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Summary.

The linearized hydrodynamical equations,
including the energy equation, are specialized to
apply to certain types of simple oscillations which
resemble tidal waves but are created by periodic
supply and removal of heat. It is shown that
the variation in the supplied heat can be com-
puted if the pressure wave is known; further-
more, if the phase angle of the pressure wave
at sea level is independent of latitude, and if
the changes of state are piezotropic (including
adiabatic and isothermal changes), the phase
angle must be independent of height. In this
connection it is noted that the phase angle of
the atmospheric semidiurnal pressure wave is

"independent of latitude but variable with
height.

For a barotropic model atmosphere it is
shown that a simple form of oscillation with a
24-hour period, which was considered by Mar-
gules and others end which satisfies the linearized
equations mentioned above, is in disaccord with
the exact hydrodynamical equations. Bearing
this in mind and taking into account also the
boundary condition at the ground, an examma-
tion is made of the properties of oscillations
having either a 24-hour or a 12-hour period.
Owing to the mathematical complexity of the
problem this examination is limited to a region
near the Pole. The existence of a fundamental
difference in the hydrodynamical properties of
the two oscillations is indicated, quite apart from
possible resonance effects.

The quasistatic equations of Laplace are
not applied here. An example is presented to
show that the quasistatic method may lead to
erroneous results if applied to the 12-hour oscilla-
tion.

An attempt is made at applying non-linear
perturbation equations containing terms of first
and second crder to derive certain oscillation
properties which are not revealed by the linea-
rized equations.

Through numerical integrations, approximate
values of the variation of the supplied heat and
of the vertical velocity in the semidiurnal oscilla-
tion are obtained, the pressure wave being known
from observations. The possibility of explaining
this wave as a non-resonant oscillation resulting
from thermal processes is discussed. The flux of
heat through a model atmosphere, having no
other motion than that resulting from the com-
bined diurnal and semidiurnal oscillation, is con-
sidered, and a possible explanation of the pre-

d e of the p is
indicated. A brief discussion of the conversion
of heat to work and vice versa is given.

For certain inter
putations are reproduced in an appendix.

s N
nal

com-

Introduction.

The aim of this paper is to study the pro-
perties of certain simple atmospheric oscillations
which may be expressed in the form

(1) S, 0,9, 0) = Asin (ny 4yt + )
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or as a sum of such expressions, f denoting the
variation (i. e. the deviation from a mean value).
of any of the significant variables, pressure, t m-
perature, velocity, etc. The other symbols are
defined as follows:

# distance from the centre of the earth,

O angular distance from the North Pole.

y the angle between a fixed meridian plane
and the meridian plane through the point
considered,

t time,

7 an integer,

7 a constant.

The amplitude 4 and the phase angle 5 are
functions of r and 0 but independent of y and .

I di at hy illations of this
kind l\mdamental investigations were made by
Margules, following methods developed by Laplace.
In more recent years important contributions
have been rendered by Lamb, Simpson, Chapman,
Taylor, Pekeris, Weekes and Wilkes, J. B]erknes

In all hematical theories of p
oscillations based on the hydrodynamical cq\m-
tions one has to work with simple models of the
atmosphere, as for instance the model considered
by Taylor (1936)1). The atmospheric model con-
sidered in the present paper has the following
characteristics:

(1) The ellipticity of the figure of the earth is
neglected.

(2) The effects of viscosity and friction are
omitted.

(3) The fundamental state of motion is assumed
to be a zonal current in which each unit
mass of air moves with a constant angular
velocity along a circle of latitude, while the
angular velocity may vary with latitude and
elevation.?)

1) A frictionless atmosphere where the temperature
distribution was assumed to be independent of lati-
tude and the changes of state in the perturbations
to be adiabatic.

) In some of the problems treated here the variation
of angular velocity will be taken mto account, but
mostly we shall assume a constant angular velocity
in order to sumplify the mathematical formulae.
However, an extension of the formulae to the general
case would encounter no difficulties of a principal
kind.

Geof. Publ.

(4) The oscillations are assumed to be small
perturbations superposed on the fundamental
current, thus permitting the linearized hydro-
dynamical equations to be applied.

(5) The gravitational effects of the sun and the
moon are not taken into account, the only
external effect considered being the heat
supplied to the atmosphere by the sun.

(6) In accordance with assumption (5) the oscil-
lations are supposed to undergo non-adia-
batic changes of state in certain layers of
the atmosphere.

(7) The sun is supposed to be in its equinoctial
position and the perturbations to be sym-
metrical with respect to the equator.

Assumption (2) is supported by the result
of Chapman (1924)., With regard to assumption
(4) it may be noted that the equations applied
here are not the quasistatic ones, but the terms
of vertical acceleration are taken into account.!)

In connection with assumption (5) it may
be observed that the gravitational effect of the
sun may play an important part, owing to the
resonance effect, if the atmosphere has a period
of free oscillations very near to 12 hours. In
the frictionless model atmosphere we should then
find an oscillation with infinite amplitude. This
case cannot be given a satisfactory mathematical
treatment without including frictional terms in
the hydrodynamical equations. Apart from the
case of resonance, which will not be treated here,
the tidal waves may be treated separately and
superposed on other oscillations.

As regards assumption (6) we shall make
the foll g remarks. Consid a certain
oscillation of the form (1) found in the atmos-
phere, and that the at hy model
described above can be used with fairly good
approximation so far as this oscillation is con-
cerned, we may introduce in the energy equation
(v. (1.5) below) the actual observed values of
temperature, pressure, velocity and their varia-
tions. We thus compute the heat supplied to a

aw
i and the
) =g of this quantity. Since

unit mass of air per unit time,

o (24
variation . :l( ar
in the atmospheric model considered each parcel

%) This method was introduced by Solberg (1936).
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of air has constant pressure and temperature
in the fundamental state of motion, we have
aw
P 0.
undergo adiabatic changes of state, we find
& = 0, but in oscillations generated by the suns
radiation we must expect to find e different
from zero, at least in certain layers of the atmos-
phere, and in such cases ¢ will have the form (1).
This being the case, it seems convenient to treat
& on an equal footing with the other variables
(pressure, temperature etc.). We can thus obtain
a system of formulae applmable both to adia-
batic and diabatic ill includi
oscillations which are adiabatic in some layers of
the atmosphere and non-adiabatic in other layers.
For the purpose of this investigation the
variation in the supplied heat may be considered
as a given quantity, thus making it unnecessary
to refer to the laws of radiation and conduction
of heat.

The author is indebted to Dr. C. L. Godske,
Dr. E. Holand and Dr. Sverre Peitersen for
discussions and valuable advice, and to the
«Kristian Birkelands Fondy for financial assi-
stance which greatly facilitated the completion
of this work.

In oscillations where the air parcels

1. The general hydrodynamical equations
applied to a rotating atmosphere.

As we shall be concerned chiefly with waves
that travel quickly relative to the surface of the
earth, but very slowly relative to the stellar
system, it is convenient to introduce, instead of
the geographical longitude 1, the coordinate

SOME HYDRODYNAMICAL PROPERTIES ETC.

5

where y denotes the angle between a meridional
plane through a fixed star and the meridional
plane through the point considered, and 2 de-
notes the angular velocity of the earth’s rotation.

Denoting by % the time differentiation fol-

lowing the motion of an individual parcel of air
we shall write

dr dy _

dt dr
The symbols used to deseribe the state and
motion of the atmosphere are given in Table 1.
(The last column of this table will be referred
to in the next paragraph).

-7,

Table 1.

Element, i ate™ portutbapon
Velocity components Ve V4o
(as defined above) Ve Vy 4 v,
Vo Vo + vo
Absolute temperature T T 41,
Density Q Q +q
Pressure P P +p
Auxiliary quantity P*=RinP P*4 p*
Heat supplied to a unit dW dW
P - + &
mass per unit time dt
Other symbols used are
R gas constant,
¢, specific heat at constant pressure,
er . .
0= —% vertical temperature gradient,

@ potential of exterior force.
With the above notations the general equa-
tions of motion, the equation of continuity and

p=2+4 2 the energy equation may be written
av, 1oP 0@
1.1 =
0 @ Yo tE Y
. 1 oP W
(1.2 rzsm20 5+ 2rsin 0 V,V,, + 2r*sin 6§ cos 0V, V, =+ =0,
) in  cos o+ Qo + =
22 10P o0
1. e s 1 _
(1.3) @i + 2V, V, —r*sinficos O V,, +Q20+ 0,
1 2 av, av,
(14) 0 ? SVt a'p+ S+ cotgh- Vo= 0
dT  RT dP dW
1.5 Pt el A
-9 A A
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Using the equation of state
P = QRT

the density may be eliminated from Eqgs. (1.1-—5)

by putting
18P apP* 18P apP*
,,,,, =T 2 _rZ
or o’
(1.6) Q Qo o’
10P _0P* 1dQ_ 1a4P* 14T
Qay T 80’ Qdt TRa T d

The equations (1.1—5) will be applied to an
atmosphere surrounding a rotating globe. To be
exact one should take into account the ellipticity
of the figure of the earth. How this can be
achieved has been shown by H. Solberg (1936)
for the case of a homogeneous ocean. The mathe-
matical computations involved are, however,
rather difficult and we shall therefore in the
present paper consider the rotating globe as a
sphere. In making this simplification we can
still take account of the essential features of
the effect of the earth’s rotation upon the
fundamental state of motion. This is done by a
suitable choice of the potential @, which must
be different from the real potential of gravitation.

Let us choose for & the following expression

(L.7) D=1} fl’sin’ﬁfg',
where k is the “‘gravitation constant”, M, the
mass of the earth and £ =0 (r) is a function
which is equal to £ near the earth’s surface and
tends rapidly towards zero at great distance
from the earth in such a manner that the last
term in Eq. (1.7) preponderates for large values
of 7.

If the equations (1.1—5) had to be applied
at all distances from the earth it would be
necessary to make certain assumptions as to

the value of 2 (r) and%? + 0 for all values of »

but if we limit our investigation to the tropo-
sphere and the lower stratosphere we may
put Q = Q = const.
Let us apply Egs. (1.1—3) to the case when
the atmosphere is at rest, i.e.
V,=0, Vo=0 V,=2.

Introducing the value (1.7) for @, putting

Geof. Publ.

g= kit{' and 2 = Q and having regard to (1.6)

we then obtain

aP* oP*
a8 =% = or T
ie. the isobaric surfaces are parallell to the
earth’s surface. In choosing @ as shown above
we thus obtain dynamical conditions quite similar
to those found on the real globe. It should be
noted, however, that g as defined above is in-
dependent of latitude whereas the real accelera-
tion of gravity shows a slight variation with
latitude.!)

2. The equations of perturbation in the
case of a zonal current.

In the general state of perturbation the
significant variables may be written in the form
shown in the last column of Table 1, where the
variations v,, v, .. .& are assumed to be so small
that products of such variations may be neglected.

It will be convenient in many cases to in-
troduce the differential operator

) o
(@) Vv =Vt w,,3W+Vaa,, 2
and the corresponding operator v-V/.

Further we shall henceforth distinguish three
different time differentiations defined in the
following manner

(a) W denotes a differentiation where v,
7, 0 are kept constant.

K

dt

J
© 5=

=a,;+V-v

—+(V+v) \%

In the zonal current we have by definition
(2.3) V,=0, Vo=0, V, =V, (r, 0),

1) The above method of disregarding the ellipticity of
the earth is well known, but it is not usually made
clear that the method consists in a suitable choice
of ¢ which differs from the real gravitation potential.

%) V. Bjerknes (1929) p. 41.
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whence 1t follows that, if F denotes any one of
the variables listed in the first column of Table 1,
we then have

oF

(2.4) = o, =0 G =0
It is seen from the energy equation that we
have aw = 0.

dt

In accordance with the general method
developed by V. Bjerknes (1929) we proceed as
follows: After substituting the expressions (1.6)
in the equations (1.1—5) we compute the first

SOME HYDRODYNAMIC,
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the expressions thus obtained we finally introduce
the conditions (2.3) and (2.4). In order to simplify
the form of the equations, the following symbols
are introduced:

Lop* 1er . 1oP* 14l
"“Ra Te’ ' Re Tab

or . oP* or op*

28) G=cpp =T, Go=trgy —T 5
Wy

=g F2cotgdV,

and the equations of perturbation may then be

variation of each term in these equations. In written as follows.!)
26 I d:t’ 2V, rsint Ou, 4 T "L 42 ar =0,
1r i -+ agvy + 0,0, 4 2 siyrvi‘ 0 35%1* =0,
1 U0 __ 9 in 0 cos 0V, v, + 77; ag;)' A "’;;’f —
v zlid’T‘:"zlv ?H(D +3 )l, + (D4 + cotg 0) v+ 22 »t-b"” + o,
v c,,‘j“ _1'“’5 A Gy, + Gyvg— & = 0.

Since all products of variations have been
neglected, the equations are linear. The second-

Tabl
Terms of the second order which have been

order terms are listed in Table 2, as some of
them will be referred to in Jater paragraphs.

e 2.

di ded ded

in the

(2.6).

Each horizontal row has the number of the equation to which it belongs.

op*
I n~vv,—rv,“—rsin’00,’+1,5_—.
2 L
I vV, + v 2,0, + 2 cotg 0')"”"Trfsiﬁ’8 o
2 op*
1L v»vv,,Jr - 0,09 —sin 0 cos 0v,? + ; e
1 2, dr, or 101
v Iuvp— vV, +T dt+T26r1‘v'+—i'7601‘”"‘
dp*  oP* Uisd
v vV, —To-Vp*—1 ,%"“7,":”' —ag

The coefficients of Eqs. (2.6) are functions
of » and § but independent of ¢ and y. The
equations are valid for any perturbation in the
zonal current, but we shall here be concerned
with a special simple form of perturbation.
Writing for brevity

(2.7) v=mny + yt

where 7 is an integer or zero and y a constant,

we consider the following functions

p*=Aysin (v 1), 0= A, 008 (v 1),
7,=A,sin (v +17,), Vo= Agcos (v + ),

A,sin (v +7,), & =A4,c08(»+2.),

%) A few details of the computations are given in the
appendix.

(2.8)
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where the amplitudes 4,, 4, ... A, and the
phase angles 3, 9, ...y, are functions of r and
0 only. A perturbation of the form (2.8) will be
called a “simple cscillation”.

In order to show how the functions (2.8)
can be made to satisfy the system (2.6) we write
each of them as a sum of two functions in the
following manner:

p* = pPsiny + P sin (,, 4 ‘"2’) v, = w cos ¥ + wD cog (1! + ;)

(2.9) 7= siny + ¥ sin (v + %)

. g
vg = u? cos v + u? cos (1' + 2)

. . n
v, = o'V sin » |- ¥ sin (v -+ 2)

thus introducing 12 auxiliary variables
PO, A, PO, D, LD

which are functiors of » and 6 but ind 1

&= ¢V cos v + & cos (1' + Z—)

where S© is an expression containing only the
variables p®, V... &0 and their derivates, and

of y and ¢ It is inmediately apparent that we
have

PP =4, cosy, PP = dysing,
0 = 4, cos 1, 12 = A, siny,
CRUNE P
£ =4, cos 1, & = A, siny,
pﬂb e
(2.11) tg g, = S Ap=/ po? oyt

and similar expressions for the other phase angles
and amplitudes.

Introducing the expressions (2.9) in Egs.
(2.6) we may write the first of these equations

S ig ok d by sul ing in S, p®, 1@ @
for p®, :® ... &®. As (2.12) must hold for all
values of » we have

8D =0, 8% = 0.

Applying this procedure to each of the equations
(2.6) we obtain 5 equations for the six variables
PO L9 (G=1 or 2).

In order to have simple symbols that are con-
venient for computations we shall usually drop
the index (i) in the subsequent formulae.?)
Introducing for brevity the symbol

in the following form (213). To =7 kb
@12)  SVsiny+ 5P sin (" + %) =0 :::;mfei:easmflm?: Iy e
(214) 1 —rio—2Vysint 00 4 15 £ 50— 0,
I a0 o0 gt o :f\; 0P ="
I — 7att — 2V, 5in 0 cos 0-v 4 Z; :g 4

n 'n 2 o
v %1)—7Tr+<D,+ r)w-(—(D,,-}— cotg 0) w -} "

v

Here r and 0 are the only independent
variables.

If p®, a0 . e and p®, ¥ ... . be two
different sets of functions, each of them satis-
fying Eqs. (2.14), then Eq. (2.11) and the cor-
responding formulae for the other variables de-
termine amplitudes and phase angles so as to
make the functions (2.8) satisfy Eqgs. (2.6).

, ou
o e
st — TP + Gow + O —e = 0.

1) It is important to bear in mind that p stands for
the auxiliary quantity p(), whereas the pressurc it-
self has been denoted by 7 (Table 1). The gonnee-

2)sin (1- + l’)

tion 15 given by p* = p)sin » + pf

dp*=n"?
and p !



Vol. XVIII. No. 1.

3. Some fundamental properties of
the simple oscillation.

Egs. (2.14) together with the boundary con-
dition, which is to be examined presently, deter-
mine the properties of the oscillation (2.8), i. e
the relation between pressure, temperature, velo-
city and the heat supplied. So far we have made
no assumption as to which of the variables have
to be considered as known or unknown quantities.

In the atmosphere the pressure variations
can be observed with greater accuracy than the
other variables. It is therefore important to note
that if, in a simple oscillation, the pressure is
known, the other variables, v, 7, and &,, are then
completely determined and can be computed.
This will appear from a relation which we shall
now establish between the auxiliary quantities p
and ¢ which represent the variation of the pres-
sure and the supplied heat.

Solving the equations (2.14 I, IL, IIT and V)
with respect to u, v, w, = we find

w=up+b@+c@+d &
(3.1)

wmap P e,

and similar exprmsmns for 7z and v; a, b, ..

ay, by ... being known functions of 7 and 0.

(,()mputmg = aund i Y from (3.1) and introducing

the explessmns thus obtained in Eq. (2.14,1V),
we arrive ah an equation of the folluwing form:

A,,&zﬁ— )A"arao+A"6BZ + 4, ap

(3.2)
A Ayt B B Byemo
@3.4) r=5 5 {'pf“,..,. sin (ny +
@.5) o=3 "3 { e, 005 (np +
AP

P s €0, - being functions of 7 and 0. Intro-
ducing the above expressions, together with the
similar expansions of v and 7,. in Eqs. (2.6)
the left-hand side of each of these equations
also assumes the form of a double Fourier series.
The latter being equal to zero for all values of
w and {, each of its coefficients must vanish and
this leads to equations of the form (2.14) with
the variables p, ,...&7, .. In this way we

1yl) + Py, sin (nw gyt
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The coefficients A, .... B, can be computed by
means of the coefficients of Eqgs. (2.14) and can
thus be considered as given functions of » and
6. Eq. (3.2) is the relation sought between p»
and e. We shall now combine it with the boun-
dary condition at the earth’s surface (r=r,).
From »,=0 it follows that w®=0. Referring
to Egs. (3.1) we can thus write the boundary
condition in the form

ap

(3.3) {nl)-bf—fr,.v td- slvo
Suppose now that the pressure oscillation p* in
Egs. (2.8) is known from observations at all
heights from the surface upwards to a certain
altitude. p® and p® are then given by Kgs.
(2.10). Knowing p®® we can compute (¢9),..,, from
Eq. (3.3) and simul ly (3.2)
&9 through a linear partial differential equation
of the first order. According to the theory of
such equations there exists a single-valued inte-
gral &9 (r, 0) which for r = r, assumes a prescribed
value. The latter is in this case the value deter-
mined by Eq. (3.3).

Knowing ¢V and @ we find 4, and ., and
& 1 Eq. (2.8) is thereby determined. From (3.1)
and the corresponding formulae we can finally
compute temperature and velocity.

The result obtained can be extended to
oscillations of a more general kind. Let us con-
sider a more or less irregular perturbation, where
the variables are periodical functions of  and ¢.
They can then generally be expanded in double
Fourier series, e. g.

expresses

D

o) + %y o (mp -+ 5 ) |

come back to the simple oscillation examined
above. To each term p, s (ny + uyt) of Eq.
(8.4) corresponds a term &,,, cos (ny + uyt), and
thus ¢, of Eq. (3.5) is uniquely determined when
p* is known.

The possibility of computing & when p* is
given has a certain practical interest since &, is
not directly observable. A theoretically more
interesting but also more difficult problem is to
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determine p* when ¢, is considered as a given
quantity. This problem is related to questions
concerning the cause of some of the simple
oscillations found in the atmosphere, since &,
depends directly upon radiation from the sun.

It is immediately apparent that the latter
problem is essentially different from the former,
for Eq. (3.2) is of first order in ¢ but of second
order in p. The boundary condition at the ground
combined with Eq. (3.2) determines ¢ when p is
given, but in order to determine p when ¢ is
given further conditions must be specified. Such
conditions can be found by examining the pro-
perties of the simple oscillations at the Pole, and
this will be discussed in a later paragraph.

We shall now prove the following propo-
sition:

If the phase angle 1, of the pressure oscil-
lation is independent of latitude for r = 7, and
if the air particles are subject to adiabatic
changes of state, then 7, is also independent of
height in a region extending from the ground
upwards to a certamn altitude.

Suppose that p® and p® can be expanded
in Taylor series

@ 20 =0+ () =m0

+ l(az”m) (r—rg)* 4 ...

) 5o =% 1 (L) r—n)

-
aﬁ ) 71,

the subscript nought denoting the values of the
variables at the ground (r == 7,) and the coeffi-
cients of the expansions thus being functions
of 0 alone, then the above proposition may be
formulated as follows:

(3.6)

-+ 4

a\ _ L Gy .
If (80 X =0 and ¢, =0, then o = 0 in

the region where Egs. (3.6) are valid.

Taking account of Eq. (2.11) this can also
be expressed as follows

T p®y = kp®y (k constant) and & = 0, then
(3.7) PO = fp®

for all values of  in the region considered.
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To prove this it is obviously sufficient to

show that
anp o
() =42,

where m denotes any positive integer.
From the relation p®; = kp, it follows that
W _ e,
k) a0 °
for two equations with indices ¢ =1, + =2, and
putting ¢? =0 and r=1r, it is easily seen that

31,4:») (31"")
e

and therefore also

(3.8)

Recalling that Eq. (3.3) stands

»zpu) o I"”
oref ordn
Next, writing Eq. (3 ") with i=1 and with

i =2, putting &= 4), 7 =r, and comparing these
two equations, it is seen that

(azpw;) (df‘ m)
and therefore

e

PpR\ (o

orta6), 760 ),
Differentiating Egs. (3.2), with i=1 aud i=2,
with respect to r and then putting £ =0 and
7 =7, we find similarly

<"L‘Pf —k fﬁﬁ)
ot Jy

Proceeding in this manner we arrive, by
successive differentiations, at Eq. (3.8) for all
values of m, and hence Eq. (3.7) follows, and
our proposition is proved.

The property thus found in simple adiabatic
oscillations can easily be shown to hold in a
more general case. The condition & =0 can be
considered as an equation which holds in addi-
tion to the five equations (2.14). Let us replace
the equation =0 by an equation of the form

(29) o o

L{u, v, w1, ep, aﬁ al):()

(representing two equations with indices 7= 1
and 7 = 2 respectively), L being a linear, homo-
geneous function of these 8 variables. This equa-
tion is assumed to be independent of Egs. (2.14)
and not contradictory to them. We consider Eq.
(3.9) together with Egs. (2.14, I, IT, III, V),
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(omitting Eq. IV for the present). These 5 equa-
tions can generally be solved with respect to .
v, w, T, & Viz.
1 )
1n—ﬁyl+f)g{{+ c%i,
(3.10) o “ .
Gpt b+

and the cor

g linear exy for 7,

» and ¢ Computing ?{; and % from (3.10) and

introducing the expressions obtained in Eq.

(2.14) IV we arrive at an equation of the form
) *p

(3.11) "1|57, + 20y arop TP g

ap
+1h ar G 50 AP =01
According to Eq. (3.10) the boundary con-
dition is

(3.12) o

{ ap+ b
From Egs. (3.11) and (3.12) we arrive, by the
method used above, at the same result concerning
the phase angle of pressure in the case where
Eq. (3.9) is valid, as in the simple case where
(3.9) reduces to ¢=0.

Eq. (3.9) includes the case of piezotropy,
which, in the fundamental state, can be expressed
by the formula:

(3.13)

a7 5 AP*
o =P gy

To apply this to the state of perturbation we
perform the variation on both sides (v. Appen-
dix) and obtain the following expression:

dr, a1

@ ”'ar g

i (4P op* | oP*
=1 (G b w ).
Introducing here the expressi(ms (2.9) we obtain

or

,\ we

£l

(3.14)

Yl 4= w
@15 oP op*
=) (rup w5+ 0%,

which is a special case of (3.9).%)

1) In the case when Eq. (3.9) reduces to ¢ =0 (3.11)
is identical with (32) but in tho general case (32)
and (3.11) are different from each other and both
aro valid simultaneously.

In Eq. (316) is included the caso of isothermal
changes of state, f(P*)=0.
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It should be noted that Eq. (3.9) is more
general than (3.15). For instance the simple case
7= 0, which is included in (3.9), is generally a
non-piezotropic case, as it is not possible from
Egs. (2.14) with 1 =0 to deduce an equation of
the form (3.15).

‘We shall next consider the case of horizontal
motion in the simple oscillation, i.e. v,=0, w"=0.
Although this case is included in (3.9) it is
different from the other cases in that Eq. (3.12)
gives no independent condition but follows from
(3.9). Therefore the above reasonings do not hold
in this case. For simplicity we shall limit our
examination of the horizontal motion to the
atmosphere at the equator. Putting w = 0,

";_‘;’ =0 in Eqgs. (2.14), solving I, II, IIT and V

with respect to w, », 7 and &, and introducing
the expressions thus obtained in IV, we arrive
at an equation of the form (3.11) but without

the term a,, % At the equator we have, on

account of the symmetry, Z/g =0, so that (3.11)
reduces to

& ?,
(3.16) ey % + ""'a’ri agp= 0.

The symmetry also involves ?;: 0ie p®=

f@r)p® at the equator. Introducing this expres-
sion in Kq. (3.16), which is valid both for p® and
p®, it is seen that f(r) must reduce to a con-
stant. This result can be expressed in the fol-
lowing manner-

In a simple oscillation which is symmetrical
with respect to the equator and where the motion
is everywhere horizontal, the phase angle of the
pressure oscillation at the equator must be in-
dependent of height.

The results obtained concerning the phase
angle 77, have a bearing upon the theory of the
semidiurnal oscillation in the atmosphere. Obser-

vations show that in this oscillation (aéi;) =0,")
o

but simultaneously 7, varies with height. It
seems therefors very likely that the semidiurnal
oscillation must be non-horizontal and have non-
piezotropic changes of state. However, a strict

1) Simpson (1918) p. 8
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proof cannot be given here, as the simplifying
conditions on which our formulae are based are
but approximately fulfilled in the atmosphere.
In particular it should be borne in mind that
all frictional terms have been omitted from our
equations. In this connection, however, it may
De pointed out that, if the friction at the ground
were the cause of the variation of 5, with height,
one should expect to find that the numerical

e

value of 77— would have a maximum at the

ground and decrease with height, but this is not
[
the case, —*

O with

being practically constant

height.

In the investigations of Margules horizontal
motion and isothermal changes of state were
rssumed, while Taylor (1936) and Pekeris (1937)
assumed adiabatic changes of state. As far as
the semidiurnal oscillation is concerned it seems
preferable to drop these assumptions.

If this oscillation is non-adiabatic in certain
layers then the quantity e, when expressed as a
sum of simple harmonic functions, must have a
semidiurnal as well as a diurnal term in these
Jayers. An example of this may be seen when
considering a region at the ground at the equator,
where v, =0, vy=0 and Eq. (2.6, V) reduces to

dx, dp*

a=eg T
Introducing here the observed values of 7, and
p* it will appear that the first term on the
right-hand side preponderates. Since observations
show clearly that the temperature has a semi-
diurnal term this must be the case also with e,
at least near the ground. With increasing eleva-
tion the term G, of Eq. (2.6, V) gains impor-
tance, and then no simple relation exists between

Geof. Publ.

4. Equations of perturbation for a barotropic
atmosphere. Order of de of the vari-

ables at the Pole.

In the foregoing paragraphs we have studied
tle simple oscillation solely by means of the
hydrodynamical equations and the boundary
condition at the ground. We shall now examino
other conditions which have to be fulfilled in
order that the solutions shall have physical inter-
pretations.

An examination of the coefficients of Eq.
(3.2) shows that 0=0 represents a singularity.
It is therefore necessary to examine in detail
the properties of the simple oscillation at the
Pole.

We have so far considered perturbations in
a baroclinic zonal current. In order to simplify
computations we shall henceforth consider oscil-
lations of an atmosphere originally at rest, i.ec.
we assume

V,=20.
Hence it follows that
oP* e Pt g
aw =" @ " =T
(4.1) Dy=0, G=0, oy=22 cotg0,
8 2
D, = “p Rl” Gy=g—c,0, 6,= . Q.

The atmosphere is thus barotropic in the fun-
damental state. Introducing the symbols

4 g

(4.2) 0= o 0= E b}

and the auxiliary quantity a defined by
(4.3) 2Qa=y+nR ?)

and taking account of Egs. (4.1) we may writc

& and 7,. Egs. (2.14) as follows
o0rsint 0ov TP 9 o —
(44) I —2Qaw —2Qrsin® 0.0+ T4 — 1 =0,
n

11 20av + 20 cotg 0-u + - w4+ ’Tsi;qp_()

juss ~—2Qau — 28 sin  cos 0-v + 1; w0 =0,

v %ﬁlp 29&11»(2 6°)w+ +7w+ao~y»cotg0~u=0,

v 20Qac,t — 202aTp + ¢ (0a — ) w—¢& = 0.

§) Tt i casily scon that the period of the oscillation (2 8) n a coordinate system fixed to tho carth is |

hnm‘s
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Putting for brevity
=90

(4.5)

9 pem(e

o

—cos® ) +-a?(1—a?)

2 0, a2 g

I A A

and eliminating » and r from the system (4.4)
we obtain the following equations

(4.6) +d-e,

»p p
y = ap + b2
w np+;h_+rao

u;—n,p-}-b]@

N
(+.7) oyt dye,
. ow | du cos? o—nu
4 5 ta o+ sinf cos § +
P w_ e,

20r%sin0cos0 &0 o1
For the coefficients we obtain, after a simple
but somewhat lengthy calculation, the following
values
—al [na O,

= 50D ——7(11*—00520)]

o= =T 0cos 0,

—cos? §), 0!2 D

20D

(4.9) —cos*0),

P
- 2
erp @

ay = "’.Qr‘l) [radesin fcos O+ (H — a®) n' cotg 0],
ol

h=o a=gpap

(H — a®+sin20),

dy = —sin 6 cos 0. 1)

O
10%TD

Computing a‘;: and ou from (4.6—7) and in-

a0

troducing the expressions for u, w, %‘f, 2; in Eq.
(4.8) we arrive at an equation of the form (3.2).
It is easily seen that we must have
Ap=3%(+b)=c.

u=b Ap=c

Further we obtain
al \* 1
A A du=c—be, = (G0Y 7.
whence it follows that Eq. (3.2) is of the hyper-
bolic or elliptic type according as
p_9Wa—0)

sou (@ —cost 0) +a* (1 —a¥)

%) @y by....c;, dy are not identical with the symbols of
(3.1) where the conditions (4.1) had not yet been
introduced
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is positive or negative. This is a generalization
of the result obtained by Solberg (1936) for simple
oscillations with constant phase angles in a homo-
geneous ocean. In the case of indifferent static
equilibrium (d, = d) we have the hyperbolic case

. e 12 .
when «® <1 i.e. the period of oscillation —= is
a

greater than 12 siderial hours. If, however, d, >0
and ¢* <1, D may be positive in low latitudes
and negative in high latitudes. This is the case
for instance with the diurnal oscillation (a = 1).

The other coefficients of Eq. (3.2) are rather
complicated expressions. However, it will suffice
for our purpose to determine their order of mag-
nitude near the Pole, as shown in the next
paragraph.

In order to avoid misconceptions it will be
convenient in the following to distinguish between
«mathematicaly and «physicaly solutions of the
equations (2.6), (2.14), (4.4). Any set of 6 func-
tions

(4.10) P T 8 O DT

satisfying (2.6) or (2.14), (4.4) respacnvcly will be
called a mathematical solution. A con-
cerning known and unknown quantities are not
necessarily involved. The six functions of Eq. (2.6)
will be called a physical solution if they have
the properties necessary to represent the physical
quantities in question. Considering Eqs. (2.9) it
is seen that these properties can be expressed as
follows:

P, 7, ¥, u, w, ¢ must be
(4.11) (a) single-valued and

(b) finite for all values of 0 and r = 7o

(¢) The functi-ns p* 7,....s obtained
from (2.9) by introducing p® 2@ . ., &
on the right-hand side, must be
approximate solutions of the complete
hydrodynamical equations for all values
of , 1,0 and r = r,.1)

In addition to the above condition we must
also have

(4.11.d) wP =0 for r=r,.

1) The latter property is usually taken for granted,

but the next paragraph will show the necessity of
a close examination on this point.
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We shall henceforth confine ourselves to the
case n + 0. If condition (a) shall hold we must
have
(412) 4,=0,4,=0,4,=0, A,=0 for 6=0.1)

From Eq. (4.12) and (2.11) it follows that
(4.13) w=0,p=0,7=0,e=0 for 6=0.

It will be assumed that the six variables in
the physical solution (4.10) are continuous and
have continuous derivates and can be developed
in a Taylor series in a certain region around
the Pole. This assumption seems natural, since
the variables in question represent pressure, tem-
perature, velocity and supplied heat, and the
model atmosphere is supposed to contain no
discontinuity.?)

It will be convenient to introduce a symbol
for «order of magnitude in 6 when 0 - 0». Sup-
pose that
(4.24)  f(0) = o0+ frg a0 F 1+ frg a8+ 2 -
where m is a positive or negative integer or zero
and f,, +0. We then write
(4.15) f(0)=0(m)
to express that f(0) is of the same order of
magnitude as 6” when §— 0. In the special case
m=0 we write f(6)=0(1). Further we shall
write
(416) fo=00m 3
to express that f(6) may possibly be of a higher
order than 6™ e.g. gm+1.3)

In previous p hs «order of itudes
has been used in a different sense. p was said
to be of the first order, p* of the second order
etc. In some cases it will therefore be convenient
to write

1(0)=0,(0m)
when, for a given value of 0, f is of the same
order as pe. %)
From Egs. (4.13) it follows that
(4.17) p1,w, e 20(0)

1) Ii we had for wnstance Ap = 0for §= 0 we should
at a given instant get an infinite number of values
of p* at the Pole depending on the choice of v.
. ical solutions may melude which
are discontinuous at the Pole.
%) Example: sinm§ = 0()) when m is a positive
nteger
4) Example:
0y (6°)-

I vr=0,(6*, vo=0,(f) then vrvg=

Geof. Publ.

and from Egs. (4.4,1) and (2.9) it may be in-
ferred that

(4.18) 20rsin®0.v = 0 (0), vzo(;),
1
2,20 (—0).
It is possible to find a solution of Egs. (2.6)
with v, = 0(%) satisfying the conditions (4.11

a,b). Such a solution would give a linear velocity
7sin fv,, finite for §=0, but the condition
(4.11 ¢) would not hold. This is seen in the fol-

lowing manner: The term % in Eq. (261V)
would have to be counterbalanced by some other
term of the same order 0(19) The only possi-
bility is the term cotgf-v, so that we must
have:
cotg 6-v,,=0(-;—), vg=0(1).
If a solution (2.8) of Egs. (2.6) with
v,:O(%) 2% =0(1), p* = 0(6) v,Z0(0)

corresponds to an approximate solution of Eqs.
(1.1—5) we must have for the order of magni-
tude in 0 of the variables of Eq. (1.2), having
regard to the properties of the zonal current:

7=0(3) =0, 200,57 00,

But this is not possible since all the terms of
Eq. (1.2) would then vanish for 0=0 except
the term 27%sin 0 cos 0V, V=0 (1), so that (1.2)
would not be satisfied. Hence it follows that
1
0
From the above considerations it follows

the hypothesis v, =0(- ) must be abandoned.
that we must always have v < 0(;) and con-

sequently » = 0 (1).
Combining this with the conditions (4.17)
we infer from Eq. (4.4, IV)

o -
a: + cotg 0-u =0 (1),

whence it follows that «#Z0(0) and from
(4.4, I10):

p —
35 <0 0).
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The final result is then:
w
_ vZ0(1
zom "=
PO () )

(4.19)
¢

In order to see if this is compatible with
the condition .(4.11¢) we return to Egs. (2.6)
and Table 2. Let ¢, denote any term in these
equations and let g, denote any term in the
corresponding row of Table 2. It is readily
verified that

P2
201
S (1)
when the conditions (4 19) are fulfilled. There-

fore the condition 1 << 1 holds for a small

perturbation also when 0 0.

Thus Egs. (4.19) are necessary and sufficient
for the validity of the conditions (4.11 abe) at
the Pole.

"From the assumption that the variables
P T....¢ shall be continuous and have conti-
nuous differential coefficients at the Pole we can
further deduce a property of the series (4.14)
where f is taken to represent any one of the
significant variables.

The points of a plane through the earth’s
axis can be defined by means of y and 6 in two
ways, viz.

(a) 02027, p=y and yp=y, +m,

(b) —a20Z 7, p=1y,.

Considering for instance the pressure oscillation
P*(r, 0, yo, 1)

— p® sin (ny + pt) + p* sin (mp |yt + ’;)
we have in the case (a)

P 0 9o+, ) = (— )" p* (r, 0, po, 1)
which corresponds to

)
P (r, 0)
in the case (b). Differentiating with respect to §
and putting 6 =0 we obtain
P (r 0)=(—1)"p(r, 0),
P(0) = (= 1)" 1 p” (0), p”(0) = (— 1)"+2 p” (0)

) Tn the diurnal oscillation Margulos used a pressurc
of the order 0 (§) which 18 not permissible. (V. Exner
(1925) Dynamische Meteorologie p. 406).

— 1", —0),
— 1" (r, —0)

SOME HYDRODYNAMICAL PROPERTIES ETC. 15

ete. If all derivates are to be continuous for
0=0 it is seen that
2 [ ] i
(4.20) D=0+ py0" + pgl® -} ....when n is even,
p=ps0°+ P50“+p70’+
The same considerations apply to w, 7, » and e.
From Eq. (4.4 1) it follows that
U=y 04 w03 g5 L
U=uy 0% +uy 0% +ugh® -+ .. ..

..when 2 is odd.

(421 when 7 is even,

when 7 is odd.

(Some of the first terms in the series (4.20-—21)
may vanish).

5. Properties of Eq. (3.2) near the Pole.

Previously we have considered certain rela-
tions which permit ¢, to be evaluated when p*
is known. We shall now consider other relations
between p* and ¢, obtained by combining Eq.
(3.2) with the conditions at the Pole as developed
in para. 4.

Since it follows from Eq. (4.5) that D=0 (0%
when ¢*=1 and D=0 (1) when a2 + 1, we shall
treat these two cases separately.

A. The case a®*= 1.
Expanding the coefficients in Egs. (4.6—8)
in Taylor series we may write

(5.1) w=(%;-’ 6-a,,+a=(l“+.4.)'p
(Bt ) T

|(V‘ms+ ) 4 G0t 04 e,

(5.2) u= “‘w —v—»}—(116+.4.)p
- 9
+(5rpos. )2
) J_..
( gt )t ( g a0t )e
[— 2.
63 G+ g oar (P )ul 2

nT 1
2!)1‘

L

Deducin, 7— and — from Egs. (5.1—2) and
8 o 6 G

introducing in Eq. (5.3) the expressions thus
obtained, we may write Eq. (3.2) as follows
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) (% +ent- )Za‘,’ + *>(—- OO+ ) x

i 5
et o) Gk + (G ) 2
fos | P (0
e ) (=)o
+(h.,+h202+---)‘;§»| ("‘-4 S0+ ) @
-;-(k‘:+k‘,+...)z:04

The coefficients of (5.1—4) a_,, By...a_, b, ...
are functions of 7 and can be computed by means
of the formulae (4.6—9).

Supposing that p and ¢ can be expanded in
Taylor series in a certain region 0= 0= 6, we
may write, having regard to Fgs. (4.19—21)

P =Pl A P02

e=g, 00 + £, 00t2 4 L.

We shall assume that p, + 0. In the case of
adiabatic oscillations all the coefficients &, &,,,.. -
vanish. In the non-adiabatic case we may assume
&£, +0 with the possible exception of special values
of r (eg. & =0 for r=ry). Further we note
that m =2 and x= 1 are even or odd numbers
according as n is even or odd.

Inserting these series for p and ¢ in Eq. (5.4)
we obtain on the left-hand side a power series
that may be written as follows
(5.6)  Rypu0 =+ B2 4 B0 -

+ 8,800 =2 4 Cubt 4 Cupp 0+ 4+ ... =0,
where Ry, By,_,...8,, C,, Cus,...are functions
of r which can be derived from the coefficients
of Egs. (5.4—5). We have
(5.7) Ry=m(m—1)a_y+mf_y+g-,

_T(H—
20 H

where a == 4 1.

(5.5)

b (m —na —2) (ma - n) 1)

Sumky 4 pjy = 4Q“rTH( J—nu).
(a=-1)7)
It is immediately apparent from Eq. (5.6) that

(5.8)

(a) If m—2 <pu we must have R, =0,
(5.9) (0) I m—2=p: Rppp+Sue,=0,
(¢) M m—2>u: Su=0.

) Detals of tho computations are given in the
appendix.
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B. The case o + 1, «*+ H.
We may here write equations quite similar
to (5.1—4) but the coefficients will have other
values which we shall denote by

Uy Gy Byl g by
Since we have in this case D + 0 when 0=0,

it is seen that the following coefficients

1 P-g O

2 V-1 @ B in (5.1—2),

(5100 "= E .
Aoy by ey 9y Jou by [y in (5.4)
all vanish.
Introducing the series (5.5) in the equation

that corresponds to (5.4) and putting 'gf =g,

etc. we obtain here a power series analogous to
(5.7), viz.

(5.11)  R,p,m=2+ B 0%+ B, 0m+?
T (S + gt ) 05+ Cpy it =0
where
T
(5.12) R:m?a—z_—l) (m2—n2). 1)

Corresponding to (5.9) we may state the
following conditions
(a) Ifm—2<u we must have R, =0,
(b) Tf m—2 = iz Rypo + Sy + hot’ = 0,
(e) Hm—2=> S8+ bt = 0.

In the case of adiabatic oscillations (¢==0)
the second line of Eq. (5.11) vanishes and we
must have

(5.13)

(5.14) Bu=0, By=0, Bpyy=0,.
We note that this condition cannot bu ful-
filled in the case y =0, n=1 since m =2 and

therefore R, + 0 according to (5.12). On the
assumptions specified above 1t follows then that
an adiabatic oscillation of the feim A sin (y + )
is not possible.

6. An application to the theory of
the diurnal and the semidiurnal oscillation
of the atmosphere.
The formulae of the preceding paragraph
determine certain relations between the variables
p and ¢ near the Pole. These relations are a

1) Details of the computations are given w the
appendix
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consequence of the hydrodynamical equations
(4.4) and the conditions (4.11 a b ¢). It remains
however to take the boundary condition (4.11 d)
into account. In doing this we shall limit our
considerations to cases that bear a close resemb-
lance to the diurnal and the semidiurnal oscil-
lation.

Since these waves retain a fixed position
relative to the sun, they have a very slow motion
relative to our coordinate system. For simplicity
we shall first consider waves having no motion
relative to the coordinate system. We then have

y=0, a= ﬁ
A. The oscillation y=0; n=1, a=1}.
According to the conditions (4.19) we must
have m = 2 and it is seen from (5.12) that B,, + 0
so that the condition (5.13a) does not apply.
If & is considered as a given quantity (deter-
mined by radiation and the physical properties
of the atmosphere) the special condition (5.13 c)
will generally not be valid. We must have there-
fore m—2 = y. p,, is then determined by (5.13 b)
and Pes Py --- 020 be determined successively,
all of them being expressed as functions of &, £,+5. -
and their derivates.

Considering next the boundary condition we
put in Eq. (5.1) r =71, w=0 and introduce the
series (5.5). Since we consider a case where a®+ 1
we must have regard to (5.10). The power series
thus obtained on the right-hand side of (5.1)
being zero 1t is seen that
(6.1) &= Eup=0 for r=ry,

(62) {0+ m9) Pt o?'m + dotm} =

and similar expressions can be deduced from
higher terms of the series. Introducing in these
expressions the values of p,., Pty ... determined
from Eq. (5.13 b) ete., as mentioned above, we
obtan successively an infinite number of con-
ditions which must hold for the coefficients
£ Eupa.... in order that the hydrodynamical
cquations and the boundary condition may be
satisfied simultaneously.

Thus the simple oscillation (2.8) with y =0,
n=1 will be possible only if ¢, = A, cos (y +17.)
fulfills certain special conditions.?)

%) Is has been shown in the foregomg paragraph that
such an oscillation cannot be adiabatic.
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B. The oscillation y =0, n=2 (u=1).
According to Eq. (5.7—8) we have here

_T(H-—1) ,
(63) R, = W' (m —4) (n +-2),
64) 8= 492,TH(;L~2)
Tt can be shown that, if m + 4, the above
reasonings concerning the oscillation (a = §, n =1
are valid also in the case (a=1, n==2). Thus,

when m +4, the latter oscillation is possible
only if & =4, cos (2y +7,) fulfills special con-
ditions. Further it is easily seen that the com-
bination m = 4, s + 2 is not compatible with the
boundary condition. (v. Appendix).
The remaining case

(6.5)
is of special interest, for, Eq. (5.9 b) being then
satisfied for all values of p, and &, it becomes
posslble to satisfy this equahon and the boundary

m=4, p=2,

imul ly. I d the series
(6.6) p=p0*+pl +
(6.7) =02+ 600 4.

into Eq. (5.1) we get

we{(aat by pu b de J O
Having recourse to Hq. (4.6) we easily find a.,,
»— and dy (v. Appendix) and

6 b\
z!)H(i“_mTz ‘2)0 o

From the boundary condition it follows then.

(6.8) w=

(6.9)

6 [
{ Aoy Ch)
which determines (p,)r-r,, &5 being given.

So far we have considered only the first
terms of the series (6.6—8). We shall now con-
sider higher terms as well in order to show that
when ¢ 1s given, p and the other significant
variables can be determined, not only for r =r,,
but also in a cortain region above the ground.

Introducing the series (6.6—7) in Eq. (5.4)
we obtain on the left-hand side a power series
where every term must vanish. Denoting by fi,
@i F @, (1=2,4,6..) linear functions we may
write the coefficient of §* in the form
(6.10)  fa (s Pas 2'a) + P (20, €0 €2) =0,
and the coefficient of 0%:

(6.11)  [i (Pos Pos Pas Plos Plas ') + P2 =0
ete.
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Introducing Eqs. (6.6—7) in (5.1) and putting
1=ty w=0, we obtain another series equal to
zero. The coefficient of §* may be written

(612 {Fi @y 2 )+ P f =0,
and the coefficient of 66:
(6:13) { By (oo o> Do 70 9) + B} = 0,

ete., ¢, and @, depending solely upon the given
quantities &, &, ¢....

Repeating the above procedure we obtain
successively and infinite number of linear equa-
tions, each of them being based upon the fore-
going equations according to simple rules which
will become apparent by the consideration of
Table 3.

i

(ren)

()

In Table 3 each filled-in hox represents a
linear equation. Thus the first box represents
Eq. (6.10), the p-coefficients occurring in the
equation being listed in the box. Differentiating
this equation with respect to 7 we obtain a new
equation represented by box I (b) and containing
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the variables listed in I (a-+b). Differentiating
again we obtain an equation represented by
box I(c) and containing the variables listed in
I(atb+o).

The box I1I (a) represents Eq. (6.11). Treating
this in the same manner as I (a) we obtain ITT (b),
etc. After Eq. (6.11) follows f; + g, = 0 which is
represented by box V (a) in the table.

Eqgs. (6.12—13) and the following equation
{ Fy+ @ } = 0 are represented by the boxes II,

r

IV, VL. These equations are valid only for r-
and cannot be differentiated.

It is easily seen that Table 3 can be extended
ad infinitum by repetition of the procedure de-
scribed above. For r=r, all equations of the
table are valid simultaneously. (Da)r=r, is already
determined from Eq. (6.9). The table shows that:

(4) Egs. I(a) and II determine (pg, p’y),.,-
(B) Egs. I(b), III (a) and IV determine
(Do P'as " 4)rer, -
(C) Egs. I(c), III (b), V (a) and VI determine
(1o "5 167, 03 )ror,

Ty

ete.

ixtending the table step by step we can

thus determine

[ U A

(P, &, P72 )rem,
ete.

Hence it follows that
P = (Padot (P)o (r—70) + ...

and similarly p,, py.... can be determined in a
certain region, from the ground upwards, in
the vicinity of the Pole, which means that p
is determined in this region. As we have seen
u, v, w and 7 can be found when p and ¢ are
known.

The results obtained here concerning the
oscillations (o =1, a=1}) and (n =2, a = 1) have
a bearing upon the theory of the semidiurnal
and the diurnal oscillation in the atmosphere.
Denoting by v, the angle between the meridional
plane through the sun and the meridional plane
through the point considered and by £, the
angular velocity of the earth’s rotation relative
to the sun and putting 2 — Q, = we have

Y=+ 0t p,=i+ 04,
ny +yt=np,+ (y + nw)t.
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For waves that retain a fixed position rela-
tive to the sun we have y -+ nw =0 and

o\ n n
:1:(1—-5)1;:0,997 5

Thus @+ 1 both in the diurnal and in the semi-
diurnal oscillation, but in the latter case the
difference a—1 is very small, and it seems
therefore highly probable that the properties of
the idi ion are ially the
same as those of the oscillation (n=2, a=1).

We have seen that, when e is given, p and
the other variables can be completely determined
in a region surrounding the Pole in the case
(n=2, a=1), whereas this cannot be done in
the case (n==1, a==1}) except when ¢ satisfies
very special conditions. Thus, in the model
atmosphere, no obstacle prevents the develop-
ment of the semidiurnal oscillation 4 sin (2y + 7)
but conditions seem unfavourable for the develop-
ment of the diurnal oscillation 4 sin (y - 7).

It is of interest to mote the agreement
existing between this theoretical result and certain
facts established by observation. In the real

tmospl the idiurnal oscillation preponde-

rates, whereas the diurnal oscillation is indistinet
and much disturbed by local influences. In a
later paragraph we shall return to the above
theory in connection with some physical proper-
ties of these oscillations and of the complex
motion of which they are parts.

From a mathematical point of view the
present theory is incomplete, since the region of
convergence of the power series for p has not
been determined. What has been called «vicinity
of the Pole» may, on closer investigation, prove
to be an extensive region.

The following problem also arises: Supposing
that the function p can be evaluated for all

nal oscill

values of 0 between 0 and ; by analytical con-

tinuation of the series (6.6), we arrive at the
equator from the North and from the South
with a certain value p=p,. Denoting by the
subseripts NV and S the values immediately north
of and south of the equator, we have in virtue
of the symmetry

wy __ (o
0 )y a0 )s
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but is not evident a priori that the necessary
condition

(3.~

a0 /)y a s

(6.14)
is fulfilled.

For the study of this question one may

consider trigonometrical series similar to those
used by Margules. Assuming & to be given in
the form
(6.15) e=A,sin®0 A sint 0+ ...
one would have to determine p in the form
(6.16) p=B,sint 0+ Bgsin® 0 ....
A, and B, being functions of . To determine
B; one would have to introduce the series
(6.15—16) in Kgs. (4.6—8) and in the boundary
condition obtained from (4.6).

It may also be convenient to use expansions
in series of the Legendre associated functions of
the first kind, e. g.

(6.17) p=2 a,P,® (cos 0).
"

If it is possible to find a series (6.16—17)
which is convergent for all values of 0, then p
and its derivates will be ¢ ntinuous everywhere
and (6.14) will be fulfilled.

This problem, however, must be left for
later examination.

As we have seen, a semidiurnal oscillation
can have the simple form 4 sin (2y + %) in all
latitudes only when p has the form (6.6), i.c.
p=0(0). A rapid decrease of the pressure
amplitude towards the Pole is largely in agree-
ment with observations although these are not
sufficiently accurate to decide if for instance
p*=0 (0" or O (63).

Since the equations of perturbation are not
exact it seems useless to determine their mathe-
matical solutions with absolute exactitude. If
for instance p is given by a convergent series,
the complete series gives no better solution than
a certain finite number of terms. Therefore
Table 3 need not be extended very far.

Taking Table 3 in its present form as an
example, it 1s seen that we have nine linear
equations for the nine quantities

{2027 27 026 267 Pa 25" P10 .,
(pa)y being known. The determinant D, of these
equations contains
arT
%

T T
Ea s



20 P. THRANE

For certain values of the function T (r) the
determinant may vanish, thus making p,’, Pa” P10
infinite. This is the case of resonance. If &= 0
the oscillation is only possible if the temperature
T (r) is such that D;=0. We then have «free
oscillationsy.

If the table is extended by one step it will
represent 14 equations with 14 unknown quan-
tities, but a similar reasoning will still apply.

In the oscillation (n=2, «=1) we have
PE=0@) 5, =0() 6=0()
2%=0(0) 7,=0(1) 1,=0(?
Let us consider Eq. (2.6, I) and the second”
order terms belonging to this equation, listed in
the first row of Table 2. It is seen that

(6.18)

op*
(6.19) /“a’; —0,(04 10,2 =0, (07

and of these terms the latter, which was dis-
regarded when the equations of perturbation
were formed, predominates when f — 0 however
small the perturbation. Corresponding results are
found for each of tho equations (2.6) when
comparing the first-order {erms containing pres-
sure with certain terms of Table 2.

In view of this crrcumstance it may at first
thought seem doubtful whether the value obtai-
ned for p* belongs to an approximate solution
of the complete hydrodynamical equations (Con-
dition (4.11 c)). We shall return to this question
in a later paragraph in connection with non-
linear equations of perturbation.

7. Remark on the quasistatic equations.

In the preceding paragraphs the complete
linearized equations have been used. Since the
quasistatic equations of Laplace are used ex-
tensively in investigations of this kind it may
be of interest to repeat the caleulations of
para. 6 on the basis of these equations in order
to see if the same results could have been ob-
tained by means of the simple quasistatic method.

The simplification of the equations in the
latter method consists in omitting the two first
terms of Eq. (2.6, 1) and the third term of (2.6, 1I1).2

') This is scen from Kqs. (66-8), (52), (44, II, V)

having regard to (29).

%) Solberg (1936) p. 288

289,
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In Eqguations (4.4) we must then omit
2,
(—2Qaw-—2Qr sin? §.v) from the first and 'i) w
from the second equation. Repeating the compu-
tations of para. 5A on this assumption it can
be shown that no essential change takes place
in the formulae (5.7—8) whence it follows that
the rows I, IIT, V of Table 3 remain unchanged.
However it is easily seen that the boundary
condition suffers an important change. Having
omitted the two first terms of Eq. (4.4, 1) we
obtain
T ap
(7.1) =
and from Eq. (4.4, V) it then follows that
d,

. _ T ¢ . 8P
(7.2) w= p m(?!)a(),,p»l[)a] o + 7

Introducing here the series (6.6—7) and putting
7 =19, w=0 we obtain
(7.3) (8)rer, =0

{ Tpy 4+ e o b
I R Y ol

where m =4, 6,8...2i...

Comparing this to the correct boundary
condition (6.9) it is seen that the latter deter-
mines (p,), when e is given. whereas Eq. (7.4)

Table 4.

H

T
f
)
'

H

®
~

HiH

3

| H

>
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gives a relation between (p,), and (p,’), which
makes it possible to choose one of these quanti-
ties arbitrarily.

Table 4 is analogous to Table 3, the boxes
II, IV, VI... representing the equations (7.4)
with m =6, 8, 10 ... respectively. If (p,), be
chosen (p,’), is determined and we can find

(P> P’) rr, from Egs. I(a) and 1T,
(94" P> 5")r=r, from Egs. 1(b), TTT (a)
and IV,
(24", Ps”s Pro: P1o’) r=r, from Egs. I(c), III(b),
V and VI
ete.

Thus it is seen that the series (6.6) contains
an arbitrary constant. This, however, is an
erroneous result which is due to the quasistatic
method.

Solberg (1936) has shown the importance of
the complete linearized equations (“exact dyna-
mical method”) in the theory of tidal waves in
a homogenous ocean. Hyllerds (1943) contends
that for the theory of such waves in a stable
ocean the exact method can give no advantage
over the quasistatic method, which should be
preferred for simplicity. The present in ion
shows that this is not always the case. So far
as the semidiurnal oscillation is concerned it
seems necessary, in theoretical considerations, to
apply the exact dynamical method of Solberg,
however great the static stability of the oscillating
medium.

For numerical considerations based on obser-
vational data the quasistatic equations can always
be used.

8. Somec remarks concerning non-linear
equations of perturbation.

The formulae deduced in the foregoing para-
graphs are based on the linearized hydrodyna-
mical equations, but we have had to consider
also certain second-order terms in connection
with the condition (4.11 ¢). It has appeared that,
in the case y=0,7n=2, when 0 -0, some of
the second-order terms become greater than cer-
tain terms of Eqs. (2.6). This leads us to consider
in greater detail the non-linear equations obtai-
ned by adding the terms of Table 2 to the terms
of KEgs. (2.6).
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Introducing the simplifying assumptions (4.1)
we may write the first equation as follows
du, op*

S —2Qrsin® 0w, T — g,

P’
@1) dt e T

=
5 . )
=—0- Vv, 4 rv* - rsin0 . v, — r,l?

and the other equations may be written n like
manner. Denoting by

(8.2) D%, Ty By By Toy €5
a solution of these non-linear equations and by
(8.3) AN

a solution of the linear equations (2.6) we may
write

PF=p*tz, 6
(8-4) O =0 @
By =0y + @

o + Ty

Ti =Tt

ot @

where the “corrections” x,, a,....x, are of the
same order as p** or of higher order of mag-
nitude.

It is immediately apparent that if we replace
for inst. p* o, by p* v, the error does not exceed
the 3rd order of magnitude, and this rule holds
for any product of first-order terms. Introducing
(8.4) in Eq. (8.1) and neglecting 3rd-order terms
this equation may therefore be written

E,=

o,
B sy sint 0oy + 177" T,
- o T
(8.5) -
8y=—v-Vv, + 1,2+ rsin?0-v,2—7, (e

By the same procedure applied to the other
equations we obtain 5 linear equations for
Ty, T, These are formed by replacing in
Egs. 6) p*, v,....6, by @, 2,....2, and in-
serting on the right-hand side instead of zero
the expressions Sy, 8,....8; taken from the hori-
zontal rows of Table 2 (multiplied by —1).!)

Having regard to Egs. (2.9) it is easily seen
that we may write
(8.6) S;=a;+ f,sin2r+y,cos2r (i=1,2,3,4,5)
where «, f8, y, are functions of » and 0.

For simplicity we shall limit our application
of the non-linear equations to the case y = 0,
n=2(a=1). We consider first the properties
of the solutions when § -~ 0. For this purpose

&

1) Method of successive approximations V Lamb
Hydrodynamucs 3rd. ed § 186.
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we shall have to determine the order of magni-
tude in 6 of the quantities S;. In virtue of Eqs.
(6.18) we find in Table 2, I that the terms

v, o, .
vy ' v 60, , — 102, —rsin® Ov,?
are of the order O, (0%) while the other terms

are of higher order. Thus we have 8, = 0, (0%).
In Table 2,II we find

s 0,(1), 2 cotg 0-v,0, = 0 (1),

o

but the sum of these terms

v, (:'% + 2 cotg O«vu)

vanishes for 0= 0. This is seen from Eq. (2.6, 1I)
noting that

Uy

(8.7)

id 9 = L0
at op and ogvy = 2 cotg 0 - Qv,
are of the order O;(1). The sum of these two
terms must vanish for 0=0 since the other
terms in Eq. (2.6. II) are of the order 0, (0%)-
The sum (8.7) being zero we have S, = 0, (0%)
In like manner we find S; = 0,(0), S, = 0, (0%
Sy =0, (0%).
In (8.6) we may then write
8= 800 ...
Sy= 8,504 ....

©.9) (i=1,2,4,5)

where the coefficients are of the form
(8.9)
a b ¢ ™ being functions of 7.

Having regard to (6.18) we may seek to
determine the following power series for the
unknown corrections:

Lp=m, V0 2,000+ ... Tp=2,V0+2,P0%+...
(8.10) &, =a,0*+ 2,004 4... @, =2 D0%+2,00+..

Ty =, O &, 0 @O0 2,900
where the coefficients 2,9, z,%.... are assumed
to be functions of the same form as s™ (i.e.
independent of 2).1)

Introducing the above series in Eq. (8.5)
and the corresponding equations we obtain,
9
En
the terms of the lowest order in 0:

5 = a,m 4 b,0™ sin 4y + ¢, cos 4y,

putting % = 0 — and collecting in each equation

%) Some of the first terms of the series (8.10) may
possibly vanish.
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10 67;;:’ — 2Qrz, — g, &l == 5@,
1 0 ag:;m_ + 219};“’) =50=0,

(8.11) 11T o (B — 2w s,
v az)'m + 22,0 = 5,0 =0,

ox,®
V 6,2 7 4 (g—c,0) 2P —a O =5,
ay
We note that Egs. II and IV are identical.
From II and III we obtain, having regard
to (8.9)

2, = @ sin 29 -} @, cos 2y

oy (kDD sin dp e cos dp— L),
8.12
{ ) 2D = g, sin 2y — @, cos 2y

- !12— (¢, Vsin 4y — } by cos 4y)

where @, and @, are arbitrary functions of 7.
Inserting these values in Egs. (8.11, I, V) an
infinite number of solutions z,® z,® z» can be
obtained. By putting in T and V 2,2 =0 it is
seen that the solutions can be chosen so as to
satisfy the boundary condition.

It 'is of interest to observe that ,® may
a,'?
20"
contains no such term. Thus, if a,™ «+ 0, a slow
constant motion along the circles of latitude is
superposed on the oscillating motion.

Eqgs. (8.11) were formed by collecting terms
of the lowest order in 6. Repeating the procedure
for the next power of 6 we can deduce 5 new
equations which contain, in addition to the
variables of (8.11), the 6 new variables

contain & non-periodic term, — whereas ;"

2,9 2, 2,® 2,90 2,0 2.
It is always possible to determine these so as
to satisfy the 5 equations and the boundary
condition.

As a consequence of this result we may
affirm that it is possible to détermine the correc-
tions in the form (8.10) and since we have

‘ % !<<1 for all values of f, including 0= 0,

and corresponding inequalities for the other vari-
ables, the functions p*....¢, having the property
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(6.18) are then approximate solutions of the
exact hydrodynamical equations.

The determination of the corrections @, ....2,
in the general case would involve rather lengthy
computations. We shall treat here only a special
case which, though very simple, presents some
features of interest.

Let us consider a region at the equator at
the ground. Since the oscillation is assumed to
be symmetrical to the equator we then have

=0, 2p=0.

Putting V, =0, =", supplementing Eq. (2.6,1T)
gV, 5 Suppl I

with the terms of Table 2,II and introducing
the expressions (8.4), we obtain
dx, | T oz, w, 1 op*
@ Ty T Gp T oy

In the following the periodic terms need
not be studied separately whereas the non-periodic
terms will be of special interest. For brevity we
shall denote any sum of the form
(8.14) 3 Apsin (np -+t + 1),
where m is an integer (m + 0), by >fyif A, is
of the order of magnitude of p* or higher order.
Differentiations with respect to y and ¢ render
similar expressions which will also be denoted
by 3fs-

Let us assume that z,=>f, and that j*
is given in the form
(8.15) ¥ = AP sin (p +7,)

+APsin 2y +5®) +3f2 Y
in conformity with the pressure wave observed
in the atmosphere. It is easily seen that we
may write.
(8.16)
Further we have
7. = A, Psin (p-+9,®) + 4,7 sin (2p+27.)

(817) gp*
o = Anoos(y ")+ 24,Teos 2+ ,%)

(8.13)

—

v, _
b~ 2T

whence it follows that
*
71;% =a,+ > f,, where
=1} 4,V 4 Dsin (7,9 —1,0)
AP A, sin (n,® — 1,
N Ju s 2010 0r t00 small to be observed. The 8hour
being igible at the 8

(8.18)
(8.19)
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is a function of r alone. Introducing the expres-
sions (8.15, 16, 18) the equation (8.13) can be
written in the form

da,

dt

a
=n+ifh

. s d @ @ .
Since, by definition, W = +0Q ‘;"—,Y we obtain
by integration
7= B+ 3 4o (p—2)

where @ is an arbitrary function. We must have
9 (p+21—0) =g y—2)

so that ¢ must have the form

@=A,+ 3 A, sinm (py— Q)+ B,,cosm(p—2f),
n e

Including ¢ — A4, in 3 f, we may finally write

a,
= 72 (t—1g) + 2 fas

where f, denotes an arbitrary constant.
Thus it appears that rz, contains a non-

periodic term % (t—1,). Obviously an infinite

(8.20)

number of cases may be imagined where a, =0,
the simplest being the case 7, = 3, @, 5, = ,@,
but in the most general case we have a, + 0
which means that the air parcel at the equator
is subjected to a constant force directed west-
east or v.v. according as a, is positive or nega-
tive. In the course of time |v, -t -, | will then
be steadily increasing unless some counteracting
force is introduced. In the real atmosphere such
a force exists, viz. the friction at the ground.
If the force corresponding to the acceleration ’:‘
were balanced by friction the result would be a
slow but steady west-east or east-west motion
superposed on the periodic motion given by v,
so that the oscillating air masses at the equator
at the ground would gradually travel round the
globe.

Let us introduce in (8.19) some values from
observations in the atmosphere near the equator.
Observations from Batavia give for the tempe-
rature

70 =232° 5@ =63 1)
Observations in Rurki (India) give for the pressure
7,0 = 325° 7, == 146° 1)

%) HannSiiri

omitted here.

g: Lehrbuch der Meteorologie, 5. Aufl.
1039, p. 209 and 289.
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This gives positive values for both terms in
Eq. (8.19) so that a, is positive, which indicates
the possibility of a slow west-east motion at the
Equator at the ground. A closer investigation
of this matter would require the inclusion of
frictional terms in the original equations.

It would be of interest to examine the non-
periodic motion of the air masses in other parts
of the atmosphere as well, but the computations
would be complicated owing to the large number
of second-crder terms.

9. Numerical values of the variables in
the 12-hour oscillation.

The oscillation (n =2, a=1), treated in
para. 5 and 6b, is of special interest because of
its re bl to the idi 1 oscillation of
the real atmcsphere. Let us suppose that the
model atmosphere described in the introduction
performs an oscillation of the type (n =2, a=1)
with the significant variables

P*, Ty Uy Uy, Vg &
and let the values of the ccrresponding variables
in the semidiurnal oscillation of the real atmo-
sphere be

%), (1) .-+ (&)-

Choosing for p* the value p* = (p*) we may
compute 7,, v and ¢ by means of the mathe-
matical theory of the preceding paragraphs. The
numerical values thus obtained for 7, and v may
be compared to the observed values of (7,) and
(v). Within the limits set by observational errors
it will thus be possible to ascertain whether the
atmosphere oscillates more or less like the simple
model. In the following we shall lay stress on
a systematic computation of », and of «,.

A general method of finding the numerical
values of 7,, p and &, when p* is known, is the
followitig:

Assuming p* in Egs. (2.8—9) to be given by
the auxiliary quantities p0, #®, n, y, we consider
Eqgs. (3.1) and the corresponding equations for v
and 1. Putting r =r,, w =10 and denoting by the
subseript nought the values of the variables for
r=r, we find ¢ from the first equation (pro-
vided that d, + 0) and w,, v, 7, from the other

i Introducing these in Eq.

q
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(2.14, IV) we find (%) . The next step is based
o

on the assumption that w may be considered
as a linear function of r, viz. w =k (r—r), from
the ground upwards to a certain height 2. De-
noting by the subscript & the values for r—r,=h

we may write
'
wy = (6; )“ h.

Introducing this in Eq. (3.1) and the correspon-
ding equations for = and v we find (u, v, 7, €)u
and introdueing the latter in Eq. (2.14, IV) we

&
compute ( ;) . This quantity may be consi-
"

aw
dered as a mean value of e from 7 =7, to

7 =1, 2k so that we may put

— (2 .5
w-_.,.f(ar)h 2h.

From Egs. (3.1) and the corresponding equations
for v and v, and from (2.14, IV) we find

(1/. v, &, aw)
s U, T, & . -

Starting from the altitude 2A the whole procedure
may be repeated, putting

ow
Wy, = wy, -+ (79;)” -h,
21
[
Wap = W, + (E)-;, -2h

ete.

Having computed »? v w® @ and & (i =1,
4=2) by means of the known values of 3 we
thus know v, v,, v, 7., ¢ from the ground up-
wards to a certan height H above which no
accurate pressure observations exist.

In the following we shall give a numerical
example of the above method, choosing the
oscillation n = 2, =1 in the model atmosphere
and pressure observations from the semidiurnal

ill of the real atmosph Although the
quasistatic equations were found to be invalid
near the Pole they will give sufficient accuracy
in the following computations, which deal with
observations from middle latitudes.

For simplicity we shall limit our considera-
tions to the barotropic case treated in para. 4.
The oscillations (n=1, a=1%) and (=2, a=1)
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will be called the «24-hour oscillation» and the
«12-hour oscillations respectively. These are in-

. n
cluded in the more general case y=0,a= .
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Applying the latter condition to Eqgs. (4.4) and
introducing the quasistatic simplification (omitting
the first and second term of (4.4, 1) and the third
term of 1I) we obtain

2 3
TR T
g or
—nT ep
- 2
1T 7 or (4005207”2) ( cotg-p + )
. . T . 2 P
11T rsin0-v Qrwe_nz)(s—iﬁ—g—p-{—mecnsﬂw),
v "If p—’f,{,‘?q— ‘,;’,’ w4 Lot ———eotgf) —
v nQe, 1 —nQTp + ¢y (Jo— ) w—e = 0.
m - i i y 9 g
) The first threcl equations are derived by a 9.6) w o w 20T «Zp L Bp
simple transformation of Eqs. (4.4, I, II, ITI) er T g o
(after introduction of the quasistatic approxima- where
. " " . 20
tion). In the third term of Eq. IV has been (9.7) B orsn0 LT R -

neglected since we have 2 <<1 By means of

Eqs. (9.1) 7, u, v, w, & can be computed when p
is known. The following computations will be
based on values of p® derived from pressure
observations collected and studied by Wagner
(1932). The stations from which his material was
taken are situated in the Alps at heights ranging
from 500 to 4500 m above sea level and are
selected so as to be representative for the free
atmosphere, as far as possible. Their middle
latitude is about 47° corresponding to § = 43°.
According to Simpson (1918) we have for

)i 12-hour with good

the
approximation

(9.2) A, = (4,).5in30, ‘"’J, —0,ie 7(”"’) —

whence it follows that
9.3) PO =pDsind 6, P =p2sind0,
(4p)e; PP, p denoting the values of these
variables at the equator.

Introducing (9.3) in (9.1) and putting n=2
we obtain for the 12-hour escillation:

04) ru= 5T cos 0 ow _ —5T

. 50rsmt0 " a6 sin?f P
. —Tp

o . iy 1P 2 cos?

(9.5) rsin0-v stinso(l«(»:_,co% 0),

For § = 43° we then have

5,737 N
(9.8) n=—n=7 rsinf.-v=— P,
(9.9) B=10,536-10-87"—0,51.10-%,
using the Moter-Ton-Second system of units.")
Choosing
or
T = Ty==283° for r=ry, 0= —F- = 6.10-3
or r 0y O o b 5
we find for the coefficients of Kq. (9.6) the
values set out in Table 5 below.
Table 5.
h=r—n | T L} 2er B
7 g
0 283 | ~1.00.10"* | 4.21.10"* | 1.00.10-¢
2000 271 | -104 » 4.03 » 0.94 »
4000 259 | ~1.09 » 3.85 » 0.88 »
8000 236 | -1.20 » 349 » 0.76 »

The numerical computation of the vertical
velocity v, and the supplied heat ¢, in the 12-hour
oscillation is presented in Tables 6, 7 and 8.

1) (92--3) are empirical relations which hold i Jow
and middle latitudes In high latitudes Ay becomes
so small that the relations can no longer be veri-
fied by observation. We have found, however, that
p=0(§") when  -» 0, which shows that Fqs {0 2—9)
do not hold when fj —0.
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Table 6.
T2 3| & 5| 6 7 8 | 9 0 [ n 13
h o | L = Jpll) 20 a ® feor apm) 2
(km)| ® ;,“ 1 Ap ' | Apcosiy ‘Apsmrg‘ e Bpmy f‘ Bp@
| 1
0 | 149° | 1.8.107%5.56 1072 1.6.10~% 7 6.10-* [ -9.310%] 67105] 5610*
0.5 1038.10-* 144.8[ 1044 143 19 6.29 13 79 54 63
1| 002 137 | 20 685 |10 | s2 41 66
15| 985 131 22 132 |08 9.0 33 7.0
2 9.27 X 124 23 17 (06 |93 | 24 73
25 | 802 ur2l 895 17 24 297 04 |96 16|13
3 8.65 109.0[ 8.65 109 24 8.16 103 95 12 |74
35 | 844 100.6{ 844 101 22 [s30 03 [86 |- 12 {15
4 8.60 094.0| (8.55) (94) (1.9) (8.54) (04) (73) 1(=0.5) (15) i(7.:'l)
45| 84 87.0] (880) | (88) 18 (880 |05 [©9) |03 |09 |75
Table 7.
13 w(l) w(2) %ir Ar
1000 -17.107 12310 98°
2000 18 238> | 86°
3000 64 » 359> | so°
4000 170 » 486 » 71°
Table 8.
W | -2empm [ 220,70 ”’;‘” p(la~d)w®| o« [-2erpe | 29T ﬂ‘a,,(ﬂ,.-.r)m*’) @ e
[ | 79
[ 3.82.10- 21.5.10°% 0 25.3.1073 [-2.30.10°3| 191102 0 168.10* 34°
1000 298 » 228 ~0.06.10-3 258 » 278 » | 114 » 0.5.10* 91 » 20°
2000 | 206 » 22 00710 | 2735 |-8065 | 655 09 » 9
3000 | 109 » 250 0245 | 263> |-316» | 31» 145 3
4000 | 023 » 19.0 | 06e s 1995 [-3235 | 40, 19 » 8
Table 9.
20 @ e | ruth ru@ [ 8 o) rsin o rdg  rsingd,
T T
0 0.15 013 42° ;‘ -0.32 019 : 0.32 -0:19 0.37
1000 016 008  2° | 025 028 | 02 -0 034
2000 017 004 15 | 017 02 | oxr 025 031
3000 017 0.02 7° -0.09 0.27 0.09 -0.26 0.28
4000 013 003 120 -002 0.27 002 027 027
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EBaxplanation of Tables 6—9.
In the paper by Wagner (1932) mentioned
above we find on page 323 a table giving the

a,
values of ;‘

at different levels, a, being the
amplitude of the 12-hour pressure oscillation and
b the mean pressure. In the mnotation of the
present paper we may write

heP R ‘Z‘- = A,

In Table 6 the lst column gives the height
above sea level in kilometres. The 2nd and 3rd
by
b
from Wagner's tables. In fig. 1 and 2 these
values are plotted against the height and a
smoothed curve is drawn through the points
obtained. The values extracted from these
smoothed curves are set out in the 4th and 5th
column. The value for & =0 has been found by

column give R and the phase angle A, taken

N

Varialion of pressure emplil e

with height

Pressure amplitude

P P P T 7 AR
Fig. 1.
4
=
-

ERENNE
[TTTTT

7 W w w W e &

Varialin of phase anple wilh height
Tig 2.
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extrapolation. The columns 6—9 contain the
05;”,p‘3’, ag;:. Columns 10—I11 and
12—13 give the quantities on the right-hand side
of Eq. (9.6) for w?, p® and for w®, p® respec-
tively.

The values of w® and w® in Table 7 arc
found in the following manner. Starting with
r—ry,=hk=0,w=0 we obtain from Eq. (9.6)
by means of Table 5 and 6

values of p,

oD

=—1,7-10%
ar )y o

Putting
ourh i
w00 = (7)] 21000 = — 1,7 107
and introducing this in Eq. (9.6) together with

the values for k=1000 taken from Table 6,
10th—11th column, we obtain

o
(‘m ) —09-1075.
o /100

Taking this as a mean value in the interval
k=0 to h=2000 we put

aw'»
w?, (__) 22000 = 1,8 1075,
e o /1o
Introducing this value in Eq. (9.6) together
with the value of the quantities on the right-

hand side for A =2000 taken from Table 6,
10—11th column, we find

G
("“’ ) 46107
or 2000
and hence

S _
P00 == W Vag00 + ( l:f—) 21000 — 6,410
2000

By means of Eq. (9.6) we then compute

W
(91; ) =7,6-10"%
" /3000

which is taken as a mean value in the interval
from % = 2000 to k= 4000 so that we have

Sus

WP, 400 = w“’m.,+< ';’; ) - 2000 == 17,0 - 105,
3000

In the same manner w® has heen found, using

the columns 12—13 of Table 6. 3, and A, have
been computed from the formulae
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tg .= Zt,: A, Yo et )

Table 8 shows the computation of &V and
2 by means of Eq. /9.1, I and V). The values
of p® and w® used in this table are taken from
Table 6 and 7.

Table 9 gives temperature and horizontal
velocity computed from the formula (9.1, I) and
(9.8) using the values of Table 6.

On the basis of the values #,, 1., 7, given
in Table 7—9 and the observed values of i,

3 3 n* 15 7
o [
3000
20007 LS. 5
10007 4
0 T AE F
/,--\’\
& Ed 17 15"
N
w. N1 /7~ £

W NTE
7 s T
Phase angles of the variables
inthe semidiurnat oscillation

Fig. 3.

Jug. 3 is plotted so as to show the time of
maximum of the variables at different levels.
As abscissa is chosen local time expressed in
hours from midnight. The sinusoidal curve repre-

1) The numorica n y for the
ovaluation of the tables have been made by means
of an ordmary slido rule. The errors due to this

Geof. Publ.

sents the pressure wave at sea level. The time
of pressure maximum at differents levels is shown
by the line AB, A giving the time of maximum
at sea level and B at 4000 metres. In like
manner the time of maximum of v,, ¢ and 7, is
given by the lines CD, EB and FG respec-
tively. Thus, for instance, the maximum of
v, = A, cos (2p +1,) takes place when y =1y, =
—4n,. From Table 7 we have, for A= 2000,
4y, = —43° corresponding to about 3 hours be-
fore O and 12® (i.e. 9" and 21%),

At the bottom of Fig. 3 the phase of the
horizontal wind wave at sea level is shown. At
the latitude considered the wind force is practi-
cully constant.

It will be of interest to compare the values
of 7, v, v, computed above to observed values.
From Tables 6 and 9 we have for k= 2500 m
since 9 = 7, 7, = 1, + 180°, by (9.8):

(9.10) 70, = 0,29 cos (2y + 117°)
rsinf v, = 0,29 sin (2y + 297°).

J. v. Hann (1903) gave the following annual

mean values for the Sintis (47° N, 2500 m above
sea level)
(9.11) o, = 0,27 cos (2 + 149°,9),
rsing - v, = 0,29sin (2y 4 329°,4).
It is seen that the computed amplitude gives a
very good fit to the observed values. In phase
there is a difference between (9.10) and (9.11)
amounting to about an hour.

As regards 7, it is difficult to obtain repre-
sentative values from the free atmosphere by
direct observations. The amplitude at the Equator
has been estimated by Chapman (1924) to 0°.4.
This seems to agree fairly well with the values
of Table 9 which gives a temperature amplitude
of 4/0,152 40,132 = 0,2 in the 12-hour oscilla-
tion at 47° N at sea level. However, observations

method of jon are in com-
piison with observational errors. The numerical
values presented i Table 6—9 must be considered
as rather rough approximations. It may be noted,
for instance, that w(l) at h = 1000—2000 m is found
us differenco between two small quantities so that
its value is very maccurate. However, this is of
minor importance simce the approximations obtai-
ned suffice to show that |w()] is small compared
to [ which means, (a) that 7, 1s not far from
+ and, (b) that the amplitude 4, is nearly equal
to [w®|.

at Lindenb indicate a greater value (Table 11).

The method of computing the temperaturc
oscillation from Eq. (9.1, I) is due, in principle,
to Hergesell (1919). The horizontal wind wave
was computed by Margules, whose results were
of the same order of magnitude as the values
of Table 9, although the assumptions underlying
his investigation were somewhat different from
those made here.

As regards the vertical velocity no great
accuracy can be ascribed to the values of Table 7
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but it follows from the equation of continuity
(9.1, IV) that, when p, 7, v, u are determined with
the right order of magnitude, the computed value
of w cannot be very far from the real value.
However, since the latter cannot be observed,
no direct verification is possible. It is seen that
v, is extremely small below 4000 m, but v, is
likely to increase rapidly with height.

The heat supplied to a unit mass of air per
unit time in the 12-hour oscillation is given in
Table 8. The amplitude 4, = \/s“’“ 4 e@* g
approximately 0.03 at sea level and decreases
to about 0.02 at 4000 m. Since we have assumed

W = const, =0 in the fundamental state, we

aw
db
have in the state ul perturbation
AWy (IW
di 0t
= A, cos (2y + m)-
ty tot

6=A "W 4 AWy AW

During the time interval ¢ -
supplied to a unit mass is

1, the heat

1
= ./'AZ cos (2y +n,) db.
i

Let us choose for f, the instant when ¢, has its
maximum value at sea level, viz. £ = 11" local
time (Fig. 3), and for #, the value #,—#,+3"=14"
The corresponding values of y = Qt are

.
p=—lkn v=vpi+

Thus the heat supplied to a unit mass from

11" to 14" may be written
1

A, )
awl= /cus (2p 1) d (29) =( I‘)u,,

1 -

o o

N

”
Inserting here the numerical value 4, = 0.03 we
obtain

1ah

Al ,20 ¢, at sca level.
i

In like manner we find

A 0,14 ¢, at the 4000 m. level.

12
Thus the heat supplied at sea level in the
3-hour interval considered is equivalent to the
amount of heat necessary to increase the tem-
perature by 0.2 degrees at constant pressure.
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The above computations refer to 47° latitude.
At any other middle or low latitude g,o the
apm

values of p®, ——— can be found by multiplying

The other

n® )
sm’ 43>
variables are then deduced from Egs. (9.1) put-
ting n=2 and having regard to (9.3). It is
easily seen that
w2 @
W =@
and since 7, is independent of 0 this is also the
case with 7, and 7, the phase angles of the
north-south and the west-east wind component.
The same applies to the phase 7, of temperature
and also to 7, of the “heat oscillation” in the
lower layers where the latter is determined chiefly
by the temperature.

As regards the vertical velocity, »,, the case
is different. We find here an appreciable variation
of phase with latitude. This can be seen by
computing w® and w® at the equator. From
Eq. (9.7) it follows for 0 =90°:

B=—0.08 at sea level,
B=—0.12 at the 4000 m. level.

(9.6)

the values of Table 6 by

u®

i.e. tg g = tgu, = tg,,

In Eq. we have to introduce for p“

a0
and dgy the values of Table ¢ multiplied by

1 P i .
rryroiel 3.16. By the method described above,
in connection with
following values:

Table 7, we then find the

Table 10.
13 w(h w(2) Lr
1000 26.3.10-% 19 8.10-%
2000 61.6 » 262 »
3000 09.0 » 341 » 19°
4000 144.6 » 354 » 14

From the last column it is seen that the
maximum of v, takes place at 10.81 at sea level
and 11.5" at the 4000 m. level, i.e. about two
hours later at the equator than at 47° latitude.

The computations of this paragraph all refer
to levels from which reliable pressure observa-
tions are available. At higher levels the proper-
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ties of the 12-hour oscillation can be studied
only on the basis of hypothetical assumptions
regarding one of the variables. Thus we may for
instance choose values of ¢? tending towards
zero with height, which means that the oscillation
is supposed to become adiabatic above a certain
level. The value of ¢ being prescribed, the other
variables of Bgs. (9.1) may be computed as
follows:

Let H be the highest level where p* and

op* . . I
1)'- arc determined by observations. The values
o

of the other variables at this level can be found by
computation using the method described above.

We then computu( ) from (9.1, IV). Putting

Wyt n== Wi | ( ) che pua= Pu+<()r>

and introducing wy ., and pyyp in (9.1, 11, 111, V)
we lind g yn and vy Since & is given (9.1, V)

w
(lotcrmmes Tthe - are de-
o Jiin

duced from Eq. I and IV respectively. Now we
may write

H\Ix

ow
Wi = W+ (737)144;. -2k,

: ?/Lp) 9
on = = -2h,
Pr+on=Pu+ (a, n

and Egs. (9.1) then give (u. v, 7)gsz. Thus all
the variables are known at the level H + 24, and
we may proceed from this to higher levels re-
peating the procedure.

Some computations of this kind for the
equatorial region have been attempted by the
author in a previous paper. A feature of
interest is the steady increase of the amplitude
of vertical velocity with height, while the time
of maximum remains near to 120

10. The heat transport and the heat
converted to work in the 24-hour and
12-hour oscillation.

In the following the indices 24 and 12 will
be used to denote variables of the 24-hour and
the 12-hour oscillation respectively.

Geof. Publ.

It has been shown in previous paragraphs
that, 1t the pressure wave p*,, is considered as
a given function of r, y, 0, {, the other variables
are then d ined and can be d by
means of the five hydrodynamical equations,
having regard to the boundary condition at the
ground. It appeared that only one solution is
possible and that the “heat oscillation”, (&), of
this solution furnishes a heat supply of 0.2 ¢,
in a 3-hour interval at 47° latitude and sea
level.

Although (&)1, is thus a small quantity it
is important in the theory of the oscillation since
the “tilting” of the pressure wave would not be
possible in the model atmosphere if we had
(£)12 = 0, as shown in para. 3.

The equations give mathematical relations
between the significant variables but can give
no information concerning cause and effect. The
latter must be deduced from physical considera-
tions. Most authors, among them Lord Kelvin,
have regarded the temperature wave (z,);, as the
cause of the pressure wave. However, since the
supplied heat depends more directly upon radia-
tion and the physical properties of the atmo-
sphere, it seems preferable to consider the “heat
oscillation”, (e,);5, as the primary phenomenon
and the variations in pressure, temperature and
velocity as secondary phenomena.

It was shown in para. 3 that, if (), is
given, the hydrodynamical equations and the
boundary condition at the ground are not suffi-
cient to determine p*,,, but if we add also cer-
tain conditions which must hold in the vicinity
of the Pole, as stated in para. 6 B, p*, is then
completely determined in the polar region and
may possibly be determined all over the globe
by analytical continuation. If this is the case,
the small “heat oscillation” will provide an expla-
nation of the 12-hour wave in the model atmo-
sphere. This leads us to search for the causex
that determine (e,)y,.

The problem must be closely related to the
flow of heat through the atmosphere connected
with rachation from the sun and outgoing radia-
tion from the atmosphere. When considering the
flow of heat it must be borne in mind that we
are here concerned solely with a model atmo-
sphere having no motion apart from the combined
24-hour and 12-hour wave.
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In the simple oscillation each individual
parcel of air moves in an elliptic orbit. Thus, in
the oscillation examined in para. 9 the parcels
of air at 47° latitude move in circles with radius
2.5 km corresponding to the speed of 0.37 m/sec
(Table 9). Heat is absorbed by the parcel in one
part of its orbit and rejected in another part.
Since we have & = 4, cos (np+7,) there is no
net loss or gain of heat during a period. If the
atmosphere had no motion other than the pure
12-hour oscillation (¢,);, might be determined
solely by radiation and absorption of heat in the
air masses and, (&), being given, the oscillation
would probably be determined.

In the atmosphere, however, c are
not so simple. So far we have considered the
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24-hour and 12-hour oscillation separately, allowing
for no interaction between them, but ultimately
it will be necessary to consider also the complex
motion of which these two simple oscillations
are parts. If the heat supplied to the atmosphere
is the cause of this complex motion the air
masses must move in such a manner that the
necessary flow of heat is maintained and simul-
ly the ki ical diti at the
ground and in the v ty of the Pole must be
fulfilled.

It is easily seen that, in the complex motion,
the paths of air parcels must be largely as in-
dicated in Tig. 4 which shows the resultant of
two motions in circular paths with the periods
t, and 2f, respectively.)

D@ ¢

a.

Tig.

The air parcel moves from A to B during
12 hours and continues (in the clock-wise direc-
tion) from B to A during the next 12 hours.
(a) shows the case of a small 12 hour wave
superposed on a predominating 24-hour wave.
In (b) the 12-hour component is greater and in
(c) it is predominating.

In the complex oscillation we have
= A, cos (p+ 5 ®) + 4, cos (2p +1,Y).
Fig. 5 indicates a possible form of ¢, The areas S;

Fig. 5

4.

and S, represent the amount of heat absorbed
by a unit mass during certain parts of the 24-
hour period and F; and F, represent the heat
rejected during the rest of the period. We have
Syt 8y=1F, + Fy.

Since the amplitudes and phase angles of
& can be altered in an infinity of ways without
altering S; 8, it is seen that the same amount
of heat can be transported by a parcel of air in
an infinity of different motions of the types
described in Fig. 4. Therefore, if kinematical

itions are unf: ble for the devel t

of the 24-hour component, as indicated by the
investigation made in para. 6, it seems probable
that the 12-hour component will take over a
greater part of the heat transport. (g),, will
then be comparatively great, the resulting path
of the air parcels will be more like Fig. 4 (c)

1) A special case with rogular paths has been chosen
to illustrate the principal features of the motion
An infinity of less regular paths may occur,
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than 4 (a), and the 12-hour oscillation will thus
be strengthened at the expense of the 24-hour
oscillation.

This hypothesis is based upon the compu-
tations of para. 6 which must, however, be re-
garded as preliminary and incomplete since they
are valid only in the vicinity of the Pole. It
would be of interest to study the problem by
means of more advanced mathematical methods.
Pending a more complete investigation no proof
can be given, but it may be pointed out that
the hypothesis seems to conform with observa-
tional facts. It is important to observe that it
is entirely independent of periods of free oscilla-
tions of the atmosphere. On the other hand,
resonance is not in any way precluded by the
above theory. In fact, the effect described would
be added to a possible resonance effect.

Assuming that the flow of heat plays an
important part in the theory of the complex
oscillation, it is of interest to inquire whether
any information about (g,);, and (), can be
derived from observations. It was mentioned in
para. 9 that, in the lower layers, ¢, can be de-
duced with fairly good approximation from 7,
alone. Table 8 shows that, up to 1000 m, the
terms 2Q2Tp and ¢, (0, — J) w in Eq. (4.4, V) are
comparatively small so that we may put

0y = 200,20, (4,)13 =226, (41
For the 24-hour oscillation the corresponding
relations are

€934 = Doyt
Putting

(Ae)ae = Qep (Ar)as-

(A1 (A1
CT A T @
we have, as a rough approximation
[
in the lower layers of the atmosphere.
In Table 11 some observed values of tem-
perature amplitudes are set out.!)

Table 11.

- -
[ (A (Adds 0 e |(ADdu (Ao e 0o

Lindenberg | Batavia

Surface 207 050 02 04 | 279 088 03 06
500 m L1l 031 03 06 | 039 031 08 16
1000-2000 | 046 036 08 16 | 016 058 35 70

1) Hann-Siiring,
. 209

Lehrbuch der Meteorologie, 5. Aulf.
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In view of the marked 24-hour period in
radiation one might expect to find g, < 1 but it
appears from the table that this holds only in
the surface layer. The comparatively great values
of o, at the 1000 m level are at first thought
surprising. However, they seem to be in accor-
dance with the hypothesis advanced above con-
cerning the heat transport and its relation to
the kinematical conditions and the form of tie
motion.

In the literature on the 24-hour and 12-
hour oscillation attention is always drawn to
the fact that

(4y)ia
7 (A

is surprisingly great. Observations from small
tropical islands, where local influences are megli-
gible, give the approximate value g, ~5. It
should be noted that o, is not necessarily of the
same magnitude. In fact 1t appears from Table 8
that ¢ depends not so much upon % as upon

a0
o
Ay, and A,.. Although o, is greater than might
be expected we may still have o, < g,.

It would be of interest to carry out the
computations of Table 6—9 also for the 24-hour
oscillation in order to compare the two oscilla-
tions. This would present no problem if p*,,
were known with sufficient accuracy, but here
we meet with the difficulty that the global 24-
oscillation is much disturbed by local influences
(land- and seabreeze, mountain-valley circulation)
s0 that representative p*,,-values are hard to
obtain. Thus no law of latitudinal variation
corresponding to Eq. (9.2) is known for p*,,.

In the above considerations we have fixed
our attention on the flow of heat through the
atmosphere. We shall now study the heat trans-
port in greater detail.

If a mass of air, acting as working substance
in an ideal-gas cycle, absorbs heat at high pres-
sure and rejects heat at low pressure, heat is
converted to work. An example is afforded by
the oscillation described in Fig. 3 where it is
seen that the maximum of (&), the heat sup-
plied per unit time, nearly coincides with the
pressure maximum at low levels. At first thought
this is surprising since we have seen that all

so that no proportionality exists between
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significant variables of this oscillation are simple,
periodical functions of time and since, therefore,
the heat absorbed by a parcel of air during a
part of the period of oscillation seems to be re-
jected completely during the rest of the period.
Thus there seems to be no heat left which might
be converted to work.

The explanation is afforded by the fact that
the amount of work e, performed by a unit
mass on its surroundings is of the order of
magnitude of p* and t,hereforc does not appear
in the of the I e where
second-order terms have been neglected. The
order of magnitude of e, becomes apparent when
a P—S diagram is drawn (S denoting specific
volume). Apart from 3rd-order terms the point
representing the state of the unit mass describes
an ellipse during a period of oscillation. The
linear dimensions of this ellipse are of the order
of p and s, and its area, representing the work
done, is of the order of ps, i.e. of the second
order.

The work performed by the unit mass dur-

ing m periods is me, and is thus steadily in-
creasing with time. If we had for instance e,>0
hroughout the at e, the oscill would
then have to undergo some lasting change as
regards temperature and velocity. In a stationary
oscillation e, must either vanish everywhere or
e, must be positive in some parts of the atmo-
sphere and negative in other parts so that a
suitable balance is attained.

In the 12-hour oscillation we have seen that
(es)12 is positive at the ground at 47° N. At the
4000 m level (e,),, is probably negative. This
can be shown as follows.

An individual parcel of air has maximum
or minimum pressure when

.
oz (P — > T:) 10,7

Introducing here
p* = pWsin 2y + p? sin (va + ;)

vy = w cos 2y + w'® cos (Zw + 1:) B

oP* g

ar T’

SOME HYDRODYNAMICAL PROPERTIES E I'C. 33

we obtain

;; (P* 4 p*) = (2.@77”’ - Ig, w‘")cos 2

:/2’) sin 2

Introducing numerical values from Table 6 and 7
for A =4000 m we find

_( 205 —

i B

= —T1,32.10=% cos 2y + 5,90 - 10~% sin 29 = 0,

whence it follows that P* 4+ p* has a minimum
for =25°5 and a maximum for y = 115°5.
The parcel then has minimum pressure at 1.7h
and 13.7% (local time) and maximum pressure
at 7.7% and 19.7". Since the maximum of (g,),,
at 4000 m occurs at 12% (g),, is positive at
the time of minimum pressure, and work is con-
verted to heat ((e,),, negative).

When considering the work e, we are con-
cerned with second-order terms and it is then
generally not permissible to study the complex
oscillation merely by treating each of the com-
ponent oscillations separately and combining them
afterwards, since this method presupposes linear
terms. However, it can be shown that the work
performed in the complex oscillation is the sum
of the amounts of work in the 24-hour and in
the 12-hour oscillations considered separately,
provided that the time interval considered is
24 m hours, m being an integer. This is seen
in the following manner.

Let S+s+a, and v, + 2, denote specific
volume and vertical velocity in the state of
perturbation, z, and z, being second-order correc-
tions as defined in (8.4), and let Py, S, denote
pressure and spesific volume of an individual
parcel of air, M, of unit mass. The work done
by M on its surroundings during f, = 24 homs
may be written as follows

-t
eg_/l’m)SM_ P[ 3 1/,1—:4:]

0
LdP ds | _ds\
.L/( 0%y
) v Appendix.

(10.1)
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where converted to work which the lower atmosphere
dy, _ © dg’fr performs on the upper atmosphere. Here the
dat 7" dt " work is absorbed and converted to heat which

Considering now the complex oscillation we
may write each of the first-order variables in a
form similar to (8.17). If from (8.17) we compute
the integral

t
/ ?l‘ /7 7(1”.
[

we find that the terms containing sin (y - 7,V).
cos (2y + n,®) and cos (y + ;) sin (2y + 27.)
vanish and therefore the result of the said inte-
gration is the sum of the integrals obtained if
the 24-hour and the 12-hour oscillation were
considered separately. Obviously this applies to
all integrals in (10.1), the integration being
extended over one period or a whole number of
periods. Thus the work done by M in the com-
plex oscillation may be written e, = (€5)ps + (€2)12-

(€5)12 has been considered above. In order
to estimate (e,),, we mnote that p*, has its
maximum at about 5" and its minimum about
17" (local time).!) Since we have approximately
(7)os = 195°)  (,)p, is minimum at 5% and
maximum at 17%, and (g)y, is zero at these
hours, whence it follows that no heat is converted
to work. Thus we may infer that the total work
performed by the air masses at the ground is
done in the 12-hour oscillation, no contribution
being rendered by the 24-hour oscillation.

It would be of interest to examine the work
done in the 24-hour oscillation at higher levels
as well, but the observational data available are
not sufficiently accurate to allow the necessary
computations.

If we may assume that the work e, is
negative at higher levels, as indicated by the
computation made above for the 4000 m level,
the thermodynamical process may be described
as follows. Each parcel M in the lower atmo-
sphere absorbs heat during a part of the period
of oscillation. This amount of heat, which is of
the first order of magnitude, is rejected during
the rest of the period, save for a small amount
of the second order of magnitude. The latter is

\) Hann-Siiring, Lehrbuch der Meteorologie, 5 Aufl.
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probably leaves the atmosphere as radiation.

In the real atmosphere a part of the work
of the lower layers must be done against friction
in order to maintain the motion.

The integral (10.1) depends on the phase
angles of the functions (2.8). It may vanish in
an 1infinity of cases, the simplest being the case
where all the phase angles of (2.8) are equal, so
that v,, vs, & pass through zero at the moment
when p* 7, v, have extreme values. Then all
the integrands in (10.1) are periodic, e; = 0, and
no work is performed by the air masses. If
friction is i luced such an oscill must
gradually disappear, since no work is available to
overcome friction. It is of interest to mote in
this connection that a phase difference between
the pressure and temperature wave is observed
in the atmosphere.

In conclusion the writer wishes to emphn.sue
that the foregoing di has no p
of completeness. An attempt has been made at
explaining the broad features of the phenomenon
without postulating any appropriate period of
free oscillation of the atmosphere, thus neglecting
the possibility of resonance. It should be observed,
however, that the theory presented above and
the resonance theory are not mutually exclusive.

Appendix.
Some details concerning the mathematical
computations.
1. Ad para. 2.

To illustrate the method leading from Egs.
(1.1—5) to (2.6) we consider the variation of

ar in (2.4). We have

At

If the variation of F' is denoted by AF = fthe
first variation of ar may he written

dt
daf

aF\ _of _df
=T vvrtevr=§

A to-oF.
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In virtue of (2. 1_,2) this reduces to
cF oF
( P Az + O

where

Thus we have, considering the first term of
Eq. (1.4) and having regard to (l 6),

2@ 5o ()-rela
_A( dz

The last term vanishes according to (2.4) and

we obtain
14dQ | epx oP*
N d
d: T
b ot 1’5%)-

The following example may explain the terms
in T&ble 2. In Eq. (1.4) we consider the term
T dt having regard to (1.6). If we pass from
the variables of the first column to those of
the last column in Table 1 this term becomes

1
T¢1J!(T+7

1 dr,
=(4—1—,+W—..) & vvT+v- v:)

Here we have,

1st-order terms ——(dT* +o- vT)
2nd-order t - _LX'E_E T
-orde: ermsfi v g LRV

3rd-order terms ﬁ” Avz
II. Ad para. 5 4.

R,, is computed as follows: In Egs. (5.1—2)
we compute a_s, y—g, 0—1. Since o* =1 it follows
from (4.5) that D= H sin®6. When 60 the
predominating term in the coefficient a, in (4.9) is

(H—1) nT cotg 0
20r°H sin* 6
Comparing (4.7) and (5.2) it is seen that
(H—1nT
20r*H

ag=
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The predominating term in ¢;, (4.9), is
of (H—1)
20r°H sin® 6"
Comparing again (4.7) and (5.2) we find
o (H—1)
20r°H
Considering d, in (4.9) and comparing (4.7) and
(5.2) it is seen that

o=

V-2 =

0
0% TH'
Comparing Eqs. (5.2) and (5.4)
mediately apparent that

Ay =pP_s.

it is im-

In (5.3) the only terms containing%—gg are
ou | 1—mna
wt o "
whence it follows that

Fs= amg— e (1 na) = — 7.

In (5.3) the only terms containing OL‘ p are
61 4 1—na
@ 7"

whence it follows that

gy =—3a5+ (1 —na)ay=—(2+na) e
We then have
Ry =m(m—1) @y +mfytg-
= (m*—2m) y_, — (2 + na)a_y

) (m —na—2) (ma+n).

Further we find, inserting » and 70 from (5.2)
in (5.3) and comparing with (5.4),
Joa=ony ky=—d_y+(1—na)d_ = —nad_.
. (u—na) dq
Sy=kog +uja= TQW—H_'

III. Ad para. 5 B.

Bearing in mind that

e+ 1, D=(H—a) (@2—1) for 6=0,
and having regard to (5.10) we easily find y,
and @, comparing (5.2) with (4.7) and taking
the predominating part of a, and ¢, in (4.9).
We get
2T

ol —
TR 1)

Yo= oA @ —T)
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From (5.2—4) it is seen that

o= Yo Gz =—y+ (L —na)a,
= —nad_, = —n*y,.
e .1 op
The terms in (5.3) that contain 0 are
ou L.y dp
— : il
@ containing 0 0’
1—na P —na g
—_—U contammg 0 EZ )
2T 1 ép

and 3010 0"

whence it follows that

fa=aa+0—na) 7+
Finally we get

Rp=m(m—1)d+mfy+ G-

-

T 20 (@ —1)

nr
202 7"

(m* —n?).

IV. Ad para. 6 B.

If in Eq. (6.3) m+4, u+2, we have the
case (5.9b), Pms Pmiz can be determined
successively from Eq. (5.4), and the boundary
condition leads to conditions which must be
fulfilled by the coefficients &, &,+o... This case
is then analogous to the case (a=14, n=1).

If in (6.3—4) m + 4, u =2 we have the case
(6.9¢). Taking for instance m=6, u=2 it is
seen from (5.6) that we have

(Rgps +Cy) 0* 4 ... =0,
whereby p; can be determined and the reasonings
of the foregoing case may be repeated.

We consider next the case

m=4, R,=R,=0.
Since we must always have u = 2 the condition
(5.9 ¢) cannot hold in this case. Let us consider
the condition (5.9a), i.e. x> 2. Putting in Eq.
(5.1) r=ry w=0 we obtain on the right-hand
side the series
(amy + 4y) pif° + ... =0

but this is not possible since it follows from Eq.
(4.6) and the expressions for @ and ¢ in (4.9)

with ¢=1, n=2 that we have
=, T
‘2T 3o Y7 T 20rH

which shows that a_,+ 4y + 0.
Thus there remains only the case m =4,
p=2, which is treated in para. 6.

Geof. Publ.

V. Ad para. 10.
The formula (10.1) is found in the following
manner. We may write

Sy=8+s+

as 428
+a (01 0o+ ¥+ i‘dfﬂ@f‘i’sz-
where (o + 0, +¥,) is the elevation of M above

its mean level (P, §) and we have

do, oy

d;
= Yt 0 ’~@; aty

%0
dt Aw +7 20,
=— Avp + S0 + A
Further we may wnte

}P,,zssﬁpfasu + /(p +5 o) o8

Since s, ¢;, 03, 8, are periodical functions with
a 24-hour period we obtain, extending the inte-
gration over f, = 24 hours,

des‘hP - !/v+x]
Neglecting 3rd-order terms we have

o
aP 0,
Je i) e

ty
daP ds s
o GEDICERES®
:

Combining these expressions and noting that

t=ts

=0

fg,v,dt: 0, we arrive at the expression (10.1).

The second-order quantities y,, x, may be
periodic or they may possibly contain non-periodic
terms like x, in (8.20).
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