the region where it decreases, then kinetic energy
of the mean flow is transformed to kinetic energy
of the irregular flow, at least for sufficiently
small displacements of the fluid particles.

This rule is based on the facts that the
first right-hand-side term in (19.2), respectively
(19.2') now is positive, and that the second inte-
grals are small in comparison with the first
ones for small displacements.

20. Motion in planes perpendicular to the

z-axis. — The case where the vorticity of the

mean flow decreases as well as increases

with the distance from the centrum of the
motion.

Suppose that F, denotes that part of the
area between the cylinders where the vorticity
7 X figi- 27 is steadily decreasing with R,, and Fy
that part where it is steadily increasing with R.
For sufficiently small or and 7 xv, we obtain
according to (16.4)



a)f(c— c)dF = a g,,dvx"“' 21 RaF <0

201) for all op
b)./(c_c.,) aF — n/gn '?VXZ"' 2 RaF s 0
g ¥ for all gg,

and from the condition (16.3) for constant an-
gular momentum we obtain

(20.1)¢) j (¢—c)dF == fg,e dv—"d“;?—"'-”mm
F

+a;[en

The two integrals to the right in the last

equation now having opposite signs, we can by

suitable choice of on make [(c — o) dF arbit-
Fi

20V X gt - ”RM‘:O

rarily small without necessarily having, f ortdF—0.
r

Therefore, in the present case it does not follow
from the condition of constant angular momen-
tum that f o dF-0 with 7 x ,’. However, util-
W

izing the conditions for energy transformations
stated in the previous section it is possible also
in the present case to examine the stability
more closely. Replacing r by F in eg. (19.2)
and remembering that the last integral may for
sufficiently small oz be neglected in comparison
with the others, we obtain

102 dF — [foy2dF =
r/ ;-[ .
3 @o(Bs) — @y (By)] [(c— cq) dF

For sufficiently small g5 and 7 x v, we can sub-
stitute for ¢—¢, from (20.1)b), thus obtaining

(20.2) [}o02dF — [}o2dF =
F F

(@ () — o () [ 40xt 2716 .
i

The sufficient (19.3) for

of kinetic energy from the irregular to the mean
flow assumes now the following explicit form that
all values of @, in that part of the fluid where
v );;”' 21y positive he greater than all

dvxn.,t -2

(20.3)

values of @, where —— is negative.
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Under this condition the right-hand side in
(20.2) must be definite negative, implying that
Srordi— [102d<o.

T '1

Then, since ['} v, dr 0 with ¥ x2',, we must
%

necessarily also have
JEo®dr— [$0,2dr—>0 with 7 xvy".
: T

T

Therefore, the right-hand side in (20.2) must

tend to zero with 7 x v, which is possible only if
fun“dl'—) 0 with 7 x 2,

Applying t.hls result in (20.1)c), and noting that
/ @‘%;19—' 21 RAF also has a definite sign, we

Iy
obtain
(20.4) Jor?dF -0 with v x "

7

This expresses the stability of the cylindric flow
now considered.

If we take account also of the effect from
the transport of the additive vorticities, we ob-
tain an additional term to the right in (20.2)
given by

(20.5) ;; {0 (By) — @ (Ro)], f ' [)f v, -0¢] dF.
Fy

Since this term becomes arbitrarily small with
v xv,, it is easily understood that the above
criterion (20.3) for stability will hold even if we
take account of the effect from the transport of
the additive vorticities, 77 x2,’. If, however, the
vorticities 7 x»," are finite, then finite energy
transformations can develop from the term
(20.5). That is why finite vorticities probably
is a factor of importance for the formation of
turbulence.

To examine the conditions for instability
we need not take account of the term (20.5)
since this becomes arbitrarily small with the
vorticities |7 x#,". Eq. (20.2) gives then:

If all values of @, in the region with nega-

A xai - 21
AR

tive are greater than all values

in the region with positive

A7 X Wyt 21
(20.6) dR
then as a result of the transport of the
vorticites of the initial mean flow, kinetic
energy of the mean flow is transformed to
kinetic energy of the irregular flow.
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To arrive at a criterion of instability of
the kind defined in (15.3) it remains however to
prove that the increase in kinetic energy of the
irregular flow arrived at above does not become
arbitrarily small with 7 x2,". As we shall see
in section 24 many types of perturbations must
exist which will be stable in spite of condition
(20.6). Theref the only 1 which we
can draw from (20.2) is that under condition
(20.6) a system of not arbitrarily small virtual
displacements will lead to a not arbitrarily small
increase in the kinetic energy of the irregular
flow. Whether or not such displ will
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For sufficiently small o, and additive vorticities
¥ xv,” it can be written

, o — APy
(21.2) “—%:%@u’;@?
The criterion of stability (17.2),
sumes the form:

If %’% is of one sign throughout the
(21.3) fluid, then at all times

(17,3) now as-

q,,’dF»O with 7 x 2/

yd

exist in an actual motion cannot be decided by
means of energy considerations alone. In spite
of our disability to give a strict proof for in-
stability under the present conditions, we will
nevertheless refer to (20.6) as the condition for
“instability”.

21. Explicit criteria of stability for the
two-dimensional linear flow.

In the following sections we are going to
deal with some explicit cases of the two-dimen-
sional flow considered above, starting with the
infinite flow in a straight channel!) It was
shown at the end of section 14 that this flow
could be considered as a limiting case of a flow
within a channel symmetrical with respect to
the z-axis. Let us now consider a particular case
of this infinite flow, assuming

(21.1)

_ ¥

dy?

a4y x i 21
R

Having when R oo and

T Xkt - A =7 XUyt + zxag which is zero according
to (21.1), eq. (14.29) reduces to
—d2

(21.2) @—ii, = % 0,2

fv‘o»ér
h(0) —li .
+hO) ];E,,g 2aR

The notation “linear flow” is nsed here for the

corresponding mean flow.

This crit js simply an cxpression of the
fact that, assuming small additive vorticities at
time ¢ = 0, finite displacements can not oceur
without violating the condition (14.28) of con-
stant total momentum.

The energy equation to deal with develops
from (19.2) by writing F instead of 7, and thus
becomes

@214) [1v?dF— [1o'2dF =
r F
[o () — Ty (2)] [(@— ) AF — [}(—ao)*dF .
7y r

Hence, by substituting for @ —, from (21.2),
and disregarding the last integral which becomes
negligible for sufficiently small o,, we obtain

(21.5) [1v?dF — [}u,/2dF =
F ¥
o
o ) =0 02) [ron T ar.

By a reasoning similar to that in the preceding
section we arrive at the following criterion of
stability:

d*iy
s~ °

are greater than all @, where % < 0,

If all @, in the region where

(21.6) then at all times

-;.{,— 0,2 dF - 0 with 7 x v,

¥
On the other hand:
If all values of %, in the region where
i,
d 2

%<0, the corresponding flow is “un-

>0 are smaller than all @, where

(21.7)

stable”.
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Fig. 3 and fig. 4 show examples of linear
flows which are stable according to criterion
(21.3). The full drawn lines are velocity profiles

Y

Fig. 3.

for 4, and the stippled lines indicate the velo-
city profiles for the mean flow at a later in-

Yy

B e e

Fig. 4.

stant. Fig. 5 shows a linear flow which is stable
according to criterion (21.6) and fig. 6 one which
is ble” ding to (21.7).

It should be noted that a lincar flow with
a velocity profile shown in fig. 6 will have as
a limiting case a flow with gliding along a
discontinuity line, if the middle zone of maxi-

Y

Fig. 5.

Geof. Publ.
mum shear is narrowed more and more, fig. 7.
This limiting flow could also be examined di-
rectly by the methods used above. We must

y

Fig. 6.

then take account of the effect upon the mean
flow from the transport of the gliding vorticity.

Y

Fig. 7.

As a result we would then find a transformation
of. kinetio energy from the mean to the irregu-
lar flow.

Rayleigh (3) bas found that linear flows
with broken velocity profiles are stable if they
are of a kind analogous to that shown in fig. 5,
and unstable if they are of the kind shown in
fig. 6. Thus, these results are in agreement with
those found above. It is worth noticing that
the simple method used in this paper enables
us to give an exact proof for the stability of
linear flows with velocity profiles shown in fig. 5,
whereas the analytical method of proof by
finding the general solution of linearized equa-
tions of motion by superposition of elementary
solutions is so difficult that until now only ele-
mentary solutions have been found, and for the
broken velocity profiles only.



Vol. XVII. No. 6.

22. The cylindric flow.

For this flow we have
\v/ xﬂ,,i~z;=% +%
so that now the stability criterion (17.2) assumes

the form, that

@221) gx;‘; +ar (11?)
be of one sign throughout the fluid.
Since the expression for vorticity contains
R, the y dition for instability: that
A X gt~ 21
dR

the b d

changes sign 1

may now be satisfied even if L—i‘%‘; is of one sign

1 hout the fluid. Suppose for inst that
@, is given by
ao=—%1£8 + aR,R

where a is a positive constant and R, the radius
of the outer cylinder. It follows then,

% =—a(3R—2R),
Ay Xyt -2r _
drR

.
= —a@®—R).

Consider the case with R, = §R,, i. e.
RyzR2§ Ry,

—a(4R—3Ry),

R, denoting the radius of the inner cylinder.
Then %, save for the zero value at the inner
wall, is negative throughout the fluid, whereas
v X;f" = changes sign for R = 3/4 R,. Since w,
according to the above formula is steadily in-
creasing with R and E.V’;ﬂil
the outer part of the fluid, the ﬂow studwd in
this ple is stable” to

(20.6).

is negative in
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23. Motion on concentric spheres.

herical 1

Let u, @, a rep P
which are related to the cylindrical coordinates
used hitherto through: R = acosg, z = asing,
and let us suppose that
(23.1) va= 2% —o.

If the fluid is enclosed within the fixed bound-
aries given by the surfaces

=01, @ =, ¢=¢1, §= P2

and if F is the area of one arbitrary of the
spherical stream surfaces a=const, then

~ a2
(23.2) { JpdF = — j q“_;f% + const
i

and

(23.3) [le—c)dF =0

F

develop from the energy equation and from the
dition for t angular as did

proviously the eqgs. (16.2), (16.3) for the plane

two-dimensional flow. On account of (23.1) the

expression (14.22) for ¢ reduces to

2
(234) o= co- / %e./,d—vx;i“;—f—"’m.p
o

+_/'h(0) Rdy + v -or.
g L
The criterion (17.2), (17.3) assumes the form:

16 BV X1 5 ot one sign for all g

(23‘5)l between the boundaries, then
J o >0 with 7 xv'y.
¥

A simple example of a flow which is stable in
this sence is given by a fluid rotating at the
constant angular speed of the earth, w, = €. In
this flow,

A7 x it - ag
=2 Qcos
e ?
which is of one sign at all latitudes ¢. This is
the physical base for the stability of the so-called
Rossby — waves (5); they are stable because
finite displacements ¢,, by small vorticities in
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the field of perturbations, would be inconsistent
with the condition of angular

It appears from (23.4) that the mean zonal
velocities will decrease, at least for small dis-
placements ¢,, as a result of the north- and
southwards transports of the vortex tubes of
the initial mean flow. That this will be the
case for all g,, however large, can be seen from
a reasoning similar to that given at the end of
section 17.

We have seen above that the “moving with
the fluid” of the vorticities of the mean flow will
create a relative mean easterly flow. Thus to
secure the constancy of the total angular mo-
mentum a compensating mean westerly flow must
be created from the motion of the additive vor-
ticities, \7 x v’y. This implies, as may be seen by
applying the theorem of Stokes, that the fluid
particles with cyclonic additive vorticites must
move in the mean to the north and those with
anticyclonic vorticity to the south, fig. 8.

o¥

Fig. 8.

changes sign with latitude,

the energy equation (23.2) written in the form
[1o2dF — [1vy2dF =
F ¥

(c—co)? dF

1l
—ﬂjw.,(c - ¢g) AF— SRR
yd

in connection with the expression (23.4) forc —c,
gives the criteria for stability and “instability”
in just the same way as for the analogous cases
studied in the preceding sections. Thus as suffi-
cient criterion for stability:

1f all angular speeds @, in the region of

a7 % unz -ar

positive —— are smaller than all

angular speds @, in the region of negative
(23.6) A7 X gt - uz
dg

then ind d

P Iy of time,

fg“,ﬁ dF -0 with 7 xv',.
b

On the other hand we obtain as criterion for
“instability”:

RAGNAR
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If all in the

A7 x g - ar

@y region where
> 0 are greater than all @, in
(28.7)

the region where 4 x @i -0z

< 0, then the
vortex is “unstable”.
Let U denote the mean relative velocity
when ¢==0. Then

wg = £ 4 -—~q~

(23.8) @ cos @

and

. . av U

vxua-a,:Z.’.'ﬂqu-—-Jq) +7‘—»tgqu.

In the diagram in fig. 9 we have drawn to the
right a curve giving the variation of 2 2sing
with latitude. To the left are drawn two pro-
files, I, II, for the relative mean velocity U. The
corresponding variation of absolute vorticity is
given by the curves I, IT to the right in the
diagram. Both profiles show a maximum of
westerly wind at middle latitudes. In conse-
quence of this a relative cyclonic vorticity oc-
curs to the north of the latitude with maxi-
mum velocity, so that a northerly region exists
where the absolute vortieity of the initial mean
flow either obtains a less marked increase with
latitude (profile I) or even decreases with lati-
tude (profile II). In the first case the atmos-
phere is stable according to criterion (23.5). In
the other case the stability can be examined by
means of the criteria (23.6), (28.7). The stippled
curve to the left in the diagram represents the

variation of crf;—.i with latitude corresponding

to profile II. There exists for this profile (in-
dicated by arrows in the diagram) one northerly
a7 X ok a1 and one south-
dp
u

cos
being greater in the southerly region than in
the northerly we obtain, applying (23.8) and
criterion (23.7), that the circular vortex with
the velocity profile 1I, is “unstable” for hori-
zontal perturbations.

Tt is interesting to note that it is because
of the tendency from the term 2 Q2sing to
make the vertical component of vorticity in the
initial mean flow steadily increase with latitude,

region with negative

4y X - ay.

erly region with positive
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that the magnitude of the maximum of the _ 2
L. . i ou 1
westerly velocities must exceed a certain criti- (24.1) =" mE / oV X v- 27 Rdy =
cal value in order to have “unstable” conditions. 4

24, On the stabilizing influence ﬁ'om the
of the p b

It was pointed out in the preceding sections
that the transport of the vortex tubes of the
additive velocity field could have no destabili-
zing influenzes if the additive vorticities were
assumed as small. As we shall see in the fol-
lowing, this fact does mot prevent the initial
additive velocities from having stabilizing in-
fluences.

The equation of motion in the y-direction
<  Jered

T .

for the two-di 1 flow in sec-
tion 16 can be written
I Gz

having substituted %+vnv x v - 27 for the con-
vective accelerations p-p-i. Hence by aver-
aging, noting that v =0,

21
1
42—”}%/11'11 V x v+ 21 Rdy.
K
Derivating the energy equation (16.2) with
respect to time and using (24.1) we obtain

ar .
a‘/év'* ar z/«'w'nv xv - zidF.

»
R

-
PR NN

Substituting here V x v’ - 2r= OB Rop’

equation becomes
d ‘A
2. o 2 e [ e ¥
(24.2) k7 .[h, ar ./dRu g RAF.
¥
The pondi yuation for the two-di
sional infinite flow in a straight channel is

d () popm _ [da_,,
(24.3) Eléu dF———-. ?uu,dlr’.
r r
In the following we suppose %:; to have a de-

finite, say positive sign. Then, as is readily
seen, the kinetic energy of the irregular flow
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will steadily increase or steadily decrease ac-
cording as «'v’,, at least on an average in
the fluid, is negative or positive. '», will be

Geof. Publ.

velocity of propagation of these isolines. In
doing so we suppose f(y) to have the same sign
for s,ll Kl hetween the walls apart from the

negative if the streamlines for »' are declined,
at least on an average, in the direction of nega-
tive z, and be positive if they are declined in
the opposite direction. In order to know
which declination the streamlines for »" will
have it suffices to know how the isolines
V xv'-2r = const are declined, these being, at
least on an average declined in the same way
as are the streamlines.

The velocity of propagation in the direc-
tion of x of the isolines for additive vorticity
being denoted by d, we have

Ev_xv'-zl

From the vorticity equation we obtain, neglec-
ting second order terms, that

LARUAR SR A xv'-2
at >
Substituting this in the formula for d, it follows

+"'vb

(24.4)

Suppose now that the additive velocities, when
t=0, are detemnned from a f

where it is zero in conse-
quence of the boundary conditions. This im-
plies that there are no rectilinear streamlines in
the direction of x apart from those at the
boundaries. Taking the velocity circulation
around the curve enclosing, say the region with
positive values of the streamfunction y’, we
obtain, applying the theorem of Stokes to this
circulation integral, that v xo'-z; must have,
at least on an average, the same sign as y'.

Having
, in, &
(24.6) VUxv'-z= (‘L‘ dy) L B

f — 'f - has therefore on an average between

the bound.tmes the same slg‘n as J. Let us con-
. 2

sider the simple case thab I f —Z—{ has the

same sign as f in all leve]s Then, by sub-

stituting from (24.5), (24.6) in (24.4) it follows

that
- a4

(24.7) d=un+h(y)ﬁ2°, t=0

where % (y) is given by

_ f
(24.8) h(y)= PR Wzof;: ally“:etween
=T e
We investig; at first a linear flow in which

v =J() sin —, so that initially
i d,f 2, 2 2w
(245)  w'= Wy sin 7=, v/ f 7 sos -

Then the streamlines have initially the neutral
form with no changes in phase with the y-co-
ordinate, so that

da [, , . _
it—:[évgdlf’-—o, t=0

¥
as might be seen by substituting from (24.5) in
(24.3) and effecting the integration. Whether or

the velocity profile is of the stable type shown
in fig. 5. It follows then from (24.7), (24.8)
that the velocity d will be greater above the
inflection point than below it, so that the iso-
lines for additive vorticity, and thereby the
streamlines will initially have the tendency to be-
come declined towards increasing . This implies,
according to what was pointed out above, that
the kinetic energy of the irregular flow starts
decreasing at the next instants. Therefore, the
stability proof given in section 21 is conﬁrmed
by the above q ti ts of d

not the kinetic energy of the i lar flow
shall later on decrease or increase will therefore
depend upon how the isolines for the additive
vorticities (and thereby the streamlines) become
declined during the following motion. This can
be examined by applying formula (24.4) for the

tical and d ical nature.

As the next example take the linear flow with
the ‘“unstable” profile shown in fig. 6. It follows
now that the second term to the right in (24.7)
will be negative above the inflection point and
positive below it, so that this term will tend
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to compensate the effect from the mean velo-
city, iy, to give the streamlines the “stable”
declination. For sufficiently small wave-lengths,
however, the compensation can certainly not be
complete. For, considering (24.8) we obtain

h (y)—~ 0 when L0,
whence, in connection with (24.7),

d— @, when L 0.

Therefore, for perturbations with sufficiently
small wave-lengths, the lines of equal additive
vorticity, and thereby the streamlines, will be-
come declined in the direction of positive 2, leading
thus to conditions under which the kinetic energy
of the irregular flow decays as for a stable flow.

If we divide eq. (24.3) by JQv"«lF we ob-

tain as a measure, » of the swblhty

J a2t g
dy ~ W

[tvrar
r

po=—

From reasons of continuity we can conclude that

when L ->oc, then on an average in F’"T; — 0 and

u? > p2. Utilizing this in the above expression
for », we obtain
(24.9) »—>0 when L — oc.

This result shows, in connection with that deri-
ved above with respect to the stability for per-
turbations with sufficiently small wave-lengths
that if the flow reacts unstably for certain per-
turbations there must exist at least ome inter-
mediate wave-length with a maximum of insta-
bility.

The results derived above are all in agree-
ment with those found by Rayleigh (6) for
broken velocity profiles from a di of
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length will represent, according to our qualita-
tive reasoning, the critical wave-length separating
the stable short waves from the unstable long
waves. In this case we may write (24.7)

I d’(uo-—ﬂﬂ
’ &f | 4w _
(24.10) Tf—lﬁ' = jf
With f as a solution of this equation, the
streamfunction

v =1 sin Ee—c)
It is seen
that in order to avoid a singularity in the above
differential equation, ¢ cannot be equal to a
value of 4, in any layer different from the
layer where we have the inflection point. And
further ¢ must, as shown by Rayleigh (7), equal
@, in some layer between the walls. Then,
the only remaining possibility is to assume
¢=, in the inflection point. With y =0 in
this layer (24.10) may be written

Lo (L TE e, PR

T LLE Tay byt )T

having developed ain———c in a Taylor series,

lution

dy—c¢=ay + by’ + ...., or it may be written
@f  [4m, 6b+. _
(24 ) 2 [ﬁ by -I- —]f_ 0.

Here the constants a, b are of opposite signs
a to our the cha-
racter o{ the velooity profxle The wave-length
L is now to be found from the “eigen”-value

4n? . . o
Zl’ consistent with the boundary conditions.
o
We shall consider a simple case of this

2
equation by assuming @, — ¢ = sin HI’II?/ and the

Tt

of the li ized of motion.
It remains, however, to be shown that unstable
solutions really exist in the present case. Thi:

means that it remains to be shown that for
sufficiently great wave-lengths there will be a
tendency for the lines of equal additive vorti-
city to become declined towards decreasing .
For that purpose we try to solve the problem
of finding the particular wave-length, L., for
which d is constant: d == const=c¢. This wave-

boundaries at di H/2 and — H/2 from the
level y = 0. For this velocity profile, eq. (24.11)
assumes the form

2o -

The solution of this equation is

- — —
f=F,sin L2ny 1/7;7’ — ]_t;_ +ky cos [27[_1/ 1/;1 ll

This, in connection with the boundary conditions

(24.12)
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gives

where 7 is integer. Using the condition that L
must be real, we obtain for the critical wave-
length

(24.13) Lo=22".

In the preceding section it was pointed out
by means of energy considerations that a circu-
lar vortex with a velocity profile as shown by
the curve II in fig. 9 is unstable. Applying
the considerations in this section to motions in
concentric spheres we obtain that the circular
vortex with this velocity profile will be: (a)
stable for wave-lengths below a certain critical
wave-length, and (b) possess a maximum of in-
stability for at least one wave-length. It will
now be a question of considerable interest, in
view of the application to the atmosphere, to
d these lengths when stabl
conditions exist in the atmosphereA I hope to
return to this in a later paper.

25. Three-dimensional perturbations of the
linear flow.

Hitherto we have derived certain criteria
of stability for motions in two dimensions only.
This limitation led to a simplification in the
general expression (14.24) for ¢ which is lost if
three-di ional per are d
The nature of this simplification is revealed

‘bation
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now study the infl from three-di ional
perturbations upon an infinite, straight flow
with a linear distribution of velocity:

ity
=5V
By two-dimensional perturbations in the z, y-
planes this flow is certainly not unstable. For

L didy
since d:" is a space constant and the vorticity

V Xv- 2 is individually conserved, no changes
in the vorticity field can arise from the trans-
dit,

port of the vorticities - So, the changes in

the vorticity field, and thereby in the velocities,
are due to the transport of the initial additive
vorticities only and thus become arbitrarily
.
small with 7 xp,’. Having now % =0, the
(14.29), ing small displ t
2,, and small additive vorticities initially, redu-
ces to

(26.1)

_ diy o
amg e, %
Suppose the system of small virtual displacements
to be given by
Qs = &hy SN 41T €OS Aoy cos Az

(25.2) " @, = &ly cO8 Ay Sin Lyy cos Agz
. PRI

13

0y = — €08 A,z Cos Ayy sin Az

where 7, and 2, are given by

=g k=T
H and B denoting the widths of the channel in
the y- and z-direction, respectively. This system

from a study of the vorthty equation. of displacements satisfies the condition of in-
This in the t jonal motion, pressibility and the boundary conditions.

q s o . N
reduces to an expression for the individual con- Substituting from (25.2) in (25.1) we obtain
servation of vorticity: D\‘/xv 21— 0 in the cy- (25.3) a—1p= k%m cos % B sin 2—;:71-
lindric and linear flow, undgv_’;f_"’ 0for the Where k a positive constant.

motion on concentric spheres. In the general
three-dimensional motion this equation is

DV xv
= Vxv Ve

so that the number of changes possible in the
vorticity field is increased immensely. We shall

The integral of this expression in the y-direction
between y = 0 and y = H vanishes for all z, so
that also [{@—@,)dr will vanish. The con-

v

dition of constant total momentum, f(a—ﬁ,,)d1=0,

T
is  therefore for the displ




