AN AURORAL SPECTROGRAM AND THE RESULTS DERIVED FROM IT

BY $L. \ VEGARD \ and \ G. \ KVIFTE$

(Manuscript received March 9th, 1951)

§ 1. Introductory Remark.

During the night Feb. 23–24, a brilliant aurora was observed at Oslo. From the beginning at 19.20 up to midnight intensive and rapidly changing rays and draperies were playing on the northern sky towards the zenith. After midnight until dawn it generally maintained the form of a double quiet ark of moderate intensity.

At the Physical Institute of the Oslo University we had just obtained a new auroral spectrograph from the French firm Société générale d'optique, built by Dr. J. Cojan in accordance with specifications given by one of us (Vegard). It was very well made, giving extremely sharp lines throughout its whole spectral range.

This spectrograph was constructed in such a way as to provide good facilities for obtaining the great number of weak auroral lines so well separated that the wavelength could be measured with an accuracy sufficient for reliable identification.

Compared with the best spectrograph previously used in our country for this purpose¹, the dispersion of the new spectrograph was about twice as large and the light power more than 5 times greater.

The new spectrograph had two prisms. The effective diameters of the camera and collimator lenses were 178 mm. The camera lense had a light power corresponding to (F:1,2). The dispersion as a function of wavelength is seen from the curve, fig. 1, where the scale to the right in A/mm corresponds to the dispersion derived

directly from the spectrogram on the photographic plate. The instrument was put on the bottomplate of a box, which could be rotated round a vertical axis. A tube containing a condensor lense and a plane mirror forming 45° with the collimator axis could be rotated round this axis. In this way the instrument could be directed towards any desired point of the sky. The box was provided with arrangements for automatic temperature regulation.

The instrument is now mounted on the observational platform of the Auroral Observatory at Tromsoe.

During the auroral display at Oslo Feb. 23–24, '50, the instrument was placed in one of the rooms of the Institute and pointed towards the northern sky through an open window. The spectrograph was kept in the same position through the whole night. The slit opening was 0.21 mm, which corresponds to 0.03 mm on the photographic plate. The exposure was made on a Kodak 103 aT plate and it lasted from 19.35 in the evening till 05.30 in the morning. For

¹ A description of the instrument is given in paper (1) § 8.

L. VEGARD AND G. KVIFTE

Fig. 2.

the comparison spectrum we used an argon discharge lamp. An intensity scale was taken on the same plate by means of a stabilized Ne-lamp.

A reproduction of the auroral spectrogram is given on the plate fig. 2, showing one positive and one negative picture, and between the two is a registram, taken with a Moll registering photometer. For the sake of orientation the wavelength of some prominent lines and bands are given on the plate.

§ 2. Wavelength Measurements and Identification.

Within the region of the spectrogram (6300– 3880) about 114 lines and bands could be directly measured from the original plate, more than 50 of which were not previously observed. Short announcements of these first results were given in some preliminary communications (2. 3. 4).

It was evident, however, that the spectrogram contained a great number of lines, which were too weak to be measured directly from the plate. The wavelengths of these lines were determined by means of photometer curves of great magnification.

In order to avoid, as far as possible, that maxima due to easual irregularities were taken as indications of spectral lines, we took two registrams along two parallel lines across the spectrogram at a suitable distance from each other. Only distinct and exactly coinciding maxima were taken to indicate the existence of lines.

By this procedure we were also able to detect multiplets, and study more closely the structure of bands. Such a photometer curve is shown on fig. 3. The dispersion of the photometer curve will be seen on fig. 1 from the scale on the left side.

As a number of sharp lines were exactly measured from the plate, the wavelength of any weak line in between the known ones could be measured with nearly equal accuracy from the photometer curve.

The results of the wavelength measurements from the new spectrogram are given in table 1b. The first and second column contain wavelength and measured intensities from previous determinations. The 3rd and 4th columns give the

wavelength values from the new spectrogram. λ_p are the values measured directly from the plate, λ_{\uparrow} those found from the photometer curve. In the 5th column measured relative intensities are given for some of the lines, which on the spectrogram appear with a density suitable for intensity measurements. These intensities are approximately comparable to those previously measured and given in the 2nd column. The possible interpretation of lines and bands are given in the last column. If a line or an interpretation is somewhat questionable, it is put into a bracket.

As mentioned the spectrogram here dealt with is limited to the spectral range from 6300 to 3880. For the sake of completeness we have added the auroral lines and bands on both sides of this interval known from earlier investigations.

Table 1a contains lines and bands and some measured intensities from the long wavelength interval from 6364 to about 8860 in the infra red. For this region we have included some results recently obtained by A. B. Meinel (5) and by W. Petrie (6). Thus the table (1 a) contains some bands, also measured at Oslo, which Meinel refers to a system $\mathbb{A}^{2}II - \mathbb{X}^{2}\Sigma$ originating from \mathbb{N}^{+}_{2} : For these bands we have used the notation \mathbb{N}^{+}_{2} : 2N.

The table 1c covers the results previously obtained for the ultraviolet region beyond 3880 Å. The number of lines and bands in red and infrared will no doubt be considerably increased by means of spectrograms in this region taken with the new spectrograph now at the Tromsoe Observatory.

γ	н	Interpretation	y	I	Interpretation
8858	(10)	N ₂ 1.P(1—0)	7580	12	NI (3p 4S — 5s 4P)
8774	4		7482	4	$N_2 \text{ i.} \hat{P} (4-2), \text{ Of } 3s'' ^3p - 3p'' ^3D)$
8714	10	NI (38 $^4P_{5/2}$, 32, 1/2 — 3p $^4D_{5/2}$, 3/2, 1/2), N ₂ 1P(2 — 1)	7450	4	
8684	32	$NI(3s^{4}P_{1/2}, 3/2, 5/2 - 3p^{4}D_{3/2}, 5/2, 7/2), N_{2} 1P(2-1)$	(1385)		$N_2 1.P (5-3)$
8665	10	$NI(3s^{2}P_{3/2} - 3p^{2}P_{1/2})$?	7368		$N_2 1.P(5-3)$
8623	9	$N_2 1P (3-2)$, $NI (3s_2 P_{3/2} - 3p_2 P_{3/2})$?	7339		$O_2^+ 1N (0-3)$, OII $(2p^3(^2D - ^2P))$?
8525		$O_2^{+1}N (0-5), N_2 1.P. (3-2)$	7264		$N_2 1.P (6-4)$
8469	e		7248		$OI(3p^3P - 5s^3S), N_2 + 2N(4 - 2)$
8447	12	OI (3s 3S — 3p 3P)	7094		$N_2 + 2.N.(3 - 1)$
8436	es	NII (3p 1S — 3d 1P)	2068		$N_2^+ 2.N.(3-1)$
8344	(3)	$N_2 1.P(4-3), N_2^+ 2.N.(3-2)$	0989 J		$N_2 1.P (3-0), N_2^+ 2N (2-0)$
8291	67	$N_2^+ 2.N.(3-2)$	6849		N ₂ 1.P (3 — 0). Go+ (0 — 2)
8216	4	NI (38 4P3 8 619 30 4P1/2 319 519)	6784	3	$N_{\rm s} 1.P (4-1), O_{\rm s}^{*} (0-2)$
8182	4	$N_2 1.P (5-4), NI(38^4P_{19,319}-304P_{319,579})$	6754		Nº 1.P (4-1), NI (3p 4P-4d 4D)
(8130)		(Tip finite — T = Tip f	6693	žĊ	- 1
8093	4	$N_2^+ 2.N(2-1)$	6499		$N_2 1.P (5-2)$, OII (3d $2P_{1/2} - 4p ^2P_{3/2}$)
8064	4	$N_2 1.P (6-5), N_2 + 2.N (2-1)$	6999		NI (3p 2P — 5d 2P), OII (3d 2Ps, 2 — 4p 2P1,)
7993	4	OI (3p 3P — 3s', 3D), N ₂ 1.P (6 — 5)?	6622	e	$N_2 1.\hat{P} (6-3)$, OII (3d $^2\hat{P}_{3/2} - ^4p ^2\hat{P}_{3/2})$
7914	œ				NII (3d ¹ D — 4p ¹ P)
7879	91	$N_2 1.P(7-6), O_2^+ 1.N(0-4), OI(3s'' 1P_1 - 3p'' 1D)?$	6605		$N_2 1.P (6-3), NII (3p ^1D - 3d ^1F)$
		N_2 + 2.N (1 — 0)	6592		$N_2 1.P (6-3), NII (2p^2(^3P_2-^1D_2))$
7854	=	N ₂ 1.P (7 6)	6563		H ₀
7820	10	$N_2^+ 2.N (1 - 0)$	6543	6.5	Z
7774	30	OI (3s 4S — 3p 5P), NII (3p 1D — 3d 1D)			$NII(2p_3(^3P_1-^4D_2))?$
[7746	15	$N_2 1.P(2-0)$	6526		$N_2 1.P (7-4), NI (3p^4D_8/2-58 ^2P_{8/9})$
17730		$N_2 1.P (2-0)$	6512		$N_2 1.P (7-4), NI (3p 4D_{1/2}-58 ^2P_{3/2})$
7717	15		6467		No 1. P (8 - 5) NT 30 4D-10 50 - 4d 4D-10 50
7688	15		6454	20	$OI(3p^5P - 58^5S)$. No. 1.P $(8 - 5)$. VK $(1 - 17)$
7625	4	$N_2 1.P (3-1), NI (3p +S-5s +P_{3/2})$			NI (3p 4D _{3/2} — 4d 4D _{3/2,5/2})
			6441		$N_2 1.P (8-5), NI (3p^4D_{7/2}-4p^4D_{5/2})$
			0298	-	$N_2 1.\Gamma(9-5), O_2^+ 1N(0-1)$

Table 1 b.

Auroral Lines in the Region (6364 Å—3882 Å) covered by the Spectrogram from February 23, 1950, Oslo.

	vious rements		pectrogran eb. 23, 195		
λ	I	λ_{p}	λ_{r}	1	•
6364	3-200	6363			OI (2p4(3P ₁ — 1D ₂))
6300.3	10-600	6299.8	6300		$OI(2p^4(^3P_2 - ^1D_2))$
			6267		NI $(3p^{\frac{5}{2}}D_{5/9} - 3d^{\frac{5}{2}}P_{3/9})$, O ₉ SR(2 - 28)
6253			6252		$N_2 1P(11 - 8), [VK(4 - 19)]$
			6240		$N_2 1P(11-8)$, NI(3p $^2D_{3/2} - 5d ^2P_{1/2, 3/2}$, NII(3d $^1F - 4p ^1D$)?
(6229)			6222		[NI(3p 4S 5d 2P)], O ₂ SR(5 30)
, ,			6208		
			6197		
6185					$N_2 1P(12-9)$
6176					N ₂ 1P(12—9), NII(3d ¹ P — 4p ¹ S), (3d ³ F _{2, 3, 4} — 4p ³ D _{1, 2, 3})
					$O_2SR(127)$
6154			6156		OI(3p 5P 4d 5D), NII(3d 3F ₂ 4p 3D ₂)
6139					$NII(3d {}^{3}F_{3} - 4p {}^{3}D_{3})$
6129			6127		$N_21\dot{P}(5-1), [\dot{V}K(7-21)], [O_2SR(4-29)]$
		6113	6119		$O_2SR(7-31)$
6109	4		6110		$N_21P(5-1)$, $NII(3d {}^3F_2 - 4p {}^3D_3)$
			6093		N ₂ 1P(5—1)
			6078		$N_2VK(3-18)$, $NI(3p^2P_{3/2}-6d^4P_{3/2})$, $O_2SR(0-26)$
6068	İ	0004	6071		$N_2 1P(6-2)$, $NI(3p {}^{5}P_{3/2} - 6d {}^{4}P_{5/2})$ $N_2 1P(6-2)$, $NI(3p {}^{2}P_{1/2} - 6d {}^{4}P_{3/2})$, $(NII(3p {}^{3}P - 3d {}^{1}D))$?
00=0		6064	6062		$N_2 1P(6-2)$, $N1(3p^2P_{1/2}-6d^3P_{3/2})$, $(N11(3p^3P-3d^3D))$ (
6056		6046	6046		$OI(3p ^3P - 6s ^3S), [O_2SR(9-32)]$
		0040	6034		$OI(3p^{\circ}I - 08^{\circ}S), [O_2SK(9-32)]$
			6025		$O_2+1N(0-0)$, $O_2SR(3-28)$, (11-33)
6012			0020		$N_2 1P(7-3)$
6010	1	6008	6008		$NI(3p^2S - 4d^2P_{3/2}), N_21P(7-3), O_2SR(6-30)$
6001		0000	6000		NI(3p 2S — 4d 2P _{1/2})
5993	10		5992		N ₂ 1P(73)
5977		5974.4	5976		O ₂ +1N(1—1)
5967			5969		NI(5972, 5966)
		5957.9	5958		N ₂ 1P(8-4), OI(3p ³ P - 5d ³ D), NI(5959), NII(3p ³ P ₂)
					$-3d ^3D_1)$
5948			5950		$N_2 1P(8-4)$, $VK(6-20)$, $NI((3p^4)^4P_{3/2}-3p'^2P_{1/2})$,
					$NII(3p^3P_2 - 3d^3D_2)$
			5940		$N_2 1P(8-4)$, $NI[(3p^4)^4P_{3/2}-3p'^2P_{3/2})$, $NII(3p^3P_{2,1}-$
				i	3d ³ D _{3, 1})
		5932.6	5930		NI(5931), NII(3p ³ P ₁ — 3d ³ D ₂), O ₂ SR(2—27) (10—32)
			5925		O_2 +1N(2—2), NI(5927)?, NII(3p 3P_0 — 3d 3D_1)
			5904		N ₂ 1P(9—5), NI(5907, 5905)
5892	5	5892.3	∫ 5895 5888		NaI, D ₁ N ₂ 1P(9-5)
			5878		NaI, D ₂
			5871		O ₂ +1N(3—3), N ₂ 1P(9—5)
5867	13	5865.6	5859		$NI(3p ^4P_{3/2} - 6s ^4P_{1/2}), N_2+1N(0-4)$
5851		5852.2	5850		$N_1(3p^4P_{3/2} - 6s^4P_{1/2}), N_2^+IN(0-4)$ $N_2IP(10-6), NI(3p^4P_{5/2} - 6s^4P_{3/2})$
3001		3002.2	5842		$N_2 1 \Gamma(10-6)$, $N_1(3p^4 F_{5/2} - 6s^4 F_{3/2})$ $N_1(3p^4 F_{3/2} - 6s^4 F_{3/2})$, $O_2 + 1N(4-4)$, $N_2 1 P(10-6)$,
	l		0012		$O_2SR(1-26)$
5835		5830.3	5828		NI(3p ⁴ P _{5/2} — 6s ⁴ P _{5/2}), N ₂ IP(10—6), [O ₂ SR(7—30)]
5803		5801	5800		$N_1(5p^2 1_{5/2}) = 0.5 1_{5/2}, N_2(11(10-0), [O_2(5R(1-30))] $ $N_2(1P(11-7), NI(3p^4P_{5/2}) = 5d^4F_{5/2})$
			5790		HgI, NI(3p 4P _{3/2, 5/2} — 5d 4F _{3/2, 7/2}) (3p 4S — 7s 4P _{1/2})
		1	5786		N ₂ 1P(11—7)

Previ			pectrogrameb. 23, 19		Interpretation
λ	I	$\lambda_{\mathbf{p}}$	λr	I	_
			5780		NoVK/5-19) NI(3n 4Pcm - 5d 4Dcm)
5772		5771	5770		$\begin{array}{lll} N_2VK(5-19), & NI(3p^4P_{5/2}-5d^4D_{5/2}) \\ HgI, & NI(3p^4P_{3/2}-5d^4D_{5/2}), & (3p^4S-7s^4P_{3/2}), & O_2SR(9-31) \\ \end{array}$
5751		5754	5766 5753		$\begin{array}{l} N\tilde{I}(3)^4P_{5/2} - 5d^4P_{5/2}), N\tilde{I}I(3s^4P - 3p^3D), O_8SR(11 - 32) \\ N_2 IP(12 - 8), VK(1 - 16), N_2 + IN(1 - 5), NI(3p^4P_{5/2} - 12) \end{array}$
)/191		9194	3133		$5d ^4P_{5/2}$). NII(2p $^2(^1D_2 - ^1S_0)$)
5743			5745		$N_2 1P(12-8)$, $NI(3p^4S-7s^4P_{7/2})$, $NII(3s^1P-3p^3D_2)$, $O_9SR(0-25)$
5736		5730.5	5735		$N_2 1P(12-8)$, $NI(3p 4S-6d 4D_{5/2})$, $NII(3s 3P_2-3p 3D_1)$
			5712		$N_2 1P(13-9)$, $NII(3s^3P_2-3p^3D_2)$, $[O_2SR(3-27)]$
5685		5709.2	5709 5688		$\begin{array}{l} NI(3p ^4S - 6d ^4P_{3/2}) \\ NII(3s ^3P_1 - 3p ^3D_1), \ N_2 1P(13 - 9) \end{array}$
5677		5679.9	5677	5.5	NII(38 3Po a 3p 3D) a)
		5666.9	5667	1.3	$\begin{array}{c} {\rm NII}(3{\rm s}~{}^{3}{\rm P_{0,2}}-3{\rm p}~{}^{3}{\rm D_{1,3}}) \\ {\rm NII}(3{\rm s}~{}^{3}{\rm P_{1}}-3{\rm p}~{}^{3}{\rm D_{2}}) \end{array}$
			5658		$N_21P(14-10), N_2+1N(2-6), O_2SR(8-30)$
		5629.2	5630	1.9	$O_2+1N(1-0), N_21P(5-0)$
5635		5622.7	5623		$O_2^{+1}N(1-0)$, $N_21P(5-0)$, $NI(3p {}^4D_{3/2, 5/2} - 6s {}^4P_{1/2, 3/2})$
5622		[5621 5616		$\begin{array}{l} N_2VK(4-18), \;\; O_2SR(2-26) \\ O_2+1N(1-0), \;\; N_21P(15-11), \;\; NI(3p^4D_{1/2,7/2}-68^4P_{1/2,5/2}), \end{array}$
			3010		$O_9SR(5-28)$
		5613.9	5612		$N_2 1P(5-0)$, $NI(3p ^4D_{3/2} - 6s ^4P_{3/2})$
		5603	5604		$O_2+1N(1-0)$, $NI(3p 4D_{1/2}-6s 4P_{3/2})$, $N_2VK(0-15)$?
			5600		$NI(3p + D_{5/2} - 6s + P_{5/2})$
5577.35	100	5577.9	5595 5577	≈ 100	$O_2^{+1}\hat{N}(2-1), N_21P(6-1), (15-11)$ $OI[2p^4(^1D_2-^1S_0)]$
5577.35	100	5553	5554	/S 100	$OI(2p^{-1}D_2 - 30)$ $OI(3p^{3}P - 7s^{3}S), N_21P(7 - 2), NII(3s^{5}P_3 - 3p^{5}D_3)$
		0000	5543		$NTI(38^5P_0 - 3n^5D_0)$ $N_01P(7-2)$
1		5534	∫ 5537		O_2 +1N(4—3), NII(3s $^5P_{1,3}$ —3p $^5D_{1,4}$) $N_2VK(7-20)$, $N_21P(7-2)$, NI(3p 4D —5d 4P),
		9994	5531		$N_2VK(7-20)$, $N_21P(7-2)$, $NI(3p^4D-5d^4P)$,
		5520	5517		$\begin{array}{c} { m NII}(3{ m s}^5{ m P}_2 - 3{ m p}^5{ m D}_3), \ [{ m O}_2{ m SR}(1-25)] \\ { m O}_2{ m +}1{ m N}(5-4), \ { m N}_21{ m P}(8-3), \ [{ m O}_2{ m SR}(4-27)] \end{array}$
		5520	5513		$O_2^{-1}N(3-4), N_2^{-1}F(3-3), [O_2SR(4-27)]$ $OI(3p^3P-6d^3D), O_2SR(9-30) (11-31)$
			5497		N ₂ 1P(8—3), NI(5497), NII(3p ³ P ₂ —3d ³ P ₂)
			5492		OI(3p' 1F — 5d' 1G)
			5488		$N_2+1N(4-8)$
			5478		N ₂ 1P(9—4), NII(3p ³ P _{1, 2} — 3d ³ P _{2, 1})
5472		5474.7	5475 5467	0.22	$egin{array}{l} N_2 1 P(9-4) \ N_2 V K(3-17) \end{array}$
		5460.9	5462	0.74	HgI N ₂ 1P(9—4), NII(3p ³ P ₁ — 3d ³ P ₁)
5456			5457		$NII(3p ^3P_1 - 3d ^3P_0)$
			5452		$NII(3p^3P_0 - 3d^3P_1)$
			5442		N ₂ 1P(10—5)
5436		5435.6	5436 5434	0.47	$ \begin{array}{l} O\bar{I}(3p^5P - 6s^5S), O_2SR(0-24) \\ N_2IP(10-5) \end{array} $
			5426		O ₂ SR(3—26)
			5421		N ₂ 1P(10—5)
~41° [5417		NI(5419)
5415			5412		OI(3p'3F 5d'1G)?
5403			5405		N ₂ 1P(11—6)
5394			5392 5390		$\begin{array}{l} NI(3p^4P_{5/2,1/2} - 7s^4P_{3/2,1/2}) \\ N_21P(116), \ O_2SR(1030) \end{array}$
			5375		$N_2 1P(11-6)$, $O_2 SR(10-30)$ $N_2 1P(12-7)$, $VK(6-19)$, $NI(3p ^4P_{3/2} - 7s ^4P_{3/2})$,
5371		5371	1 30.3		$[(2p^4)^4P_{1/2}-4p^4D_{1/2}]$
			5369		$N_2 1P(12-7)$, $NI(3p ^4P_{5/2} - 7s ^4P_{5/2})$, $[(2p^4) ^4P_{1/2, 3/2}]$
		1	1.	1	$-4p ^4D_{3/2}$

Prev Measure			pectrogran eb. 23, 195		
λ	1	λ_{p}	λ_{r}	I	
5351		5354	5360 { 5358 5350 5346 5342	0.22	$\begin{array}{c} NI(3p^4P_{3/2}-7s^4P_{5/2})\\ NI((2p^4)^4P_{3/2}-4p^4D_{5/2}]\\ N_2!P(12-7), \ NI((3p^5P_3-3d^4P_3)\\ ((2p^4)^4P_{5/2}-4p^4D_{5/2}), \ O_8R(5-27)\\ NI(3p^4P_{3/2}-6d^4P_{3/3}), \ NI(3p^4P_{2/3}-3d^4P_{3/2}) \end{array}$
5332		5328.9	$ \left\{ \begin{array}{c} 5334 \\ 5332 \\ 5328 \end{array} \right. $	0.37	$\begin{array}{c} NI(3\dot{p}^{4}P_{5/2}^{5}-6d^{4}P_{5/2}^{5}), \ N_{2}1P(\bar{1}3-8) \\ O(3\dot{p}^{4}P_{5/2}^{5}-5d^{4}D), \ N_{2}1P(13-8), \ O_{2}SR(2-25) \\ O(3\dot{p}^{5}P_{5}-5d^{5}D), \ N_{2}VK(2-16), \ NI((2p^{4})^{4}P^{5}_{/2}-4p^{4}D_{7/2} \\ NI(3)^{5}P_{2}-3d^{5}P_{2}) \end{array}$
5311			5319 5315 5297		$N_21P(13-8), NII(3p^5P_{1,2}-3d^5P_{2,3})$ $NII(3p^5P_1-3d^5P_{1}), NII(2p^4)^4P_{1/2}-4p^4P_{1/2})]$ $OI(3p^5P-8s^9S), N_21P(14-9)$
5289		5292	5292 5282		$\begin{array}{l} O_2^{+}1N(2-0), \ \ N_2^{'}1P(14-9), \ \ NI[(2p^4)^4P_{5/2,3/2}-4p^4P_{3/2}], \\ O_2SR(7-28) \\ N_21P(14-9), \ \ NI[(2p^4)^4P_{5/2}-4p^4P_{5/2}) \end{array}$
5258	6		5272 [5264]		$ \begin{array}{c} O_2^{*}\text{-}1\dot{N}(3-1)', \ \ N_2\dot{1}\dot{P}(1\dot{5}-\dot{1}0), \ \ O\hat{1}(3p^3\dot{P}-7d^3D), \\ NO_\beta(3-18) \\ [O_2\text{SR}(9-29)] \\ O_2^{*}\text{-}1\dot{N}(4-2) \end{array} $
,		5253.8	5257 { 5256 5250	0.37	$N_2 1P(15-10)$ $NO_{\beta}(3-18)$ $O_2+1N(5-3)$, $O_2SR(4-26)$
5245 5230.6		5226.7	5242 5234 5227	1.22	$\begin{array}{l} O_2 + 1N(6-4), \ N_2 1P(16-11), \ O_2 SR(1-24) \\ O_2 + 1N(7-5), \ N_2 VK(5-18) \\ N_2 + 1N(0-3), \ N_2 1P(16-11) \end{array}$
5202.9		5198.3	5199 5193 5180 5177 5173	2.5	$\begin{array}{l} NI[2p^{5}(8-2p)], & (3p^{3}8-5d^{2}p), & NI(3p^{5}D_{4}-3d^{5}F_{5}) \\ N_{2}VK(1-15), & NI(3p^{4}D_{4}-3d^{5}F_{4}) \\ NII(3p^{5}D_{2},4-3d^{5}F_{2},5), & N_{2}IP(18-13), & NI(3p^{4}D_{7/2}-6d^{4}D_{3/2}) \\ NI(3p^{5}D_{3}-3d^{5}F_{4}), & N_{2}IP(18-13) \\ NI(3p^{5}D_{3}-3d^{5}F_{4}), & N_{2}IP(18-13) \\ NII(3p^{5}D_{2}-3d^{5}F_{3}) \end{array}$
5168		5148	5166 5154 5149 5147	0.38	$\begin{array}{l} NI(3p^4D_{5/2}-6d^4D_{5/2}), \ N_2IP(18-13) \\ NI(3d^4D_{7/2}-6d \left\{ \begin{array}{l} PD_{5/2}, \\ PD_{5/2}, \end{array} \right. N_2IP(19-14), \ O_2SR(3-25) \\ N_2^+IN(1-4), \ N_2IP(19-14), \ NI(3p^4D_{5/2}-6d^4D_{7/2}), \\ (O_2SR(0-23)(10-29)] \\ O(13p^4P-98S), \ NI(3p^4D_{5/2}-6d^4P_{3/2}) \end{array}$
5131			5140 5132 5125 5114 5109		$\begin{array}{l} NI(3p^4D_{5/2}-6d^4P_{5/2})\\ OI(3p^3P-8d^3D),\ NI(3p^4D_{1/2}-6d^4P_{1/2}) \end{array}$
5080			5105 5093 5078 5067 5053		$\begin{array}{ll} NII(3p^{1}S-4s^{1}P) \\ N_{2}YK(4-17), \ O_{2}SR(5-26) \\ N_{2}^{2}1N(2-5), \ O_{2}SR(11-29), \ N_{2}GK(0-12) \\ N_{1}(5068), \ O_{2}SR(2-24), \ N_{2}GK(0-12) \\ N_{3}P(11-5) \end{array}$
5049		5046	5048 5043	0.15 0.19	$OI(3p^3P - 10s^3S), N_21P(11-5), O_2SR(7-27)$ $NII(3s^3P_2 - 3p^3S_1)$
5029			5032 5029 5021 5019 5014		$\begin{array}{lll} N_3VK(7-19), N_2P(11-5), OsSR(9-28) \\ N_3P(12-6), NH(39^29_3-3d^3F_3) \\ N_2P(12-6), NH(38^3P_3-3p^3P_2) \\ OI(3p^5P-78^5), NH(3p^3P_2-3d^3F_2) \\ OI(3p^5P-6), N_2P(12-6), NH(38^2P_3-3p^5P_3) \end{array}$

Prev Measur			pectrogran eb. 23, 195		Interpretation
λ	I	λ_{p}	γr	I	Interpretation
5006.7 5005		5003.7	5011 5007? 5005 5003	0.20 2.8	$\begin{array}{c} NII(3s^3P_1-3p^3S)(3s^4P_2-3p^5P_1) & ,\\ 0III(5006.9)(^3P_2-^{1}D_2)^{2}\\ 0s^{\pm}IN(3-0) & ,\\ 0s^{\pm}IN(3-0) & ,\\ NII(3p^3D_3-3d^3F_4),(3s^4P_2-3p^5P_2),3p^4S-3d^4P_2) \\ NII(3s^3P_0-3p^3S),(3p^4D_{1,2}-3d^4P_{2,3}) & ,\\ \end{array}$
4987		5001.4	[4999 [4994] 4990 4980		$\begin{array}{lll} O_9^+1N(4-1), & NII(3s^5\dot{P}_1-3p^5P_1), & O_2SR(4-25) \\ NII(3s^5\dot{P}_2-3p^5P_3), & 3p^3S-3d^3P_1) \\ O_9^+1N(5-2), & NII(3s^5\dot{P}_1-3p^5P_2) & (3p^3S-3d^3P_0)^? \\ OI(3p^3P-11s^8S) \end{array}$
4975		4967.5	4974 ∫ 4970 4965	$0.16 \\ 0.27$	N_2 2P(4—11), O ₂ SR(1—23) OI(3p ⁵ P—6d ⁵ D) (4968.8, 4967.9, 4967.4)
4961			4962	0.24	N ₂ +1N(47), N ₂ VK(316)
4942			4942	0.21	$OII(3p^2P - 3d^2D)$
4935		4932.7	4934.5	0.35	$NI(3s^2P_{3/2}-4p^2S)$
4927			4928	0.00	O ₂ SR(10—28)
i			4923		$OII(3p^4S - 3d^4P_{5/2}), [O_2SR(8-27)]$
4916			4917	0.14	N ₂ 2P(1—7)
		4914.5	∫ 4915	0.18	$NI(3s^2P_{1/2}4p^2S)$
		4014.0	4913		$NO_{\beta}(3-17)$
4902			4907		$OII(3p^4S - 3d^4P_{3/2}), O_2SR(3-24)$
			4896	0.27	$[N_2VK(6-18)]$
4891		4894.5	4895		$NII[(2p^3)^1D_2 - 3p^1P_1)]$
4091			4891		$OII(3p^4S - 3d^4P_{1/2}), NO_{\beta}(3-17)$
		4000	4887		$NI(4886)$, $O_2SR(0-22)$
		4882	4883	0.16	NI(4882)
4873			4880 4873	0.14	N ₂ +1N(6—9)
1010			4867	0.15	$\begin{array}{l} { m OII}(3{ m p}'{}^2{ m P}_{3/2} -\!$
			(4865)	0.10	OII(3p4S — 3d4D _{1/2})
4007 =			4862	0.15	$OII(3p'^{2}P_{1/2} - 3d'^{2}D_{3/2})$
4861.5		4860.7	1002	0.48	$H_{\beta}(4861.3)$
4856			4857	0.15	$OH(3p^4S - 3d^4D_{3/2})$
4835		4000	4838)	N ₂ VK(2—15), NI(4838)
4000		4836	(4835)	0.39	2
			4814	'	$N_2 2P(2-8)$, $O_2 SR(2-23)$ (9-27)
4812			4812		$NH(3p^3D_9 - 3d^3D_9), NO_8(2-16)$
4=00		4802	4803	0.18	$OI(3p^5P - 8s^5S)$, $NII(3p^3D_3 - 3d^3D_3)$
4790			4799	0.14	
1			4792	Ì	$NII(3p^3D_2 - 3d^3D_1), NO_{\beta}(2-16)$
4780			4787 4781		NII(3p3D2 — 3d3D2)
¥100		4770.4	4772	0.22	NH(3p3D _{2,1} —3d3D _{3,1})
		2110.4	4758	0.22	$N_2VK(5-17)$, OI($3p^3P-7d^5D$), NII($3p^3D_1-3d^3D_2$) O ₂ SR($4-24$)
4746		(4752)	(4749)	0.12	02314(4-24)
		4724	4724	0.09	N ₂ 2P(3—9), O ₂ SR(6—25)
4709	7.8	4709.1	4709	0.00	N_2 +1N(0—2), O_2 SR(8—26)
			4686	0.23	NI(4686)
			[4679	1	NII(3d¹P — 4f¹D)
		4677.8	4677	0.35	
			4676		$egin{array}{l} \mathrm{OII}(3\mathrm{d}^2\mathrm{D}_{5/2}-4\mathrm{f}^2\mathrm{G}_{7/2}) \ \mathrm{OII}(3\mathrm{s}^4\mathrm{P}_{5/2}-3\mathrm{p}^4\mathrm{D}_{5/2}) \end{array}$
			4673	0.15	$OI(3p^5P - 9s^5S)$, $OII(3s^4P_{3/2} - 3p^4D_{1/2})$, $O_9SR(3-23)$
		1	4670	0.14	NI(4670), N ₂ 2P(0-5)
i				1	

Previ Measure			ectrogran b. 23, 195		Interpretation
λ	1	λ_{p}	λ_{r}	I	
4652	4.6	4661.7 4651	$\left\{\begin{array}{c} 4662 \\ 4661 \\ 4652 \end{array}\right.$	0.35	$\begin{array}{l} O\Pi(3s^4P_{3/2}-3p^4D_{3/2}),\ NI(4660)\\ N_2^+1N(1-3),\ [N_2VK(4-16)],\ [OI(3p^4P-8d^5D)],\\ [OII(3s^4P_{2/2},1_2-3p^4D_{7/2},1_2)] \end{array}$
		4642.8	$\left\{\begin{array}{c} 4643 \\ 4642 \\ 4639 \end{array}\right.$		$\begin{array}{l} N\dot{\Pi}(3s^{3}P_{2}-3p^{3}P_{1}), \ O_{2}SR(0-21)\\ OII(3s^{4}P_{3/2}-3p^{4}D_{5/2})\\ OII(3s^{4}P_{1/2}-3p^{4}D_{3/2}) \end{array}$
4633		4631 4621.9	$\left\{\begin{array}{c} 4632 \\ 4631 \\ 4621 \end{array}\right.$	0.37 0.11	$\begin{array}{l} O_{2}SR(11-27) \\ NII(38^{3}P_{2}-3p^{3}P_{2}) \\ NII(38^{3}P_{1}-3p^{3}P_{0}), \ OII(3d^{2}D_{5/2}-4f^{4}F_{5/2}) \\ NII(38^{3}P_{1}-3p^{3}P_{0}), \ OII(3d^{2}D_{5/2}-4f^{4}F_{5/2}) \\ \end{array}$
4613			4614		$N_2VK(7-18)$, $NII(3s^3P_1-3p^3P_1)$, $OII(3d^2D_{5/2}-4f^2^4F_{5/2,7/2})$
		4608.5	4610 4608	0.15	OII($3d^{2}D_{5/2, 5/2} - 4f^{2, 4}F_{7/2, 5/2}$), NII($3d^{4}F - 4f^{4}F$) NII($3s^{3}P_{0} - 3p^{3}P_{1}$), N ₂ VK($0-13$), O ₂ SR($5-24$) (7—25) (9—26)
4597	3.4	[4600.7]	4601	0.41	$N_2^+1N(2^-4)$, NII(3s ³ P ₁ —3p ³ P ₂), OII(3d ² D _{3/2} —4f ² F _{5/2}) OII(3s' ² D _{3/2} —3p' ² F _{5/2})
1301	0.1	14597 4591	4596 4591	0.25	$OII(3s'^2D_{5/2} - 3p'^2F_{7/2}), NO_{\beta}(3-16)$
		1	4589	0.54	$OI(3p^5P - 103^5S), O_2SR(2-22)$
4572.3		4573.5	4574 4572	0.29	$N_2 2P(1-6), NO_{\beta}(3-16), [OI(3p^5P-9d^5D)]$
4565		ļ	4563	١ .	NII(3p 1P 3d 3F ₂)
4000			4561		27 (237)0 8)
4554.8	2	4553.3	4553	0.30	N ₂ +1N(3—5) NII(3d ¹ F — 4f ³ G ₄)
			4552 (4533.5	sh	$N_2VK(3-15)$
4535	1.6	4531.5	4532.5		
2000			4530.5	5 }	$NII(3d^{1}F - 4f^{1}G)$ $N_{2}+1N(4-6)$
4515	1.0	4515.1	∫ 4516 4514	0.16	0_2 SR(6—24)
			4511	ľ	
4509		1	4507		NII(3p3D ₃ - 3d3P ₂)
		4498	4498 4491	0.19	$NI(4498)$, $[N_2VK(6-17)]$, $[NO_{i}(2-15)]$ $N_22P(2-7)$, $OII(3d^2P_{3/2}-4f^2D_{5/2})$, $NI(4492)$
			4489	0.13	$N_2+1N(5-7)$, OII(3d ² P _{1/2} —4f ² D _{3/2}), (3d' ² P _{3/2, 1/2}
4487.5	1.6	4488.2	1		$-4f'^2D_{5/2, 3/2}$), NII(3p ³ D ₂ 3p ³ P ₂)
		i	4485 4483	0.08	NI(4485) OII(3d ${}^{2}D_{5/2}$ — 4f ${}^{4}D_{5/2}$), [NO ₃ (2—15)]
			4477		$OII(3d^{2}P_{3/2, 1/2} - 4f^{4}D_{5/2, 3/2}), NII(3p^{3}D_{2} - 3d^{3}P_{1})$
		4474	4472		
4468		4466.6	∮ 4468	0.18	$egin{array}{c} { m OII}(38^6{ m S} - 3{ m p}^6{ m P}_{3/2,5/2}) \ { m OII}(3{ m d}^2{ m P}_{3/2} - 4{ m f}^4{ m D}_{3/2}) \end{array}$
			4466	0.15	$NII(3p^3D_1 - 3d^3P_1), OII(3s^6S - 3p^6P_{7/2})$
4452			4452	0.2	$OII(3s^2P_{3/2}-3p^2D_{3/2})$
			4449		$NII(3p^{1}P - 3d^{1}D), OII(3p'^{2}F_{7/2} - 3d'^{2}F_{7/2})$
		4443.0	4442 4440	0.15	NH($3d^3P_1$ — $4f^3D_2$), OH($3p'^2F_{5/2}$ — $3d'^2F_{5/2}$) O _* SR(11—26)
4334	1.6	4432.8		0.53	$NH(3d^3P_{0,2}-4f^3D_{1,2,3})$
4427.4	3	4427.6	∫ 4429	0.13	$NII(3d^{3}P_{1}-4f^{3}D_{1})$
4421.4	,	4427.0	4427	0.09	$NII(3d ^3P_1 - 4f ^1D_2)$ $N_2VK(2-14)$
		4423.2	4424 4422		O ₂ SR(0-20) (5-23)
4415.0		4415.4	1 4417	0.76	$N_2 2P(3-8)$, $OII(3s^2P_{1/2}-3p^2D_{3/2})$
4415.2	2.5	4415.4	4415	0.82	$OII(3s^2P_{3/2}-3p^2D_{5/2})$

4403 4404 0.1 4384 4377 1.6 4379.1 { 4474 0.1 4377 4377 4379 0.1 4378 4379 4375 4375 4368.3 2.4 4368.3 4368 1.1 4362 1.2 4358.3 4358 (0.0	$\begin{array}{lll} 19 & N_8VK(5-16) \\ 15 & O\Pi(3d^{*2}P_{3/2}-4f^{*2}F_{7/2}) \\ & O\Pi(3d^{*2}P_{3/2}-4f^{*2}F_{5/2}) \\ & N\Pi(3p^*P_{1}-3d^{*2}P_{3/2}), \ [0_2SR(2-21)] \\ & O\Pi(3s^*S-4p^*P), O\Pi(3s^*P_{5/2}-3p^4P_{3/2}) \\ \end{array}$
	$\begin{array}{lll} 19 & N_8VK(5-16) \\ 15 & O\Pi(3d^{*2}P_{3/2}-4f^{*2}F_{7/2}) \\ & O\Pi(3d^{*2}P_{3/2}-4f^{*2}F_{5/2}) \\ & N\Pi(3p^*P_{1}-3d^{*2}P_{3/2}), \ [0_2SR(2-21)] \\ & O\Pi(3s^*S-4p^*P), O\Pi(3s^*P_{5/2}-3p^4P_{3/2}) \\ \end{array}$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	15 OII(3d* 4 D ₃₍₂ - 4f* 4 F ₇₍₂₎ OII(3d* 4 D ₃₍₂ - 4f* 4 F ₇₍₂₎) \times 10(3d* 4 D ₃₍₂ - 4f* 4 F ₃₍₂₎) \times 10(3s* 4 P ₁ - 3d* 4 D ₂), \times 10(3s* 4 P ₃₍₂₎ \times 24 OI(3s* 4 P ₃₍₂₎ \times 10(3s* 4 P ₃₍₂₎ \times 10
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} \text{OII}(3d^{4}\text{^{2}}\text{D}_{3/2}-4f^{4}\text{^{2}}\text{F}_{3/2})^{2} \\ \text{NII}(3p^{4}\text{P}_{1}-3d^{4}\text{D}_{2}), \; (O_{2}\text{SR}(2-21)] \\ \text{OI}(38^{8}\text{S}-4p^{3}\text{P}), \; \text{OII}(38^{4}\text{^{2}}\text{P}_{3/2}-3p^{4}\text{P}_{3/2}) \\ \text{820} \text{HgI}, \; \text{NI}(4358), \; \text{OII}(3d^{4}\text{^{2}}\text{P}_{5/2}-4f^{4}\text{^{2}}\text{P}_{7/2}) \\ \text{32} \text{N}_{2}^{2}P(4-9), \; \text{OII}(38^{4}\text{^{2}}\text{^{2}}\text{D}_{3/2}-3p^{4}\text{^{2}}\text{D}_{5/2}) \end{array}$
4368.3 2.4 4368.3 4368 1.4 4362 1.2 4358.3 4368 [0.4 4349.2 4350.2 4350 0.4 4349.2 4350.2 4350 0.4 4348 0.4 4345 0.4 4345 0.4 4345 0.4 4345 0.4 4345 0.4	$ \begin{array}{lll} & & & & & & & & & & \\ & & & & & & & & $
4368.3 2.4 4368.3 4368 1.: 4362 1.2 4358.3 4358 (0.: 4349.2 4350.2 4350 0.: 4348.0 4348 0	24 OI($3s^{4}S - 4p^{3}P$), OII($3s^{4}P_{5/2} - 3p^{4}P_{5/2}$) 82) HgT, NI(4358), OII($3d^{4}D_{7/2}, _{5/2} - 4f^{4}D_{7/2}$) 32 N ₂ 2P(4-9), OII($3s^{4}D_{5/2} - 3p^{4}D_{5/2}$)
4362 1.2 4358.3 4358 (0.4 4349.2 4350.2 4350.2 4360 0.4 4348 0.4 4	82) HgI, NI(4358), OII(3d ${}^4D_{7/2}$, ${}^{5/2}$ — 4f ${}^4D_{7/2}$) 32 N ₂ 2P(4—9), OII(3s' ${}^2D_{5/2}$ — 3p' ${}^2D_{5/2}$
4349.2 4358.3 4358 (0.4352 0.4350.2 4350.2 4350 0.4348 0.64345 (4345)	32 $N_2 2P(4-9)$, $OII(3s'^2D_{5/2}-3p'^2D_{5/2})$
4349.2 4350.2 4350 0. 4348 0. 4348 0.	32 $N_2 2P(4-9)$, $OII(3s'^2D_{5/2}-3p'^2D_{5/2})$
4349.2 4350.2 4350 0. 4348 0. 4345	
4348 0. (4345	
[4345	18 $OII(3s^4P_{5/2} - 3p^4P_{5/2})$
	12 Hgf, $OII(3s'^2D_{3/2} - 3p'^2D_{3/3})$ $OII(3s^4P_{3/2} - 3p^4P_{1/2}), (3d^4D_{5/2} - 4f^4G_{7/2})$
	49 $N_2 2 P(0-4)$, OII (3d' ${}^2D_{5/2,3/2}$) — 4f' ${}^2D_{5/2,3/2}$), NI(4343)
4340.3 3.0 4343.2 4343 0.	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	23 H_{γ} , OII(3d ${}^{2}F_{5/2}$ — 4f ${}^{2}G_{7/2}$)
4339	HgI
4337	$OII(3s^4P_{3/2} - 3p^4P_{3/2}), NI(4337), O_2SR(4-22)$
4334.5	OII(3d 4D _{5/2,3/2} — 4f 4D _{5/2})
4330	$OII(3p'^{2}P_{3/2} - 3d'^{2}S)$
(4325)	$OII(3s^4P_{1/2} - 3p^4P_{1/2})$
4322	NI(4322)
4319.5 1.6 4319 4319 0.	28 $N_2VK(1-13)$, OII(3s ⁴ P _{3/2} - 3p ⁴ P _{5/2}), (3p' ² P _{1/2} - 3d' ² S)
4317.8 4317	OII(3s ⁴ P _{1/2} -3p ⁴ P _{3/2}), NI(4318)
4316	OII(3d ${}^{4}D_{3/2,1/2}$ —4f ${}^{4}D_{1/2}$), (3d ${}^{2}F_{7/2}$ —4f ${}^{4}F_{7/2}$)
(4313.5)	$NI(4313)$, $OII(3d^{2}F_{7/2}-4f^{4}F_{9/2})$ $OII(3d^{4}D_{1/2}-4f^{4}D_{1/2})$, $NO_{\beta}(0-13)$
4309	OII(3d $^4P_{5/2}$ — 4f $^4D_{7/2}$), NO $_{\beta}$ (0—15) OII(3d $^4P_{5/2}$ — 4f $^4D_{7/2}$), NI(4306), NO $_{\beta}$ (3—15)
4305 4295 4294 4293	OII(3d ${}^{4}F_{5/2} = 4i {}^{4}F_{5/2}$), N(4300), NO _{β} (0=13) OII(3d ${}^{2}F_{5/2} = 4i {}^{4}F_{5/2}$), 3d ${}^{4}P_{3/2} = 4i {}^{4}D_{5/2}$, 3/2), NO _{β} (0=13)
4295 4294 4293 (4288)	OII(3d $^4P_{1/2}$ — 4f $^4D_{1/2}$), NO ₆ (3—15)
(4285)	NI(4285), OII(3d $^{2}F_{5/2}$ —4f $^{4}F_{7/2}$)
4278 24.4 4277.8 4278	N ₂ +1N(0—1), [N ₂ VK(4—15)]
	.85 NII(3d 3D _{3,2} — 4f ^{3,1} F _{4,3})
4236 5.9 4236.1 4236	$N_{2}+1N(1-2)$, NII(3d $^{3}D_{1,2}-^{3}F_{2,3}$)
4231	$NI(3s^4P_{5/2}-4p^4P_{3/2}), OI(4p^3P-3d'^3P_2)$?
4229	NI(4229.6)
	.12 $NH(3p^{1}D - 4s^{1}P)$, $O_{2}SR(5-22)$
4224	NI(3s ⁴ P _{3/2} — 4p ⁴ P _{1/2})
	.15 $NI(3s^4P_{5/2}-4p^4P_{5/2})$, $OI(4p^3P-3d'^3P_1)$
4221	NI(4221)
	.10) $N_2VK(0-12)$ OI(4p ³ P - 3d' ³ P ₀)
4217.5 4215.5 0.	.10 $NI(3s^4P_{1/2}-4p^4P_{3/2}), NO_{\beta}(2-14)$
	10 NI(3s $^{4}P_{3/2}$ — 4p $^{4}P_{5/2}$), O ₂ SR(0—19)
	.17
	.09 NI(4209)
	.10 NI(4206)
	$N_3+1N(2-3)$, $N_22P(2-6)$, $NO_{\beta}(2-14)$
4196 0.	.15 $OII(3p'^2D_{3/2} - 3d'^2P_{1/2,3/2})$
4193 0	.15 $OII(3p'^{2}D_{5/2} - 3d'^{2}P_{3/2}), NI(4193)$
4189.7 4189	OII($3p'^{2}F_{7/2}$ — $3d'^{2}G_{9/2}$)
4100	NI(4187)
4185.9 4185.5 4185	.10 OH(3p'2F _{5/2} — 3d'2G _{7/2})
4104	NII(3d ³ D ₃ — 4f ³ D ₃)
4180.5	N I I (3G ° I Io 4T ° I Jo)

12

Previ Measure			etrogram b. 23, 195		Interpretation
γ	I	λ_{p}	$\lambda_{\rm r}$	I	
4176	1 4		∫4176.5		NII(3d ¹ D — 4f ¹ F)
		4175	14174.5	0.18	$\begin{array}{ll} NII(3d^3D_2-4f^3D_{2,3}), & N_2GK(0-9), & O_2SR(2-20) \\ N_2VK(3-14), & NII(3d^1D-4f^3F_3) \end{array}$
4172		4170	4170 4168.5	0.12	$N_2 V K(3-14)$, $N11(34-D-41-13)$ OII(3p ⁴ P _{5/2} —3d ⁴ P _{5/2})
			4167.5	0.15	$N_2+1N(3-4)$
			(4166)		NI(4166.6) ?
4164			4164		NI(4164.8) ?
		4157	4160 4156.5		$\begin{array}{c} NII(3d^3D_2-4f^{3,1}D_{1,2}) \\ OII(3p^4P_{5/2}-3d^4P_{3/2}), \ NII(3d^3D_1-4f^{3,1}D_{1,2}) \end{array}$
		4157	4153.5		$OII(3p ^4P_{3/2} - 3d ^4D_{5/2})$
			4152		$NI(3s^4P_{5/2}4p^4S)$
i			4145		$NI(3s^4P_{3/2}-4p^4S)$, $NII(3s^5P_3-3p^5S)$, $O_2SR(4-21)$
4141	1.4		[4141		$N_22P(3-7)$, OII(3p ⁴ P _{3/2} - 3d ⁴ P _{3/2})
		4140	14140 4138.5	0.17	N ₂ +1N(45)
			4137.8		$NI(3s^4P_{1/2}4p^4S)$
ļ			4136.5		
			4134		OII(3p 4P _{1/2} 3d 4P _{3/2}), NII(3s 5P ₂ 3p 5S)
			4131		$\begin{array}{c} \mathrm{OII}(3\mathrm{p}^4\mathrm{P}_{3/2}{-}3\mathrm{d}^4\mathrm{P}_{1/2}) \ [\mathrm{NO}_{\beta}(1{-}13)] \\ \mathrm{NII}(3\mathrm{s}^5\mathrm{P}_1{-}3\mathrm{p}^5\mathrm{S}) \end{array}$
			4125		OII(3p ⁴ P _{1/2} 3d ⁴ P _{1/2})
4120.4	1.6		4120.5		OII(3p 4P _{5/2} — 3d 4D _{3/2, 5/2})
		1	4119		$OII(3p^4P_{5/2}-3d^4D_{7/2})$
			4114.5		$NI(3s^2P_{3/2} - 3p'^2D_{3/2}), OII(3p'^2F_{7/2} - 3d'^2D_{5/2}) O_2^+2N(0-8), NO_\beta(1-13)$
4112			4112		$O_2^{\pm 2}N(0-8), NO_{\beta}(1-13)$ $OII(3p^4P_{5/2}-3d^2F_{5/2})$
4112		İ	4111		$OII(3p^4P_{3/2} - 3d^4D_{1/2})$
l			4109.5		$OII(3p'^{2}F_{5/2} - 3d'^{2}D_{3/2}), NI(3s^{2}P_{3/2} - 3p'^{2}D_{5/2}),$
			4100 =		$\begin{array}{c} NII(3d^{4}D_{2}-4f^{8}D_{2})\\ OII(3p^{4}P_{3/2}-3d^{4}D_{3/2,5/2}),\;(3p^{4}D_{7/2}-3d^{4}F_{5/2}) \end{array}$
		4099.8	4106.5 4100	0.08	$NI(3s^2P_{1/2} - 3p'^2D_{3/2})$
		4033.0	4097.5	0.00	OII(3n ⁴ P _{1/2} — 3d ⁴ D _{3/2}), $(3d^4F_{7/2} - 4f^4G_{9/2})$
			4095.5		$OII(3p^4P_{3/2}-3d^2F_{5/2}), (3d^4F_{5/2}-4f^4G_{7/2}), O_2SR(1-19)$
4092.8	1.6	1	4094	0.14	N ₂ 2P(4—8), OII(3p ⁴ D _{7/2, 5/2} —3d ⁴ F _{7/2, 3/2})
			4089		$OII(3d {}^{4}F_{9/2} - 4f {}^{4}G_{11/2})$ $OII(3d {}^{4}F_{3/2} - 4f {}^{4}G_{5/2}), NII(3d {}^{3}F_{3} - 4f {}^{1}F_{3})$
			4086 4085.5		OH(3p $^{4}P_{5/2}$ — 3d $^{2}F_{7/2}$), (3p $^{4}D_{5/2}$ — 3d $^{4}F_{5/2}$)
			4083		OII(3d 4F _{5/2} — 4f 2G _{7/2}), NII(3d 3F ₃ — 4f 3F ₃)
		4081.9	4082	0.17	NII(3d3F3-4f3F4), O2+2N(0-8)
40.00		4079.4	4077	1 0 50	HgI, OII(3p ⁴ D _{3/2} —3d ⁴ F _{3/2}), NII(3d ³ F ₂ —4f ³ F ₂)
4076		4075.2	4076	0.50	$\begin{array}{c} OII(3p^4D_{7/2} - 3d^4F_{9/2}) \\ NII(3d^3F_2 - 4f^3F_3) \end{array}$
			(4072	0.44	$OII(3p 4D_{5/2} - 3d 4F_{7/2}), N_2VK(2-13)$
		4071.2	4071	(0.36)	$OH(3d^4F_{7/2}-4f^2G_{9/2})$ $(3p^4D_{3/2,1/2}-3d^4F_{5/2,3/2})$
		4067	4066		$[O_2SR(3-20)]$ OII(3d ${}^4F_{9/2} - 4f {}^4F_{9/2}), (3d' {}^2F_{5/2, 7/2} - 4f' {}^2G_{7/2, 9/2})$
4050.1	9.4	4059 1	4061	1.5	O11(3d *F _{9/2} — 4f *F _{9/2}), (3d *F _{5/2} , $_{7/2}$ — 4f *G _{7/2} , $_{9/2}$) N ₂ 2P(0—3)
4059.1	3.4	4058.1	(4058.5) (4057)	1.5	N1I(3d 3F ₄ — 4f 3G ₄)
4049		4046.6	4047	0.40	$OII(3d^4F_{7/2} - 4f^4F_{7/2})$
			4045.5	0.35	OII(3d 4F _{7/2} — 4f ² , 4F _{7/2, 9/2}), N ₂ VK(5—15), NII(3d ³ F ₃ —
4040		4040 4	4040	0.90	4f °G ₃), O ₂ SR(5—21) NII(3d °F ₃ — 4f °G ₄)
4042		4043.4	4043 4041	0.33	OII(3d ${}^{4}F_{5/2}$ — 4f ${}^{4}F_{5/2}$), NII(3d ${}^{3}F_{4}$ — 4f ${}^{3}G_{5}$), NO $_{\beta}$ (0—12)
		4037	4036.3		

Prev Measur			pectrogran eb. 23, 195		Interpretation
λ	I	λ_{p}	λ_r	I	and production
			4035.8	0.28	OII($3d^4F_{5/2}$ — $4f^2F_{5/2}$), NII($3d^3F_2$ — $4f^3G_3$)
	-		4033		OII(3d 4F _{3/2} — 4f 4F _{3/2}), NI(4033.6)
1007 5			(4030)		$NO_{\beta}(0-12)$
4027.5		4026	4026 4024	0.30	$OII(3d^4F_{3/2}-4f^2F_{5/2}), NII(3d^3F_3-4f^1G_4)$ $OII(3d'^2F-4f'^2D)$
4013			4011	(0.20)	NI(4011.0)
			4009		111(1011.0)
			4001		NI(4000, 4001.7
3997.5	3.7	3997.3	3997.5	2.1	$N_2 2 P(1-4)$
			3995 3992.5	(0.70)	NII(2s ¹ P — 3p ¹ D), NI(3994.9)
			3992.5		
			3989		O ₂ SR(219)
			(3986.5)		
		1	(3985.5)		$OII(3p ^4P_{1/2} - 3d ^2P_{3/2})$
3982.6	1.0		3982.5		$OII(3s^2P_{3/2} - 3p^2P_{1/2})$
			3981 3979		N ₂ VK(1—12)
3974			3973.5		$OII(3s^2P_{3/2} - 3p^2P_{3/2})$
			3968.5		NI(3970.0) ?
3962.5			3961		$NO_{\beta}(2-13)$
3957			3955		$OI(3p^3P_{2,1} - 3s''^3P_2), NII(3s^3P_1 - 3p^1D_2), NI(3957.2)$
			3954 (3949)		$OI(3p^3P_{2,1,0} - 5s''^3P_{1,0}), OII(3s^2P_{1/2} - 3p^2P_{1/2}) $ $N_2VK(4-14), NO_3(2-13)$
			(3947)		$OI(3s^5S - 4p^5P)$
			(3945)		OII(3s ² P _{1/2} — 3p ² P _{3/2})
3943	2.2	İ	3942.5	1.1	$N_2 2P(2-5)$
			3941.5	1.0	$N_2VK(7-16)$
			3930.5 3918.5		$OII(3s'^2D_{3/2}-3p'^2P_{1/2}), NII(3p^1P-3d^1P)$
3915	47.4	3914	3914		N ₂ +1N(0—0), O ₂ SR(1—18)
			3887.8		N ₂ VK(0-11), O ₂ SR(3-19)
			3886		
3884.3	2.2	3884.1	3884	3.2	N ₂ +1N(1—1)
ĺ			3883 3881.5		$OII(3p^4D_{3/2}-3d^4P_{3/2})\ (3p^4D_{7/2}-3d^4D_{5/2,7/2})$
			3880.5		NO ₃ (1—12)

Table 1c.

Auroral Lines from Previous Measurements in the Region 3874 Å — 3114. Å.

λ	I	Interpretation
3873.8	1.0	OII(3p $^4D_{1/2, 3/2}$ — 3d $^4P_{3/2, 1/2}$)(3p $^4D_{7/2}$ — 3d $^2F_{5/2}$)
3857.5		$N_2^{+}1N(2-2)$, $N_22P(4-7)$, $VK(3-13)$, $OII(3p^4D_{5/2}-3d^2F_{5/2})$
3821.8		$N_2+1N(4-4)$, $OII(3p^2P_{1/2}-4s^2P_{1/2})$
3805.3	4.9	$N_2 2P(0-2)$, $OII(3p^2P_{3/2}) - 4s^2P_{3/2}$
3771.6	1.0	N ₂ VK(2-12)
3755.2	4.2	N ₂ 2P(1-3), VK(5-14), OH(3s ⁴ P _{5/2} -3p ⁴ S)

λ	I	Interpretation
3728.4	1.0	$OII[2p^{2}(^{4}S_{3/2}-^{2}D_{3/2,5/2})], (3s^{4}P_{3/2}-3p^{4}S)$
3711.3	2.4	N ₂ 2P(2—4), OII(3s ⁴ P _{1/2} —3p ⁴ S)
3686	1.6	$N_2VK(1-11)$, $(OI(3s^2S-5p^3P)$
3671		N ₂ 2P(3—5), VK(4—13) (7—15)
3603	1.0	$N_2VK(0-10)$
3583	1.6	N ₂ +1N(10), N ₂ VK(312)
3578	9.8	N ₂ 2P(0-1), VK(6-14)
3563.5	1.6	$N_2+1N(2-1)$
3536.3	4.9	N ₂ 2P(12), N ₂ +1N(43)
3503.5	2.2	$N_2 2P(2-3)$, $VK(2-11)$
3484	1.0	N ₂ 2P(7—8) ?
3467.5	3.0	N ₂ 2P(3—4), NI[3p ³ (4S—2P)]
3429	2.0	$N_2VK(1-10)$, OI(383S - 6p3P), NII(381P - 3p1S)
3371.3	9.0	$N_2 2P(0-0)$, OII(3d ${}^4F_{9/2} - 5p {}^4D_{7/2}$)?
3339.3	1.2	N ₂ 2P(1—1), VK(3—11)
3285.3	1.8	$N_2 2P(3-3)$, OII(3P4P _{5/2} -4s4P _{5/2})?
3202.7	2.2	N ₂ VK(19)
3192.4		N ₂ VK(411)
3168.7		$N_2 2P(9-7)$?
3159.3	5.8	N ₂ 2P(1—0)
3135.7	3.6	N ₂ 2P(2—1), VK(0—8), OII(3p4D — 4s4P)?
3114		$N_2 2P(3-2)$, OII(3p4D - 4s4P)

The following abbreviating notations are used:

Atomic Lines.

OI: Lines from neutral oxygen atoms.

OII: ,, ,, singly ionized oxygen atoms.

NI: ,, ,, neutral nitrogen atoms.

NII: ,, ,, singly ionized nitrogen atoms.

NII: ,, ,, singly ionized nitrogen atoms. NaI D: Yellow line from neutral sodium atoms. H_a , H_β and H_γ : Lines from the Balmer series of hydrogen.

The mercury lines denoted (Hg I) are due to scattered light from mercury lamps in the town and have nothing to do with auroral luminescence.

Molecular Bands.

The two numbers in bracket added to the band symbols give the vibrational quant numbers of the upper and lower electronic state respectively. In addition to the bands N_2 1.P., N_2 2.P., N_2 V.K. and N_2 1.N. previously known to be present in the auroral light, the new spectrogram shows quite strong bands of the first negative group of oxygen emitted from O_2^+ . Thus this spectrogram has shown, for the first time, that bands from molecular oxygen appear in the auroral luminescence. In a considerable number of cases we find lines which coincide with Goldstein-Kaplan bands from N_2 , Schuman-Runge bands from O_2 and with β -bands from NO_2 and

In most cases, however, these bands also coincide with lines or bands which are known to be present in the auroral luminescence. Consequently the existence of bands from these three systems cannot be considered as proved, but they are presented in order to call attention to their possible appearance in the auroral luminescence. In the cases where more than one possible interpretation is found for a band or line, the one for which the interpretation is certain or the most probable is given first.

From the tables 1 we notice—in agreement with our previous results—that a great number of auroral lines originate from atoms of oxygen and nitrogen in the neutral and ionized state.

Fig. 5a.

Fig. 5b.

The number of lines of this origin, which are found to coincide in a satisfactory way with auroral lines, are given in table 2.

Table 2.

Origin of	Number	of Lines
Lines	Interval 8860-6364	Interval 6364-3114
OI	7	36
OII	4	125
NI	13	102
NII	6	114

In the table we have for each of these lines given the term symbols for the lower and upper atomic energy state. The transitions, which may give lines observed in the auroral spectrum are illustrated by means of the term diagrams fig. 4a and 4b for OI and OII and in fig. 5a and 5b for NI and NII.

The term symbols are on each diagram arranged in a horizontal row. The energy states are indicated by a short and fat horizontal line. The symbol corresponding to any energy state is found by imagining a vertical line drawn from the state to the row of symbols.

The transitions are indicated by a line drawn between the energy states, and the wavelength of the line resulting from the transition is written close to the "line of transition".

In the case of multiple states the separation due to variations of the quantum number (j) is too small to be given on the diagram. In this case a multiplet is indicated by a single "line of transition", and only the wavelength of one of the principal components is given. In the bracket on the right side of the written wavelength value, the fraction of the number of observed lines to the total number of multiple components is given. If e.g. the fraction is (6/6) it means that all 6 components of the multiplet have been detected or may be present in the auroral spectrum, and if the fraction is (4/6) it means that only 4 out of 6 possible components have been detected.

The "transition lines" corresponding to auroral lines which are most accurately determined and identified are drawn as fat lines. Those

which are less certain or the existence of which are probable are drawn as thin lines.

In view of the fact that the lines corresponding to the forbidden transitions from the metastable ground states are so conspicious in the case of OI, makes it a matter of interest to know whether corresponding forbidden lines from OII, NI and NII appear in the auroral luminescence.

In the case of OII, it has been previously found (1, 7, 8) that the doublet 3729, 3726 (corresponding to transitions ${}^4S_{3/2} - {}^4D_{5/2}, {}^3D_{5/2}$ within the limit of error, coincides with observed auroral lines, which, however, are comparatively weak.

A multiplet corresponding to the transition $(^2D_T = ^2P_T)$ and a wavelength of the principal component of about 7330 fall in the infra red region, where the spectrum is dominated by broad bands, e.g. from $(N_2 1P)$. Therefore at present it is doubtful whether the lines corresponding to these transitions appear in the auroral luminescence.

In the case of NI, a line 3466—corresponding to the transition (*S—"P) may be said to coincide in a satisfactory way with an auroral line of moderate intensity previously measured on several auroral spectrograms (cfr. paper 8 p. 9 and 10).

The forbidden transitions (4S_{3/2} — 2D_{5/2,3/2}) would give a doublet (5202, 5197), but as the components would not be separated even by the new spectrograph, the doublet would give a somewhat broadened line with an apparent wavelength 5199.5 if the components were equally strong. On our Oslo spectrogram a somewhat broad line of moderate intensity with a wavelength 5199 appeared. This would seem to prove that this forbidden green NI-line appears in the auroral spectrum. But now it happens that a doublet corresponding to the allowed transitions 3p2S1/2 -- 5d2P3/2, 1/2 gives components with about the same wavelengths, 5201.8, 5197.1 and the mean 5199.5. The fact that the observed auroral line 5199 is moderately strong, while the allowed lines are very weak, speaks decidedly in favour of the assumption that the auroral line 5199 essentially originates from the forbidden transition. The doublet (2D5/2, 3/2 -- 2P3/2) (10395. 10404) lies outside the infra red region as yet explored.

In the case of NII the transition ('D—'S) would give a line 5755, which may possibly be dientified with the faint auroral line 5754. The doublet ('P₂₋₁—'D₂) (6883, 6548) corresponding to the red OI-doublet falls in a region where the auroral luminescence has strong and broad bands, and if the doublet is very weak it might be masked by the bands.

Thus it is not excluded that the forbidden NII-lines may be present in the auroral luminescence, but if so they must as a rule be very weak.

§ 3. Detailed Study of the Doppler Spreading of the Hydrogen Lines.

As mentioned in the preliminary communications the H_{β} -line appears quite distinctly on the auroral spectrogram from Oslo, but it is broad and diffuse on account of Doppler effect. A closer inspection of the photometer curves shows, that also H_7 appears and is spread out in a similar way.¹

An enlarged copy of the photometer curve of the diffuse H_β line and its nearest surroundings is shown on fig. 6. The undisplaced H_β -line (4861.3 Å) is seen to fall near the place, where the " H_β -band" has its maximum. The maximum merely shows a relatively small Dopplerdisplacement towards shorter wavelengths. This is better seen from fig. 7, where an intensity curve is drawn, for which the irregularities of the photometer curve (fig. 6) have been dropped.

The medium line (b) passing through the intensity maximum is seen to be displaced $\mathcal{A}t_m = 1$ Å towards shorter waves relative to the undisplaced H_{β} -line (a).

When we take into account that the instru-

ment was kept in the same position relative to the magnetic lines of force through the whole exposure, the type of Doppler spreading shown on fig. 6 and 7, is easily explained, when we assume that protons are coming into the atmosphere, where they will move in spirals round the magnetic lines of force.

According to theory, the angle between the orbit of a proton and the magnetic lines of force will as a rule increase downwards and if the proton is not absorbed the angle may reach 90° after which it turns upwards. This means that there is a probability for orbits to move approximately in circles perpendicular to the lines of force, and when also the instrument is directed nearly perpendicular to the lines of force, the H_g-line will be displaced almost equally in both directions

relative to the undisplaced line. The situation is illustrated in fig. 8.

The magnetic inclination at Oslo is about 70°. The elevation angle of the instrument was about 25°. This means that the angle between the downwards directed magnetic lines of force and the axis of the instrument is about 85°, which explains the small average Doppler displacement $A\lambda_m$ fig. 7.

Finally it must be remembered that at the moment when the light emission takes place, the protons are neutralised, and the influence of the magnetic field on the motion of the hydrogen atoms vanishes. Thus from the incoming

¹ The \mathbf{H}_a -line falls outside the sensitivity range of the photographic plate.

proton bundle hydrogen atoms will spread out in various directions as indicated by the arrows fig. 8. The distribution of velocities is symmetrical relative to the lines of force, but the components of the velocities along the lines of force are mainly directed downwards.

On some previous spectrograms from Tromsoe (9) the H_{σ} -line was mainly displaced towards shorter waves, showing that the instrument during the exposure had mostly been held nearly in the direction of the lines of force.

As seen from fig. 7, the maximum Doppler displacement is about 18 Å. From the conception we have of the process it is legitimate to

Fig. 8.

assume that there will always be some hydrogen atoms of maximum velocity, which will move towards the observer or in the opposite direction. Consequently the maximum velocity should be determined by the equation:

$$V_{\text{max}} = \frac{\Delta \lambda_{\text{max}}}{\lambda} \cdot C$$
 (1a)

Putting $\lambda_{max} = 18 \text{ Å}$ we find V_{max} equal to about

The average velocity of the hydrogen atoms downwards along the lines of force is found by the equation:

$$V_{m} = \frac{\Delta \lambda_{m}}{\lambda} \cdot \frac{C}{\cos \alpha}$$
(1b)

Putting $\varDelta \lambda_{\rm m}=1$ Å, $q=85^{\circ}$, we get $V_{\rm m}$ equal about 700 km/sec. As $\varDelta k_{\rm m}$ and φ are not very accurately determined the value found for $V_{\rm m}$ is merely to be regarded as a rough estimate.

§ 4. Determination of the Ionospheric Temperature by means of the N₂⁺ Band 3914.

As shown in previous papers (12, 13, 14) an upper limit for the ionospheric temperature can be found from the intensity distribution of the rotational components of the R-branch of a negative nitrogen band. If the dispersion of the spectrograph is so great that the rotational components are separated, an absolute determination of the temperature of the emitting molecular ions can be determined quite accurately.

Even when the rotational components are not separated, the method can be used, but in that case the correction for overlapping has to be determined by means of spectrograms of about the same dispersion and from the same bands emitted from a light source of varied, known temperatures.

As seen from the photometer curves of the negative nitrogen bands, particularly 3914, the components of the R-branch appear separated, so the intensity of each individual component can be measured. As the photographic density is suitable for intensity measurements the band 3914 should give favourable conditions for an accurate absolute temperature determination. The temperature may be derived either by determining the rotational quantum number $_{1}^{30}$ ($K_{\rm m}$), which corresponds to the intensity maximum of the R-branch, or by determining the way in which the intensity of the components of the R-branch vary with the rotational quantum number.

Let I_k be the intensity of a rotational component corresponding to the quantum number K, then

$$\log_{10}\!\left(\!\frac{\mathrm{I}_k}{\mathrm{K}}\!\right) = --\,\varkappa_1\left(\mathrm{K}\,+\,1\right)\mathrm{K} \qquad (2a)$$

where

$$z_1 = \frac{h^2 \log_{10} \epsilon}{8 \pi^2 T FT}$$
(2b)

 T_z is the absolute temperature of the emitting N_2^+ ions, the moment of inertia (J) of the N_2^+ ions in the upper state is equal to $13.4 \cdot 10^{-14}$ (gr.cm²), h and k are Planck's and Boltmann's constant respectively. The equation (2b) gives

$$T_x = \frac{1.2855}{z_1}$$
 (3)

From the quantum number (K_m) corresponding to the maximum of the intensity distribution curve, the absolute temperature T_m is found from the formula (14):

$$T_m = 2.96 K_m (2 K_m + 1)$$
 (4)

If the intensities of the rotational components follow the Maxwell law of energy distribution, we should have:

$$T_{z} = T_{m} = absolute temperature T of the emitting ions.$$

A photometer curve (fig. 9) of the 3914 band shows distinctly the maxima of the rotational bands of odd quantum numbers.

Fig. 9.

The curve fig. 10 gives the relation between intensity (I) and rotational quantum number. From this we find:

$$K_m = 5.85$$

and by means of equation (4)

$$T_m = 219.9 \text{ Kelvin}$$

According to equation (2a) $\log_{10}(I_s/k)$ should be a linear function of K(K+1). This relation is represented by the straight line fig, 11, the slope of which gives the quantity $z_1 = \frac{1}{169.5}$ and equation (3) gives

$$T_{\star} = 217.9 \text{ Kelvin}$$

Thus within the limit of error we have $T_z \approx T_m$. Taking the mean value we get:

or
$$T = 218.9 \text{ K}$$

 $t = -54.1^{\circ} \text{ C}$

Fig. 11.

The ionospheric temperature, derived from this spectrogram, is somewhat lower than the mean tempeture from our earlier measurements.

During this winter some very successful spectrograms, covering also the long wave region into the infra red, have been taken at the Tromsee Observatory with the new spectrograph. The results will be given later.

Summary of Results.

- A new two prism glass spectrograph combining considerable dispersion with a light power F:1.2, had been obtained from Société générale d'optique where it was built by Dr. Cojan in accordance with given specifications.
- The spectrograph was designed to meet the requirements for the detection and measurement of faint and closely packed lines known to be present in the auroral luminescence.
- 3. An auroral spectrogram was obtained at Oslo with the new spectrograph during the night Feb. 23—24 1950, and in addition to the usual somewhat strong lines and bands, a great number of weak but sharp and distinct lines appeared.
- About 114 bands and lines could be measured with a comparator directly from the negative, more than 50 of which were not previously detected.

- By means of photometer curves of great magnification a still greater number of weak lines could be detected and quite accurately measured.
- 6. In the spectral region (6300—3880) covered, the total number of measured bands and lines amounted to about 375, and about 310 of these had not been previously detected and measured. By far the greater part of these lines were shown to originate from O-and N-atoms in the neutral or ionized state.

In addition to the nitrogen bands earlier observed, it was found that bands from the negative group of oxygen (O₂-bands) appeared and that a number of auroral lines gave satisfactory coincidence with Goldstein bands from N₂, Schumann-Runge bands from O₂, and \$\theta\$-bands from NO.

7. The H_S-line appeared quite marked, but was spread out into a diffuse band through Doppler effect. The undisplaced line was situated near the middle of the band. Taking into account that the instrument was directed nearly perpendicular to the lines of force, this spreading in both directions was explained by assuming that the protons were moving in spirals round the magnetic lines of force, and when they were neutralized, the atoms would have velocity components in all directions perpendicular to the magnetic lines of force.

Also the much weaker H_{γ} -line was seen to be spread out in the same way.

 The fact that the rotational components of the R-branch of the band 3914 were distinctly separated, greatly favoured an accurate temperature determination. We found T_m = 219.9° K and T_e = 217.9° K, which gives a mean value:

$$T = 218.9^{\circ} \text{ K or } t = -54.1^{\circ} \text{ C}$$

In conclusion we wish to express our thanks to Mr. A. Ombolt and Mr. O. Øiseth for most valuable assistance in connection with the accomplishment of this paper. Our thanks are also due to "The Scientific Government Fund" for valuable economic support of the research work forming the basis of this paper.

List of Papers.

- L. Vegard: Geof. Publ., Oslo, Vol. X, No. 4, 1933
- L. Vegard: Nature, Vol. 165, p. 1012, 1950.
- L. Vegard: C. R., Vol 230, p. 1884, 1950.
- L. Vegard: Annales de géophys., Vol. 6, p. 157, 1950.
- A. B. Meinel: Pub. Astron. Soc. Pac., Vol. 60, p 373,
- 1948 C. R. Vol. 231, p. 1049, 1950.
- W. Petrie: Can. Journ. of Research, A 27, p. 231, 1949.
- L. Vegard: Geof. Publ., Vol. XII, No 8, 1938.
- 8. L. Vegard and E. Tønsberg: Geof. Publ., Vol. XIII, No. 5, 1941.
- 9 L. Vegard and E. Tønsberg: Geof. Publ., Vol. XVI, No. 2, 1944.
- 10. L. Vegard: Report on Recent Work etc. Phys. Soc. Gassiot Committee Report, p. 82, 1948
- 11. L Vegard: Report to the Intern. Mixed Commis. on the Ionosphere, Proc. from Meeting at Brussels, 1948.
- L. Vegard: Geof Publ., Vol. IX, No. 11, 1932.
- L. Vegard: Geof. Publ., Vol. XII, No. 14, 1940.
- 14. L. Vegard and E. Tønsberg: Geof. Publ., XI, No. 2,
 - 1935.

Fig. 2.