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ON THE DYNAMIC EFFECT OF VARIATION IN DENSITY ON
TWO-DIMENSIONAL PERTURBATIONS OF FLOW
WITH CONSTANT SHEAR

BY
EINAR HOILAND

(Manuseript received May 23rd, 1952.)

1. The Simplified Perturbation Equation.

Our basic flow is a rectilinear, horizontal
current of an incompressible fluid with a velo-
city U along the X-axis. The velocity U depends
only upon the vertical coordinate z, and is given
by the relation

(1, ) U = az,

choosing z == 0, where U = 0.
In the basic flow the density € is assumed
to be given by an exponential function of 2,

(1,2) Q=Qe ",

where B is a constant. Positive values of § cor-
respond to static stability, negative values to
static instability.

To simplify the equations describing a small
perturbation of our basic system, we disregard
the ‘kinematic” effect of the density variation,
taking terms depending upon this variation into
account only when they occur together with g¢.
This simplification means physically that the
forces which are released by a small perturba-
tion of our basic flow are assumed to act on a
fluid of constant density equalling some average
value of the density of the fluid. The smaller
the relative density variations in our fluid, the
smaller will be the difference in acceleration of
the different fluid particles produced by a given
force, and therefore the closer will the simpli-
fied perturbation equations represent the com-
plete perturbation equations. Thus our simplified
system of equations may also quantitatively he

applied with confidence for systems with a height
1
h much smaller than —.
I
With the simplifications introduced above
the equation for the streamfunction ¢ for two-
dimensional (in the XZ-planes) perturbations
turns out to be

o2 82:/v o2
13 (g+eg) (G5 ) - —

Assuming a wave-solution given by

g ot

(1, 4) W= Z(z)e— k@tet)

the amplitude function Z is given by

" Pg
1,5 7' — k- — ={).
1, 8) (*— ta)?
Here k is the wavenumber and ¢ the velocity
of propagation (in negative z-direction).

2. The Solution of the Perturbation Equation
for k=0.

The general solution of the differential equa-
tion (1, 5) (which may be transformed to a Bes-
sel equation) has been given by Taylor?!). The
solution is

(2, 1) 7Z = (z ——g)%Bﬁ ik (z —i>
a 5 a

1) G. I. Taylor: Effect of Variation in Density on the
Stability of Superposed Streams of Flnid. Proc. of the Rov
Soc., A, Vol. 132, 1931.
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where B is the eylinder function of order % with

In the following we will only discuss the
case that & = 0, i.e. waves of infinite wavelength.
In this case the solution of equation (I, 5) as-
sumes the simple form

1—0

(2,3) Z = A(az+c¢) 2 [(az+ ¢}’ — B],

where 4 and B are constants of integration,
In the case that § = 0, 1.e. that

(2,4 a® = 4fy,

our solution (2, 3) fails to give the general solu-
tion. In that case the general solution is easily
found to be given by

(az+¢)

(2, 5) Z = Aoz 4 ¢)t In B

3. A Layer bounded by two Horizontal
Planes.

We consider first wave motion in a layer
bounded by two horizontal planes, z = 0 and
z = h. This case was also to some degree dis-
cussed by Taylor!) for 8> 0 (static stability).
He arrived at the results: for o real, i.e. a® < 4fyg,
no solutions exist for infinite height of the layer,
and Taylor maintains that it seems unlikely that
solutions exist for any value of A in this case.
For 8 imaginary, i.e. o> 4fg, a series of wave-
lengths corresponding to stability waves can
exist. Nothing is, however, proved about the
existence or non-existence of instability waves.

Confining our considerations to so small
values of the wavenumber that 4* may be neg-
lected in equation (I, 5), the frequency equation
of our problem assumes the simple form

(3,1) (az+¢) —B=0for 2=0 and z=4,
or
(3,2 (ah +¢)? = c°.

Without loss of generality we may assume
ah > 0, and the pure imaginary part c, of ¢
also greater than zero. This last agsumption is

1) Taylor: loc. cit.
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justified because if ¢ = ¢, 4-ic; is a solution of

our frequency equation, corresponding to the

value Z,+ iZ; of Z, also ¢ = ¢, —ic;, is a solu-

tion corresponding to the value Z, —iZ; of Z.
With the above assumption we have

{3, 3) arg ¢ > arg (ah—+ c).
Now if & is real
arg ¢’ = J arg ¢, arg (ah+ ¢)’ = darg (ah + ¢),
and therefore
(3, 4) arg ¢® > arg (ah+ c)’.
To have a solution we must then have
(3, 5) dlarg ¢ — arg (ah -+ ¢)] = 2n.r,

where n is a positive integer.
Since we also have

(3, 6) arg ¢ —arg (ah 4 ¢) <,
equation (3, 5) cannot be fulfilled for 6 < 2.
Thus for
0<1—ﬂ?<a
o
or for
4

(3,7) 1>y

no solutions of the form (1, 4) exist. It is easily
seen that this is also so when we have § =0

4
or —ﬁz;q: 1.
o

For statically stable stratification, >0, we
then have no solutions of the form (1, 4), when
the dimensionless number

pg 1
(3, 8) 25T
For statically unstable stratification, f#—
— B* < 0, we have no waves, either stability or
instability waves, of the form (1, 4), when the
dimensionless number

(3, 9) A

What is quite remarkable with this last re-
sult is that a sufficiently strong shear will neu-
tralize, or at least weaken, a static instability.
This result may probably be of some interest in
connection with the problem of cumulus-develop-
ment in a situation with shear.

-
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When
g 3
3.1 —_ L = = 2
(3, 10) = ord=2,

the solution of the frequency equation (3, 2) is
(3, 11)

or the velocity of propagation, remembering that
¢ is considered positive in negative w-direction,
is equal to the basic velocity in the middle of
the layer. But this value of ¢ gives a singularity
of Z atthis level, so that the solution cannot be
used. Thus, for J = 2, we again have no solu-
tions of the form (1, 4).
When
£*g

— > s

a?

(3, 12) or 6> 2

equation (3, 5) can always be fulfilled. For
2<d<4

it can for complex ¢ be fultilled for one value
of arg ¢ — arg (ah - ¢), for

406,

for two values of the same quantity, and so on.
Since we also must have

(3, 13) mod ¢ = mod (uh + ¢),
we must have
uh
1 Yy = —
(3, 14) Cy 3

Thus the instability waves must be propagated
with a velocity equal to the basic velocity in
the middle of the layer. From this it follows
that

(3, 15) arg (ah+c) = 7 — argc,

where both of the arguments may be considered
smaller than .r and positive. This equation to-
gether with (3, 5) gives

J g

—? ity

n
arg ¢ = (W-{—

where the positive integer » can assume any
value satisfying the relation

(3, 16)

(3, 17)

c.el 3
A
o
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The sign of equality cannot be applied since
then we get a singularity in Z. The relation
gives the number of solutions corresponding to
given values of § or f*.

For the imaginary part of ¢ we obtain

(3, 18) ci:——t ( -+ ) cot(mr:
The formula shows that the amplification de-
creases with #. The maximum amplification
corresponds to n = 1, so that we have

) i ah 7
(3, 19; Cimax = —é—cotan*

0

This value of ¢; corresponds to the smallest
“tilt”” of the waves. Increasing values of n give
increasing tilt.

Consider now the case when 4 is imaginary,

g - 4fyg Yoy
(3,20) 6=, ":(F—*1>, _>Z'

Our frequency equation (3, 2) then assumes
the form

(3, 21) (ah + c)# = civ.

Assuming again ok and ¢; positive, we still
have the relation (3, 3). Further we have

mod (ak -+ C)i” = g —varg(uh+e)

mod ¢¥ = g rame

and therefore for complex c,

(37 22) mod (ak—[— C)iv > mod Civ’J

so that for complex values of ¢, equation (3, 21)
can never be fulfilled. Thus in this case we will
never have any instability waves.

For real values of ¢ and

(3,23) l.¢>0, or 2. ¢c<<—ah,

the right-hand and left-hand side of equation
{3, 21) will have the same modulus. The equa-
tion for the argument is ‘

2n.c

Injah-+c| =Injc| +
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where n is an integer (positive or negative). The
equation may also be written

207
or ah--c=ce"”,
o . ah
(3, 24) ¢ =g

e’ — 1

We see that for » positive, we have ¢> 1, and
for n negative ¢ << — ah. Excluding the singu-
lar case n = 0, the greatest positive value for ¢
(the greatest velocity of propagation in negative
x-direction) is given by

ah
5 )

ev —1

€y =

increasing with increasing value of r. Ior a sut-
ficiently large static stability or a sufficiently
small shear (r» 2sr), we have the approximate

formula
_ahr _ah 4ﬁg >‘

T g T o\ @

The velocity of propagation decreases with in-
creasing values of n. Now the number of nodal
planes from z=0 to 2 = h is » — 1. Thus the
value of the velocity of propagation decreases
with increasing number of nodal planes, and
has its maximum value when no nodal planes
exist. When the number of nodal planes in-
creases without limit, the velocity of propaga-
tion decreases towards zero, i.e. towards the
basic velocity at the lower rigid plane.

When n is negative, n = —m, we obtain
for the velocity of propagation in positive x-di-
rection, ¢’ = — (ah-} ¢}, relative to the fluid at
the upper rigid plane

ah

2mn ’

ev —1

(3, 25) ¢ =

1.c. the same expression as (3, 24). Thus we get
the obvious result that to a wave with a cer-
tain velocity of propagation relative to the fluid
at the lower rigid plane, there must correspond
a wave with the same wvelocity of propagation
relative to the fluid at the upper rigid plane
propagated in opposite direction.

Inserting the value we have found for ¢ in
formula (2, 3), we obtain as solution of our pro-
blem the two sets of amplitude functions

Geof. Publ.

1—ir iv
7 == A,,L uz + _27,.77(‘—/'/—“_ “‘5"{[0(2 + Tn:hv
er —1 L er —1

where # now is a positive integer.

4. The Upper Boundary a Free Surface.

We will now discuss the case that the layer
has a free surface instead of a rigid plane as an
upper boundary. For k= 0, we still have the
solution (2, 3). Further we also at the lower rigid
plane z = 0 must have Z = 0, so that the solu-
tion can be written

1—6

(4, 1) Z = A(az+¢) 2;[(1124— ) —¢?).

The condition which must be fulfilled at
the surface, z =5, is the dynamic boundary
condition, leading to the equation

(4,2) (02 + 2%’ —[g+ aloz + )| =

for z = h.

Inserting from equation (4, 1) we find the fre-
quency equation

wo [ (e @))0r )
[0 G

For convenience we introduce the nondimen-
sional quantities

(4>4> V=07 = —
and obtain

(4, 5) [y +15 % +c*>](1+c*>"

— [4, 4+ =7 /1 + C*):Ic*o.
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Here 7 is a positive quantity, c¢* is the velocity
of propagation (in negative x-direction) meas-
ured in terms of the basic velocity at the free
surface.
0<d<1

We consider first the case that d is real and
smaller than or equal to 1, ¢ = 0 excluded.
Then we have, assuming c; different from zero
and positive

— 1446
arg ]f?—a (14 c*) =arg ; (14 ¢*),
modl—-;—é (14 ¢*)<mod L ; 0 (14 c¢*.

Therefore we also get
1—9
arg [7 + —2—(1 + c*)]

1.+9
< arg [y + %(1 + c*):l .
We have further
arg (1 + c*) < argc*,
and therefore
arg (1 + c*)° < arg c*.
Thus we finally get

arg{[y + ]—_Té (1+ 0*)](1 + C*)A}

1+, .
< arg{[y +—5 (14 c*):lc*"}.
1t follows then that for
(4, 6) 0<é<1 or 4>—=>0,

our frequency equation has no complex solu-
tions. We have no instability waves.

Assuming now a real c*, it is evident that
we must have either ¢*>0 or ¢* < —1, ie.
the stability wave must be propagated with a
velocity different from any velocity of the basic
tlow.

Considering first the possibility

a. ¢*>0, 1.e. the wave is propagated in
negative x-direction.

We write the frequency equation in the form

1—4d
C* &5
:(1+c*) '

P+ (L ¥
The left-hand side of this equation repre-
sents a function of ¢*, decreasing monotonically

(4,7 140
from the value

o
y+——2 (I + ¢%)
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1—9o
vt
- 1 —;— d
for ¢* = 0 to the value
1—96
1+
for ¢* — oo, both values smaller than 1.

On the other hand the right-hand side of
the equation represents a function of ¢* mono-
tonically increasing from the value zero for
¢* = 0 to the value 1 for ¢* > co. Thus there
will always be one and only one positive value
of c¢* satisfying the frequency equation. This
value of ¢* must satisfy the relation

2y + 1 —0\1 c* 1 —N\L
8 —_—— )4 oo =} €
(4. 8) (27+ 1—{—6)6>1—[—c*><]+5 "
where, of course, only real positive roots are
considered.

We so pass to the discussion of the other
possibility

b. ¢* << — 1, t.e. the wave is propoagated tn
positive x-direction with a wvelocity greater than
the basic velocity at the free surface.

We introduce in equation (4, 5)

(47 9) (C* -+ 1) = C**’

where c¢** is the dimensionless velocity of pro-
pagation in positive z-direction relative to the
fluid at the free surface. The equation then may
be written in the form

1496
7 _21_ c** oFE\9
4 = .
4 2

The function on the right-hand side of this equa-
tion has exactly the same behaviour as the func-
tion on the right-hand side of equation (4, 7),
increasing monotonically from zero to 1 when
¢** increases from zero to infinite values. The
function on the left-hand side starts with the
value 1 for ¢** = 0, and decreases monotoni-
cally towards infinite negative values in the

27 5 Thus, in this interval

interval 0 < ¢** < 1

we have always one and only one solution of our
frequency equation. Since this solution cannot
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appear for negative values of the left-hand side,
the corresponding value of c¢** must obey the
relation

2y
0 < g*%
ST
or
(4, 11)  O<o*s< /%[ _ ﬂ”i
’ 2()’((]
with 0 <’ ’39

no solutions exist. For such

. 2y
Ifor ¢¥* > 5
values of ¢** the left-hand side of equation
(4, 10) will be greater than 1. Thus for ¢** >0,
we have one and only one solution of our fre-
quency equation.

It § =0, homogeneous fluid, ¢ is equal to
I, and we get

Ry,

or introducing for ¢** and y in terms of dimen-
sional quantities

—(ctab)y <L,
a

giving an upper limit for the velocity of propa-
gation relative to the fluid at the surface of the
wave propagated in positive direction. The same
vpper limit is for f =0 (from formula (4, 8))
found for the velocity of propagation relative to
the fluid at the lower rigid plane of the wave
propagated in negative z-direction.

4
For a very small value of §, (—f—g almost

equal to 1) we find for the velocity of propa-
gation of the wave propagated in positive di-
rection

C** < 27,
or
2y

—(c+ ah) <

6 =0.
Ln the special case that ¢ = 0, we had the
solution (2, 5) and we get the frequency equation

k
e 7”_0.

(4,12) (%4 1) — [y+ b(e*
Assume first ¢* complex. As before we study
only the case that ¢*,> 0. Then we have

arg (14 c*) > arg [y + (1 + ¢¥)],
and also

arg (1+4-¢*) — arg [y + §(1+c*)] <

Geof. Publ.

. . L4+e* .
The pure imaginary part of e will be

negative. Therefore we must have either

*
arg (ln %ﬁ) <0

I+c*
arg ( In k)=

dependent upon what value we choose for the
multivalued In-function. Comparing the first of
these relations with the first of the above rela-
tions, and the second with the second of the
above relations, we see that we will never get
complex solutions of equation (4, 12).

Thus, also for § = 0, we have only real
roots of the frequency equation. For real roots
we must have either ¢* > 0 or ¢* < — 1.

a. ¢*> 0. We write the frequency equation
in the form

or

(4, 13) EZ = c*

For c* positive, the functions on both sides of
this equation vary monotonically with c¢*, the
. 2
left-hand side increasing from the value 2011
/
for ¢* = 0 to the value 2 for ¢* - oo, the right-
hand side decreasing from the value oo for ¢* = 0
to zero for ¢* — oo. Thus, we always get one
and only one solution for ¢* > 0. For this solu-
tion we must have
2
*-1 571
(4, 14) 62>9__C::_7> eZvTi.
b. ¢* < — 1. We introduce as before ¢** =-
— (c*+ 1), and write the frequency equation
1 In c*¥ 4 1
¥ 1_ PEL
L

The function on the right-hand side again de-
creases monotonically from the value + oo for
¢** = 0 to zero for ¢** — o0, For ¢** > 2y, the
left-hand side is negative and can not be equal
to the right-hand side. In the interval from
c** = 0 to ¢** = 2y, the left-hand side increases
monotonically from zero for c¢** = 0 to the value
4 oo for ¢** - 2p. In this interval of ¢** we
therefore always have one and only one solu-
tion, with

(4, 15) 0 < c** < 2y,
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the same relation which we have found above
for 0 — 0.

d>1.
We so consider the case that f is negative
(the layer statically unstable), f = — g*.
We introduce
0=14¢ with ¢> 0,

and our frequency equation (4, 7) takes the form

y——(1 4 c*)

2—}—5 (1—[—0)

I + R

(4, 16)

For sufflclently small values of y this equation
will for all values of ¢> 0 have complex roots.
Considering the limiting case ; — 0, the equation

reduces to

C* 1+e &
(4 17) (1+c*> T 24«
Introducing

¢* = Ryein, 1+ ¢* = Ryeir,

we get the four equations
1

@etlr o o (& N
Pr— @2 = 7 T+e R, = R, 24%)

R, sin ¢, = R, sin ¢,,

(4, 18)

B, cos g, = Rycos ¢y — 1,
with the condition
0 <o — @<,
or
2n < e.
n is a positive integer. The last relation deter-
mines the number of solutions for given values
of e. Thus, for instance, for ¢ < 2, (§ < 3) we get
only one solution. For 2<<e<C4, we get two
solutions, and so on.
Trom the equations (4, 18) we find
. 2n4+1
sin ((pl — T_I:S—;r)% e ;
sin o, (2 + a) —
8in @, &

2-}~6

e,

. 2 1
sin (qu + —?j—é:)

(4, 19)
Sing,
L 2n+1 7

sin ¢,

R, =
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Since we have (from the second of the equations
(4, 18))
-RZ > R1>

the two last equations show that
sin ¢, > sin @,.

As before we only consider positive values
of ¢;*, i.e. sin ¢, and sin ¢, are positive. IFrom
the two first of equations (4, 19) we then deduce

2n~}— . >a—2n
7 —Jr.
e T T

If ¢e<1, it then follows that ¢, must lie in tle
second quadrant, ¢, in the first, i.e.

(4, 20) 1, >

7r

7T
(f1>_a (p2<7'

2
Further, from the last of the equations
(4, 19) and the first of the relations (4, 20), we
obtain
E, <1,
ie,
c*; <sin g, << 1, when ¢ <1.

In the special case that ¢ =1 (§ = 2), tle
equations (4, 19) reduces to

: 3 V3
cotang, = — tan ¢, == g
4,21 o
N 41
17 9 27" Ty
We have also
. s
(4, 22) Pr— G =

Further we obtain

1
(4, 23) ¢*, = Ry cos ¢, = — R

c*;, = R, sing, = —V—i
4

These values of ¢*, and c¢*; could also have been
obtained directly from the equation (4, 17), which
for ¢ =1 reduces to an algebraic equation of
second degree.

For arbitrary values of ¢, the equations de-
termining ¢, and ¢, (the two first of equations
(4, 19)) may be written

cotan ¢; =
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1 2 e\ L
cotan , = N [(_*—8)1%
SN ——— ¢
1+ ¢

It follows immediately that
(4, 24)
and therefore that ¢, lies in the first quadrant.
To discuss the sign of cotan ¢,, we introduce

T = ! -

Al

In terms of r, ¢, is given by

cotan ¢, >0,

cotan ¢, =
1

| 1 —17\")
B T s [(2 ar] — .
sin [ (Gn F 1)ore] | 8 @R+ D7 (Hw)f
Since sin [(2n-- I)ar] > 0, the sign of cotan ¢,
is the same as the sign of the expression

N == cos [(2n+ 1)rer] — (1 _17'>1,

14+
in the interval 0 < ¢ <<}, (c0 >&>1). That
cotan ¢, is negative for 0 <e <1, (1 >¢2>>1) is
shown above. For 7 =0, N =0, for r

on+1 1\¢
N—cos—2 /n——(§><0.

The functions

N, = cos [(2n + 1)ar], N, = (1 _T)I,

1
o)

1l 4«
both have the value 1 for r = 0, and decrease

. . 1

monotonically when # increases from 0 to 2@ 1)
To obtain a positive value of cotan ¢y, in the inter-
val of », we must for some value of r have N = 0,

AN,| |dN, dN, dN,

e | de 1” (W"W—Ofo”_(o or
. . o 2t 147

(2n 4 D tan [(2n 4 1) ] <+ In .

For r = 0, the function on each side of this in-
equality starts with the value zero. The deriva-
tive with regard to z of the left-hand side is
(204 1)%®
qual to —
oqual to et on T 1)er]
(2n -+ 1)%¢% while the derivative of the right-hand

with the minimum value

side is equal to with the maximum

4
(l _ 12)2
value Ninee for all positive values of the

integer n

Geof. Publ.
64
2n+1)%e2 > o

our inequality relation cannot be fulfilled. Thus,
we must have

(4, 25) cotan ¢, < 0,
or ¢; must lie in the second quadrant. The
real velocity of propagation of the instability
waves must in the limiting case that y - 0 be
equal to the basic velocity at some level of the
fluid. As shown above, we have also R, > R,.
Therefore the velocity of propagation is equal
to the basic velocity at some level below the
middle of the layer.

We will now discuss for arbitrary values of
y the real solutions of the frequency equation.
Considering first c¢* > 0, the function on the left-
hand side of the frequency equation (4, 16)
starts for ¢* = 0, with the value

._8

7 2_
8’

71+

and decreases monotonically with increasing c*
to the value

2
€
2

I+

for ¢* - o0. The function on the right-hand side
of our equation starts for ¢* = 0 with the value
zero, and increases monotonically for increasing
values of ¢*, reaching the value 1 for ¢* - oo.
Thus if

€

Y=

e

we have one, and only one solution of our fre-
quency equation for ¢* > 0. If

<8
y 2’

the frequency equation has no solution with
c* > 0.

Consider next ¢* < —1, we introduce again
in our frequency equation ¢* = -— (¢¥¥-- 1), 80
that it may be written
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y 24 s
(4, 26) 2

c*E \1+e
ey 1)

A similar reasoning as that applied above
shows that for ¢**> 0, the frequency equation
has always one and only one solution.

}'+%c**

*

For ¢* real and — 1 < ¢* <0, ——— is ne-
I+e¢

gative, and has the argument — :r. The right-

hand side of the frequency equation (4, 16) has
then the argument -—.c(1 - ¢), while the left-
hand side has the argument n.r, where n is an
integer (positive or negative). Thus only when
¢ is an integer will the frequency equation have
a real solution in the considered interval for c*.
This solution can, however, not be accepted
since it is connected with a singularity.

For very large values of j, the frequency
equation has complex roots always when &> 1,
(>2), (the limiting form of the equation is

C* 1-+¢
(#51) -

when 3>¢>1, two complex roots when 5> ¢
>3, and so on. For ¢ =2, we obtain, for in-
stance, for y—+ oo the root

()

Quite generally we must have

1). One complex root (with ¢;> 0)

c*,—~—1% when y > oo.

For large values of ;, the argument of the
left-hand side of the frequency equation will be
a little smaller than 2s. While the argument
of the right-hand side will be smaller than
st(1+ ¢). Therefore, when 0< e <1, we have no
complex roots of the frequency equation for
large values of y. It is, however, not so easy
to determine the value of ; below which the
equation has complex solutions. Only in the
singular case that ¢ = 1, this value of 7 may
be readily determined. In this case the frequency
equation reduces to

(4,27) 2% - 3c¥2— (27 — Pe* — (y — ) = 0.

This equation will have complex equations only

when
y<§2n

ON THE DYNAMIC EFFECT
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0 =
Finally we will discuss the case that ¢ is
imaginary

(4, 28) § = i,
with

48
(4,29) »r= (%g-—— ) o« < 43g.

The frequency equation (4, 5) then assumes
the form

(4, 30) [/_]_ __(1 + ¢¥) ](1 ¥y
= I:;' + H;V 1+ c*)] c*ir,

Assuming again c¢;* > 0, we have

(4, 31)

arg (1 4 ¢*) < argc*

Further we have

"+ c*)] :Mod[l“”’

l—}—m

1+ c*):l

+cﬂ],

considering only arguments which are smaller
than .
From the two last equations we deduce

o]

>Mod[ —}—1+“

1—)'
arg[ 14 c* ):|<arg

(4, 32)

1+

Now

Mod (1 +4 ¢*)ir = g—raretl+e®) - Mod ¢c*¥ = e—a8¢™,
Therefore on account of relation (4, 31)

(4, 33) Mod (1 + ¢*)¥ > Mod c*¥.

This equation together with equation (4, 32)
shows that when c¢* >0, the modulus of the
left-hand side of the equation is greater than
the modulus of the right-hand side. Thus, the
frequency equation has no complex solutions.

Assuming then c¢* to be real, the frequency
equation (4, 30) may be written

¥ 14ce®y (1 -+c¥*)
(4, 34) tan(—ﬁ—ln pr )h27+(1+c*)"

Again we have no solutions in the interval

— 1< e*< 0.
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Considering positive values of c*, the right-
hand side of our equation is positive and in-

¥
— f * = -
91 or ¢ 0 mono

/
tonically to the value » for ¢* - oco. The curve
representing the right-hand side will then cut
all the branches of the tan-function, so that we
get infinitely many solutions. These solutions

must satisfy the relation

creases from the value

1+4-c*

c*

2
>— » (n,: -+ are tan2—+ 1)

where the arc-functions are considered positive

(4, 35) ?— (nse+ are tan ») > In

and gmaller than 121 in is any positive integer

including # = 0. The smaller », the larger the
corresponding value of ¢*. For n =0, we have
the largest value of c¢*. For this largest c* value
we have

14 c¥pax 2 v
o >T arc tan T’ﬁ
If, for instance, » =1, we get

c max < e

e? —1
Considering next ¢* < — 1, we introduce as
before ¢** = — (¢c*+ 1). Our frequency equation
then takes the form

2
—arctan» >1In
y

L e | yg**
(4, 36) tan <? In ez ) = py——

Again we get infinitely many solutions for c**
positive.

If
1'1117_]; !

< s,

we have no solutions with

CFE > o,
5. Final Remarks.

It will be of interest to study waves with
finite wavelength. Preliminary investigations by
E. Riis!) seem to suggest that the principle re-
sults of the investigations carried through in the
preceding sections apply also for finite values
of k. The boundary problem discussed by Tay-
lor?), which for >0 led to the same results

1) The author wishes to express his thanks to mr.
Riis for many helpful discussions.
2) Loc. cit.

Geof. Publ.

concerning the existence or non-existence of or-
dinary waves, is quite different from the boun-
dary problem considered in section 3 of this
paper. Taylor has as a boundary condition at
the upper “plane” that the amplitude function
approaches zero when the height of the layer
increases without limit, whereas we have as a
boundary condition that the amplitude function
is exactly zero at both boundaries. It is easy
to show by a discussion of the zeros of the

Hankel function involved?) that for § = — *<0,

Taylor’s boundary problem leads to the criterion:
ES

when 5 < 2, no ordinary waves,

f*
g > 2, ordinary instability waves exist.

22

This eriterion is valid for all values of the wave-
number k.

Another question is to discuss how the fluid
reacts upon perturbations in the cases that no
solutions of the type (I, 4) exist, and in the
cases when the existing solutions of this type
do not form a complete set ¢f functions. Prob-
ably the motion will then be a ‘wave”-propa-
gation with different velocities at different levels,
and with changing amplitudes in time, similar

to the motion described by Kelvin for the Cou-

ette-flow without stability.

As well known viscosity will do away with
the singularity appearing in the perturbation
equation for the general linear flow of an in-
compressible and homogeneous fluid. That is
not so when static stability occurs. The general
perturbation equation for wave-disturbances in
this case when viscosity is taken into account, is

(U —c)[y""" — 2k 4 k2]
k — B(U — )2

(5,1) —1 7{(U—— ey’

+[8g+ (BU — U YU —¢)

— k(U — c)2]1/v =0,
where 1 is the stream function for the pertur-
bation motion and » the kinematic coefficient of
viscosity. The occurance of a singularity even
when viscosity is considered, shows that stability
will introduce a very important feature in the
discussion of the disturbances of linear flow.

1) . N. Watson: A Treatise on the Theory of Bessel
Function, §§ 3.6, 3.7, 15.7, Cambridge 1948.
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