#### CONTENTS

|            | Part I. Introduction.                               | Page | Page                                                                                                                            |    |
|------------|-----------------------------------------------------|------|---------------------------------------------------------------------------------------------------------------------------------|----|
| 1.         | Introductory Remarks                                | ***  | Part V. The sunlit Aurora rays.                                                                                                 |    |
| 2.         | Stations in action and list of aurora nights when   | L    | 29. Position relativ to the Earths shadow 48                                                                                    | 2  |
|            | photographs of aurora were taken or observations    |      | 201 2 3022301 201001 00 010 2207010 511000 (1111111111111111111111111111                                                        | ,  |
|            | made                                                |      | Appendix: Aurorae observations from ships in                                                                                    |    |
| 3.         | List of aurora photographs which might be used for  |      | the polar year 1932—33.                                                                                                         |    |
|            | determining height and position                     |      | 30. Instructions                                                                                                                | à  |
| 4.         | The baselines used to determine height and position |      | 31. The results obtained                                                                                                        |    |
|            | of the aurora                                       |      | 32. Possible application of the material in table 12 and 13 58                                                                  |    |
| 5.         | Brief summary of the methods of measuring and       |      | Table 1. List of aurora photographs which might                                                                                 |    |
| e          | calculating the negatives                           |      | be used                                                                                                                         | )  |
| υ.         | List of height and situation of all the measured    |      | Table 2. Height and situation of measured Aurora                                                                                |    |
|            | aurora points                                       | . 9  | points                                                                                                                          | Э  |
|            | Part II. Observations and measurements in           |      | •                                                                                                                               |    |
|            | chronological order.                                |      | Tables.                                                                                                                         |    |
| 7.         | Plan for the following sections                     | . 9  |                                                                                                                                 |    |
| 8.         | Auroræ in August 1932                               | 9    | Table 1 and 2 at the end of the paper, the others in the                                                                        |    |
| 9.         | Auroræ in September 1932                            | . 10 | text                                                                                                                            |    |
|            | Auroræ in October 1932                              |      | Table 1. Liste of aurora photographs which might be                                                                             | n. |
|            | Auroræ in November 1932                             |      | used                                                                                                                            |    |
|            | Auroræ in January 1933                              |      | <ul> <li>2. Height and situation of measured aurora points</li> <li>3. Hours of observation when no aurora was seen.</li> </ul> | .) |
|            | Auroræ in February 1933                             |      | Station Darbu, Observer Hassel 29                                                                                               | n  |
|            | Preparations for an expedition to Trondheim         |      | » 4. Frequences of heights at all the measured                                                                                  | 7  |
| 15.        | ,                                                   |      | aurora points                                                                                                                   | ,  |
| 16.        | ·                                                   |      | » 5. Frequency of heights of the measured aurora                                                                                | _  |
| 17.        | The Aurora of March 22—21 and 21—22, 1933           |      | points until $H = 150 \text{ km} \dots 36$                                                                                      | 3  |
| 18.<br>19. | The Aurora of March 23—24, 1933                     |      | » 6. Frequency of heights of the lowest points of the                                                                           |    |
| 20.        |                                                     |      | different aurora forms                                                                                                          | 8  |
| 21.        |                                                     |      | » 7. Frequency of heights of lowest points of aurora                                                                            |    |
| 22.        | The big Aurora on May 1—2, 1933                     |      | taken 3 by 3 and 5 by 5 40                                                                                                      | 0  |
| 23.        |                                                     |      | » 8. Frequency of heights of the lower border of                                                                                |    |
|            | Hassel's visual observations of the occurrence and  |      | the aurora form RB, taken 5 by 5 41                                                                                             | 1. |
|            | intensity of the aurora lines seen in a pocket-     |      | » 9. Frequency of highest points of the different                                                                               |    |
|            | spectroscope                                        |      | aurora forms 42                                                                                                                 | 2  |
|            | TO 4 TITE (4 4) 4 A A A A A A A A A A A A A A A A A |      | » 10. Comparison between the magnetic indices K                                                                                 |    |
|            | Part III. Statistics of Aurora heights.             |      | and the distance $\theta$ from the geomagnetic axis                                                                             |    |
| 25.        | · • • · · · · · · · · · · · · · · · · ·             |      | point to some of the measured aurora during the                                                                                 | 0  |
| 26.        |                                                     |      | polar year 1932—33                                                                                                              | 8  |
| 27.        | The heighest points of the aurora                   | 42   | » 11. Observations of aurora from ships, from Au-                                                                               |    |
|            | Part IV. Geographical positions of the              |      | gust 1, 1932 to August 31, 1933                                                                                                 | 1  |
|            | measured Auroræ.                                    |      | observations in Table 11. The time is GMT and                                                                                   |    |
| 28.        | Geographical distribution of the aurora from 23—23  | 5    | the azimuth of the extension is measured by                                                                                     |    |
|            | March and from 1—2 May 1933. Comparison with the    |      | the ships magnetic compass along the horizon                                                                                    |    |
|            | three-hour-range magnetic indices K                 |      | $N = 0^{\circ}, E = 90^{\circ}, S = 180^{\circ} \text{ and } W = 270^{\circ}$ 50                                                | 5  |

# RESULTS OF THE OBSERVATIONS AND PHOTOGRAPHIC MEASUREMENTS OF AURORA IN SOUTHERN NORWAY AND FROM SHIPS IN THE ATLANTIC DURING THE POLAR YEAR 1932—1933

BY

CARL STØRMER

The Institute of Theoretical Astrophysics Blindern, Oslo, Norway

(Manuscript received February 6th, 1952).

## PART I. INTRODUCTION.

#### 1. Introductory Remarks.

The photographic work and observations of the Aurora from Southern Norway during the Polar Year 1932–1933 form a part of my systematic work on the same subject which has continued without interruption from 1911 up to now.<sup>1</sup>)

The material coming from ships on route from Norway to America and back is added as an appendix.

The year 1932–1933 was a year of minimum activity of the sun with correspondingly few aurorae near Oslo. Therefore in March 1933 I undertook an expedition to Trondheim to get more material from this district which is nearer to the auroral zone and where the aurorae are much more frequent than in Oslo.

A preliminary report from that expedition was published in 1934.<sup>2</sup>

In the present paper a detailed report of our work is given, with all measurements of height and situation of the aurora. To my numerous assistants I express my heartiest thanks. First to Mr. Olav Egeberg and Mr. Nicolai Herlofson, who have helped me in measuring and calculating the aurora negatives, and to all my assistants during the nights when aurorae were photographed and observed. Their names will be given later.

Captain A. Herstad, my assistant at the station Lökken Verk, deserves special mention. In spite of his age he worked with neverfailing enthusiasm during cold aurora nights. Due to his splendid cooperation the collected material of simultaneous aurora photographs from Trondheim and Lökken Verk was of great value. I am sorry to record his death some years later.

## 2. Stations in action and list of aurora nights when photographs of aurora were taken or observations made.

During the polar year the following stations in southern Norway were in action:

- C. Oslo Observatory, Latitude 59°54′44″, Longitude E of Greenwich 10°43′24″. Height 33 m.
- Da. Darbu, Lat. 59.41.56, Long. 9.48.17 E, Height 55 m.
- $K_4$ . Kongsberg, Lat. 59.40.18, Long. 9.39.28 E, Height 170 m.

<sup>1)</sup> Carl Störmer: Resultats des mésures photogrammétriques des aurores boréales dans la Norvège méridionale de 1911–1922, Geof. Publ. Vol. IV, No. 7, and Remarkable Aurora Forms from Southern Norway I–IX, ibid. Vol. XI, No. 5 and 12, Vol XIII, No. 7. See also Geof. Publ. Vol. XI, No. 3 and Vol. XII, No. 7.

<sup>&</sup>lt;sup>2</sup>) Carl Störmer: Über eine Nordlichtexpedition nach Trondheim im März 1933, Gerlandes Beiträge zur Geophysik, B. 41, p. 382–386, 1934.

- Li. Lillehammer, Lat. 61.05.47, Long. 10.30.11, Height 350 m.
- Lö. Lökken Verk, Lat. 63.07.45, Long. 9.41.24, Height 284 m.
- N. The Physical Institute, Norges tekniske Högskole, Trondheim, Lat. 63.25.01, Long.10.24.32, Height 70 m.
- O. Oscarsborg, Lat. 59.40.22, Long. 10.36.49, Height 25 m.
- Tömte, Lat. 60.17.39, Long. 11.04.07, Height 290 m.

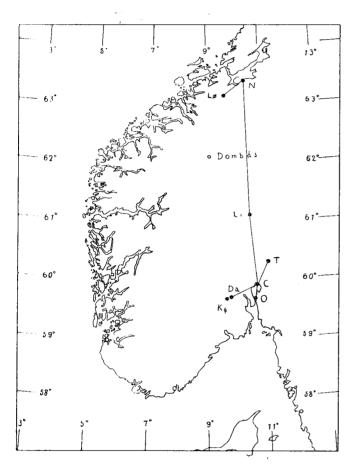



Fig. 1. Geographical positions of the photographing aurora stations.

On fig. 1 the geographical situations of these stations are seen.

Each station was provided with an aurora camera and with plates Sonja EW from Hemelingen Bremen, sensitive to blue, violet and ultraviolet. All except Da had field telephones and could be connected by state telephone lines when simultaneous photographs should be taken.

Assistants were:

- On station C. Tveter, Anda, Sandøy.
  - Da. Olaf Hassel.
  - $K_4$ . Odleiv Busengdal.
  - Lö. Herstad.
  - N. Westin, Koren.
  - O. Baköy.
  - T. Albert and Egil Tömte.

Aurorae were photographed from one or several of these stations during the following nights: 1932

| $\mathbf{August}$ | 29 - 30 | Stations | C, Li, O, T                       |
|-------------------|---------|----------|-----------------------------------|
| September         | 23-24   | "        | C, Li, O                          |
| October           | 23 - 24 | "        | C, Li, T                          |
| 1933              |         |          |                                   |
| February          | 18-19   | ,,       | Lö                                |
| ,,                | 22-23   | ,,       | Lö                                |
| March             | 18-19   | ,,       | C, Da, Li, Lö, N, O               |
| ,,                | 19-20   | **       | Lö, N                             |
| "                 | 21-22   | ,,       | C, K <sub>4</sub> , Li, O, T      |
| ,,                | 23-24   | "        | Li, Lö, N                         |
| • • •             | 24 - 25 | ,,       | Lö, N                             |
| April             | 15 - 16 | ,,       | C, Da, K <sub>4</sub> , Li, Lö    |
| ,,                | 18-19   | "        | Lö                                |
| **                | 21-22   | ,,       | C, K <sub>4</sub> , T             |
| May               | 1-2     | ,,       | C, Da, K <sub>4</sub> , Li, Lö, O |

As to visual observations of interest in connection with the photographs, notes concerning the photographs were made at the stations on the abovementioned nights, and moreover, visual observations were received on the following nights: 1932

| August      | 27 - 28 | From | Bærum near Oslo           |
|-------------|---------|------|---------------------------|
| ,,          | 29 - 30 | "    | Da                        |
| "           | 30-31   | "    | Da                        |
| September   | 4-5     | "    | Da                        |
| ,,          | 7-8     | "    | C, Da                     |
| **          | 18-19   | ,,   | Da                        |
| ,,          | 19-20   | ,,   | Da                        |
| **          | 23 - 24 | "    | C, Li, O                  |
| ,,          | 25-26   | "    | C, K <sub>4</sub> , T, Da |
| ,,          | 29-30   | ,,   | Da                        |
| October     | 4-5     | "    | Da                        |
| ,,          | 23-24   | ,,   | C, Li, Da                 |
| ,,          | 24 - 25 | "    | C, Da                     |
| ,,          | 2526    | ,,   | C, Da                     |
| November    | 16-17   | "    | C, Da                     |
| "           | 28-29   | ,,   | Da                        |
| <i>1933</i> |         |      |                           |
| January     | 27-28   | **   | Da                        |
| "           | 28-29   | "    | `Da                       |

| January  | 29-30   | From | Da           |
|----------|---------|------|--------------|
| February | 14-15   | ,,   | Da           |
| ,,       | 19 - 20 | ,,   | Da, Koppang  |
| March    | 3 - 4   | ,,   | Lö           |
| ,,       | 20-21   | "    | Da           |
| April    | 6-7     | 27   | $\mathbf{C}$ |
| ,,       | 16 - 17 | "    | Da           |
| **       | 17-18   | "    | Da, Ustaoset |
| ,,       | 18-19   | "    | Da           |
| 22       | 19-20   | **   | Da           |
| "        | 20 – 21 | ,,   | $\mathbf{C}$ |
| ,,       | 21 - 22 | "    | Da           |
| "        | 22 - 23 | "    | Da           |
| ,,       | 23-24   | ,,   | Da           |
|          |         |      |              |

From this list it can be seen that a great many observations were taken from Darbu (Da). At that station I had a most enthusiastic and zealous observer, Mr. Olaf Hassel. In spite of the fact that he is deaf and dumb, he has since 1919 sent me an enormous amount of observations and photographs of aurora of great scientific value.

## 3. List of aurora photographs which might be used for determining height and position.

From a detailed study of all the aurora photographs I have worked out a list of all which could probably be used to determine height and position of the aurora in space. This list is given in Table 1 at the end of the paper. Most of the pictures have been measured out.

The headings have the following meanings:

For each date the stations in action are given by the letters C, O, etc., as explained in section 2. The names of the assistants are added.

PN means the current number of the sets of simultaneous photographs or of the single photograph of the aurora.

St means the stations from which the photographs were taken. The letters of the stations are combined by dashes if the simultaneous photographs could be used for height measuring, if not the letters are separated by commas.

MET means the mean European time ( $12^h$  Greenwich =  $1^h$  MET) for the middle of the exposure, in hours, minutes and seconds (22.08.30 means  $22^h,08^m,30^s$  for instance).

Ex means the time of exposure, in seconds.

F means the auroral form according to the international *Photographic Atlas of Auroral Forms*, Oslo 1930. Printed by A. W. Brögger, that is

HA Homogeneous quiet arcs

HB Homogeneous bands

PA Pulsating arcs

DS Diffuse luminous surfaces

PS Pulsating surfaces

G Feeble glow

RA Arcs with ray structure

RB Bands with ray structure

D Draperies

R Rays

C Corona

F Flaming aurora

Ref.Con. means the constellation towards which the cameras were pointed, with the abbreviations universally adopted.

Remarks. Here additional remarks on the aurora or on questions regarding it are given.

### 4. The baselines used to determine height and position of the aurora.

When the stations were connected by state telephone lines, simultaneous photographs could be taken from two stations. The corresponding base lines have been calculated from the latitude and longitude of the two stations, with the following results:

List of base lines.

| St.                     | g              | $\mathbf{a_o}$ | $h_0$      | $\delta_0$ | $t_0$   | Calculated by               |
|-------------------------|----------------|----------------|------------|------------|---------|-----------------------------|
| C-Li                    | 132,65         | 66.24          | 6.10       | 29,49      | 174,096 | Herlofson 1930<br>Anda 1933 |
| C-K <sub>4</sub><br>C-O | 65,50<br>27,36 | 66,34 $13,02$  | -0,18<br>0 |            |         | Geogr. Survey               |
|                         |                |                |            |            |         | 1921                        |
| Li–C                    | 132,65         |                |            | -29,49     | -6,125  |                             |
| Li–K4                   | 165,35         | 15,97          |            |            |         | Leif Rosseland              |
| Li–O                    | 158,66         | 357,61         | -0.82      |            |         | -,-                         |
| Lö–Li                   | 230,58         |                |            | -27,36     | -12,35  | Herlofson 1937              |
| N-Li                    | 258,77         |                |            | -27,68     | -1,27   |                             |
| N–Lö                    | 48,26          |                |            | -17,16     | 51,78   |                             |
| $O-K_{4}$               | 53,82          | 89,46          | -0.39      |            |         | Anda                        |
| T-C                     | 46,71          |                |            | -27,33     | 27,71   | Herlofson 1936              |
| $T-K_4$                 | 104,98         | 49,20          | -0,54      |            |         | ,                           |
| T-O                     | 73,78          | 20,32          | -0,54      |            |         | -,,                         |

Here the headings have the following meaning: St means the stations at the two ends of the base line. The first one is the head station, the second the substation.

- g is the length of the base line, in kilometers.
- a<sub>0</sub> is the azimuth of the point in the sky where the line from the head station to the substation hits the celestial sphere as seen from the head station. a<sub>0</sub> is reckoned from south westwards from 0 to 360° and is given in degrees with decimals.
- $h_0$  is the height of the same point seen from the head station.  $h_0$  is positive over and negative under the horizon.
- $\delta_0$  is the declination of the same point positive over and negative under the celestial equator.
- $t_0$  is the hour angle of the same point, reckoned from south positive westwards from  $0^{\circ}$  to  $180^{\circ}$  and negative eastwards from  $0^{\circ}$  to  $-180^{\circ}$ . All angles are reckoned in hundredths of

a degree.  $a_0$  and  $h_0$  were used in earlier calculations,  $\delta_0$  and  $t_0$  in more recent ones. See next section.

## 5. Brief summary of the methods of measuring and calculating the negatives.

The measuring and calculations of the plates to find height and situation of the aurora were made by my assistants, Olaf Egeberg and Nicolai Herlofson, and later revised to some extent by Johs. Östvold and myself.

The measuring was done by optical and graphical methods, thus avoiding the very tedious numerical calculations. Only the rapid calculation of sideral time is done numerically.

It may be useful to give a short account of the methods:1)

The two negatives with aurora and stars are placed in two identical projection lanterns giving each an enlarged copy on a wall, where sheets of art paper (to enhance the contrasts) are fastened by drawing pins. The enlargements are adjusted so that 1 cm on the paper approximately corresponds to 1° on the sky. The exact adjustment is done later.

The first thing to do is to identify the stars and choose three of them as reference stars. For

that purpose good star maps on a scale of  $1 \text{ cm} = 1^{\circ}$  are essential. We have found such star maps, made by M. Beyer, in 24 sheets containing all stars to the 9th magnitude.<sup>1</sup>)

With the help of these maps the stars are rapidly identified. Moreover, on these star maps we have added the Greek letters of all the stars of the first three magnitudes, to facilitate orientation.

Then the optical center and three stars are marked on the sheets as reference stars.

Now, as proposed by Mr. Egeberg, the sheets are taken off and the necessary angles for these three stars are found by graphical methods,<sup>2</sup>) and the calculated positions are marked anew on the sheets by means of underlying nets.

The sheets are then again placed on the wall and the distance of the lanterns adjusted until the images of the three stars coincide with their marked positions; then the sheets are again fixed on the wall by drawing pins.

The procedure now continues as explained in the references given: The outlines of the aurora are drawn and if necessary more stars, on the two sheets. As the two images are projected side by side this is easily done. Corresponding points of the aurora are easily found either by direct comparison or by the direction of the displacement given by the nets.

On the sketch from the head station a series of points of the aurora is now selected, and by means of the nets placed under the sketches and illuminated from below, the values of necessary angles, in particular the parallax, are found. Another set of nets give height and azimuth of the selected points.

From the parallax p, the distance r from the head station to the aurora point is found by slide rule and from r and h the height H and the geodetic distance D are taken out graphically. Finally the geographical situation of the aurora is found by another graphical procedure.

For details see the above mentioned paper in Geof. Publ. Vol. XII.

<sup>&</sup>lt;sup>1</sup>) See: Some Results regarding Height and Spectra of Auroræ etc., Geof. Publ. Vol. XII, No. 7, p. 5.

<sup>1)</sup> Sternatlas enthaltend alle Sterne bis zur 9then Grösse sowie die helleren Sternhaufen und Nebel zwischen dem Nordpol und 23° südlicher Declination für 1955, von Max Beyer, ausgeg. von Dr. K. Graf, Hamburg 1925.

<sup>&</sup>lt;sup>2</sup>) See the explanation given by Mr. Herlofson in the paper just mentioned, Geof. Publ. Vol. XII, No. 7, p. 6-9.

## 6. List of height and situation of all the measured aurora points.

In Table 2 at the end of this paper the height and situation of all the measured aurora points are given, 1427 in all. Many of the heights of the lowest and highest points are extrapolated. Moreover, situation is given for many aurora forms, arcs in particular, assuming a reasonable value for the height.

The headings in Table 2 have the following meaning:

No. means the current number of the photograph or of the two simultaneous photographs.

Pt means the selected point of the aurora.

MET means the time of the middle of the exposure in Central European Time (12<sup>h</sup> Greenwich time = 1<sup>h</sup> MET).

- St. means the station or stations from which the aurora was photographed. First letter headstation, second letter substation.
- F means the auroral form according to the International Photographic Atlas of Auroral Forms (Se explanation to table 1).
- S indicate the situation of the selected point on the aurora:
  - l means that the point is at the lower border or at the base of a ray,
  - I' that it is near this border or base,
  - m that it is between lowest and heighest part of the aurora,
  - h that it is at the upper border or at the summit of a ray,
  - h' that it is near the upper border or summit.
  - $\varepsilon_2$  means the angle between the direction from the substation to the aurora point and the plane perpendicular to the base line at the substation.
- p is the parallaxe.
- h is the altitude of the aurora point over the horizon at the head station.
- a is the azimuth of the aurora point seen from the head station. a is reckoned positive from S over W to N and negative from S over E to N.
- D is the distance along the surface of the Earth from the head station to the vertical projection of the aurora point.
- H is the height of the aurora point over sea level.

is the angular distance from the magnetic axis point in northern Greenland (latitude 78°30′, longitude W of Greenwich 68°38′.)

#### PART II.

## OBSERVATIONS AND MEASUREMENTS IN CHRONOLOGICAL ORDER.

#### 7. Plan for the following sections.

In the following sections an account of the aurora and its height and situation will be given for each night in chronological order, based both on visual observations and on the measurements of the plates.

As to the visual observations, long series were made at the stations in connection with the photographic work. From the station Darbu (Da) my excellent observer Olaf Hassel, who at that time had only a Ernostar camera at his disposal (one picture on each plate  $9\times12$  cm), supplied his visual observations with drawings of the outlines of the aurora on star maps; an extract of his very extensive observational work will be given on each date.

For the rest of the visual observations the latitude and longitude of the places of observation are given below:

- Da, Darbu, Latitude 59.41.56, Longitude 9.48.17. E. Gr. Height 55 meters.
- D, Dombås, Lat. 62.05.30, Long. 9.05.54, Height 550 m.
- U, Ustaoset, Lat. 60.30., Long. 8.02.42, Height 990 m.

In the following photographs and observations follow in chronological order.

#### 8. Auroræ in August 1932.

On August 27–28 I received a report from the telegraph department that earth currents were observed. Being in Bærum, some kilometers west of Oslo, I watched the sky in the evening. In spite of cloudy weather I saw through breaks in the clouds a glow in the north. No photographs were taken from my stations, as the weather was too cloudy.

On August 29–30 earth currents were reported again, 15 milliamperes at 17<sup>h</sup>30<sup>m</sup>. When it became dark an arc was visible in the north, and the

aurora stations were notified. The first pictures were taken at  $22^h$ , see Table 1.

From Darbu Olaf Hassel made a series of visual observations, from which I quote the following:

21.50 the aurora line 5577 Å visible.

22.05 feeble narrow arc in the north.

22.15 stronger. The position of the are marked on a star map.

22.35–23.00 as before. Position marked on a star map.

23.05 the arc more feeble.

23.07.30 the first ray.

In Oslo photographs of the arc were taken simultaneously with photographs from other stations. From the best ones the geographical situation of the arc was found assuming for the lower border a height of 100 km.

After 23.07.30 only feeble rays were seen; a series of photographs were taken to determine height. The measurements showed that they all were situated in sunlight. The rays were, like the arc, lying between the small-eircles  $\theta=24^{\circ}$  and  $\theta=26^{\circ}$ , but farther west towards the Feröe islands.

The situations of the arcs are seen on fig. 2.

#### 9. Auroræ in September 1932.

September 4-5.

From Darbu Hassel observed feeble aurora glow from about 20 to midnight. Here are his further observations:

0.0–0.6 narrow homogeneous arc from 12 CVn to  $\alpha$ ,  $\beta$  Gem. Position drawn on a star map.

0.20-0.28 isolated pulsating arc. Periods of pulsation observed and position drawn on a star map.

0.28-0.40 isolated bit of an arc. Position drawn on star maps.

About 1h the aurora had almost gone.

1.30–2.30 homogeneous arc again. Successive positions noted on star maps.

2.32 aurora gone.

3.20 observations ended.

September 7-8.

The stations C, T,  $K_4$  and Li in action, but no pictures succeeded. Some visual observations made from C:

22.20 auroral line 5577 Å, glow.

22.25 arc in the north.

23.00 the arc lower. Aurora line visible up to 12 CVn.

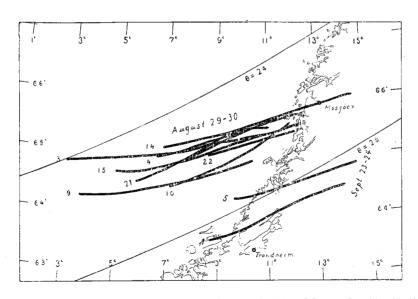



Fig. 2. Geographical positions of auroral arcs on August 29—30 and September 23—24, No 1 at 21, 27, 36 and No 5 at 21, 32, 25.

On August 30–31 Hassel, observed weak aurora again, in N as diffuse surfaces, from 21.15 to 0.30.

23.15 as before, the line stronger, no arc.

23.25 arc again, but feeble.

23.35 are disappeared, but 5577 well seen.

23.45 5577 visible up to half the height of 12 CVn.

5577 visible till a little higher than 12 CVn. 0.00

the same. 0.15

5577 very feeble. 0.30

0.45the same.

1.00 part of an arc visible in NW.

Later feeble aurora until 3h when observations ceased.

Of much more interest were the observations made by Hassel at Darbu. He observed the periods of pulsating bits of are and found between two consecutive maxima of intensity a mean of about one minute. Hassel's observations are published in my paper Remarkable Aurora Forms from Southern Norway,1) III-IX, p. 22-23.

September 18-19 and 19-20.

Both nights weak aurora in N. were observed from Da by Hassel. Nothing of particular interest. September 23–24.

At 20.15 strong aurora line 5577 seen in N. The aurora stations in action but only single photographs could be used. (Table 2). The positions of an arc are seen on Fig. 2. Later rays were observed but no simultaneous photographs succeeded.

From Da Olaf Hassel made a series of observations, in particular of pulsating ares between 23h and 24h. Some of his observations are given in "Remarkable Aurora Forms," p. 23. Hassel's observations from 20h to 3h are very carefully made, with drawings on star maps of the aurora's position.

September 25-26.

When it cleared up in Oslo at 22h, an auroral are was visible in N. The stations C, T and K<sub>4</sub> were soon in action and about 10 simultaneously pictures were taken, but none of them could be used.

At Da, however, Hassel made a great many observations from 20.20-3.25 supplied by drawings on star maps and observations of periods of pulsation.

Here is an extract of his notes<sup>2</sup>):

20.20 situation of the arc drawn on a star map. 20.29.20 the arc dissolved in short rays. Figures on star maps.

20.42 rays gone. Are again.

21.00 the arc narrow. Drawn on a star map.

- 21.25 the arc double. Drawn on a star map.
- 21.27 the lower arc turns round in east to the left of Gem. and continues back again towards west, lower down. Sketches at 21.28, 21.33, 21.35 and 21.40.
- 21.50 The arc more regular again. Sketch.
- 21.55 Some long feeble rays from the arc between  $\alpha$  UMa and  $\alpha$  Gem.
- 22.12 the arc broader.
- 22.18.30 double arc which dissolved in diffuse broad rays and irregular cloudlike aurora (DS); continued till 22.40.
- 22.50-23.17 some single rays moving westwards.
- 23.25 New arc close under  $\psi$ ,  $\mu$ ,  $\lambda$  UMa. Continued till about midnight. Some short rays.
- the arc pulsating. The periods of pulsation 0.06were observed.
- 0.18 pulsating and flaming. Periods of pulsation observed.
- 0.40the pulsations and the flaming aurora gone.
- 0.43-1.06 pulsations and flaming aurora again, but more feeble.

Till 3.25, when observations ended, some feeble remnants of aurora from time to time. Several notes.

September 29-30.

From Hassel I received a series of observations made at Da. Here is an extract:

20.45 feeble glow with aurora line in N.

20.52 summits of some rays over the horizon in N.

21.19 some feeble rays up to  $\chi$  and  $\psi$  UMa lasted about 30 seconds. Sketches.

21.39 and 21.40 other feeble rays up to 12 CVn and a little higher. Sketches.

21.45 Ray up to  $\gamma$  Boo. Lasted about 2 minutes. Later, till 2<sup>h</sup> only glow in the north.

#### 10. Auroræ in October 1932.

October 4-5 at 20h40m Hassel observed feeble glow in N, with a weak aurora line 5577.

October 23-24.

At 21.10 Høstmælingen telephoned from Li and said that a fine arc was seen in N, close over 12 CVn. I notified my other aurora stations, but the aurora soon faded away and no photographs succeeded because of clouds and too feeble aurora.

From his station Da Hassel made the following observations:

20.40 Feeble aurora line 5577.

<sup>1)</sup> Geof. Publ. Vol. XIII, No. 7.

<sup>2)</sup> Later Hassel has written to me that 25 seconds must be subtracted from all times noted.

- 20.49 Feeble diffuse ray, visible 1 minute from the horizon up to  $\gamma$  Boo.
- 20.54 New feeble diffuse ray near the place where the former had appeared.
- 20.55-21.05 No rays.
- 21.05 Diffuse ray of short duration from the horizon to  $\mu$  UMa. Later the aurora was diminishing and had completely gone at midnight.

#### October 24-25.

The aurora was seen again from Oslo, low in the north, but the stations were not warned. From Da the following observations were made by Hassel:

- 18.55 The aurora line seen, but very feeble and one quarter of an hour later it had disappeared.
- 20.45 no trace of aurora.
- 21.02 the aurora had reappeared; broad diffuse rays were moving westwards from  $\psi$  UMa to 12 CVn, till 21.04.
- 21.15–21.20 new feeble rays in thrift westwards under  $\mu$  UMa to Boo. Strong ray at  $\varepsilon$  Boo. at 20.20.
  - All the rays from 21.02–21.20 reached from the horizon up to the same height as  $\psi$  UMa and 12 CVn.
- 21.28–21.29 narrow ray from the horizon up to  $\psi$  UMa moving slowly westwards.
- 21.48.30 two rays from the horizon up to 12 CVn and to the middle between  $\psi$  and  $\mu$  UMa. From 23.30–0.30 no more aurora and no aurora line.

#### October 25-26.

From 18.00 to 21.00 I observed feeble pulsating aurora at different places between CrB and Gem. No photographs were taken. From his station Da Hassel gave the following more complete report:

- 19.10 an isolated pulsating arc was discovered in W.
- 19.15–19.20 Drawn on a star map. From CVn. to  $\psi$  UMa.
- 19.20–19.25 Drawn on a star map. Narrower, same position. Periods of pulsation were 25, 46, 27, 35, 103 and 14 seconds. Later the periods were much longer, about 60 seconds.
- 19.35 Drawn on a star map. Same position.
- 19.40 ,, ,, ,, ,, further N, towards Gem.

- 19.43-44 Drawn on a star map, the same.
- 19.50 , , , , , , , , , , , ,
- 19.52 the pulsating arc more feeble and then it vanished till 20.10.
- 20.10–20.15 only a feeble bit of it from the horizon up to  $\varrho$  Boo. Vanished again till 21.45.
- 21.45–21.50 from CrB up to  $\gamma$  Boo. Later nothing seen till 1<sup>h</sup> when the observations ended.

#### 11. Auroræ in November 1932.

November 16-17.

In spite of strong moonlight Hassel discovered at  $18^{\rm h}13^{\rm m}$  from Da an auroral arc from CVn. to Gem; lower border 6° under  $\mu$  UMa. 3 successive positions of the arc, at 18.15, 18.20 and 19.00 were drawn on star maps. After  $19^{\rm h}$  04 no more aurora were seen.

#### November 28-29.

From the same station Hassel reported a feeble are, about 20°-25° long, lower border some degrees over the northern horizon. The aurora line was very feeble. It lasted only from 18.10 to 18.15. No more aurora observed till 19.30 when the sky became overcast.

In December no auroræ were observed.

#### 12. Auroræ in January 1933.

January 27-28.

Olaf Hassel sent the following report from his station Darbu:

- 20.20 In a break of the clouds I discovered an arc, about 3° broad. Very feeble and difficult to draw on account of foggy weather. To the right of Vega.
- 20.35 almost gone.
- 20.37 only a feeble glow. Auroral line.
- 21.07 pulsating but very feeble. Fog to about  $22^{\rm h}$ . Glow over clouds in N.
- 22.30 clear sky. Feeble glow in breaks of clouds. Fog and clouds till 1<sup>h</sup> when observations ended.

#### January 28-29.

From his station Da Hassel sent the following report:

Till 21<sup>h</sup> no aurora seen.

- 21.27 I observed a feeble diffuse ray 2° broad, quiet, from the horizon up to y Cygni. Lasted for about 2 minutes. Along the northern horizon the aurora line was seen, but very feeble until past 22h.
- 22.18 no aurora line in N, NNW and NW.
- 22.35 the aurora line again visible in N and NNW, but very feeble.
- 22.45 feeble auroral surface (DS) in Lyr. and Cyg.
- 23.05 view hindered by fog.
- 23.20 The same DS, drawn on a star map.
- 23.26-23.27 more feeble. Fog from 23.27 till 0.25, but then no more aurora. Later fog again. Observations ended at 1.30.

#### January 29-30.

Very feeble aurora observed from Da by Hassel:

- 19.40 Feeble summit of diffuse ray in Her.
- 19.42 Another on the same place.

19.47 Summit of a ray to the right of Lyr. These rays moved slowly west, and their bases were under the northern horizon. Drawn on star maps. Later some similar rays and some DS, until midnight. The aurora was so feeble all the time that it was very difficult to see the aurora line 5577 Å.

#### 13. Auroræ in February 1933.

The first dates with aurora were:

February 12-13: 19.10-19.15 very weak aurora line. Later nothing.

February 13-14: 19.05-19.25 very weak aurora line. Later nothing.

#### February 14-15.

At about 19h the sky began to be clear and at 19.50 the aurora line was visible in breaks of the clouds in N.

- 20.10 the line stronger.
- 20.15 the lines trong, between Lyr. and Her. rays.
- 20.20 rays gone.
- 20.25 new diffuse rays, for about 1 minute.
- 20.27-20.29 broad ray about  $5^{\circ}$  to the left of Vega. Down to the horizon. Summit hidden behind clouds.
- 20.30-20.45 Feeble rays from time to time low in NW.
- 20.55 An arc appeared in N. The western part drawn on a star map. The eastern hidden

behind clouds. Some minutes later it had gone.

- 21.00 only faint glow.
- 21.04 feeble ray during 30 to 60 seconds.
- 21.10-21.13 Glow.
- 21.14–21.15 Only glow in the part under  $\gamma$  Cyg. 21.17-21.18 The aurora fainter and then disap-

No more aurora till midnight, when observations ceased. At 3<sup>h</sup>40<sup>m</sup> no aurora.

#### February 18-19.

From my station Lökken Verk (Lö) southwest of Trondheim, my assistant, Captain Herstad sent me four fine photographs of a strong arc in the north, taken at 0.21.30, 0.31.30, 0.46.30 and 0.51.30.

Supposing that the lower border was lying 100 km. over the earth, we have mapped the geographical situation of the arc. It was lying between 66° and 68° northern latitude and about 250 km. to the north of the arcs from August 29-30, 1932. The distance from the magnetic axis was between 22° and 24°, thus the situation in the aurora belt.

#### February 19-20.

That night Hassel made in Da a long series of observations with drawings on not less than 34 star maps of arcs from 20h05m to 20h50m. Here is an extract of his observations:

- 19.05 a very feeble arc near the northern horizon.
- 19.30 drawn on a star map. Now still more feeble, and a short time afterwards it had disappeared. \(\epsilon\) Her. at the lower border.
- 20.00 the arc came again.
- 20.05.30 rays along the arc. Drawn on a star map. Vega and  $\pi$  Her at the upper border. Rays up to  $\iota$  Her.
- 20.08 New arc (HA) appeared.  $\alpha$  Peg., Deneb,  $\gamma$  Dra. at lower border,  $\gamma$  Boo. at the upper border. Drawn on star maps.
- 20.15 The same, drawn on a star map together with the lower one. Same situation. At Deneb about 8° broad.
- 20.20 The western part of A as before. The eastern from  $\gamma$  Dra. divided in two arcs on each side of  $\gamma$  Boo. Drawn on star maps.
- 20.30 The same. Western part going through the middle of the square of Pegasus, of the

- eastern from Deneb only the lower part left. Drawn on star maps.
- 20.35.40 Sketch on star map. Eastern part more narrow, from  $\gamma$  Bootes over  $\xi$  Dra. to Cep. From Cep. to  $\gamma$  Peg. broader and divided into two to three arcs.

This sketch, combined with observations from Koppang and Sunswall, can be used to find the height and situation of the arc. We come back to this later.

- 20.40 Sketch on star map. Western part has  $\gamma$  Peg. in the upper border.
- 20.45 Sketch on star map. Eastern part gone. The lower arc in North grew stronger when the upper arc disappeared.
- 20.50 The whole upper arc gone. The lower one under Vega and  $\pi$  Her. Sketch on star map.
- 20.55 The western part of the upper arc came again as two prominences, one towards  $\alpha$ ,  $\beta$  Cas, another towards  $\lambda$  And. Sketch on star map.
- 21.00 Sketch on star map. Lower arc under Vega.
- 21.01–21.02 The western part of the upper arc vanishes and has two prominences up to a and  $\delta$  And. Sketch on star map.
- 21.05 Lower arc again, under Vega. Sketch on star map.
- 21.08 Last trace of the upper arc from the horizon up to  $\delta$  And. Sketch on star map.
- 21.10 Lower arc rising. Vega in the middle of the arc. Sketch on star map.
- 21.20 Sketch of the lower arc on star map. Stretches to the square of Pegasus.
- 21.30 Sketch on star map. The same.
- 21.32.30-21.33 The eastern part more feeble.
- 21.35 Under the arc another close to the horizon. Sketch on star map.
- 21.40 The same. The lowest arc gone. Sketch on star map.
- 21.55 The same. Sketch on star map.
- 21.57–21.58 The arc fainter. Strongest under  $\gamma$  Cyg.
- 22.00 The arc still fainter.
- 22.01 The arc changes to a glow.
- 22.05 Glow.
  Observations postponed until
- 22.55-23.05 Only glow in N.
- 23.10 A new very feeble arc very low in N.
- 23.15 Sketch on star map. The new arc from Peg. to Lyr. Lower border  $5^{\circ}$  under  $\gamma$  Cyg.
- 23.30 Sketch on star map. The same.

- 23.35 The arc broader and stronger.
- 23.40 The western part of greenish colour. Sketch on star map.
- 23.45 The arc still stronger with dark segment under it. Sketch on star map.
- 23.50 The western part pale-green. The breadth in the western part 3°, in the middle  $2\frac{1}{2}$ ° and in the eastern part  $1\frac{1}{2}$ °. Sketch on star map.
- 23.56 The dark segment still darker.
- $23.56.30\,$  The arc dissolved in short broad rays.

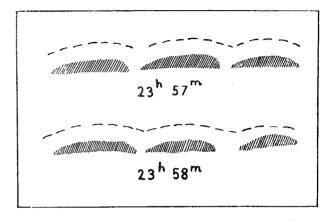



Fig. 3. Sketch by Olaf Hassel of an arc with 3 successive segments, on February 19—20, at 23, 57 to 23, 58.

- 23.57–23.58 The aurora has now the form shown in fig. 3.
- 24.00 The same. Sketch on star map.
- 0.02-0.04 The same, now like an HA beginning to divide in two.
- 0.06 The twn aris fine. Sketch.
- 0.10-0.11 Western part of the arcs changed into flaming aurora. Later diffuse rays, flaming and pulsating aurora. Lasted to about 1<sup>h</sup>. At that time long feeble diffuse rays in NW (And. and Tri.).

The rest of the observations till 4.40 concern only diffuse feeble surfaces and flaming and pulsating aurora with glow (DS, F, PS and G). Observations ended at 4.40.

Observations of the aurora this night was also received from Adolf Lindvik, Koppang (latitude 61°57, longitude 10°97 east of Grnw.) and from Mr. Wilhelm Österberg in the Swedish town of Sundswall. The letter from Mr. Lindvik is supplied with a sketch of the auroral arc at 20.45 which, together with Hassel's drawing, makes possible a calculation of height and situation. The base line

Darbu-Koppang had a length of 218.5 km. The height of the arc was found to be 117 km, and its geographical situations was from Sundswall over Sognefjord to the Shetland islands. Comparing this situation with the observations from Sundswall, the agreement was fairly good.

February 21-22, 1933.

From 17<sup>h</sup> to 18<sup>h</sup> earth currents of 25 milliampères were reported from the telegraph department. The sky was overcast with snow, and no aurora could be seen.

Februay 22-23.

Same remarks. At Lökken Verk, however, Mr. Herstad took some pictures, but they were not good enough to be measured.

Mr. Koren, and at Lökken Verk Captain Herstad did excellent work.

A preliminary report of the obtained results is published in 1934.¹) From the strong auroral and magnetic activity in the second half of February it was probable that the second part of March would be favourable. Moreover I wrote to the director of the Auroral Observatory in Tromsö, Dr. Leif Harang, to get a curve of the magnetic activity in January and February, which might be used to give a forecast of the activity in March according to the 27 days period. On Fig. 4 the activity is seen, and the continuation of the curve in March and April corresponds to the great activity which came again during these two months.

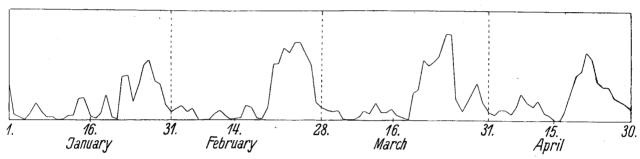



Fig. 4. Magnetic activity from January 1 to April 30 as observed at the Tromsö auroral observatory.

February 23-24.

Same remarks.

After this the period February 21–24 would probably have given fine results if the sky had been clear.

## 14. Preparations for an expedition to Trondheim.

As the results of the photogrammetric work in the Polar Year in southern Norway until March 1933 had been very poor, I decided to start an expedition to Trondheim nearer the aurora zone to get more material. As head station I was allowed to use the platform on the roof of the Physical Institute of the technical highschool in Trondheim (Norges tekniske Högskole) (N), and as substation Lökken Verk (Lö). The latitude and longitude of these two stations are given in section 2 and the constants of the base line N–Lö in section 4.

At the station in Trondheim I received most valuable help from two students, Mr. Westin and

The results obtained were also quite successful. From 18–24 March a long series of fine auroraphotographs were secured. Moreover the southern stations round Oslo were in action, and Olaf Hassel made a long series of visual observations which gave a most valuable supplement to the photographic work. For details we refere to the following sections.

#### 15. The Aurora of March 18—19, 1933.

In the following the results of the photographic work and visual observations are given in chronological order (See Table 1 and 2).

My two stations Trondheim (N) and Lökken Verk (Lö) were ready for work at 21<sup>h</sup>45<sup>m</sup>, and the first photographs were taken at 22.35. Hassel began his observations at 22.55. The first 19 sets taken simultaneously from N and Lö could not be used for height determinations on account of clouds and too small parallaxes, but a series of

<sup>&</sup>lt;sup>1</sup>) Ueber eine Nordlichtexpedition nach Trondheim in März 1933, Gerlands Beiträge zur Geophysik, Bd. 41, p. 382–386.

photographs from N gave the geographical situation assuming that the height of the lower border of the arc to be 100 km. From this it was seen that the arc was moving southwards from south of Tromsö to Mosjöen, a distance of about 140 km, in a direction normal to the arc. This gives a velocity of about 225 km. per hour.

At 22.55 this arc came over the horizon in Darbu according to Hassel, who says: At 22.55 I saw a feeble arc appearing in the north. The arc was at that time over Bodö.

At 23.15 Hassel says that the arc changed into RA. From the Photographs in N this change to RA was already seen at 23.13.

Simultaneous photographs from 23.16 gave for the lower border (RA) heights from 110 to 130 km.

Later RA changed to curtains RB, which descended to about 100 km (pictures no 33 and 35) at the same time as the intensity increased.

In this period Hassel's observations were:

- 23.15 Fine very low HA drawn on a star map. Lower border 3° under  $\beta$  And. 11° under  $\gamma$  Cyg. Rays begin.
- 23.30 Rays gone. Changing to G (The RB Nos. 33 and 35 were under the horizon in Darbu).
- 23.39 Isolated aurora in NW round Algol. Sketch on a star map.
- 23.45 The isolated aurora gone. Another in Tau. 23.55 The G still fainter.
- 0.00-0.05 The G as before.

Set No. 47 gives a short pulsatory ray going down to about 87 km. The vertical thickness is about 26 km., much shorter than in the set No. 20, whose lower border was at about 120 km. and vertical thickness about 50 km.

At 0.12.32 a very distant curtain was photographed low in NW (No. 53).

0.13–0.15 Hassel observes a stronger glow in NW. 0.17–0.18 Hassel observes greenish colour in the diffuse arc in NW. At the same time a set, No. 57, was taken from N–Lö with lower border at about 100 km. The curtain was lying between 68° and 69° latitude and 3° and 5° longitude E of Greenwich.

0.20.30 Hassel observed three arcs of the flaming aurora, going successively upwards from the arc with great rapidity.

The following sets from N-Lö, no 62, 63, 64 and 65 are interesting in so far as they show a distant curtain and a band to the right of it.

They were lying respectively 400 and 200 km. west of the Lofoten islands, 21 to 24 degrees from the geomagnetic axis. They were below the horizon for observers in Oslo. See Plate 1.

An arc began now to appear from the southern stations C, Da and Li. At N and Lö it was much higher in the sky, but the direction of displacements was not favourable to the pictures taken. At about 0.27.34 pictures were taken from C and Li, and the Li pictures could be used together with the picture at 0.26.54 from N, correction made for the motion of the arc as seen from N. The results seem to be good. The arc was lying over Namsos. Lower border from 101 to 105 km. The intensity of the arc increased successively and at 0h36m it was so strong that an exposure of 2s almost overexposed the plate. The height was found to be down to 94 km. and the arc was lying over Kristiansund and north of zenith in Lökken. In the meantime the eastern end had bent around and formed a very fine horse-shoe in NE from 0.39 to 0.41.

Fine photographs of this band are published in the above mentioned report: Ueber eine Nordlichtexpedition nach Trondheim in März 1933, plate X. Mean of the 10 heights along the lower border (sets No. 85, 86, 87 and 88) was 94 km. in round numbers.

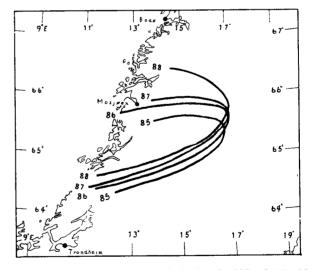



Fig. 5. Geographical positions of the band of March 18—19 from the photographs no 85, 86, 87 and 88.

In fig. 5 are seen 4 successive geographical situations of the band, supposing the height of lower border to be 94 km.

Corresponding observations from Darbu by Hassel<sup>1</sup>) run as follows:

- 0.45 Two arcs HA in N. Drawn on a star map.
- 0.50 The upper one gone except a bit from the western horizon up to  $\beta$  Per. Sketch on star map.
- 0.55 As before. Sketch on star map.
- 1.00 The upper arc has come again. Sketch on a star map.
- 1.15 The same. Sketch on star map.
- 1.18 Pulsating aurora observed at N and Lö.
- 1.25 Low HA again.  $\beta$  And. at lower border. Sketch on a star map.
- 1.40-1.48 HA photographed at Li. Clouds.

1.50 Two arcs again at Da. Sketch on a star map. Now comes a series of fine photographs of a strong arc in N, No. 98–106, between 1<sup>h</sup>59<sup>m</sup> and 2<sup>h</sup>07<sup>m</sup>, which could not be used for height measuring, except No. 103, on account of too small a parallax, but which might give the geographical situation of the arc, supposing the height given.

On account of the intensity of the arc and the results for No. 103, we have supposed  $H=95\,\mathrm{km}$ , which gave the situations seen on Fig. 6. It is remarkable how the arc follows the direction of

 $\Theta = \text{constant}$ , lying between  $\Theta = 24^{\circ}$  and  $\Theta = 26^{\circ}$ . The same arc was observed by Hassel from Darbu and drawn on star maps at  $2^{\text{h}}$  and  $2^{\text{h}}05^{\text{m}}$ . With the supposed height the position from Hassel's drawings coincide with the position on Fig. 6. At  $2^{\text{h}}$   $08^{\text{m}}$  the arc changed in RB.

2.15 From Darbu Hassel observed flaming aurora with diffuse rays moving eastwards and situated under Perseus. Later clouds.

At 2.27 came a very interesting form. Short rays assembled to irregular curtains. See Plate 1. In spite of the fact that the Lö picture was a little out of focus, the measurements gave good results. because the parallax is from 9 to 11 degrees, See Plate 1.

The lower part went down to under 80 km (see Table 2).

Later the aurora did not present anything of particular interest except some pulsating forms (see Table 1 and 2).

#### 16. The Aurora of March 19—20 1933.

The aurora this night as seen from N and Lö was of special interest. In fact we recorded on the

<sup>1)</sup> He has no observations of the horse-shoe formed curtain.

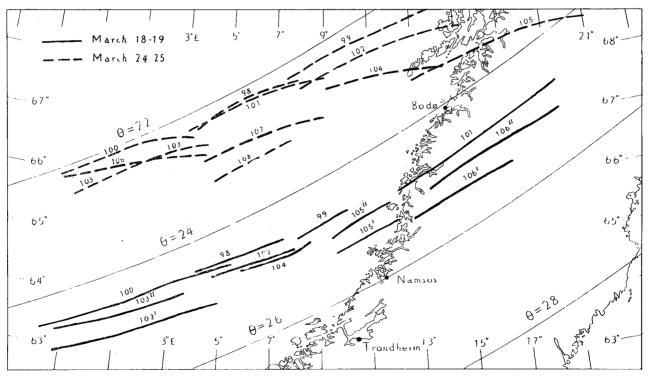



Fig. 6. Positions of ares on March 18-19 and 24-25.

plates sunlit rays which we did not see, and whose light was probably ultraviolet. This phenomenon has only appeared at one other occasion during our aurora work 1911–1953, namely on February 28, 1929, and is described in my paper Remarkable Aurora Forms From Southern Norway, 1) III–IX, p. 4,8 and 50.

My two stations N and Lö were ready for work at 20.20. The first simultaneous pictures were taken at 21<sup>h</sup>6<sup>m</sup> towards west, where a diffuse arc was visible. On the pictures the arc is seen, but also some faint rays that we had not seen and which were lying in sunshine. On pictures 3 and 4 some minutes later, when a fainter arc was seen south of the main one, the invisible sunlit rays are beautifully developed, in particular on picture 4, which has been reproduced as plate XI in the above mentioned report in Gerlands Beiträge. See Plate 1.

The plates used, Sonja EW from Herzog Bremen, were sensitive to blue, violet and ultraviolet. The rays reached from about 200 to about 400 km, in full sunshine, and were situated from NW of Kristiansund towards the Feröe islands, between

 $24^{\circ}$  and  $26^{\circ}$  from the geomagnetic axis' north point in NW Greenland.

Later rays were visible at the same place, No. 10, 15, 17, 18, but now they were much lower, down to 90–100 km, and in shadow. At the same time they had moved southwards and were now lying between Trondheim and Dombås. They were also associated with pulsating and flaming aurora.

At 22<sup>h</sup> pulsating surfaces and pulsating arcs were dominating. An arc with pulsating patches (No. 27) went down to about 82 km. It was lying in the south, over Dombås.

Soon increasing cloudiness at Lö made further simultaneous work impossible. However, at Trondheim some pictures of an arc were taken at 23.30. Supposing the height equal to 100 km., it stretched from Lofoten westwards to a point 66° north, 1° west of Greenwich. See Fig. 7.

These were the last pictures taken. At 1<sup>h</sup>20<sup>m</sup> the work ended on account of cloudiness, unfornately too early. In fact the next day my assistant Koren gave me the following observations (from the night 19–20 March):

- 2.20 Clear sky. Strong arc.
- 2.22 The arc through zenith, two smaller arcs in north.

 $<sup>^{\</sup>mbox{\tiny 1}})$  Geofysiske Publikasjoner Vol. XIII, No. 7, Oslo 1942.

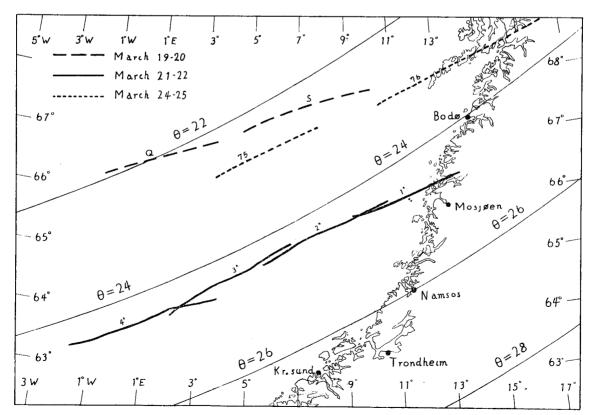



Fig. 7. Positions of ares on March 19-20, 21-22 and 24-25.

2.25 Band in zigzag, red lower border. Rays along the band. Arcs and rays in other places too.

2.30 Rays.

2.50 Pulsating aurora.

The band with red lower border probably was very low. I am very sorry that we missed it.

On my more southern stations the weather was bad. Only Hassel made some observations. Here they are:

21–21.05 Feeble aurora line 5577 in break on stratus clouds in NW.

21.57.45 Through the thinnest clouds I could see the aurora increasing in brilliancy.

22-22.03 The aurora weaker.

22.05 Aurora line visible from N to zenith.

22.20-22.30 The aurora probably gone. Overcast.

23-23.05 No aurora line. Overcast.

23.55-0.05 Perhaps the aurora line visible, but very weak. Overcast.

0.55-1.06 No aurora line.

#### 17. The Aurora of March 20—21 and 21—22.

March 20-21.

On the night of March 20-21 no aurora was observed in Trondheim on account of bad weather.

Among the southern stations only Darbu with Hassel as observer was in action. He says:

At 20.02 during the twilight I discovered in N.N.E. a band RB.

20.19–20.20 Long sunlit rays from the horizon in NW to  $\delta$  and  $\zeta$  Cep.

Till 20.46 some rays.

Nothing to see till 23<sup>h</sup>, when an aurora are was seen near the horizon in N. Some sketches on star maps were made at 23.10, 23.20 and 23.40.

23.12.14 the arc dissolved in short rays.

23.15 the arc was again visible as double arc.

23.22 Again short rays along the arc.

23.25 Arc again.

23.55 Aurora almost gone.

23.57 Bit of an arc from the horizon up to the Andromeda nebula. Sketch.

23.58-0.05 Short ray under Cas. in motion westwards. Sketches on star maps.

0.25 Patch at  $\beta$  And.

0.55-1.05 No aurora.

Later only feeble remains at the horizon.

2.40 Narrow arc at the horizon. Sketch on star map. Later only glow with feeble aurora line.

March 21-22.

That night the weather was bad at the stations N and Lö, but the southern stations were in action.

The aurora was first seen by Hassel at Darbu. After midnight the stations C,  $K_4$ , T, O and Li began their work and took a series of photographs.

From Hassel's observations we may quote: 20.01–21.00 and at 21.05, 21.15, 21.32, 22.00, 22.05 no aurora line visible.

22.25 An aurora are appeared in N, passing over  $\varepsilon$  Cyg. Between 22.25 and 22.30 it dissolved into short rays.

22.40 The aurora changed into a glow and disappeared at 22.44.

22.45-23.05 Only a glow in N.

23.52.30 Feeble are again visible. Sketch on star maps at 23.55, 0.00, 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35.

As seen from Table 1, the other aurora stations now took a series of photographs of the are. The situation has been found from the pictures No.:

Li 1\*, 2\*, 3\*, 4\*,

supposing the lower border to have a height of 100 km., it stretched from Mosjöen towards the Feröe islands, parallel to the line  $\theta = 24^{\circ}$ .

On fig. 7 the result is seen.

One set of pictures, No. 13, taken simultaneously from  $K_4$  and T could be used for height measuring. It was a pulsating patch at  $1^{h}04^{m}$ . Height from 99 to 114 km.

As to the rest of the visual observations by Olaf Hassel, we quote:

0.44.30 The arc now double.

0.52.50 Flaming aurora began in NW.

1.13 The flaming aurora gone.

1.15 Diffuse surface (DS).

1.25–1.28 Diffuse ray going westwards. Sketch on a star map.

1.40-1.55 DS.

The rest of the observations till 3.45 are not of particular interest: Some arcs, glow, pulsations and flames, at all events only feeble remains.

#### 18. The Aurora of March 23-24 1933.

That night a very fine aurora was observed and photographed from the northern stations Trondheim (N) and Lökken Verk (Lö). Lillehammer was also in action and a few pictures were taken simultaneously with the northern stations.

Moreover, Hassel at Darbu made a series of visual observations with sketches on star maps.

At 20.36 the aurora line could already be seen in N and NW at station N, and the first aurora, a curtain, was seen at 21.09. The first photographs from N and Lö were taken at 21.29.

Hassel gave the following report from Darbu (Da):

- 20.30 Glow along the northern horizon.
- 21.10 Sunlit rays up to Cas.
- 21.13–21.14 Sunlit ray up to  $\beta$  Tri.
- 21.37 Ray from the horizon with a,  $\beta$  Ari in the middle up to  $\varrho$  Per. Sketch on a star map.
- 21.38 The ray as before but has moved southwards. Has now c Ari in the middle. Sketch on a star map.
- 21.47 In breaks in clouds W-NW-N only a glow is seen.
- 21.55 Glow.
- 21.57.45 Diffuse ray from the horizon up towards Cas.
- 22.00 A feeble ray was visible some seconds from the horizon with  $\beta$  And. in the middle. Sketch on a star map.
- 22.05 Only glow.
  Observations stopped till 22.54.
- 22.54 A bit of a narrow arc (ray?) seen in W from the horizon up to  $\lambda$  Ori. Length 10 degrees. Sketches on star maps at  $22^h$  54–56, 23.00, 23.05, 23.10, 23.15, 23.25.
- 23.05 The arc passing between  $\alpha$  and  $\gamma$  Ori.
- 23.10 The arc now with a Ori at the left border, broader at the upper end like an arc and not like a ray.
- 23.15 As before, a little curved towards S.
- 23.25 Very weak, a Ori. on the right border.
- 23.26 The arc gone. Only glow in N. Clouds in N up to 10° over the horizon.
- 23.53 The glow stronger.
- 23.56 Weaker again.
- 0.00 Only glow in N.
- 0.21-0.24 Glow stronger to the right of  $\beta$  And.

- 0.29-0.30 Diffuse ray from the horizon in N up to Cas. Later more rays.
- 0.30-0.36 Pulsating aurora with the Andromeda nebula in the middle. Periods of pulsations 14, 16 and 18 seconds.
- 0.36-0.41 Aurora gone.
- 0.46 Pulsation again about 20s.
- 0.55-0.57 Period of pulsation about 10s.
- 0.57-1.00 Period about 20s.
- 1.00-1.04 Bit of an arc under Per. prolonged itself to the Andromeda nebula and then vanished. Sketch on star map.
- 1.07–1.10 Strong light from the horizon to the Andromeda nebula.
- 1.15-1.16 Strong greenish light in N.
- 1.18.30 Flaming aurora.
- 1.20 No more flaming aurora, only glow.
- 1.23-1.40 The glow strong, greenish.
- I.49-1.50 The glow stronger under Per.
- 1.55-1.57 Pulsating aurora (PS). Period about 10s.
- 2.00-2.02 The same; period  $20^{\rm s}$  and later  $30^{\rm s}$ . Sketches on star maps.
- 2.05–2.07 The same. Period 20<sup>s</sup>–25<sup>s</sup>. Sketch on star map.
- 2.10–2.13 The same. Period 20s. Sketch on star map.
- 2.15–2.17 The pulsations almost ceased. Glow persisted.
- 2.20-2.25 The same.
- 2.31-2.32 The glow weaker.
- 3.15–3.30 Diffuse surface under Per. Later some pulsating bits of arcs.
- 3.52–3.57 Bit of an arc from  $\iota$  Aur. to  $\beta$  And. Sketch on a star map.
- 4.00 The same, quiet.
- 4.00-4.05 Greenish light along the NW horizon from Gem. to Aur. The quiet bit of an arc still visible.
- 4.05–4.07 The glow lighter in Gem. and Aur. Later only in Aur. Sketch on a star map.
- 4.15–4.20 The glow vanishing.

  Dawn. Observations ceased.

It is interesting to compare this series with the long series of observations and photographs from Li, N and Lö. We shall do this at the same time as we give the result of the photographic determination of height and position of the aurora.

The work on the stations Li, N and Lö began already at 20.30, when the aurora line was visible in NW and N about  $10^{\circ}$  over the horizon. The

first 24 sets of pictures more or less failed on account of clouds. The aurora forms were feeble rays and arcs whose outlines were difficult to see on account of the clouds.

Hassel's interesting observation of an arc in W from 22.54 to 23.25 did not have corresponding observations from the northern stations.

The first usable set of pictures from N and Lö was No. 25, at 0.21.20 of diffuse rays in north. The following sets No. 26, 27, 28 and 30 were taken of the same rays. Ordinary heights for rays in the earth's shadow. They were lying far north between 68° and 69° N and 7° east of Greenwich in the aurora belt.

The pulsations observed by Hassel from 0.30 to 0.36 were also seen from the northern stations, sets 33 and 34. The measured heights were 119, 105, 108, 102 and 103 km. and the pulsating surface was situated about 330 km. west of Bodö.

On the sets 37, 38, 39 is seen a diffuse curtain, whose left border, which is seen tangentially, has the form of a fine ray. This ray can be followed up to 250 km., and the situation was at 66° N and 2° W of Grw. about 500 km. west of Mosjöen. The curtain had its lower border at a height of 90–100 km. and was developing westwards with a velocity about 200 m/s.

The set No. 40, at 0.40.24, is taken of a cloud-like aurora, height 97–124 km.

Pulsations were again recorded both from Darbu  $0^{h}46^{m}-1^{h}$  and from N and Lö, sets 43 and 44. Under the pulsating parts a new fine arc with ray structure was now in formation. Of this arc a series of determinations of height was made, giving H = 95, 81, 96, 93 and 89 km. (sets No. 43, 44 and 45). Assuming a height H = 90 km., the geographical situation was found from No. 44, 45, 47 and 49. If we assume H = 95 km., the corresponding situation is very similar, corresponding to a parallel displacement to the north of 15 km. perpendicular to the direction of the arc. The situation was westwards from Bodø near the line  $\Theta = 24^{\circ}$ .

The next sets and single pictures, No. 50 to 59, gave similar results.

At  $1^h35^m$  the arc was very fine, with a sharp lower border. The two sets No. 61 and 62 did not give sufficient parallax, but H=90 km. seems to be very probable. The arc stretched from Lofoten westwards. Se Plate 1.

From Darbu Hassel saw only a glow which was strong and greenish and which must have been the upper border of the arc, the lower border being under the horizon.

The Lö picture No. 61 is seen on plate 1.

The following sets No. 63, 64, 65, 66 were taken of the same arc but do not give any new results.

No. 69, at 1<sup>h</sup>46<sup>m</sup>06<sup>s</sup> was taken of a pulsating patch and gave ordinary heights from 96 to 114 km. It was situated over a region 200 km. due west of Namsos.

The pictures No. 72, 75 and 79 gave again the situation of the arc.

The sets 82, 85, 86 and 87 show in the western part of the arc a saw tooth depression corresponding to a fold or to a part with ray structure. This was good for height determinations and gave for the lower border the heights:

No. 82:88, 90, 94 km. No. 86: 104, 98 km. ,, 85: 97, 92 km. ,, 87: 102, 95 km. mean 96 km.

Now the aurora became more cloudlike. The next two pictures, No. 88 and 89, gave heights for DS over the arc at about 100 km.

No. 90, at 2.31: the arc again had a fold, and was stronger. Height about 95 km.

New cases of cloudlike forms over the arc, No. 91 and 92 was measured about 2<sup>h</sup>36<sup>m</sup>.

During this time only a weak glow at the northern horizon was seen in Darbu.

At 2.48 pulsating aurora began and persisted to 3.20 (pictures 93, 95, 96). It was lying lower than the aurora before, down to about 80 km.

New cloudlike patches were measured on pictures 103 and 104, about 3.46. Down to 86 and 91 km.

On pictures 105, at 3.49, a sunlit ray appeared over the cloudlike patches. It was also photographed from Lillehammer. It stretched from 165 to 350 km. approximately.

New feeble cloudlike short rays were photographed from 3.52 to 3.54. Down to 85 and 91 km. A sunlit ray on the last picture was lying from 187 to 287 km. over the earth.

At 4<sup>h</sup> an interesting development began. The lower border of the aurora in the north became stronger and sharper, and developed successively to a very fine horse-shoe curtain with maximum brilliance from 4<sup>h</sup>4<sup>m</sup> to 4<sup>h</sup>10<sup>m</sup>, and a long series

of sets were taken of this curtain. The best ones were No. 117, 118, 119, 120 and 121, which give heights of the lower border about 95 km. See Plate 2. The vertical thickness of the most luminous part of picture No. 117 was

On the picture No. 122 the upper part of the curtain with rays is seen to go much higher, up to 250 to 300 km. in the sunlit atmosphere. See Plate 2. The height of the earth's shadow was in fact:

,, ,, 7 128 ,,

The geographical positions of the lower border of three of the best pictures. No. 119, 121 and 122, are seen on Fig. 8. The displacement towards NE of the curtain was from No. 119 to 122 about 125 km. in 128 seconds, that is with a velocity near 1 km. pr. second.

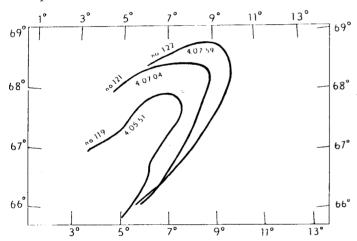



Fig. 8. Successive positions of the curtain no 119, 121 and 122 on March 23—24.

After the fading away of this fine curtain only a few feeble sunlit rays were photographed, lying between 200 and 300 km. above the earth.

#### 19. The Aurora of March 24-25 1933.

The aurora continued from sunset to sunrise. Among my southern stations only Darbu was in action, where Olaf Hassel made the following notes: 21.25 Having worked till 4.30 last night I awoke at 21.25 and saw an aurora are low in the north. Two sketches on star maps were made.

- 21.40 The arc fainter. Sketch on star map of the arc and of another close to the horizon.
- 21.50 Sketch on star map of the same arcs.
- 21.55 More and more diffuse.
- 22.00-22.05 The same, 5 to 6 degrees broad.
- 22.12-22.14 Transformed to a glow.
- 22.15 Stronger in NW.
- 22.30 A diffuse are appeared in the glow. Small clouds along the lower border.
- 22.33.40 Several thin rays moved with great velocity towards east, under Lacerta. Half a minute later summits of small shortlasting rays along the horizon.
- 22.40 Short ray in Lacerta. Lasted 30 seconds. Sketched on a star map.
- 22.46.30 Long diffuse ray from the horizon up to 61 Cyg. Later some diffuse rays.
- 22.55 Only glow.
- 22.55.30 A very feeble diffuse ray under 0 And. 23–23.05 Cloudlike aurora.
- 23.06 Feeble diffuse ray, from the horizon up to  $\iota$  And., about 10° long.
- 23.20 Diffuse ray in Cyg. towards NNE.
- 23.55-24.05 Glow.

Lasted till 1.35, with variable intensity.

1.40–1.44 Feeble arc.  $\beta$  And. at the lower border. Sketch on a star map.

Later only feeble glow.

Observations ended at 2.05.

At our stations Trondheim and Lökken Verk, however, the aurora was much finer and the work continued from sunset to sunrise.

Already at 20<sup>h</sup> the stations were ready for work, and the first set, No. 4, was taken of a strong yellow-green curtain at 20.27.40. The curtain was lying in sunshine. In fact, the shadow of the earth at the vertical of the curtain was only 100 km. over the earth. Measurements of the lower border gave heights of 109, 103, 111, 103, 113, 106 (see Table 2). The curtain was lying over Mosjöen.

From 20.29.31 to 20.29.52 the intensity of the curtain had increased, and the lower border had penetrated deeper into the atmosphere and was now in the earth's shadow. (See Table 2.)

A series of sunlit rays were now photographed, but the heights were little different from usual. At 20.49.37 an arc (No. 19) was seen and its situation was calculated under the hypothesis that the lower border was either 90 km or 110 km. See Table 2.

The next set, No. 22, showing a fine drapery, is of special interest. It has been reproduced in preliminary report as Plate XII. What is interesting is the weakening of the intensity near the shadow of the earth. See Plate 2. The upper part is lying in sunlight and can be followed up to 266 km., but continues outside the photographic field. The lower border is lying in the earth's shadow, from 95 to 98 km. over the earth. The height of the earth shadow over the points 5, 6, 7 and 8 is 159, 166, 171 and 175 km. See Fig. 9 and Plate 2.

On the set No. 42 at 21h17m41s can be seen some rays and a fine rayed arc nearer to the horizon. The most luminous part of this are had a vertical extension of 13 km. The arc was lying near the aurora belt about 600 km to the west of Mosjöen. The Lökken picture is seen on Plate 3.

A series of sunlit and partly sunlit rays, No. 47 to 50, 53 and 55 do not present any particular interest. They were situated much lower than the sunlit rays generally seen in Oslo.

A homogeneous yellow-green are, No. 56,

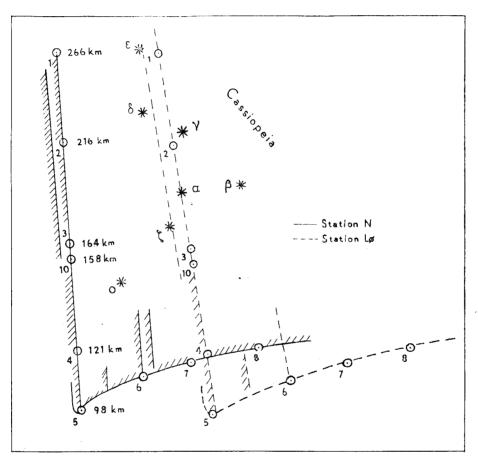



Fig. 9. Sketch of the two simultaneous pictures of the partly sunlit curtain no. 22. at 20.55.24 on March 24-25.

No. 26, at 20.57.52, was also very interesting. It showed a very luminous curtain with an exposure of only 2 seconds. The parallax, 7,5° gave a good determination of height. The lower border went down to 86 km. over the earth.

A series of sunlit rays now follows. What is remarkable is that the summits of these rays do not reach any astonishing height like those observed in Oslo during maxima of solar activity.

appeared again at 21h30m. Over it was a much broader one, more diffuse, and with a grey violet colour; it was not possible to get reliable parallax measurement of this grey violet arc. The lower one gave from the picture No. 57 a height of 98 km. The geographical position is given on Table 2. Compare Hassel's observations at 21.40.

At 22h6m to 22h32m a new are with fine lower border was measured. From the pictures

No. 75 and 76 its geographical position was found on the assumption that the height of this border equal to 100 km. See fig. 7.

On the following pictures, No. 84 to 92, a diffuse arc is again seen, from 0.39 to 0.44, more to the north than the former one; positions are calculated corresponding to H='90 and H=110 km.

From  $1^h7^m$  to 1.37 a long series of pictures (No. 98 to 108) was taken of an arc in the north and geographical positions calculated for H=90 and H=110. We have drawn the positions for the intermediary value H=100, corresponding to the pictures 98 to 108. See Fig. 6.

At 2<sup>h</sup>52<sup>m</sup> began a series of most interesting pictures of pulsating and later cloudlike aurora reaching far down to 80 km. and lower. The first one, No. 116, of a pulsating patch at 2.56.16, went down to 82 km., and at 3.11.47 a cloudlike aurora (No. 126) even down to 80 km.

But the most interesting series are No. 136 to 156, between 3.35 and 4.01, reaching down even to 70 km. This series has been described in my paper "Remarkable Aurora Forms From Southern Norway" III–IX, section 37, Geof. Publ. Vol. XIII, No. 7, and for details I must refer to this paper. All the single measurements are, however, seen in Table 2, in the present paper.

The last forms before sunrise were some pulsating violet sunlit rays. See table 2.

#### 20. Auroræ in April 1933.

After the night of March 24–25 no more aurorae were seen in Trondheim before our departure on March 28. Having returned to Oslo, we watched the sky every night, but no usable aurora were seen before April 15–16. Only faint aurora line on *April 6–7*, from 21.55 to 22.10 and on *April 7–8* from 20.45 to 21.30.

April 15-16.

I was than on a holiday at Ustaoset on the Oslo-Bergen railway, and I observed a fine aurora in the evening. I took a series of pictures with another camera, Ernostar, but they did not succeed very well, and since I was alone the times were not observed with sufficient care. They are therefore omitted here.

The aurora stations, however, took a series of

observations and photographs. Mr. Olaf Hassel made the following visual observations from Darbu:

At 21.15 no trace of aurora was seen. A quarter of an hour later the aurora had developed as arcs in south and north. Clouds made observations difficult, but a series of sketches of the aurora were made on star maps.

- 21.40 Part of an are seen among clouds in N with lower border at  $\varepsilon$  Cyg. Another pulsating one under Vega.
- 20.05 A broad feeble pulsating arc on the southern sky from  $\beta$  Aur. towards Boo.  $\delta$  Aur. and  $\varrho$  Boo. in the middle of the arc,  $\delta$  UMa at the lower border and  $\beta$  and  $\gamma$ UMa at the upper border.

  (I saw the same arc from Ustaoset stretching from Bootes to Leo and Jupiter in S to Procyon in SW. Authors remark).
- 22.10 Now only the part from  $\beta$ ,  $\gamma$  UMa to Boo. visible.
- 22.15 The arc in N now forming a narrow horse-shoe with the opening towards W.
- 22.40 Now two remnants of pulsating arcs in south. One from CVn. to Ser. with 12 CVn and  $\varepsilon$  Boo. at the lower border and another from Vir. towards Oph., with  $\varepsilon$ ,  $\delta$  Vir on each side and  $\mu$  Ser. at the eastern end.
- 22.45 The two remains are smaller. The upper one from 12 CVn to  $\chi$  Ser and the lower from 109 Vir. to  $\mu$  Ser.
- 22.55 Broad diffuse arc in N.  $\beta$  And. at the lower border and  $\beta$  Per. at the upper.
- 23.12 The same remain near 109 Vir. and another in Vir.  $\gamma$  Vir. at the upper and a Lib. at the lower border.
- 23.15 Fine arc in N from Cyg. to Aur. Lower border 5-6 degrees under  $\varepsilon$  Cyg., 5 degrees under o And.,  $2\frac{1}{2}$  degrees over  $\beta$  And. and 4-5 degrees under  $\varrho$  Per.
- 23.40 The same arc. Lower border now 1 degree over  $\beta$  And.
- 23.50 The same arc. Lower border at  $\zeta$  Per and 2 degrees over  $\beta$  And.
- 23.52 From the eastern end of the arc a ray going up to Lac.
- 23.55 The arc fainter, with diffuse borders.
- 0.00 The arc narrower.
- 0.05  $\beta$  And.  $2\frac{1}{2}$  degrees under the lower border,  $\gamma$  And. and  $\beta$  Per. at the upper border.

The breadth of the arc near  $\gamma$  And. is  $3\frac{1}{2}$ degrees.

- 0.15 Same arc.  $\beta$  Peg. at the lower border,  $\beta$  And. 2 degrees under it and  $\beta$  Per. 3 to 4 degrees over it. Same breadth near  $\gamma$  And. and  $\beta$  Per. These stars at the upper border.
- 0.30 The arc a little lower.
- 0.40 A dark segment under the arc.  $\beta$  And. now at the lower border, and  $\beta$  Per. 4 degrees

The situation of the arc was also sketched on star maps at 0.55, 1.05, 1.15, 1.40 and 2.00. 2.05.20 Some rays visible along the arc.

- 2.12 A ray from the arc 10 degrees upwards near
- 2.17 The ray has gone westwards, with summit at v And.
- 2.20 Regular homogeneous arc again. Lower border at  $\xi$  Per.
- 2.22 to 2.25 The arc changes to a glow, which becomes fainter and fainter towards dawn. Here Hassel's observations ended.

We now come to the photographs from my aurora stations C, O, K<sub>4</sub> and Li and Lö. Clouds very often made photographic work unreliable. The first usable pictures, No. 13, 14 and 15, from 22.58 to 23.25 were taken of an arc in the North simultaneously from the stations C and Li, but were not very good on account of clouds interfering. The arc was situated between Trondheim and Namsos. On picture No. 20, at 23.15 feeble rays are seen along the arc, down to 95, 99, 96 and 97 km.

The following pictures up to No. 35, at 23.33 gave the geographical situation of the arc under different assumptions relative to the height of the lower border. See Table 2. Picture No. 27\* at 23.27.19. base line  $C-K_4$  represents two feeble sunlit rays in the height interval from about 230 to about 400 km. The next set of pictures, at 23.56.15, show an arc with sharp lower border from 87 to 90 km.

The last series of pictures, from 2.08 to 2.17 shows a series of rays belonging to a distant curtain, and lying in sunshine. The height was rather low for this aurora form, compared with the heights during years of great solar activity. See Table 2.

We return to the sunlit rays of the polar year in a later section.

#### 21. Other Auroræ in April 1933.

April 16-17.

On that night my assistant Olaf Hassel observed aurora from Darbu, but no photographs were taken.

Here are his observations:

- 21.33 The aurora line 5577 Å, very feeble, could be seen, but disappeared at 21.40 and came back at 21.55.
- 23.55 Along a diffuse arc at the northern horizon rays were observed.
- 23.57 The arc almost gone, but reappeared some minutes later.
- 0.00 The situation of the arc sketched on a star map.  $\zeta$  Per.,  $\beta$  And. and  $\beta$  Peg. along upper border. The breadth of the arc near  $\beta$  And. was equal to 2 degrees.
- 0.05 The arc very diffuse.
- 0.55 The arc very feeble. Sketched on a star map. Disappeared about 0.58. From 1.00 to 1.15 some feeble remains as bits of arc. Sketched on a star map.
- 1.15 A short ray from the horizon up to  $\varepsilon$  Per., length 6 degrees. Lasted half a minute.
- 1.15.45 Pulsating bits of arc and flames. Lasted till 1.25.
- 1.25–1.35 A short ray, 7 degrees long, from the horizon up to  $\pi$  Per. moved westwards to 1° west of  $\beta$  Per.
- 1.40 Feeble glow with irregular distribution of intensity lasted till 2.05.
- 1.42 Another short ray from the horizon up to a point 2-3 degrees west of  $\beta$  And. Length 6°.

A feeble glow with irregular distribution of intensity lasted till dawn, at about 2.05, when observations ceased.

April 17-18.

The next night Olaf Hassel saw aurora again. Here are his observations:

- 21.30 to 22 No aurora and no aurora line.
- 22.10 to 22.11 A feeble ray, 9 degrees long from the horizon up to a point I degree west of o Lac.

From 22.12 to 2.00 only a feeble glow along the northern horizon.

At 2.01 flames began and lasted to 2.09.

From 2.07–2.08 a feeble long ray up to  $\delta$  Aur. Glow up to  $\alpha$  Per.

- 2.17.30 A very long ray from  $\alpha$  Aur. up to 22 H Cam. Moved slowly east and disappeared at 2.20.
- 2.25 Another long ray to the west of the former one. Both rays sketched on a star map. A series of similar feeble and high rays were sketched on star maps 2.30–2.35, 2.37, 2.40.
- 2.43–2.45 Similar, very feeble ray from a Aur. up to 22H Cam.
- 2.47 The last one, from  $\xi$  Aur. to  $\beta$  Cam., during dawn. Observations ended.

All these feeble rays were undoubtedly sunlit. The same night I was at Ustaoset, and I observed the same aurora, tried to get photographs of it, but did not succeed. Here is an extract of my observations:

It started with a glow in the north, over the mountain Hallingskarvet, at about 23<sup>h</sup>. From 0.15 to about 1.45 feeble pulsations were seen from time to time. At 1.54 flames going upwards began.

2.16 to 2.17 Very feeble rays (probably sunlit) were seen and photographed. But the picture, taken with an Ernostar camera, showed only stars and very feeble traces of aurora which were not measurable. I only remember that the rays reached from Aur. up to the Pole star. The same rays were observed by Olaf Hassel.

#### April 18-19.

In the night 18 to 19 April my assistant Herstad at the station Lökken Verk succeeded in taking a series of pictures of fine arcs and bands in the north.

Among these we have chosen No. b, c, o and p and measured their geographical position, supposing the height of the lower border equal to 100 km. They were lying almost parallel to the circles  $\Theta=22^\circ$ ,  $23^\circ$  and  $24^\circ$  in the aurora zone, from Lofoten islands westward to about Greenwich meridian. As to the times of the photographs, see Table 1.

From his station Darbu, Olaf Hassel made the following observations:

- 22.15 A feeble aurora line 5577 in the north. Later stronger.
- 22.38 Some short diffuse rays were seen for a short time in NNE.
- 22.54–22.55 A broad feeble ray from the horizon and up in Lac.

- 23.24 The glow much fainter.
- 0.56 Some strong rays in breaks of clouds, 3 to 4 degrees over the horizon in NNE. Lasted some seconds.
- 1.05 Observations ended. Overcast and strong wind.

#### April 19-20.

From Darbu my assistant Olaf Hassel made the following observations:

- From 22.35 the aurora line 5577 was visible.
- 23.32 The first aurora ray, from the horizon and up to 3 Lac. Sketch on a star map.
- 23.35 The same ray. Lasted to 23.45. Sketches.
- 0.02 New feeble ray from the horizon up to  $\omega$  Aur. Sketch on star map.
- 0.04.30 Now from the horizon up to  $\beta$  Aur. Sketch.
- 0.07 Now from the horizon up to  $\chi$  Aur. Disappeared immediately afterwards. Sketch.
- 0.18–0.22 Another ray from  $\delta$  to  $\psi$  And. Sketch.
- 0.23.25 No aurora visible.
- 0.26–0.27 Very feeble ray from  $\beta$  And. upwards. Sketch.
- 0.29–0.34 One stronger ray and some weaker ones going westwards from  $\beta$  And. The weaker ones reached only to the height of  $\gamma$  And. Sketches.
- 0.42 The summit of a short and relatively broad ray a little higher than  $\gamma$  And. Sketch.
- 0.45 A longer, very feeble ray from the horizon up to  $\alpha$  Per. Later, till dawn, no more aurora visible.

#### April 21-22.

The aurora stations C,  $K_4$  and T were in action and a series of observations were taken by Hassel at Darbu. The aurora was feeble, only rays and arcs near the northern horizon. First we quote Hassel's observations:

- 22.05 The aurora line 5577 visible for the first time this night.
- 22.22-22.23 The first diffuse rays visible in N.
- 22.25 A diffuse arc, 4–5 degrees broad near the northern horizon from Per. to Peg. sketched on a star map. From  $\beta$  And. the summit of a ray about 10° long.
- 22.30 Long and diffuse rays from the lower border of the arc up to Cas. The arc vanishing. Another ray up to Algol. Sketch.

22.55 The arc appeared again but only 2 degrees broad. Sketch.

22.59.50 The arc dissolved in rays from the western end and progressed eastwards.

23.10 The arc with ray structure (RA). Sketch.

23.13 Between  $\beta$  and  $\gamma$  And, the arc had vanished.

23.14–15 The aurora changed to a cloudlike glow.

23.16 Feeble diffuse rays in W-NW.

23.18 Only feeble DS.

23.35 3 rays in Perseus. Sketched on a star map.

23.37 The rays disappeared.

23.40 to 23.45 Feeble diffuse rays from time to time.

23.45 Only glow.

23.52.30 Glow. A feeble ray near  $\nu$  And. Sketch.

0.32 to 0.35 A very feeble arc for some minutes.

0.45 A very feeble diffuse ray between Algol and  $\gamma$  And.

0.55 Feeble glow.

0.58 Feeble are, probably pulsating, Perseus. Sketch.

1.00 Only glow.

1.03–1.04 A bit of an arc near  $\beta$  And. Sketch.

1.05-1.08 Pulsating bits of an arc in the glow at the northern horizon.

1.24–1.26 Pulsating are between  $\varepsilon$  and  $\beta$  Per. The aurora vanished successively.

2.05 Observations ended.

As to the photographs for determining the height and situation, only 4 sets could be used. The rays photographed were all sunlit and stretched from about 175 to 200 km. up to 400 to 450 km. over the earth. See Tables 1 and 2.

Probably all the rays observed by Hassel were sunlit.

April 22-23.

From Darbu my assistant Hassel saw only the aurora line 5577, but very feeble and no visible aurora.

April 23-24.

The observations by Olaf Hassel from Darbu ran as follows:

22.55 The aurora line 5577 first visible.

23.45 Feeble pulsating bits of arc near northern horizon. The periods of pulsation very irregular from 8 to 90 seconds.

23.55 to 0.00 A pulsating bit of an arc stretching from  $\omega$  Per. to  $\mu$  And. Sketch.

0.04 The pulsations ended.

0.07-0.07.30 A feeble diffuse ray from the horizon up to 2° west of γ And. moved 3 degrees towards west in 30 seconds.

0.15 Glow in N, increasing in intensity.

0.30 Pulsations started again, but very feeble and difficult to see.

0.45 New pulsating aurora with periods of 40 seconds to about 10 seconds later on.

0.53-54 Periods of pulsation from 10 to 11 seconds.

1.00-1.02 Period 23 to 25 seconds.

1.03-1.04 Period about 10 seconds.

1.04 - 1.05

1.07 Pulsations ended.

1.10 Feeble glow.

1.16 Mixture of pulsating and flaming aurora.

1.30 Ended about this time.

1.32 Feeble ray in Aur., from the horizon and up towards  $\eta$  Aur, 7 to 8 degrees long. Sketch on star map.

Observations ended at dawn.

April 27-28.

Faint aurora line visible till 2.00.

#### 22. The big Aurora on May 1-2, 1933.

The greatest aurora observed during the polar year occurred on the night of May 1-2. It was of special interest, and we got a long series of observations and photographs of it from the aurora stations (see Tables 1 and 2).

Olaf Hassel made a series of notes from his station at Darbu. He did not see the beginning, but started his observations at 22.55. Here they are:

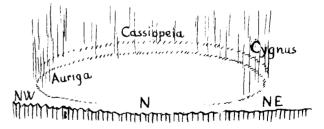



Fig. 10. Almost closed curtain observed by Olaf Hassel at 22, 55 on May 1—2.

22.55 The aurora had a very fine form of an almost closed curtain from NW to NE, see Fig. 10.

- From the curtain long rays were stretching upwards towards zenith, forming part of a corona.
- 23.06 The point of radiation of the corona was situated midway between  $\zeta$  UMa and 12 CVn.
  - From 23 to 23.30 the corona had a form very similar to the photograph No. 31 in the Photographic Atlas of Auroral Forms<sup>1</sup>. For the same period the situations of the broad aurora band are sketched on star maps No. 1 to No. 6 (not published here).
- 23.00 The band stretched from Cyg., through Cas. to Aur.; Deneb and Capella at the upper border.
- 23.10 The band is a little lower.
- 23.20 From Aur. an appendix is going down to  $\gamma$  And. The main band from Aur. to Lac. and Cyg.
- 23.30 The bands and the appendix have melted together. The situation and transformations of the broad band from 23.35 till 0.05 is sketched on star maps No. 7 to 14 (not published here).

The lower border is going down towards And. where the appendix was seen earlier. This lowering is moving eastwards.

- 0.00-0.05 The western end meets the horizon between Pollux and Procyon.

  The aurora is now spread over the whole northern part of the sky.
- 0.04.30 The summit of a ray, up to 4° over the horizon visible between the moon and  $\delta$  Can. Sketched on a star map.
- 0.12 Again a series of rays along the band. From 0.21 to. 0.27, four pictures were taken of the aurora.
- 0.27 to 0.29 The aurora band disappeared. Sketches were made on star maps of the last appearance.
- 0.30 to 0.35 Pulsating and flaming aurorae, in Leo minor and Ursa major. Sketch of a bit of an arc over Vega.
- 0.35 to 0.40 Pulsating patches and short rays near zenith.
- 0.40 The arc appeared again, from Gemini to Pegasus. Capella and  $\beta$  Peg. in the middle of the arc. Sketch on a star map.
- 0.45 The arc more narrow.  $\beta$  Gem,  $\delta$  Per. and

- $\beta$  Peg. at the upper border. Sketches on star maps.
- 0.55 A long sunlit ray from 6 to 7 degrees east of Capella to 6 degrees west of the Pole star and another in Gem. Sketch on a star map.
- 1.00 Flames and a band (breadth 3°-4°) from Gem. to And. Capella at the lower border and two more feeble bands parallel to the main one. The upper one reaching Cas.
- 1.05 Flames going upwards from the band, sometimes as arcs thrown upwards, and long pulsating rays from W towards the zenith.
- 1.10 Arc from Peg. to Aur. Some rays along the arc, one from a Peg. to 7 Lac. Sunlit. Sketch on a star map.
- 1.15 Flaming aurorae continues. The intensity of the arc different in different places. Sketch on a star map.
- 1.15 to 1.20 The point of radiation of rays was situated at  $\chi$  Her. The arc dissolving in pulsating and flaming rays.
- 1.26 The arc again very narrow. Capella,  $\beta$  and  $\alpha$  And. at the lower border. Sketch on star maps. The western end down about  $10^{\circ}$  north of Regulus.
- 1.30 The point of radiation under  $\varphi$  Her. The arc higher, from  $\beta$  and  $\alpha$  And. to 12° under Regulus.
- 1.35 Very fine arc with ray structure (RA) with more than 30 short rays of almost constant interval between consecutive rays.
- 1.45 The flaming seems to have ended. The moon has gone down and it is easier to see the faint aurora. Glow and cloudlike aurora
- 1.47 An arc again visible from Aur. to  $\beta$  And. Over it flaming arcs. Soon the aurora vanished with the beginning of dawn.
- 1.55-2.00 Still flaming aurora could be seen.
- 2.02 No aurora seen in the dawn. But in the pocket spectroscope directed towards NW the aurora line could be seen, fainter and fainter till 2.20, when I could not see it any more. Observations ended.

We shall now see what was derived from the photographic work of this remarkable aurora. I am sorry that the base line C-Li gave only a few measurements, because the camera used by Mr. Anda in Oslo had its iris almost closed without

his knowledge. This was not discovered before the work was ended. A series of single pictures taken at Li could, however, be used for other purposes.

When I first came to the aurora station C on the roof of the old observatory in Oslo, long aurora rays were seen on the western sky towards zenith. The first usable pictures, No. 7 and 8 about 21.22, with base line C-K<sub>4</sub>, gave heights from about 240 to 460 km. on rays lying in the sunlit part of the atmosphere over Skagerak, south of Mandal.

The next pictures, 9, 10 and 11 (see Tables 1 and 2), were pointed towards the center of the corona, and the situation of the point of radiation was measured.

The next picture, No. 12, at 22.25.49, was taken of a drapery in WNW. It was lying in sunshine.

No. 13 and 14 show rays with their upper parts in sunshine and their lower parts in shadow. No. 15 and 16 are again pictures of the corona. As to the coordinates of the point of radiation, see Table 2. The following numbers from 17 to 43 are all of aurora forms in the sunlit atmosphere, except No. 17 point 1 and No. 42, points 3 and 4. Among these, No. 35 shows a ray whose summit was more than 400 km. above the earth.

Now comes a very fine series of photographs (no. 42–51) of the remarkable curtain or drapery, which Olaf Hassel observed at 22.55 (Fig. 14). Of the western part numbers 42–51 were taken, of the eastern part only No. 52.

The curtain was very characteristic: the rays beginning at the lower border stretch upwards as long sunlit rays, as seen on Plate 3. The lower border was near the border between the atmosphere in sunshine and in shadow, sometimes over and sometimes under this border.

As to the geographical situation, No. 45, for instance, was situated over Norway in the region of Aalesund, Kristiansund and Dombaas, and the others up to No. 51, not far from this region. The eastern part of the curtain, No. 52, was situated in sunshine over the middle of the southern part of the Gulf of Bothnia. No. 55, 56 and 59 are

rays, the first two sunlit and the last one in shadow.

No. 61, at 23.05 is a sunlit drapery over the region of Trondheim, Lökken Verk.

No. 62, 63 and 64 are rays partly in sunshine and partly in shadow. The same is the case with No. 65 and 66. Fine sunlit rays are seen on picture No. 67, at 23.08.12, one ray perhaps going down in the shadow (see Table 2). No. 68, 69 and 70 is a diffuse drapery mingled with rays, lying partly in sunlight, partly in shadow. The lower border of the drapery is lying in shadow, heights between 89 and 113 km., mean 101 km.

On the sets No. 72, 73 and 74 the lower border of the drapery is rather sharp. By combining the simultaneous pictures C 73 and Li 41 we got the height of the lower border equal to 106, 107, 102 and 101 km. (parallaxes from 17.7 to 21.6 degrees).

The ray photographed on No. 76 and 77 is sunlit and the measurements seem very reliable.

The following sets of pictures are taken of rays and draperies in the sunlit part of the atmosphere (see Tables 1 and 2). One of them, a ray at 1.12.11 had its summit higher than 500 km. over the earth. As a contrast to this, we have No. 102, at 0.14.15, of a curtain descending to 83 and 88 km. and lying in the earth's shadow, over Sognefjorden.

In the chapter on the general results of the measures taken, we come back to the situation of the sunlit aurora rays to the borderline between sunlit and dark atmosphere.

## 23. Hasselîs list of nights when no aurora was seen.

In my instructions to Olav Hassel I asked him not only to observe aurora but also to note when aurora was not seen, which he did with great care. As I said before, his observing station was *Darbu* (Da). Lat. 59°41′56″, long. E. of Gr.9°48′17″, if no other station is mentioned.

In Table 3 a translation in English of his observations is given. The time is always Middle European Time (MET).

```
14-15 After 22 clear sky.
                        Table 3.
                                                                        15-16 Till 21.35. Clear sky.
   Hours of observation when no aurora was seen. Station
                                                                        18-19 Observed till 22.45. Overeast.
Darbu, Observer Hassel.
                                                                        19 - 20
                                                                                            21.30.
1932.
                                                                                            22.00.
                                                                        20 - 21
          18-19 Observed till 23.30 Clear sky.
August
                                                                                            22-23. Clear sky.
                                                                        21-22
                                                                                  --,,---
          21–22 —"— Moonlit cirrostratus.
                                                                                            22.30. Overcast.
                                                                        22 - 23
          22-23 22.35-0.00 Moonlit cirrocumulus.
                                                                                            22.00. Overcast, hazy.
                                                                        23 - 24
          23-24 Observed till 23.00. Hazy and mocnlight.
                                                                        24 - 25
                                                                                            21.15. Clear sky, later overcast.
          24-25 23.15-1.10 Clear sky.
                                                                        25 - 26
                                                                                            21.45. Partly clear.
          25-26 22-0.05 Clear sky except cumulonimbus in N.
                                                                        26-27
                                                                                            20.10. Overcast, snow.
          28-29 Observed till 23.00 Mostly cloudy sky.
                                                                        27 - 28
                                                                                            21.45.
September 2- 3 3.40-4.10.
                                                                                            21.00.
                                                                        29 - 30
           3- 4 21.45-23.05 Clear sky.
                                                                                            22.30.
                                                                        30 - 31
           8-9 22.40-0.05 —,,—, , later clouds.
                                                             December I- 2
                                                                                            22.00.
           11-12 Till 0.00 (Observed from Oslo).
                                                                         2-3
                                                                                            22.15.
                                                                                                        , rain,
           12-13 Clouds.
                                                                         3-4 Before 18.30 clear sky, later overeast.
           13-14 At 2.50 clear sky.
                                                                         4- 5 Observed till 21.15. Overcast.
           14-15 Till 22 clear sky, later clouds.
                                                                         5-6
                                                                                            21.30.
                                                                                  -,,-
           15-16 Observed till 22.30. Clouds.
                                                                                            22.00. Partly clear sky.
                                                                         6-7
                                                                                  --,,--
                  —"— 22.30. Cirrostratus.
           16-17
                                                                         7-8
                                                                                            22.00. Clear sky.
           17-18 Observed 20-21. Almost overcast.
                                                                                  --,,--
                                                                                            22.00.
                                                                         8-9
                                                                                  --,,---
          20-21 Observed till 0.00. Clear sky.
                                                                                                     ", , 4.45 clear sky.
                                                                         9-10
                                                                                  --,,-
                                                                                            23.00.
          21–22 —"— 23.20. —"—
                                                                        10-11 Before 22 overcast, later partly clear. Till
          26-27 Observed 21.40-22.40 Overcast but breaks
                                                                               22,00.
                 in clouds.
                                                                        11-12 Observed till 0.15. Clear sky. 4.00 clear.
          27-28 Observed till 22.30. Clear sky.
                                                                        12-13
                                                                                            23.15.
                                                                                  --,,--
           2- 3 Till 0.30 Clear sky.
October
                                                                                            21.00. Rain and fog.
                                                                        13-14
                                                                                  --,,-
           3-4 , 23.00 -,-
                                                                        14-15
                                                                                            21.30. Overcast.
                                                                                  --,,--
           4- 5 Overcast.
                                                                                           22.30. " 2.45 overcast.
22.00. " 3.30 overcast.
                                                                        15-16
                                                                                  --,,--
           5-6
                 "
                                                                        17-18
           6-7
                                                                                            22.00. Clear 17-20. Later
                                                                        18 - 19
           7-8 Observed till 22.45. Haze.
                                                                                                 overcast.
           8- 9 Overcast with rain.
                                                                                            23.00. Partly clear. 2.25 the.
                                                                        19 - 20
           9-10
                                                                                                 same.
           10--11
                                                                                            22.00. Fog.
                                                                        20 - 21
           11-12 At 20.00 and 20.15-22.30 clear sky.
                                                                        21~22
                                                                                            22.00. Rain and fog.
                                                                                   __,__
           12-13 Observed till 22.45. Overcast.
                                                                        22 - 23
                                                                                   -,,-
                                                                                            21.30. —,—
                    -,,--
                             22.25. " , rain.
           13–14
                   23.15. Mostly overcast.
                                                                        23 - 24
                              22.00. Cloudy.
           14-15
                                                                                            22.15. After 19.00 clear sky.
                              22.10. "
                                                                        24 - 25
           15-16
                                                                                                    At 4.25 " "
                              23.30. "
           16-17
                                                                                            22.00. Fog.
                                                                        25 - 26
                              22.00. Moonlit cirrocumulus.
           17 - 18
                                                                                            22.00. "
                                                                        26 - 27
                                                                                   --,,-
                              22.00. Almost clear.
           18 - 19
                                                                                            19.25. \ddot{,} , 1.15 fog.
                                                                        27 - 28
                                                                                   _,,---
                              21.10 and from 3.40. Clear.
           19 - 20
                                                                        28 - 29
                                                                                   -,,--
                                                                                            21.15. Overcast.
           20-21
                              20.00. Overcast in Oslo.
                                                                        29 - 30
                                                                                   -,,-
                                                                                            22.00.
          21-22
                   --,,--
                              0.00. —"—
                                                                                            22.00.
                                                                        30-31
                                                                                  --,,---
                              0.00. —,,-
                   --,,---
          22 - 23
                                                                                                     "
                                                                                             0.45.
                                                                        31-1 Jan. —"—
November 1– 2 Snow. No aurora line 5577.
           2-3
                              —"—
                                                             1933.
           3-4 Rain.
                              --,,--
                                                                         1- 2 Observed till 22.30. Overcast.
                                                             January
           4-5
                                                                                            22.00. "
                                                                         2 - 3
           5- 6 Observed till 22.10. Clear.
                                                                                  ---,,-
                                                                                            22.30. Almost clear.
                                                                         3-4
                                                                                    -,,--
                    --,,--
                              22.20. Clear.
                                                                                            22.00. Overcast, 2.24 also
                                                                         4- 5
                     --,,--
                              22.10. Dense fog.
                                                                                                    overcast.
                              21.00. Overcast and fog.
           8-9
                    <del>_</del>,,-
                                                                                            22.30. Overcast.
                              21.45 Rain and snow.
                                                                         5-6
           9-10
                    --,,--
                                                                         6-7
                                                                                            22.10. Almost clear.
                              0.00. Clear.
           10-11
                    --,,---
                                                                                            21.00. Overcast.
                                                                         7-8
                              22.30. Some clouds, fog.
                                                                                  ---,,---
           11-12
                                                                                            22.25.
                                                                         8- 9
           12-13 Observed 20.30-21.00. Clear, later fog.
                                                                                   --,,-
                                                                                            21,00, Clear sky. 1.00 clear.
                                                                         9-10
           13-14 Till 21. Clear, later fog.
```

and the second s

|          |         | Observee till       |        | *                        |                      |        | Observed till |         | Overcast.                |
|----------|---------|---------------------|--------|--------------------------|----------------------|--------|---------------|---------|--------------------------|
|          | 11-12   | ,,                  |        | Overcast. 3.00 overcast. |                      | 6- 7   | "             | 22.10.  | "                        |
|          | 12-13   | -,,-                |        | Overcast.                | •                    | 7-8    | <sub>22</sub> | 22.15.  | "                        |
|          | 13-14   | ,,                  | 22.30. | At 20.00 overcast, later |                      | 8- 9   |               | 23.05.  | " or some clouds.        |
|          |         |                     |        | cloudy.                  |                      | 9-10   | , <b>,</b>    | 1.00.   | "                        |
|          | 14 - 15 | ,,                  | 23.30. | Overcast.                |                      | 10–11  | ,,            | 0.30.   | "                        |
|          | 15-16   | ,,                  | 22.00. | "                        |                      | 11-12  | ,,            | 1.05.   |                          |
|          | 16-17   | <sub>&gt;&gt;</sub> | 22.00. | "                        |                      | 12-13  | -,,-          | 22.00.  | " or some clouds.        |
|          | 17 - 18 | ,,                  | 22.00. | "                        |                      | 14-15  | -,,-          |         | Cloudy.                  |
|          | 18-19   | ,,                  | 22.20. | "                        |                      | 15-16  |               |         | Clear sky.               |
|          | 19-20   | — <u>"</u> —        | 22.00. | "                        |                      | 16-17  | ,,            |         | From 19.45 to 22.30      |
|          | 20-21   |                     |        | louds, 22.00 overcast.   |                      |        | "             |         | clear sky, later over-   |
|          |         | Observed till       |        |                          |                      |        |               |         | cast.                    |
|          | 22-23   | ,,                  | 22.15. | "                        |                      | 17-18  | -,,-          | 22.05.  | Overcast.                |
|          | 23-24   | <u>"</u>            | 22.15. | "                        |                      | 18-19  | »             |         | Clouds and overcast      |
|          | 24-25   |                     | 22.30. |                          |                      |        | "             |         | sky, but the aurora      |
|          |         |                     |        | r, 21.00-22.00 overcast, |                      |        |               |         | line sometimes visible   |
|          |         |                     |        | es clear, sometimes fog. |                      |        |               |         | in breaks of clouds.     |
|          |         |                     |        | Some clouds.             |                      |        |               |         | Later aurora.            |
|          | 27-28   |                     |        | 20.25 aurora.            |                      | 22-23  |               | 0.30    | Overcast.                |
|          | 28-29   | ,                   |        | Later feeble aurora.     |                      | 25-26  | ,,            | 23.00.  |                          |
|          | 30-31   | _,,_                |        | Overcast.                |                      | 26-27  | ~,,-          |         |                          |
|          |         | ,,                  |        |                          |                      | 27-28  |               |         | Clear sky.               |
|          | 31-1 F  | eb. —"—             | 22.30. | Before 20. cloudy, later |                      |        | "             |         | Overcast.                |
| T) 1     |         | 01 1 (11)           | 22.15  | overcast.                |                      | 28-29  | ,,            | 1.35.   | "                        |
| February |         | Observed till       |        | •                        | 3.T .C               | .1 1   |               |         | uall Mr Tr               |
|          | 2-3     | ",                  |        | Almost overcast.         |                      |        |               | tii Apr | il 3rd because Mr. Has-  |
|          | 3-4     | ,,                  |        | Cloudy.                  | sel was in           | hospit | al.           |         |                          |
|          | 4- 5    | ,,                  |        | Overcast. 2.50 cloudy.   | A 2021               | 9 4    | Observed till | 90 9A   | Clauder an arrangest     |
|          | 5- 6    | —"—                 | 22.15. | "                        | April                |        |               |         | Cloudy or overcast.      |
|          | 6- 7    | <u>"</u>            |        | Cloudy.                  |                      |        | "             | 23.30.  | "                        |
|          | 7-8     | ,,                  |        | Overcast.                |                      |        | .,            |         | Overcast.                |
|          | 8- 9    | — <b>"</b> —        | 22.00. | "                        |                      |        | From 22.20-0  |         | •                        |
|          | 9–10    | <sub>22</sub>       | 0.30.  | "                        |                      |        | "             |         | Clear, later overcast.   |
|          | 10–11   | ,,                  |        | Clear sky.               |                      |        | Observed till |         |                          |
|          | 11-12   | ,,                  | 0.05.  | Overcast.                |                      | 9–10   | —"—           | 0.00.   | Clear sky and some-      |
|          | 12-13   | —"—                 | 21.30. | 19.20, 19.30–19.40,      |                      |        |               |         | times overcast.          |
|          |         | •                   |        | 20.00-20.05 elear sky.   |                      | 10-11  | ,,            |         | Mostly overcast.         |
|          |         |                     |        | From 21.00 overcast.     |                      | 11–12  | Overcast till | 23.05.  | Later clear-sky in N.    |
|          |         |                     |        | From 21.40-22.30         |                      |        |               |         | Ended 1.00.              |
|          |         |                     |        | clear.1)                 |                      | 12-13  | Observed till |         |                          |
| ~        | 13-14   | From 19.25 to       | 23.00  | clear sky.               |                      | 13-14  | ,,            | 0.15.   | " " .                    |
|          | 16-17   | Observed till       | 21.40. | Overcast.                |                      | 14-15  | <u>"</u>      | 0.05.   | Overcast.                |
|          | 17-18   | -,,-                | 22.00. | "                        |                      | 15-16  | ,,            | 21.15.  | Overcast. Later aurora.  |
|          | 18-19   | ,,                  | 22.05. | "                        |                      | 18-19  | ,,            | 21.05.  | Later aurora line, clear |
|          | 20-21   | _ <u>"</u> _        | 22.40. | "<br>"                   |                      |        |               |         | sky.                     |
|          | 21-22   | ,,                  | 22.40. | "<br>"                   |                      | 19-20  | ,,            | 22.30.  | Later aurora, clear sky. |
|          | 22 - 23 | ,,                  | 22.30. | "                        |                      | 20-21  | ,,            | 22.30.  | Later aurora line, clear |
|          | 23-24   | -,,-                | 22.00. |                          |                      |        |               |         | sky.                     |
|          | 24-25   | -,,                 | 22.05. | "                        |                      | 26-27  | -,,-          | 1.00.   | Clear sky.               |
|          | 25-26   | -,,                 | 22.15. | "                        |                      | 27-28  | .,            |         | ter faint aurora line.   |
|          | 26-27   | ,                   | 21.05. | "                        |                      |        | Observed till |         |                          |
|          | 27-28   | ,,                  | 22.10. | "                        |                      | 29-30  | ,,            | 1.00.   | Clear sky.               |
|          |         | arch-"—             |        | "Clear sky.              |                      |        | Tay           |         | Overcast.                |
| March    | 1- 2    |                     |        | Overcast.                |                      |        | •/            |         |                          |
| MESTICAL |         | -,,-                |        |                          |                      |        |               |         | 3 .411 3.5 -             |
|          | 2-3     | ,,                  | 22.05. | "                        | $\operatorname{The}$ | obser  | vations cor   | ntinue  | ed till May 15–16        |
|          | 3-4     |                     | 22.00. | "                        | with ch              | anging | weather,      | but n   | o traces of aurora       |
|          | 4-5     |                     | 22.05. | "                        | . 1.                 | 5 6    | 1 1/1 0       |         | 7 0 5 7 11 11            |

<sup>1)</sup> In the following the hours when observations were made are all given. We have only given the last observation.

were discovered. May 3-4 and 6-7 and all the following nights overcast, with clear sky on the other nights.

## 24. Hasselîs visual observations of the occurrence and intensity of the aurora lines seen in a pocket-spectroscope.

According to the program given by La Cour in Photographic Atlas of Auroral Forms, Supplement I, p. 15, Hassel also made very careful statistics of the occurence and intensity of the aurora lines, in particular the line 5577 Å. We do not find it necessary to publish these extensive tables and have therefore omitted them here.

#### PART III.

#### 25. Statistics for all measured aurora points.

In spite of the relatively few heights, 1429 in number, compared with more than 12 000 heights from the period 1911–1944, ) we find again some of the same general results which were drawn from this much more extensive material. We therefore give short statistics for these 1429 heights.

In table 4 the number of measured heights for each km. is given, first for each particular aurora form and than for all forms. This gives a picture of the vertical distribution of the aurora in the atmosphere.

Table 4.

Frequences of heights of all the measured aurora points.

| Н  | НА | нв | PA | DS | PS | RA | RB | D | R | R′ | To-<br>tal |
|----|----|----|----|----|----|----|----|---|---|----|------------|
| 70 |    |    |    | 1  |    |    |    |   |   |    | 1          |
| 1  |    |    |    |    |    |    |    |   |   |    |            |
| 2  |    |    |    | 1  |    |    |    |   |   |    | 1          |
| 3  |    |    |    | 1  |    |    |    |   |   | ,  | 1          |
| 4  |    |    |    |    |    |    |    |   |   |    |            |
| 5  |    |    |    | 3  |    | ١  |    |   |   |    | 3          |
| 6  |    | ١  |    | 2  |    |    |    |   |   |    | 2          |
| 7  | l  |    |    | 1  |    | ١  | 1  |   | l |    | 2          |
| 8  |    |    |    | 6  |    |    | 1  |   |   |    | 7          |
| 9  |    |    |    | 1  | 1  |    |    |   |   |    | 2          |
| 80 |    |    |    | 3  | 1  | ١  | 3  |   | ١ |    | 7          |
| 1  |    |    |    |    | 1  | 1  | 1  | 1 |   |    | 4          |
| 2  |    |    | 1  |    | 2  |    |    |   |   |    | 3          |
| 3  |    |    |    | 4  |    |    | 2  |   |   |    | 6          |

Carl Störmer: Statistics of Heights of various auroral Forms from southern Norway, second communication Terr. Magn. and Atmosph. Electricity, Vol. 53 September 1948.

Table 4 (continued.)

| Н        | НА            | нв    | PA    | DS    | PS                                                        | RA            | RB  | D      | R                       | R′    | To-<br>tal |
|----------|---------------|-------|-------|-------|-----------------------------------------------------------|---------------|-----|--------|-------------------------|-------|------------|
| 4        |               |       | 1     | 2     | 1                                                         |               |     |        |                         |       | 4          |
| 5        | 1             |       |       | 4     |                                                           |               |     | 2      |                         |       | 7          |
| 6        |               |       |       | 4     | 1                                                         |               | 2   | 1      | 1                       | ٠.    | 9          |
| 7        | 2             |       |       | 4     | 1                                                         |               | 1   |        |                         | ٠.    | 8          |
| 8        | 2             |       |       | 3     |                                                           | 1             | 4   |        |                         |       | 10         |
| 9        | 1             | 1     | ٠     | 2     | 3                                                         | 1             | 1   | 1      | 1                       |       | 11         |
| 90       | 3             | 1     |       | . 5   | 1                                                         |               | 5   | 2      |                         | ١     | 17         |
| 1        | 1             |       |       | 3     |                                                           |               | 2   |        |                         |       | 6          |
| 2        | ١             | 2     | 1     | 2     | 1                                                         |               | 5   | 3      | 1                       | ٠.    | 15         |
| 3        | ١             | 1     | 1     | 7     | 1                                                         | 3             | 1   |        | 1                       |       | 15         |
| 4        | 4             |       |       | 1     |                                                           | 1             | 5   | 4      | 3                       |       | 18         |
| 5        |               |       |       | 3     |                                                           | 2             | 8   | 3      |                         |       | 16         |
| 6        | 5             | 3     |       |       | 2                                                         | 2             | 6   | 1      |                         |       | 19         |
| 7        | 1             | 2     |       | 4     | 2                                                         | 2             | 7   | 3      | 1                       |       | 22         |
| 8        | 3             | 1     |       | 4     | 2                                                         | 3             | 15  |        | 3                       |       | 31         |
| 9        | 1             | 1     |       | 6     | 2                                                         | 2             | 4   | 3      | 1                       | 1     | 20         |
| 100      | 2             |       |       | 7     | 2                                                         | _             | 8   | 4      | 1                       |       | 24         |
| 1        | 2             |       |       | 2     | ì                                                         | 1             | 8   | 6      | ı                       |       | 20         |
| 2        | i             |       |       | 5     | $\begin{array}{c c} & \cdot & \cdot \\ & 2 & \end{array}$ | 5             | 11  | 2      | 3                       |       | 28         |
| 3        | 2             | · ·   |       | 2     | 5                                                         | 1             | 7   | 5      | 2                       |       | 24         |
| 4        |               | 1     |       | 3     | 1                                                         | 3             | 9   | 3      |                         |       | 20         |
| 5        | 3             | 1     |       | 9     | 2                                                         | 1             | 9   | 1      | $\frac{\cdot \cdot}{2}$ | ••    | 27         |
| 6        | 2             |       |       | ì     | 1                                                         | 1             |     |        | 1                       | • • • | 24         |
|          | $\frac{2}{2}$ |       |       | 5     | 2                                                         | $\frac{1}{2}$ | 9   | 5<br>3 | 3                       | • •   | 22         |
| 7        | 2             | • •   |       | 4     | 1                                                         | 2             | 6   |        |                         | •••   |            |
| 8        |               |       | • •   | 6     |                                                           |               | 9   | 4      | 4                       |       | 24         |
| 9        |               | • • • | • • • | 2     | ٠.,                                                       |               | 6   | 1      | 1                       | 1     | 11         |
| 110      |               |       | • •   | 7     | 1                                                         | 2             | 5   | 3      | 2                       | • •   | 20         |
| 1        |               | • •   | • • • | 5     | • •                                                       | 2             | 6   | 1      | 2                       |       | 16         |
| 2        | ., 1          |       | • •   | 1     |                                                           | 1             | • • | 3      | 2                       | 1     | 9          |
| 3        |               |       | • •   | 2     | 2                                                         | 1             | 8   | 2      | 3                       | 1     | 19         |
| 4        |               | • • • |       | 3     | 2                                                         | 1             | 6   | 1      | 2                       | 1     | 16         |
| 5        |               | • •   | • •   | 6     | • •                                                       |               | 7   | 2      | 6                       | 1     | 22         |
| 6        |               |       |       | 3     |                                                           | • •           | 3   | 1      | 1                       | • •   | 8          |
| 7        | ٠٠.           | • •   | • •   | 1     | • •                                                       | • •           | 2   | 1      | 6                       |       | 10         |
| 8        |               | • •   |       | 3     | • •                                                       | • •           | 5   | 1      | ٠.                      | • •   | 9          |
| 9        | 1             | • •   | • • • | • • • | 1                                                         |               | 7   | 2      | 3                       |       | 14         |
| 120      |               | • •   |       | 3     | 1                                                         |               | 2   | 3      | 3                       |       | 12         |
| 1        |               |       |       |       |                                                           |               | 1   | 1      | 3                       |       | 5          |
| <b>2</b> |               | ٠.    |       |       |                                                           |               | 4   | 1      | 2                       | • •   | 7          |
| 3        |               |       |       | 1     | • •                                                       | 1             | 3   | 2      | 4                       | 1     | 12         |
| 4        |               |       |       | 1     |                                                           |               | 1   | 1      | 5                       | 1     | 9          |
| 5        |               |       |       |       |                                                           | 1             | 2   |        | 2                       | 1     | 6          |
| 6        | 2             |       |       |       |                                                           |               | 2   | 3      |                         |       | 7          |
| 7        |               |       |       |       |                                                           |               | 2   | 1      | 2                       | 2     | 7          |
| 8        |               |       |       | 1     | ٠.                                                        |               | 1   |        | 1                       | 1     | 4          |
| 9        |               |       |       | 1     | 1                                                         |               |     | 1      | 1                       |       | 4          |
| 130      |               |       |       |       |                                                           | 1             | 3   | 1      | 1                       |       | 6          |
| 1        | 1             |       |       |       |                                                           |               | 2   |        | 1                       | 1     | 5          |
| 2        |               |       |       | 1     | 1                                                         |               | 2   | 1      | 1                       | 3     | 9          |
| 3        | 1             |       |       | 1     |                                                           |               |     |        |                         |       | 2          |
| 4        | 1             |       |       |       |                                                           |               | 3   | 1      |                         | ١     | 5          |
| 5        | 1             |       |       |       |                                                           |               | 2   | 1      | 2                       |       | 6          |
| 6        |               |       |       |       |                                                           | ٠             | 3   |        | 3                       |       | 6          |
| 7        |               |       |       |       |                                                           |               | 2   |        | 1                       | 2     | 5          |
| 8        | 1             | ١     | ١     | ١     | ١                                                         |               | ١   | 1      | 1                       |       | 3          |
|          |               |       |       |       |                                                           |               |     |        |                         |       |            |

| Table | 1 | (continued.) |  |
|-------|---|--------------|--|
| Laure | 4 | rconomuea.   |  |

Table 4 (continued.)

| able          | 4 (0  | contin | ued.) | ble 4 (continued.) |     |     |     |       |                                        |                         |                                        | Table 4 (continued.) |       |       |       |       |       |     |        |               |       |                                      |        |
|---------------|-------|--------|-------|--------------------|-----|-----|-----|-------|----------------------------------------|-------------------------|----------------------------------------|----------------------|-------|-------|-------|-------|-------|-----|--------|---------------|-------|--------------------------------------|--------|
| н             | на    | нв     | PA    | DS                 | PS  | RA  | RB  | D     | R                                      | R′                      | To-<br>tal                             | Н                    | НА    | нв    | PA    | DS    | PS    | RA  | RВ     | D             | R     | R′                                   | T<br>t |
| 9             | 1     |        |       |                    | 1   |     | 1   |       |                                        | 3                       | 6                                      | 4                    |       |       |       |       |       |     |        | 2             | 2     |                                      |        |
| <b>1</b> 0    |       |        |       |                    |     |     | 1   | 1     |                                        |                         | 2                                      | 5                    |       |       |       |       |       |     |        |               | 2     | 1                                    |        |
| 1             |       |        |       |                    |     |     |     |       | 1                                      |                         | 1                                      | 6                    |       |       |       |       |       |     |        |               | 1     | 1                                    |        |
| 2             | • •   |        |       |                    |     |     | 1   | ٠.    | 2                                      | 1                       | 4                                      | 7                    |       |       |       |       |       |     | 1      |               |       |                                      |        |
| 3             |       | ••     | • • • | • •                |     | • • | 2   | • • • | 2                                      | 2                       | 6                                      | 8                    |       | • •   |       | • •   | ٠.    | • • | • •    |               |       | 1                                    |        |
| 4<br>5        | • •   | ••     | • •   | • •                |     |     | 1   | 1     | 1                                      | 1 3                     | 3                                      | 9                    | • • • | • • • | • •   | • • • |       |     | 1      |               |       | 2                                    |        |
| $\frac{5}{6}$ | ٠٠.   |        | • • • |                    |     | ••• |     | }     | 1                                      |                         | 4                                      | $\frac{200}{1}$      | • •   | • • • | • •   | • •   |       | • • | 1      | $\frac{1}{2}$ | 1     | $\frac{3}{2}$                        |        |
| 7             |       |        |       |                    |     | ::  |     | • •   |                                        | $\frac{\cdot \cdot}{2}$ | 2                                      | $\frac{1}{2}$        |       |       |       |       | • •   |     |        | l             | • •   | 4                                    |        |
| 8             |       |        |       |                    |     |     | 2   |       |                                        | 3                       | 5                                      | 3                    |       |       |       |       |       |     |        | 1             | 1     | 4                                    |        |
| )             |       |        |       |                    |     |     |     | 2     | 2                                      | 2                       | 6                                      | 4                    |       |       |       |       |       |     |        | 1             | î     |                                      | İ      |
| )             |       |        |       |                    |     |     | 1   |       | 6                                      |                         | 7                                      | 5                    |       |       |       |       |       |     |        | 1             |       | 2                                    |        |
| L             |       |        |       |                    |     |     | 2   |       |                                        | 1                       | 3                                      | 6                    |       |       |       |       |       |     |        |               | 1     |                                      |        |
| 2             |       |        |       |                    |     |     | 1   | 1     | 1                                      | 3                       | 6                                      | 7                    |       |       |       |       |       |     |        |               |       | -1                                   |        |
| 3             |       |        |       |                    |     |     | 1   |       | 1                                      | 2                       | 4                                      | 8                    |       |       |       |       |       |     |        | 1             |       | 4                                    |        |
| 1             |       |        |       |                    | ٠.  |     | 2   |       | 2                                      | 1                       | 5                                      | 9                    |       |       |       |       |       |     |        |               |       | 5                                    |        |
| 5             | ••    |        |       |                    |     |     | 1   | • •   | 1                                      | 1                       | 3                                      | 210                  |       |       | ٠.    |       |       |     |        | 1             |       | 1                                    |        |
| 3             |       |        |       |                    | • • | 1   |     |       | 1                                      |                         | 2                                      | 1                    |       |       | ٠.    |       |       |     | • •    | 3             | ٠.    | 1                                    |        |
| 7             |       |        | • •   |                    | • • |     | 1   |       | 1                                      | 1                       | 3                                      | $\frac{2}{2}$        |       | • • • | • • • |       |       |     | 1      |               | 3     | 5                                    | ŀ      |
| 3             | ••    |        |       |                    |     |     | 1   | ••    | $\begin{vmatrix} 3 \\ 3 \end{vmatrix}$ | 2                       | 4                                      | 3                    |       | • • • |       |       |       | • • |        | • • •         |       | 1                                    | ŀ      |
| )             | • • • |        |       |                    |     |     |     | 1     | 1                                      | 1                       | $\begin{vmatrix} 5 \\ 2 \end{vmatrix}$ | <b>4</b><br>5        | • •   |       |       | ٠٠.   |       |     | 1<br>1 | 1             | • • • | $\begin{vmatrix} 3\\1 \end{vmatrix}$ |        |
| ,<br>L        |       |        |       | ::                 |     | ::  | 1   |       | 2                                      |                         | 4                                      | 6                    | • •   | • •   | • • • |       | • •   |     |        |               |       | $\frac{1}{2}$                        |        |
| 2             |       |        |       |                    |     | ::  |     |       | 1                                      | 1                       | 2                                      | 7                    |       | ::    |       |       |       |     | 1      | 1             | 2     | 2                                    |        |
| 3             |       |        |       |                    |     |     | 2   |       | 1                                      | 5                       | 8                                      | 8                    |       |       |       |       |       |     | 1      |               |       | 2                                    |        |
| 4             |       | ١      |       |                    |     |     |     |       | 2                                      | 3                       | 5                                      | 9                    |       |       |       |       |       | ١   |        | 1             |       | 1                                    |        |
| 5             |       | ١      |       |                    |     |     | 1   | 2     | 2                                      | 1                       | 6                                      | 220                  |       |       |       |       |       |     | 1      |               |       | 2                                    |        |
| 6             |       |        |       |                    |     |     |     | 1     | 1                                      | 2                       | 4                                      | 1                    |       | ٠     |       |       |       |     | 1      |               |       |                                      |        |
| 7             |       |        |       |                    |     |     | 1   |       |                                        | 3                       | 4                                      | <b>2</b>             |       |       |       |       |       |     |        | 1             |       | 2                                    | ŀ      |
| 8             |       |        |       |                    |     |     | 1   | 1     |                                        |                         | 2                                      | 3                    |       |       |       |       |       |     |        | 3             |       | 2                                    | i      |
| 9             |       |        |       |                    |     | • • | 1   | ٠.    |                                        | 3                       | 4                                      | 4                    |       |       |       |       |       |     |        |               |       | 4                                    |        |
| 0             | • •   |        |       |                    |     |     |     | 1     | 2                                      | 3                       | 6                                      | 5                    |       | • • • |       |       |       |     | 1      | 2             | 1     | 4                                    |        |
| $\frac{1}{2}$ | ٠.    |        | • •   | • •                |     |     | 2   | 1     | 1                                      | 2                       | 6                                      | 6                    |       |       | ٠.    |       |       |     |        | • •           | 1     |                                      |        |
| 3             |       |        |       |                    | ••  |     | 1   |       | $\begin{vmatrix} 1 \\ 1 \end{vmatrix}$ | 3                       | $\begin{vmatrix} 3 \\ 5 \end{vmatrix}$ | 7<br>8               | 1     | ٠.    |       |       | • • • |     |        |               | 1     | 1                                    |        |
| 4             |       |        |       |                    |     |     | 1   |       |                                        | 2                       | 2                                      | 9                    | ٠.    |       |       |       | ٠.    |     | 1      |               | 1     | 4 2                                  |        |
| 5             | ::    |        |       | ::                 |     |     |     | ::    | 1                                      | 4                       | 1                                      | 230                  |       |       |       |       |       |     | 1      | ••            |       | 1                                    |        |
| в             |       | 1      |       |                    |     |     |     |       | 1                                      |                         | 1                                      | 1                    |       |       |       | ::    |       | ::  |        |               | 1     | 2                                    |        |
| 7             |       |        |       | 1                  |     |     |     | 2     |                                        | 3                       | 5                                      | 2                    |       |       |       |       |       |     |        |               |       |                                      | ĺ      |
| 3             |       |        |       |                    |     |     | 1   |       | 2                                      | 1                       | 4                                      | 3                    |       |       |       |       |       |     |        |               | 1     | 2                                    |        |
| 9             |       |        |       |                    |     |     |     |       | 1                                      | 1                       | 2                                      | 4                    |       |       |       |       |       |     |        | 1             | 1     | I                                    |        |
| 0             |       |        |       |                    |     |     | 1   |       |                                        | 2                       | 3                                      | 5                    |       |       |       |       |       |     |        |               |       | 2                                    |        |
| 1             |       |        |       |                    |     |     |     | 1     |                                        | 1                       | 2                                      | 6                    |       |       |       |       |       |     |        | 1             |       | 6                                    |        |
| 2             |       |        |       | ••                 |     |     | • • |       |                                        | 2                       | 2                                      | 7                    |       |       |       |       |       |     |        | 1             | 1     | 3                                    |        |
| 3             |       |        |       |                    |     |     |     |       |                                        | 2                       | 3                                      | 8                    |       |       |       |       |       | • • |        |               |       | 2                                    |        |
| 4             | • •   | • • •  |       |                    |     |     | 1   | 1     | 2                                      | 2                       | 5                                      | 9                    |       | • • • |       | • •   |       |     |        |               |       | 3                                    |        |
| 5<br>6        |       |        |       |                    |     |     | 1   |       | 1                                      | 4 2                     | 5<br>3                                 | $\frac{240}{1}$      |       | • • • | •••   |       |       |     |        | • •           | 2     | 7 2                                  |        |
| 7             |       |        | 1     | • •                |     |     |     |       | 2                                      | 6                       | 8                                      | 2                    |       | • • • | •••   |       |       |     |        |               |       | 2                                    |        |
| 8             | ::    | ::     | ::    |                    | ::  | ,   | 1   | ::    |                                        | 1                       | 2                                      | 3                    |       |       |       |       |       | ::  |        |               |       |                                      |        |
| 9             |       |        |       |                    |     |     | 1   |       | 4                                      | 2                       | 6                                      | 4                    | ::    | ::    |       |       |       |     |        |               |       | 5                                    |        |
| 0             |       |        |       |                    |     |     |     |       | 2                                      | -                       | 2                                      | 5                    |       |       |       |       |       |     | ::     |               |       | 2                                    |        |
| 1             |       |        |       |                    |     |     | 1   |       | 2                                      |                         | 3                                      | 6                    |       |       |       |       |       |     |        |               |       | 1                                    |        |
| 2             |       |        |       |                    |     |     |     |       | 1                                      |                         | 1                                      | 7                    |       |       |       |       | ١     |     |        |               |       | 2                                    |        |
| 3             | ١     | ١,,    | 1     | ١                  | 1   | ١   |     |       | 1                                      |                         | 1                                      | 8                    | ١     | ١     | ١     | 1     | ١     | ١., | ١      |               | ١     |                                      |        |

Table 4 (continued.)

Table 4 (continued.)

| 100             | rable 4 (continued.) |     |     |       |       |       |     |     |     | Table 4 (continued.)                    |               |                                          |       |       |      |       |       |     |            |     |       |                                    |                         |
|-----------------|----------------------|-----|-----|-------|-------|-------|-----|-----|-----|-----------------------------------------|---------------|------------------------------------------|-------|-------|------|-------|-------|-----|------------|-----|-------|------------------------------------|-------------------------|
| Н               | НА                   | нв  | PA  | DS    | PS    | RA    | RB  | D   | R   | R'                                      | To-<br>tal    | Н                                        | НА    | нв    | PA   | DS    | PS    | RB  | RB         | D   | R     | R′                                 | To-<br>tal              |
| 9               |                      |     |     |       |       |       |     |     | 2   | 2                                       | 4             | 4                                        |       |       |      |       |       |     |            | 1   |       | 1                                  | 2                       |
| 250             |                      |     |     |       |       |       | ٠   |     |     | 5                                       | 5             | 5                                        |       |       |      |       |       |     |            |     | ::    | 4                                  | 4                       |
| 1<br>9          | • •                  |     |     |       |       | • •   | • • | 1   |     | 1                                       | 2             | 6                                        |       |       |      |       |       |     |            |     |       |                                    |                         |
| $\frac{2}{3}$   |                      |     |     |       |       | ••    | • • | ••  | • • | 3                                       | 3             | 7                                        | • • • |       |      |       |       |     |            |     |       | 2                                  | 2                       |
| 4               |                      | ::  |     |       |       |       |     | • • |     | 4                                       | 4             | 8<br>9                                   |       | ••    | ••   | • •   | • •   | • • |            | • • | • •   | 4<br>3                             | 4 3                     |
| 5               |                      |     |     |       | .:    |       | 1   |     |     | 4                                       | 5             | 310                                      |       | ••    | • •  | • •   | ••    | ••  | • •        | ••  | • •   | 3                                  | 3                       |
| 6               |                      |     |     |       |       | • • • | · · | 1   |     | 3                                       | 4             | 1                                        |       |       |      |       |       |     |            |     |       | 1                                  | 1                       |
| 7<br>8          |                      | • • | • • |       |       | ··.   |     | • • | ٠.  | 3                                       | 3             | 2                                        |       |       |      |       |       |     |            | 1   |       | 3                                  | 4                       |
| 9               |                      |     |     |       |       |       |     | • • | 1   | $\begin{vmatrix} 1 \\ 2 \end{vmatrix}$  | $\frac{2}{2}$ | 3                                        | • •   |       | • •  | • •   | • • • | • • | • •        | ٠.  | ٠.    | 2                                  | 2                       |
| 260             |                      |     |     |       |       |       |     | 1   |     | 2                                       | 3             | 4<br>5                                   |       |       | • •  | • •   | • •   | • • | • •        | • • | ٠.    | • •                                |                         |
| 1               |                      |     |     |       |       |       |     |     |     | 2                                       | 2             | 6                                        |       |       |      |       |       |     |            |     | •••   | $\frac{\cdot \cdot}{2}$            | 2                       |
| 2               |                      |     |     |       |       |       | ••  |     |     | 1                                       | 1             | 7                                        |       |       |      |       |       |     | 2          |     |       | 4                                  | 6                       |
| 3<br>4          |                      | • • | • • |       |       | •••   | ••  | • • | • • | 1                                       | 1             | 8                                        |       | • • • |      |       |       |     |            | 1   |       | 2                                  | 3                       |
| 5               |                      |     |     |       |       | • •   |     | • • |     | $\frac{3}{1}$                           | $\frac{3}{1}$ | $\frac{9}{320}$                          |       | ••    | • •  |       | • • • | • • | ••         | • • |       | • •                                |                         |
| 6               |                      |     |     |       | ::    | •••   |     |     |     | 1                                       | 1             | 320<br>1                                 |       |       | • •  | ••    | • •   | ••  | •••        | 1   | • • • | $\frac{\cdot \cdot}{2}$            | 3                       |
| 7               |                      |     | ٠.  |       |       |       |     | 1   |     | 5                                       | 6             | $\frac{1}{2}$                            |       |       |      | • •   |       | • • |            |     |       |                                    | 3                       |
| 8               |                      |     |     | • •   |       |       |     |     | 1   | 1                                       | 2             | 3                                        |       |       |      |       |       |     |            |     |       | 3                                  | 3                       |
| $\frac{9}{270}$ | ••                   | • • | • • | • •   |       | •••   |     |     | 1   | 1                                       | 2             | 4                                        |       |       |      |       |       |     |            | 1   | • •   | 2                                  | 3                       |
| 1               | ::                   |     | · · |       | ••    | •••   |     | 1   | • • | 1                                       | 2             | 5                                        |       | • •   | •••  |       | • •   | ••  |            | • • | • •   | 2                                  | 2                       |
| $\overline{2}$  |                      |     |     |       | ::    |       |     |     |     | 3                                       | 4 3           | $rac{6}{7}$                             | • •   | • •   | ••   | •••   | ٠.    | • • | •••        | • • | • •   | 2                                  | 2                       |
| 3               |                      |     |     |       |       |       |     | 1   |     | 1                                       | 2             | 8                                        |       |       |      |       |       |     |            |     | • •   | • •                                |                         |
| 4               |                      |     | ٠.  | ٠.    |       |       | 1   |     |     | 1                                       | 2             | 9                                        |       |       |      |       |       |     |            |     |       | 2                                  | 2                       |
| 5<br>6          |                      |     | ٠.  | • • • |       | • •   | ••  | • • | • • | 4                                       | 4             | 330                                      |       |       |      |       |       |     |            |     |       | 3                                  | 3                       |
| 7               | ::                   |     | • • | • •   |       | •••   |     | 1   | • • | $\begin{array}{c c} 2 \\ 2 \end{array}$ | $\frac{2}{3}$ | 1                                        |       | • • • | • •  | • •   |       |     | • •        | • • |       | 1                                  | 1                       |
| 8               |                      |     |     |       | · · · |       |     |     |     | 1                                       | 1             | $egin{array}{c} 2 \ 3 \end{array}$       | •     | ٠.    |      | • •   | ••    | • • | • •        | 1   |       | $\frac{5}{2}$                      | $\frac{5}{3}$           |
| 9               |                      |     |     |       |       |       |     |     |     | 1                                       | 1             | 4                                        |       |       |      |       |       |     |            |     | • •   | l                                  | 1                       |
| 280             |                      |     |     |       |       |       |     |     |     | 2                                       | 2             | 5                                        |       |       |      |       |       |     |            |     |       | 3                                  | 3                       |
| $\frac{1}{2}$   | • •                  |     | • • |       | • • • | • • • | 1   |     | •;  | 4                                       | 5             | 6                                        |       | ٠.    |      |       |       | • • |            |     |       | 1                                  | 1                       |
| 3               | ::                   |     |     |       |       | • •   | 1   | • • | 1   | $\frac{2}{3}$                           | 3             | 7                                        | ••    | • •   |      |       | • •   |     | • •        | • • |       | • •                                |                         |
| 4               | ::                   |     |     |       |       |       |     |     | • • | 2                                       | 2             | 8                                        |       | • • • |      | • •   |       | ••• |            | • • | • •   | $egin{array}{c} 2 \ 2 \end{array}$ | $rac{2}{2}$            |
| 5               |                      |     |     |       |       |       |     |     |     | 3                                       | 3             | 340                                      |       |       |      |       | ::    | • • |            |     | • • • | $\frac{2}{2}$                      | $\frac{2}{2}$           |
| 6               |                      |     |     |       |       |       |     |     |     |                                         |               | 1                                        |       |       |      |       |       |     |            |     |       | 1                                  | 1                       |
| 7<br>8          | • •                  |     | • • |       |       |       |     | • • | ٠.  | 3                                       | 3             | 2                                        |       |       |      |       |       |     |            |     |       | 3                                  | 3                       |
| 9               |                      |     | • • |       | • •   | ••    |     | • • | 1   | $\frac{3}{1}$                           | 4             | 3                                        | • •   |       | • •  | • •   | ••    |     |            | • • |       | 1                                  | 1                       |
| 290             |                      |     |     |       |       |       |     |     |     | 1                                       | 1<br>1        | 4<br>5                                   | ٠.    |       | • •  | ••    | ••    |     | • •        | • • | • •   | 4                                  | 4                       |
| 1               | ٠                    |     |     |       |       |       |     | 1   |     | 2                                       | 3             | 6                                        |       |       |      |       | ::    |     |            |     |       | 1                                  | 1                       |
| 2               |                      |     |     |       |       |       |     | 1   |     | 6                                       | 7             | 7                                        |       |       |      |       |       |     |            |     |       | 1                                  | 1                       |
| 3<br>4          |                      |     | • • | • •   |       |       | • • |     |     | 2                                       | 2             | 8                                        |       |       |      |       |       |     |            |     |       |                                    |                         |
| 4.<br>5         |                      |     | • • | • •   | • •   | • •   | • • | • • |     | 3                                       | 3             | 9                                        | • •   |       | • •  | . • • | • •   | • • |            | 1   |       |                                    | 1                       |
| 6               |                      |     |     |       |       |       | • • | 1   |     | 1<br>1                                  | 1<br>2        | $\begin{vmatrix} 350 \\ 1 \end{vmatrix}$ | ••    | • •   | • •  | • •   |       | • • | • •        | • • |       |                                    | • •                     |
| 7               |                      |     |     |       |       |       |     |     |     | 2                                       | 2             | $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$   |       |       |      |       |       |     |            |     |       | 1                                  | 1                       |
| 8               |                      |     |     |       |       |       |     | 1   |     |                                         | 1             | 3                                        |       |       |      |       |       |     |            |     |       | 1                                  | 1                       |
| 9               |                      |     | • • | • •   |       | • •   |     |     | ••• | 3                                       | 3             | 4                                        |       |       |      |       |       |     |            |     |       | 2                                  | <b>2</b>                |
| $\frac{300}{1}$ |                      | • • | • • | • •   | • •   | • •   | • • |     | ••  | 2                                       | 2             | 5                                        |       | • •   | • •  | • •   | • •   |     | • •        | ••  |       | 3                                  | 3                       |
| $\frac{1}{2}$   |                      |     | • • |       |       |       |     | 1   |     | $\frac{2}{1}$                           | $\frac{3}{1}$ | 6<br>7                                   | • •   | ••    | • •  | ••    | • •   | • • | • •        | ••  | ••    | $^2$                               | 2                       |
| 3               | ١                    |     | • • |       |       |       |     |     |     | 2                                       | 2             | 8                                        |       |       |      |       | • •   |     | 1          | • • | • •   | 1                                  | $\frac{\cdot \cdot}{2}$ |
|                 |                      |     |     | ,     |       |       |     |     |     |                                         |               | . "                                      |       |       | ., , |       | - • • |     | <b>4</b> ! | • • | • •   | + 1                                | 4                       |

| Tabl     | e 4 (c  | ontin | ued.) |    | <del></del> |    |    |   |    |    |            |
|----------|---------|-------|-------|----|-------------|----|----|---|----|----|------------|
| Н        | HA      | нв    | PA    | DS | PS          | RA | RB | D | R  | R' | To-<br>tal |
| 9        |         |       |       |    |             |    |    | l |    |    | 1          |
| 360      | ::      |       |       |    |             |    |    |   |    | 1  | 1          |
| 1        |         |       |       |    |             |    |    |   |    | 1  | 1          |
| 2        |         |       |       |    |             |    |    |   |    | 1  | 1          |
| 3        |         |       |       |    |             |    |    |   |    | 2  | 2          |
| 4        |         |       |       |    |             | ١  |    |   |    | 1  | 1          |
| 5        |         |       |       |    |             |    |    |   |    | 1  | 1          |
| 6        |         |       |       | ١  |             |    |    |   |    | 2  | 2          |
| 7        |         | ١     |       |    |             |    |    |   |    |    |            |
| 8        |         |       |       |    |             |    |    |   |    |    |            |
| 9        |         |       |       |    |             |    |    |   | ٠  | 1  | 1          |
| 370      |         |       |       |    |             |    |    |   |    | 1  | 1          |
| l        |         |       |       |    |             |    |    |   |    | 1  | 1          |
| 3        |         | ١     |       |    | ٠.          |    |    |   |    | 1  | 1          |
| 4        |         |       |       |    |             |    |    |   |    | 1  | 1          |
| 6        |         |       |       |    |             |    |    |   |    | 1  | 1          |
| 8        |         |       |       | ٠. |             |    |    |   |    | 2  | 2          |
| 9        | ١       |       |       |    |             |    |    |   |    | 1  | 1          |
| 380      | ١       |       |       | ٠  |             |    |    |   |    | 1  | 1          |
| 4        |         | ١     | ١     |    |             |    |    |   |    | 1  | 1          |
| 5        | ١       |       |       |    |             |    |    |   |    | 2  | 2          |
| 8        |         |       |       |    |             | ١  |    |   |    | 1  | 1          |
| 9        |         |       |       |    |             |    |    |   |    | l, | 1          |
| 390      |         |       |       |    |             |    |    |   |    | 1  | 1          |
| 1        | <b></b> |       |       |    |             |    |    |   |    | 1  | 1          |
| 2        | ١       |       |       |    |             |    |    |   | ٠  | 1  | 1          |
| 5        |         |       |       |    | ١           |    |    | 1 |    |    | 1          |
| 400      |         |       |       | ١  |             | ١  |    |   |    | 1  | 1          |
| <b>2</b> |         |       |       |    |             | ١  |    |   | ٠. | 1  | 1          |
| 6        |         |       | ۱     |    |             |    |    |   |    | 2  | 2          |
| 410      |         | ١     |       |    |             |    |    |   |    | 2  | 2          |
| 6        | ١       |       |       |    |             |    |    |   |    | 2  | 2          |
| 8        |         |       |       | ٠  |             |    |    |   |    | 1  | 1          |
| 9        |         |       |       |    |             |    |    |   |    | 1  | 1          |
| 422      |         |       |       |    |             |    |    |   |    | 1  | 1          |
| 8        |         |       |       |    |             |    |    |   |    | 1  | 1          |
| 432      |         |       |       |    |             |    |    |   |    | 1  | 1          |
| 4        |         |       |       |    |             |    |    |   |    | 1  | 1          |
| 6        |         |       |       |    |             |    |    |   |    | 1  | 1          |
| 453      |         |       |       |    |             |    |    |   |    | 2  | 2          |
| 4        |         |       |       |    |             |    |    |   |    | 1  | 1          |
| 9        |         |       |       |    |             |    |    | 1 |    |    | 1          |
| 466      |         |       |       |    |             |    |    |   |    | 1  | 1          |
| 484      |         |       |       |    |             |    | 1  |   |    | 2  | 2          |
| 492      |         |       |       |    |             |    |    |   |    | 1  | 1          |
| 6        |         |       |       |    |             |    |    |   |    | 1  | 1          |
| 516      |         |       |       |    |             |    |    |   |    | 1  | 1          |
| 517      | ١       | ١     | ١     | ١  | ١           | ١  | ١  | ١ | ١  | 1  | 1          |

Number of aurora heights measured.

|    |    |    |     |    | In all | l   |     |     |     |            |
|----|----|----|-----|----|--------|-----|-----|-----|-----|------------|
| HA | нв | PA | DS  | PS | RA     | RB  | D   | R   | R'  | To-<br>tal |
| 47 | 12 | 4  | 162 | 48 | 43     | 292 | 156 | 184 | 481 | 1429       |

The headings in Table 4 have the following meanings: H is the height in kilometers, HA and HB homogeneous arcs and bands, PA pulsating arcs, DS cloudlike aurora, PS pulsating patches,

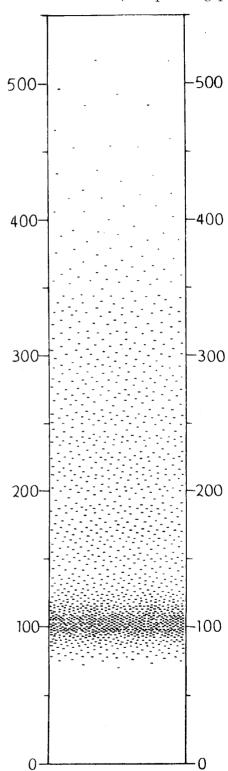



Fig. 11. Vertical distribution of all measured aurora points.

RA and RB arcs and bands with ray structure, D draperies, R and R'rays. Under R points in the earth's shadow are enumerated, and under R' those in the sunlit part of the atmosphere. Under the heading "Total" all points of the given height are enumerated.

Among these aurorae, certain forms such as red DS, high arcs (200 km), and red arcs, observed in the more extensive material from 1911–1950, were not seen in southern Norway during the polar year.

A still better picture of the vertical distribution of all forms is seen on Fig. 11, (page 35), where all points corresponding to a given height are distributed regularly along the line having this height, as small dots.

Still another method has been used to show the vertical frequency in the interval 70 to 150 km. We have made the following summation in order to eliminate accidental errors as far as possibele:

- 1° The sum of cases for 69, 70 and 71 km.
- 2° The sum of cases for 70, 71 and 72 km.
- $3^{\circ}$  The sum of cases for 71, 72 and 73 km. and so on.

The result is seen in table 5 where the sum is written in the same line as the second of the 3 heights.

Table 5. Frequency of heights of the measured aurora points until H=150~km.

| н  | Number<br>of heights | 3 by 3 | 5 by 5 |
|----|----------------------|--------|--------|
| 70 | 1                    | 1      |        |
|    | 1                    | 1      | 2      |
| 1  | • •                  | 2      | 3      |
| 2  | 1                    | 2      | 3      |
| 3  | 1                    | 2      | 5      |
| 4  |                      | 4      | 7      |
| 5  | 3                    | 5      | 8      |
| 6  | 2                    | 7      | 14     |
| 7  | 2                    | 11     | 16     |
| 8  | 7                    | 11     | 20     |
| 9  | 2                    | 16     | 22     |
| 80 | 7                    | 13     | 23     |
| 1  | 4                    | 14     | 22     |
| 2  | 3                    | 13     | 24     |
| 3  | 6                    | 13     | 24     |
| 4  | 4                    | 17     | 29     |
| 5  | 7                    | 20     | 34     |
| 6  | 9                    | 24     | 38     |

Table 5 (continued.)

| H                | Number<br>of heights | 3 by 3   | 5 by 5     |
|------------------|----------------------|----------|------------|
| _                |                      |          |            |
| 7                | 8                    | 27       | 45         |
| 8<br>9           | 10                   | 29       | 55         |
| 90               | 11<br>17             | 38       | 52         |
| 1                | 6                    | 34<br>38 | 59         |
| $\overset{1}{2}$ | 15                   | 36       | 64<br>71   |
| 3                | 15                   | 48       | 70         |
| 4                | 18                   | 49       | 83         |
| 5                | 16                   | 53       | 90         |
| 6                | 19                   | 57       | 106        |
| 7                | 22                   | 72       | 108        |
| 8                | 31                   | 73       | 116        |
| 9                | 20                   | 75       | 117        |
| 100              | 24                   | 64       | 123        |
| $rac{1}{2}$     | 20                   | 72       | 116        |
| $\frac{2}{3}$    | $\frac{28}{24}$      | 72       | 116        |
| $\frac{3}{4}$    | 20                   | 72<br>71 | 119        |
| 5                | 27                   | 71       | 123        |
| 6                | 24                   | 73       | 117<br>117 |
| 7                | 22                   | 70       | . 108      |
| 8                | 24                   | 57       | 101        |
| 9                | 11                   | 55       | 93         |
| 110              | 20                   | 47       | 80         |
| 1                | 16                   | 45       | 75         |
| 2                | 9                    | 44       | 80         |
| 3                | 19                   | 44       | 82         |
| 4                | 16                   | 57       | 74         |
| , 5<br>6         | 22                   | 46       | 75         |
| 7                | 8<br>10              | 40       | 65         |
| 8                | 9                    | 27<br>33 | 63         |
| 9                | 14                   | 35       | 53<br>50   |
| 120              | 12                   | 31       | 47         |
| 1                | 5                    | 24       | 50         |
| 2                | 7                    | 24       | 45         |
| 3                | 12                   | 28       | 39         |
| 4                | 9                    | 27       | 41         |
| 5                | 6                    | 22       | 41         |
| 6                | 7                    | 20       | 33         |
| 7<br>8           | 7                    | 18       | 28         |
| 9                | 4<br>4               | 15       | 28         |
| 130              | 6                    | 14<br>15 | 26<br>26   |
| 1                | 5                    | 20       | 28<br>26   |
| 2                | 9                    | 16       | 20<br>27   |
| 3                | 2                    | 16       | 27         |
| 4                | 5                    | 13       | 28         |
| 5                | 6                    | 17       | 24         |
| 6                | 6                    | 17       | 25         |
| 7                | 5                    | 14       | 26         |
| 8                | 3                    | 14       | 22         |
| 9                | 6                    | . 11     | 17         |
| 140              | 2                    | 9        | 16         |
| 1                | 1                    | 7        | 19         |

Table 5 (continued.)

| Н        | Number of heights | 3 by 3 | 5 by 5 |
|----------|-------------------|--------|--------|
| 2        | 4                 | 11     | 16     |
| 3        | 6                 | 13     | 18     |
| 4        | 3                 | 13     | 18     |
| <b>5</b> | 4                 | 8      | 16     |
| 6        | 1                 | 7      | 15     |
| 7        | 2                 | 8      | 18     |
| 8        | 5                 | 13     | 21     |
| 9        | 6                 | 18     |        |
| 150      | 7                 |        |        |

In Fig. 12 the curves for 3 and 3 heights are superimposed, giving a fairly good impression of the relative aurora frequency for the different heights.

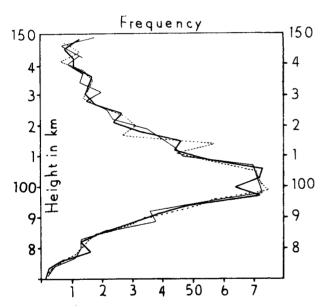



Fig. 12. Curves of frequency of all heights taking 3 and 3 (See the text).

For comparison we have made the same additions for groups of five heights associating each sum with the third of the heights (the height in the middle). See Table 5 and Fig. 13.

The corresponding five frequency curves give a still better impression of the distribution of the aurora heights than Fig. 12.

From these enumerations certain characteristic features are found again when we compare the

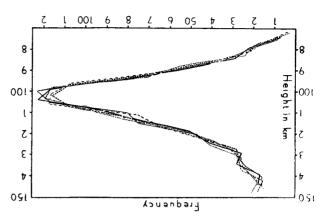



Fig. 13. The same, taking 5 and 5 heights.

results with those found from the statistics of the heights from 1911–1944:

The concentration of heights in the interval from 90 to 120 km.

The greater heights of the sunlit aurora rays.

The low heights reached by certain aurora forms, in particular by cloudlike forms DS and bands with ray structure RB (curtains). These low heights occurred in general some hours after midnight.

## 26. Statistics of heights of the lowest points of the aurora.

How far down in the atmosphere the aurora reaches has great importance in theoretical respects. In fact, if we assume, corresponding to the ideas of *Kr. Birkeland*, that the aurora is caused by streams of electric corpuscles coming from the sun, the penetrability of these corpuscles can be found by observing how low down in the atmosphere they penetrate. We must also take into account certain phenomena of more secondary nature following the penetrating rays in curtains, namely the diffuse cloudlike aurorae which often penetrate even lower down than the curtains.

In spite of the relatively small material from the polar year we have made up a table like Table 4, for the lowest points of each aurora form. This table, No. 6, has the same headings as Table 4:

Table 6.

Frequency of heights of the lowest points of the different aurora forms.

Table 6 (con(inued.)

| 70 1 2 3 4 5 6 7 80 1 2 3 4 5 1 6 7 2 8 2 9 1 90 2 1 1 1 2 3 4 4 4 5 6 5 7 0 8 1 90 1 100 1 1 2 2 3 2 4 5 3 6 2 7 2 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | HB    | PA             | DS   1 1 3 1 1 4 1 1 2 2 1 2 2 2 2 2 2 2 2 2                      | PS                           | RA            |                                        |           | R                                      | R'    | Total  1 1 3 1 2 5 2 4                        | 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>130<br>1<br>2 | <br><br>2<br><br><br> |       |     |     | <br><br><br><br> | <br>1<br><br><br><br><br> | 1<br>1<br><br><br>1<br> |                   | 2<br>2<br>1<br><br><br>1<br>1<br>1 | <br><br><br>1<br><br>                   | 3<br>4<br>2<br><br>3<br>2<br>1<br>2<br>3<br>1<br>3 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------|-------------------------------------------------------------------|------------------------------|---------------|----------------------------------------|-----------|----------------------------------------|-------|-----------------------------------------------|-------------------------------------------------------|-----------------------|-------|-----|-----|------------------|---------------------------|-------------------------|-------------------|------------------------------------|-----------------------------------------|----------------------------------------------------|
| 1          2          3          4          5          6          9          80          2          3          4          5       1         6          7       2         8       2         9       1         100       1         1       2         2          5       3         6       2         7       2         8                                                                                                                                                                                                                                                                                                                                                                                                                          |       |                | 1 3 1 1 4 1 2 2 1 2 2 2 2 2 2 2                                   |                              |               | <br><br>1<br>1<br><br>1                |           |                                        |       | <br>1<br><br>3<br>1<br>2<br>5                 | 5<br>6<br>7<br>8<br>9<br>130<br>1<br>2                | <br><br><br>1<br>     |       |     |     | <br><br><br>1    |                           | <br>1<br><br>           | <br><br><br><br>1 | <br>1<br>1<br>1<br>                | <br>1<br><br>                           | 3<br>2<br>1<br>2<br>3<br>1                         |
| 1          2          3          4          5          6          7          80          1          2          3          4          5       1         6          7       2         8       2         9       1         1       2          6         5       7         0       8         1       1         2          3       2         4          5       3         6       2         7       2         8                                                                                                                                                                                                                                                                                                                                     |       |                | 1 3 1 1 4 1 2 2 1 2 2 2 2 2 2 2                                   |                              |               | <br><br>1<br>1<br><br>1                |           |                                        |       | <br>1<br><br>3<br>1<br>2<br>5                 | 6<br>7<br>8<br>9<br>130<br>1<br>2<br>3                | <br><br><br>1<br>     |       |     |     | <br><br>1<br>    |                           |                         | <br><br>1<br>     | 1<br>1<br>1<br>1                   | <br>1<br><br>                           | 2<br>1<br>2<br>3<br>1                              |
| 2 3 4 5 6 7 8 9 80 1 2 3 4 5 6 7 .2 8 .2 9 .1 90 .2 1 .1 2 3 4 5 6 .5 7 .0 8 .1 90 .2 1 .1 2 3 4 5 6 6 7 8 6 7 8 9 9 1 2 3 4 5 6 6 7 8 6 7 8 9 9 1 1 2 3 4 5 6 7 8 9 1 1 2 3 4 5 6 6 7 8 9 1 1 2 3 4 5 6 7 8 9 9 1 1 1 2 3 4 5 5 6 7 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 |       |                | 1 3 1 1 4 1 2 2 1 2 2 2 2 2 2 2 2                                 |                              |               | <br><br>1<br>1<br><br>1                |           |                                        |       | 3<br>1<br>2<br>5<br>2                         | 7<br>8<br>9<br>130<br>1<br>2<br>3                     | <br><br><br>1<br>     |       |     |     | <br>1<br>        | <br><br>1                 |                         | <br><br>1<br>     | 1<br>1<br>1<br>                    | 1<br><br>                               | 2<br>1<br>2<br>3<br>1                              |
| 3          4          5          6          7          80          1          2          3          4          5       1         6          7       2         8       2         9       1         1       2          3         4       4         5       7         0       8         1       1         2          3       2         4          5       3         6       2         7       2         8                                                                                                                                                                                                                                                                                                                                         |       |                | 3 1 1 4 1 2 2 1 2 2 2 2 2 2                                       |                              | <br><br><br>  | <br><br>1<br>1<br><br>1<br>            |           |                                        |       | 3<br>1<br>2<br>5<br>2                         | 8<br>9<br>130<br>1<br>2<br>3                          | <br>1<br><br>1        |       |     |     | 1<br>            | <br>I<br>                 |                         | <br>1<br>         | 1<br>1<br>                         |                                         | 1<br>2<br>3<br>1                                   |
| 4          5          6          7          80          80          2          3          4          5       1         6          7       2         8       2         9       1         1       2          3         4       4         5       7         0       8         1       1         2          3       2         4          5       3         6       2         7       2         8                                                                                                                                                                                                                                                                                                                                                   |       |                | 3 1 1 4 1 2 2 1 2 2 2 2 2 2                                       | <br><br>1<br>1<br>2<br><br>1 | <br><br><br>I | <br>1<br>1<br><br>1<br>                |           |                                        |       | $egin{array}{c} 1 \\ 2 \\ 5 \\ 2 \end{array}$ | 130<br>1<br>2<br>3                                    | <br>1<br><br>1        |       |     | ••• | ••               |                           |                         | 1<br>             | <br>                               | •••                                     | 3                                                  |
| 6 7 8 9 80 1 2 3 4 5 1 6 7 2 8 2 9 1 90 2 1 1 2 3 4 4 4 5 6 5 7 0 8 1 9 1 100 1 1 2 2 3 2 4 5 3 6 2 7 2 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |                | 1<br>1<br>4<br>1<br>2<br><br>2<br>1<br>2<br>2<br>2<br>2<br>2<br>2 | <br>1<br>1<br>2<br><br>1     | <br><br><br>  | 1<br>1<br><br>1<br><br>1               |           |                                        |       | $egin{array}{c} 1 \\ 2 \\ 5 \\ 2 \end{array}$ | $egin{array}{c} 1 \ 2 \ 3 \end{array}$                | 1<br><br>1            |       |     |     |                  |                           |                         |                   |                                    |                                         | 1                                                  |
| 7<br>8<br>9<br>80<br>1<br>2<br>3<br>4<br>5 1 6<br>7 2 8 2 9 1 90 2 1 1 2<br>3<br>4 4 4 5<br>6 5 7 0 8 1 9 1 100 1 1 2 2<br>3 2 4<br>5 3 6 2 7 2 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |                | 1<br>4<br>1<br>2<br><br>2<br>1<br>2<br>2<br>2<br>2<br>2<br>2      | <br>1<br>1<br>2<br><br>1     | <br><br><br>  | 1<br>1<br><br>1<br><br>1               | <br><br>1 |                                        |       | 2<br>5<br>2                                   | $\frac{2}{3}$                                         | <br>1                 | • •   |     |     |                  |                           | ••                      |                   |                                    |                                         | 3                                                  |
| 8          9          80          1          2          3          4          5       1         6          9       1         1       2         2          6       5         7       0         8       1         9       1         100       1         1       2         2          5       3         6       2         7       2         8                                                                                                                                                                                                                                                                                                                                                                                                     |       | 1<br><br>1<br> | 4<br>1<br>2<br><br>2<br>1<br>2<br>2<br>2<br>2<br>2                | <br>1<br>1<br>2<br><br>1     | <br><br><br>  | 1<br>1<br>1<br><br>1                   | <br><br>1 |                                        |       | 5<br>2                                        | 3                                                     | 1                     |       |     |     |                  |                           |                         |                   |                                    | 3                                       | 3                                                  |
| 9 80 1 2 3 4 5 1 6 7 2 8 2 9 1 90 2 1 1 2 3 4 4 5 6 5 7 0 8 1 9 1 100 1 1 2 2 3 2 4 5 3 6 2 7 2 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |                | 1<br>2<br><br>2<br>1<br>2<br>2<br>2<br>2<br>2<br>2                | 1<br>1<br>2<br><br>1         | <br>1<br>     | 1<br>1<br><br>1                        | <br>1     |                                        |       | 2                                             |                                                       |                       |       |     |     |                  |                           |                         |                   |                                    |                                         | 1                                                  |
| 80          1          2          3          4          5       1         6          7       2         8       2         9       1         1       2         2          6       5         7       0         8       1         9       1         100       1         1       2         2          5       3         6       2         7       2         8                                                                                                                                                                                                                                                                                                                                                                                       |       | 1<br><br>1<br> | 2<br><br>2<br>1<br>2<br>2<br>2<br>2<br>2<br>2                     | 1<br>2<br><br>1<br>          | I             | 1<br><br>I<br>                         | 1         |                                        |       |                                               | - +                                                   |                       |       |     |     |                  |                           | • • •                   | ••                |                                    | • • •                                   | 1                                                  |
| 1 2 3 4 5 1 6 7 2 8 2 9 1 1 90 2 1 1 2 3 4 4 5 6 5 7 0 8 1 9 1 100 1 1 1 2 2 3 2 4 5 3 6 2 7 2 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       | 1 1            | <br>2<br>1<br>2<br>2<br>2<br>2<br>2<br>2                          | 1<br>2<br><br>1<br>          |               | 1<br><br>I<br>                         | 1         |                                        | İ     |                                               | 5                                                     | 1                     |       |     |     | ::               |                           | 1                       | • • •             |                                    |                                         | 1                                                  |
| 2 3 4 5 1 6 7 2 8 2 9 1 90 2 1 1 2 3 4 4 5 6 5 7 0 8 1 9 1 100 1 1 2 2 3 2 4 5 3 6 2 7 2 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       | 1<br><br>1<br> | 2<br>1<br>2<br>2<br>2<br>2<br>2<br>2                              | 2<br><br>1<br>               |               | <br>I<br>                              |           |                                        | 1     | 4                                             | 6                                                     |                       |       |     |     |                  |                           |                         |                   |                                    |                                         |                                                    |
| 3 4 5 1 6 7 2 8 2 9 1 90 2 1 1 2 3 4 4 5 6 5 7 0 8 1 9 1 100 1 1 2 2 3 2 4 5 3 6 2 7 2 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       | 1<br><br>      | 2<br>1<br>2<br>2<br>2<br>2<br>2                                   | <br>1<br><br>                |               |                                        |           | į.                                     |       | 3                                             | 7                                                     |                       |       |     |     |                  |                           |                         |                   |                                    | 2                                       | 2                                                  |
| 4 5 1 6 7 2 8 2 9 1 90 2 1 1 2 3 4 4 5 6 5 7 0 8 1 90 1 100 1 1 2 2 3 2 4 5 3 6 2 7 2 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |                | 2<br>2<br>2<br>2<br>2                                             | ••                           |               |                                        |           | ٠.                                     |       | 3                                             | 8                                                     | 1                     |       |     |     |                  |                           |                         | 1                 |                                    |                                         | 2                                                  |
| 6 7 2 8 2 9 1 90 2 1 1 2 3 4 4 5 6 5 7 0 8 1 9 1 100 1 1 2 2 3 2 4 5 3 6 2 7 2 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |                | 2<br>2<br>2<br>2                                                  |                              |               |                                        |           |                                        |       | 3                                             | 9                                                     | 1                     |       |     |     |                  |                           |                         |                   |                                    | 1                                       | 2                                                  |
| 7   2<br>8   2<br>9   1<br>90   2<br>1   1<br>2  <br>3  <br>4   4<br>5  <br>6   5<br>7   0<br>8   1<br>9   1<br>100   1<br>1   2<br>2  <br>3   2<br>4  <br>5   3<br>6   2<br>7   2<br>8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |                | $egin{array}{c} 2 \ 2 \ 2 \end{array}$                            |                              | ٠.            |                                        | 2         |                                        |       | 5                                             | 140                                                   |                       | • • • | • • | • • |                  | • •                       | ••                      | 1                 |                                    |                                         | 1                                                  |
| 8     2       9     1       90     2       1     1       2        3        4     4       5        6     5       7     0       8     1       9     1       100     1       1     2       2        3     2       4        5     3       6     2       7     2       8                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |                | $egin{array}{c} 2 \ 2 \end{array}$                                |                              |               | 2                                      | 1         | • •                                    |       | 5                                             | 1                                                     |                       |       | • • | • • | • •              | • •                       | •••                     | • •               | 1                                  | • •                                     | 1                                                  |
| 9 1<br>90 2<br>1 1<br>2<br>3<br>4 4<br>5<br>6 5<br>7 0<br>8 1<br>9 1<br>100 1<br>1 2<br>2<br>3 2<br>4<br>5 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1     | 1              | 2                                                                 |                              |               | 1                                      | • •       | • •                                    | • •   | 5                                             | $\frac{2}{3}$                                         | ٠.                    | • •   | • • | • • | ٠٠               | • •                       | 1                       | • •               | • •                                | • •                                     | 1                                                  |
| 90   2   1   1   2     3     4   4   4   5     6   5   7   0   8   1   9   1   100   1   1   2   2     3   2   4     5   3   6   2   7   2   8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Т.    |                |                                                                   | 3                            | 1<br>1        | $\frac{3}{1}$                          | 1         | 1                                      | • •   | $\frac{8}{11}$                                | 3<br>4                                                |                       | ••    | • • |     |                  |                           |                         | • • •             |                                    | 1                                       | 1                                                  |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1     | ١              | - Z                                                               | 1                            | 1             | 3                                      | 2         | 1                                      |       | 11                                            | 5                                                     |                       |       |     |     |                  |                           |                         |                   |                                    | 1                                       | 1                                                  |
| 2 3 4 4 4 5 6 5 7 0 8 1 9 1 100 1 1 2 2 3 2 4 5 3 6 2 7 2 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |                | 2                                                                 |                              |               | 2                                      |           |                                        |       | 5                                             | 6                                                     |                       |       |     |     |                  |                           |                         |                   |                                    |                                         |                                                    |
| 3 4 4 5 6 5 7 0 8 1 9 1 100 1 1 2 2 3 2 4 5 3 6 2 7 2 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2     | 1              |                                                                   | 1                            |               | 5                                      | 2         | 1                                      |       | 12                                            | 7                                                     |                       |       |     |     |                  |                           |                         |                   |                                    | 1                                       | 1                                                  |
| 5<br>6 5<br>7 0<br>8 1<br>9 1<br>100 1<br>1 2<br>2<br>3 2<br>4<br>5 3<br>6 2<br>7 2<br>8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1     | 1              | 4                                                                 |                              | 2             | 1                                      |           |                                        |       | 9                                             | 8                                                     |                       |       |     |     |                  |                           |                         |                   |                                    | 2                                       | 2                                                  |
| 6   5   7   0   8   1   9   1   100   1   1   2   2     3   2   4   5   3   6   2   7   2   8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |                |                                                                   |                              | 1             | 3                                      | 4         | 2                                      |       | 14                                            | 9                                                     |                       |       | • • |     |                  |                           |                         | 1                 |                                    | 1                                       | 2                                                  |
| 7 0 8 1 9 1 1000 1 1 2 2 3 2 4 5 3 6 2 7 2 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |                | 2                                                                 |                              | 2             | 5                                      | 3         | • • •                                  |       | 12                                            | 150                                                   | ř.                    | • •   | • • | • • | • •              |                           | 1                       | • •               | • •                                | ••                                      | 1                                                  |
| 8 1 1 9 1 1 100 1 1 2 2 3 2 4 5 3 6 2 7 2 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3     |                |                                                                   | 1                            | 2             | 4                                      | 1         |                                        | • • • | 16                                            | 1                                                     |                       | ••    | • • | ••  | • •              | • •                       |                         | • •               | • •                                | $\frac{\cdot \cdot}{2}$                 | 2                                                  |
| 9 1<br>1 2<br>2<br>3 2<br>4<br>5 3<br>6 2<br>7 2<br>8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2     |                | 1                                                                 | •••                          | $\frac{2}{3}$ | $\begin{array}{c} 6 \\ 12 \end{array}$ | 2         | $egin{array}{c} 1 \ 2 \end{array}$     | • •   | $\frac{14}{19}$                               | $\frac{2}{3}$                                         | ••                    | • •   | ••  |     | • •              | • •                       | • •                     |                   | 1                                  |                                         | 1                                                  |
| 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | • • • |                | 1                                                                 | 1                            | $\frac{3}{2}$ | 3                                      | 3         | ۷                                      | 1     | 12                                            | 4                                                     |                       |       |     |     |                  |                           |                         |                   | 2                                  |                                         | 2                                                  |
| 1 2 2 3 2 4 5 3 6 2 7 2 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |                |                                                                   |                              |               | 5                                      | 2         |                                        |       | 8                                             | 5                                                     |                       |       |     |     |                  |                           |                         |                   |                                    | 1                                       | 1                                                  |
| 3 2<br>4<br>5 3<br>6 2<br>7 2<br>8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |                | 1                                                                 |                              |               | 4                                      | 6         | 1                                      |       | 14                                            | 6                                                     |                       |       |     |     |                  | ;                         |                         |                   |                                    |                                         |                                                    |
| 4 5 3 6 2 7 2 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                | 2                                                                 | 2                            | 4             | 7                                      | 2         | 2                                      |       | 19.                                           | 7                                                     |                       |       |     |     |                  |                           |                         |                   | 1                                  | 1                                       | 2                                                  |
| 5 3<br>6 2<br>7 2<br>8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |                |                                                                   | 2                            |               | 4                                      | 3         | 2                                      |       | 13                                            | 8                                                     |                       |       |     |     |                  |                           |                         |                   |                                    |                                         | • • •                                              |
| $egin{array}{c c} 6 & 2 \\ 7 & 2 \\ 8 & \ldots \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |                |                                                                   |                              | 2             | 4                                      | 2         | •••                                    |       | 8                                             | 9                                                     |                       |       | ٠.  |     | • •              | • •                       | • •                     | • •               | 1                                  | 1                                       | 2                                                  |
| $\begin{bmatrix} 7 & 2 \\ 8 & \ldots \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | • •   | ••             | 1                                                                 | 1                            | 1             | $\frac{2}{1}$                          | 1         | 1                                      | • •   | 10                                            | 160                                                   | • •                   |       | • • | • • | • •              | ••                        | • •                     |                   |                                    | 1                                       | 1                                                  |
| 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |                | • •                                                               | • •                          | 1             | 4                                      | 4         |                                        | • •   | 11                                            | $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$                | • •                   |       | • • | • • | • •              | ••                        | •••                     | •••               | 1                                  |                                         | I                                                  |
| 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | • •   |                | • •                                                               | • •                          | 1             | $\begin{bmatrix} 2 \\ 6 \end{bmatrix}$ | 2<br>4    | $\begin{bmatrix} 2 \\ 3 \end{bmatrix}$ | • •   | $\frac{9}{13}$                                | $\frac{2}{3}$                                         | • •                   | •••   |     | ••• |                  |                           |                         |                   | 1                                  | 3                                       | 4                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                |                                                                   |                              |               | 1                                      | 1         | 1                                      | •     | 3                                             | 4                                                     |                       |       |     |     |                  |                           |                         |                   |                                    | ī                                       | 1                                                  |
| 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |                |                                                                   |                              | 1             | 1                                      | 2         | 1                                      | 1     | 6                                             | 5                                                     |                       |       |     |     |                  |                           |                         |                   |                                    |                                         |                                                    |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |                | 1                                                                 |                              | 1             | 3                                      | 1         | 1                                      |       | 7                                             | 6                                                     |                       |       |     |     |                  |                           |                         |                   |                                    |                                         |                                                    |
| $2 \mid 1 \mid$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                |                                                                   |                              | 1             |                                        | 2         |                                        | 1     | 5                                             | 7                                                     |                       |       |     |     |                  |                           |                         |                   |                                    | 1                                       | 1                                                  |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | • •   |                |                                                                   |                              | 1             | 5                                      | 1         | 1                                      | 1     | 9                                             | 8                                                     |                       |       |     |     |                  |                           |                         | ••                |                                    | • •                                     |                                                    |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |                | 1                                                                 |                              |               | 3                                      | ٠.        | 1                                      |       | 5                                             | 9                                                     | • •                   | • •   |     |     | • •              | • •                       | ••                      | •• ]              |                                    | 3                                       | 3                                                  |
| $\begin{array}{c c} 5 & \cdots \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |                |                                                                   | • •                          | • • •         | 4                                      | 1         | 2                                      |       | 7                                             | 170                                                   | ••                    |       | ••  |     | • •              | • •                       |                         |                   | 1                                  | 1                                       | 2                                                  |
| $\frac{6}{7}$ $\cdots$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       | • • •          | • •                                                               |                              | • •           | 1                                      | 1         |                                        | •••   | $\frac{2}{3}$                                 | 1                                                     | • •                   | • •   | • • | • • | ••               | • •                       |                         | ••                | 1                                  | $\begin{array}{c c} 1 \\ 2 \end{array}$ | $\frac{1}{3}$                                      |
| $\begin{array}{c c} 7 & \cdots \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       | 1              | • •                                                               |                              | ••            | 3                                      | • •       | $^2$                                   | •••   | $\frac{3}{3}$                                 | $\begin{bmatrix} 2 \\ 3 \end{bmatrix}$                | • •                   | • •   | • • | • • | • •              |                           |                         | • •               |                                    | 1                                       | 1                                                  |
| $\begin{bmatrix} 8 & \dots \\ 9 & 1 \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       | • •            |                                                                   | •••                          |               | 3                                      | 1         |                                        |       | э<br>5                                        | 4                                                     |                       |       |     |     |                  |                           |                         |                   |                                    |                                         |                                                    |
| 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |                |                                                                   |                              |               | 1                                      | 1         | 1                                      |       | 3                                             | 5                                                     |                       |       |     |     |                  |                           |                         |                   |                                    | 4                                       | 4                                                  |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       | i I            |                                                                   |                              | .             |                                        |           |                                        |       |                                               | 6                                                     |                       |       |     |     | 1                | - 1                       |                         | i                 |                                    | 1                                       | 1                                                  |

| Н             | НА  | нв  | PA    | DS    | PS    | RA    | RB    | D     | R     | R′  | To-<br>tal |
|---------------|-----|-----|-------|-------|-------|-------|-------|-------|-------|-----|------------|
| 7             |     |     |       |       |       |       |       |       |       | 1   | 1          |
| 8             |     |     |       | ٠.    |       |       |       |       | 1     |     | 1          |
| 9             |     |     |       |       |       |       |       |       |       | 1   | 1          |
| 180           | • • |     |       |       |       |       |       |       |       |     | • • •      |
| $rac{1}{2}$  | • • |     | • •   | • •   | • •   | • •   | • •   | • •   |       |     |            |
| 3             |     | • • | • •   | • • • |       |       | •••   |       | 1     | 1   | 2          |
| 4             |     |     |       |       |       |       |       |       |       |     |            |
| 5             |     |     |       |       | l     |       |       |       |       |     |            |
| 6             |     |     |       |       |       |       |       |       |       |     |            |
| 7             |     |     |       |       |       |       |       |       | 1     | 2   | 3          |
| 8             |     |     |       |       |       |       |       |       |       |     |            |
| 9             |     |     |       |       |       |       |       | • •   | • • • | 1   | 1          |
| 190           |     |     |       | • •   |       | • •   | • •   | • •   |       |     |            |
| 1             | ••  | ••  | • •   | • •   | • •   |       |       | • •   | • •   |     |            |
| $\frac{2}{3}$ |     |     | • •   |       | • •   |       | • • • | • •   | 1     |     | 1          |
| 4             |     | ļ   |       |       | ٠.    |       | . • • | • •   | 1     |     | 1          |
| 5             | ::  |     |       |       | · · · |       |       |       |       | · · |            |
| 6             |     |     |       |       |       |       |       |       |       |     |            |
| 7             |     |     |       |       | ١     |       |       |       |       |     |            |
| 8             |     |     |       |       | • • • |       |       |       |       | 1   | 1          |
| 9             |     |     |       |       |       |       |       |       |       | l   | 1          |
| 200           |     |     |       |       | • •   |       |       |       | 1     |     | 1          |
| 1             |     |     |       | • •   |       |       | • •   |       |       | 1   | 1          |
| 2             |     |     |       |       | • • • | •••   |       |       |       | 1   | 1          |
| 3<br>4        |     |     | • • • | • • • |       | • • • |       | ١     |       | 1   | 1          |
| 5             |     |     |       |       |       |       |       | • • • |       |     | ٠.         |
| 6             |     |     |       |       |       |       |       |       |       |     |            |
| 7             |     |     | ``    |       |       |       |       |       |       | 1   | 1          |
| 8             |     |     |       |       |       |       |       |       |       | 1   | 1          |
| 9             |     |     |       |       |       |       |       |       |       | 2   | 2          |
| 210           |     |     |       |       |       |       |       |       |       | 1   | 1          |
| 1             |     |     |       |       |       |       |       |       |       | 1   | 1          |
| 2             | ••  |     | • •   |       |       |       |       |       |       | 1   | 1          |
| 3             |     |     | • •   |       | • •   |       |       | • •   |       |     |            |
| 4<br>5        | 1   |     |       |       | • • • |       |       | • •   |       |     |            |
| 6             | • • |     |       |       |       |       |       |       | ::    |     |            |
| 7             |     |     |       |       |       |       |       |       |       |     | ::         |
| 8             |     |     |       |       |       |       |       |       |       | 1   | 1          |
| 9             |     |     |       |       |       |       |       |       |       |     |            |
| 220           |     |     |       |       |       |       |       |       |       |     |            |
| 1             | 1   |     |       |       |       |       |       |       |       |     |            |
| 2             |     |     |       |       |       |       |       | · · · |       |     |            |
| 3             | • • |     |       |       |       |       |       |       |       |     |            |
| 4             |     |     |       |       |       |       |       |       |       |     |            |
| $\frac{5}{6}$ |     | • • |       |       |       |       |       |       |       |     |            |
| 7             |     | ••• |       |       |       |       |       | • • • |       |     |            |
| 8             |     |     | ::    |       |       |       |       | ''    |       | 1   | 1          |
| 9             | ::  |     |       | ::    | ::    |       |       |       | ::    | 1   | 1          |
| 990           |     | 1   | 1     | 1     | 1     | 1     | 1     | 1     | 1     | 1   | 1 *        |

| Lable o (con indea.) | Table 6 | (confinued.) |
|----------------------|---------|--------------|
|----------------------|---------|--------------|

| H   | НА  | нв  | PA | DS  | PS    | RA    | RB    | D     | R     | R′    | To-<br>tal |
|-----|-----|-----|----|-----|-------|-------|-------|-------|-------|-------|------------|
| 2   |     |     |    |     |       |       |       |       |       |       |            |
|     | • • | • • |    | • • | • • • | • • • |       | • •   |       | • •   | • •        |
| 3   |     | • • |    | • • |       |       | • •   |       |       |       | • •        |
| 4   | • • |     |    |     |       |       |       |       |       |       |            |
| 5   |     |     |    |     |       |       |       |       |       | 1     | 1.         |
| 6   |     |     |    |     |       |       |       |       |       | 1     | 1          |
| 7   |     |     |    |     |       |       |       |       |       |       |            |
| 8   |     |     |    |     |       |       |       |       |       |       |            |
| 9   |     |     |    |     |       |       |       |       |       |       |            |
| 240 |     |     |    |     |       | ١     |       |       |       |       |            |
| 1   |     | ١   | ١  | ١   |       |       |       | ١     |       | 1     |            |
| 2   |     |     |    |     |       |       | ١     | ١.,   | ١     | 1     | 1          |
| 3   | ١   |     | ١  |     |       |       |       |       |       |       |            |
| 4   | ١   |     |    |     |       |       |       |       |       | 1     | 1          |
| 5   |     |     |    |     |       |       | 1     | • •   |       |       | •          |
| 6   |     | • • |    |     |       |       |       |       |       |       | ٠٠.        |
| 7   | ٠.  |     | ١  |     |       |       |       |       | ٠.    | 1     | 1          |
| 8   |     |     | ٠. |     |       |       | • •   | ٠٠.   | • •   | 1     | 1          |
| 9   |     | • • |    |     |       |       | • • • | • •   |       | • • • | • •        |
|     |     |     |    |     |       | • • • | • • • | • • • |       | • • • | • •        |
| 250 | • • |     |    | • • |       |       | • •   |       | • • • | • •   | • •        |
| 2   |     |     |    | • • |       | • •   |       |       |       | 1     | i          |
| 6   |     |     |    |     |       |       |       | • • • | • • • | 1     | 1          |
| 260 |     |     |    |     | ٠.    |       |       |       |       | 1     | I          |
| 1   |     |     |    |     |       | ٠.    |       |       |       | 1     | 1          |
| 267 | ١   |     |    |     |       |       |       |       |       | 1     | 1          |

#### Number of heights.

| HA | нв | PA | DS | PS | RA | RB  | D  | R  | R′ | To-<br>tal |
|----|----|----|----|----|----|-----|----|----|----|------------|
| 41 | 10 | 4  | 46 | 19 | 32 | 126 | 64 | 52 | 72 | 466        |

Mean height of the lowest points.

104 | 94 | 88 | 88 | 93 | 101 | 103 | 104 | 127 | 180 | 115

We see as before that the cloudlike aurora reaches lowest down, and next come the curtains. As can be found from Table 2, these low aurora forms occurred in particular in the morning hours on March 24 and 25, 1953.

The lowest points of the *rays* are very dispersed, but those of rays in sunshine are situated decidedly higher than those of rays in shadow. See also section 29.

We have added the mean height for the lowest borders of each aurora form and the mean height 115 km. of all these.

On Fig. 14 is seen a diagram analogous to Fig. 11 for the lowest points of all aurora forms.

To illustrate the frequency of the lowest points in the interval from 70 to 150 km. we have also

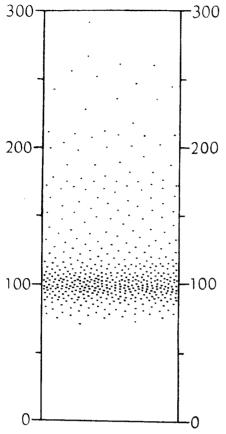



Fig. 14. Distribution of heights of lower borders of all aurora forms.

made enumerations 3 by 3 and 5 by 5 as in table 5. The results are seen for all auroraforms together, in *table 7*. H is the height, N the frequency for each H.

Table 7.

Frequency of heights of the lowest points of aurora taken 3 by 3 and 5 by 5.

| Н                 | N          | 3 by 3           | Н                 | N          | 5 by 5           |
|-------------------|------------|------------------|-------------------|------------|------------------|
| 70<br>1<br>2<br>3 | 1<br><br>1 | 1<br>2<br>1<br>1 | 70<br>1<br>2<br>3 | 1<br><br>1 | 2<br>2<br>2<br>4 |
| 4<br>5            | 3          | 3<br>4           | 4<br>5            | 3          | 5<br>6           |
| 6 7               | I<br>2     | 6<br>8           | 6<br>7            | 1 2        | 11<br>13         |
| 8 9               | 5 2        | 9<br>11          | 8<br>9            | 5<br>2     | 14<br>17         |
| 80                | 4          | 10<br>11         | 80                | 4          | 18<br>16         |
| 2                 | 3          | 10               | 2                 | 3          | 17               |

Table 8 (continued.)

| H               | N   | 3 by 3   | Н                                      | N        | 5 by 5          |
|-----------------|-----|----------|----------------------------------------|----------|-----------------|
| 3               | 3   | 9        | 3                                      | 3        | 18              |
| 4               | 3   | 11       | 4                                      | 3        | 19              |
| 5               | 5   | 13       | 5                                      | 5        | 21              |
| 6               | 5   | 15       | 6                                      | 5        | 21              |
| 7               | 5   | 18       | 7                                      | 5        | 34              |
| 8               | 8   | 24       | 8                                      | 8        | 40              |
| 9               | 11  | 30       | 9                                      | 11       | 40              |
| 90              | 11  | 27       | 90                                     | 11       | 47              |
| 1               | 5   | 28       | 1                                      | 5        | 48              |
| <b>2</b>        | 12  | 26       | 2                                      | 12       | 51              |
| 3               | 9   | 35       | 3                                      | 9        | 52              |
| 4               | 14  | 35       | 4                                      | 14       | 63              |
| 5               | 12  | 42       | 5                                      | 12       | 65              |
| 6               | 16  | 42       | 6                                      | 16       | 75              |
| 7               | 14  | 49       | 7                                      | 14       | 73              |
| 8               | 19  | 45       | 8                                      | 19       | 69              |
| 9               | 12  | 39       | 9                                      | 12       | 67              |
| 100             | 8   | 34       | 100                                    | 8        | 72              |
| 1               | 14  | 41       | 1                                      | 14       | 66              |
| 2               | 19  | 46       | 2                                      | 19       | 62              |
| 3               | 13  | 40       | 3                                      | 13       | 64              |
| 4               | 8   | 31       | 4                                      | 8        | 61              |
| 5               | 10  | 29       | 5                                      | 10       | -51             |
| 6               | 11  | 30       | 6                                      | 11       | 51              |
| 7               | 9   | 33       | 7                                      | 9        | 46              |
| 8<br>9          | 13  | 25       | 8                                      | 13       | 42              |
|                 | 3   | 22       | 9                                      | 3        | 38              |
| $\frac{110}{1}$ | 6 7 | 16<br>18 | 110                                    | 6        | 34              |
| $\frac{1}{2}$   | 5   | 21       | $egin{array}{c} 1 \ 2 \end{array}$     | 7<br>5   | $\frac{30}{32}$ |
| 3               | 9   | 19       | $\begin{bmatrix} 2 \\ 3 \end{bmatrix}$ | 9        | 33              |
| 4               | 5   | 21       | 4                                      | 5        | 28              |
| 5               | 7   | 14       | 5                                      | 7        | 26<br>26        |
| 6               | 2   | 12       | 6                                      | 2        | 20              |
| 7               | 3   | 8        | 7                                      | 3        | 20              |
| 8               | 3   | 11       | 8                                      | 3        | 16              |
| 9               | 5   | 11       | 9                                      | 5        | 14              |
| 120             | 3   | 8        | 120                                    | 3        | 14              |
| 1               |     | 6        | 1                                      |          | 15              |
| 2               | 3   | 7        | 2                                      | 3        | 12              |
| 3               | 4   | 9        | 3                                      | 4        | 9               |
| 4               | 2   | 6        | 4                                      | 2        | 12              |
| 5               |     | 5        | 5                                      |          | 11              |
| 6               | 3   | 5        | 6                                      | 3        | 8               |
| 7               | 2   | 6        | 7                                      | <b>2</b> | 8               |
| 8               | 1   | 5        | 8                                      | 1        | 11              |
| 9               | 2   | 6        | 9                                      | 2        | 9               |
| 130             | 3   | 6        | 130                                    | 3        | 10              |
| 1               | 1   | 7        | 1                                      | 1        | 10              |
| <b>2</b>        | 3   | 5        | 2                                      | 3        | 9               |
| 3               | 1   | 5        | 3                                      | 1        | 7               |
| 4               | 1   | 3        | 4                                      | 1        | 6               |
| 5               | 1   | 2        | .5                                     | 1        | 5               |

| Table 7 | (continued.) |
|---------|--------------|
|---------|--------------|

| · · · · · · · · · · · · · · · · · · ·                 |                                         |                                                     |                                                  |                                         |                                                     |
|-------------------------------------------------------|-----------------------------------------|-----------------------------------------------------|--------------------------------------------------|-----------------------------------------|-----------------------------------------------------|
| Н                                                     | N                                       | 3 by 3                                              | Н                                                | N                                       | 5 by 5                                              |
| 7<br>8<br>9<br>140<br>1<br>2<br>3<br>4<br>5<br>6<br>7 | 2<br>2<br>2<br>1<br>1<br><br>1<br>1<br> | 4<br>6<br>5<br>4<br>2<br>2<br>2<br>3<br>2<br>2<br>3 | 7<br>8<br>9<br>140<br>1<br>2<br>3<br>4<br>5<br>6 | 2<br>2<br>2<br>1<br>1<br><br>1<br>1<br> | 7<br>7<br>8<br>6<br>5<br>4<br>4<br>3<br>4<br>5<br>6 |
| 8<br>9                                                | $egin{array}{c} 2 \ 2 \ 1 \end{array}$  | 5<br>5<br>3                                         | 8<br>9<br>150                                    | $egin{array}{c} 2 \ 2 \ 1 \end{array}$  | 6<br>6<br>5                                         |
| 150                                                   | 1                                       | 3                                                   | 190                                              | 1                                       |                                                     |

On Fig. 15 the curves from the enumerations 3 by 3 and on Fig. 16 the same from 5 by 5 are shown superimposed.

Fig. 15 og 16

To make similer tables and figures for every special auroral form is not worth while because of the small number of measurements. As to the form

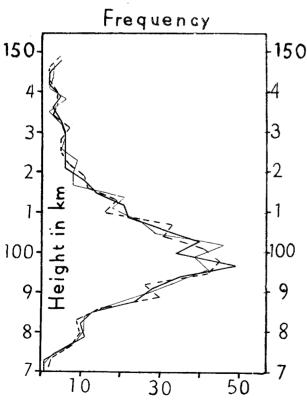



Fig. 15. Curves of frequency of heights of lower border, all forms, taken 3 and 3.

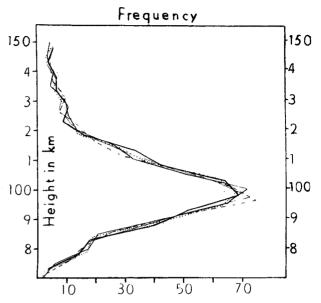



Fig. 16. Curves of frequency of heights of lower border, all forms, taken 5 and 5.

RB, that means bands with ray structure or curtains, we have in  $table \ 8$  made the same enumeration 5 by 5. The superposed curves are seen in Fig. 17.

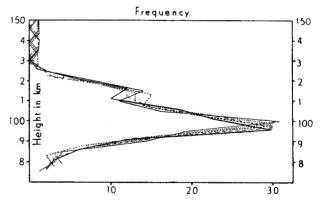



Fig. 17. Curves of frequency of heights of lower border of curtains RB, taken 5 by 5.

Table 8.
Frequency of heights of the lower border of the aurora form RB, taken 5 by 5.

| Н            | N          | 5 by 5         | Н             | N           | 5 by 5         |
|--------------|------------|----------------|---------------|-------------|----------------|
| 75<br>6<br>7 |            | $rac{1}{2}$ . | 105<br>6<br>7 | 4<br>1<br>1 | 14<br>12<br>12 |
| 8<br>9<br>80 | 1<br><br>1 | 3<br>4<br>3    | 8<br>9<br>120 | 3<br>3<br>1 | 9<br>8<br>8    |

Table 8 (continued.)

Table 9.

| Table 8 (c | ontinued.) |        |     |   |        |
|------------|------------|--------|-----|---|--------|
| Н          | N          | 5 by 5 | Н   | N | 5 by 5 |
| 1          | 1          | 3      | 1   |   | 6      |
| 2          |            | 3      | 2   | 1 | 3      |
| 3          | 1          | 2      | 3   | 1 | 2      |
| 4          |            | 3      | 4   |   | 3      |
| 5          |            | 4      | 5   |   | 2      |
| 6          | 2          | 6      | 6   | 1 | 1 .    |
| 7          | 1          | 7      | 7   |   | 1      |
| 8          | 3          | 10     | 8   |   | 1      |
| 9          | 1          | 10     | 9   |   | 0      |
| 90         | 3          | 14     | 130 |   | 0      |
| 1          | 2          | 12     | 1   |   | 0      |
| 2          | 5          | 14     | 2   |   | 0      |
| 3          | 1          | 16     | 3   |   | 1      |
| 4          | 3          | 18     | 4   |   | 1      |
| 5          | 5          | 19     | 5   | 1 | 1      |
| 6          | 4          | 30     | 6   |   | 1      |
| 7          | 6          | 30     | 7   |   | 1      |
| 8          | 12         | 30     | 8   |   | 0      |
| 9          | 3          | 30     | 9   |   | 0      |
| 100        | 5          | 31     | 140 |   | 0      |
| 1          | 4          | 23     | 1   |   | 1      |
| 2          | 7          | 24     | 2   |   | 1      |
| 3          | 4          | 21     | 3   | 1 | 1      |
| 4          | 4          | 21     | 4   |   | 1      |
| 5          | 2          | 16     | 5   |   | 1      |
| 6          | 4          | 18     | 6   |   | 0      |
| 7          | 2          | 15     | 7   |   | 0      |
| 8          | 6          | 14     | 8   |   | 1      |
| 9          | 1          | 13     | 9   |   | 1      |
| 110        | 1          | 11     | 150 | 1 | 1      |
| 1          | 3          | 10     |     | _ |        |
| 2          |            | 12     |     |   |        |
| 3          | 5          | 15     |     |   |        |
| 4          | 3          | 13     |     |   | İ      |

| Frequency | of | highest | points | of | the | different | aurora |
|-----------|----|---------|--------|----|-----|-----------|--------|
|           |    |         | forms. |    |     |           |        |

| Н               | на           | нв  | PA    | DS    | PS    | RA    | RB                      | р     | R     | R′    | To-<br>tal |
|-----------------|--------------|-----|-------|-------|-------|-------|-------------------------|-------|-------|-------|------------|
| 90              | 1            |     |       |       |       |       | 1                       |       |       |       | $oxed{2}$  |
| 1               |              |     |       |       |       |       |                         |       |       |       |            |
| 2               |              |     |       |       |       |       |                         |       |       |       |            |
|                 |              |     |       |       |       |       |                         |       |       | ٠     |            |
| 4               |              |     |       |       |       |       | 1                       |       |       |       | 1          |
| 5               | • •          |     |       |       | • •   | • •   |                         | • •   |       | • •   | • •        |
| 6               |              | • • | • •   | • •   | 1     |       | 1                       | • •   |       |       | 2          |
| 7               | 1            |     |       |       | 1     |       |                         | • •   | • •   | • • • | 2          |
| 8<br>9          | $\frac{2}{}$ |     | ٠.    | 1     | 1     | • •   | • •                     | • •   | • • • | • • • | 4          |
| 100             | 1            |     | • •   | 4     | 1     |       | ••                      | • •   | 1     |       | 1<br>7     |
| 100             |              | ٠.  | • •   | 1     |       | • •   | 1                       | • •   |       |       | 2          |
| 2               |              | • • |       | 1     |       |       | 1                       | • •   | • • • |       | 2          |
| 3               |              |     |       | 1     | 3     | 1     |                         |       |       |       | 5          |
| 4               |              |     |       | î     |       |       | 2                       |       |       |       | 3          |
| 5               |              |     |       | 3     | 1     |       | 3                       |       |       |       | 7          |
| 6               |              |     |       | 1     | 1     |       | 1                       |       |       |       | 3          |
| 7               |              |     | ١     | 1     | 2     |       |                         |       |       |       | 3          |
| 8               |              |     |       | 2     |       |       | 2                       |       |       |       | 4          |
| 9               |              |     |       | 1     |       |       | 3                       |       |       |       | . 4        |
| 110             |              |     |       | 5     | 1     |       | 1                       |       |       |       | 7          |
| 1               |              |     |       | 1     |       |       | 1                       |       |       |       | 2          |
| <b>2</b>        |              |     |       | 1     |       |       |                         |       |       |       | 1          |
| 3               |              |     |       |       | 1     |       |                         |       | 1     |       | 2          |
| 4               | ٠,           |     | • • • | 1     | 1     | 1     | 2                       |       |       |       | 5          |
| 5               | • •          |     |       | 2     | • • • | • • • | 2                       | • •   |       |       | 4          |
| 6               | • •          |     |       | 3     | ٠٠.   | • •   | 1                       | • •   |       |       | 4          |
| 7               |              |     |       | 1     | • •   | • • • |                         | • •   | • •   |       | 1          |
| 8               | • •          | • • |       | 2     |       | • •   |                         |       |       |       | 2          |
| 9               |              |     |       | 3     | 1     | • •   | 1                       | • •   | 1     |       | 3          |
| $\frac{120}{1}$ |              | ٠٠. |       |       |       | • • • | • •                     | • •   |       | • • • |            |
| 2               |              | ' ' |       |       |       | • •   | $\frac{\cdot \cdot}{2}$ | • •   |       |       | 2          |
| 3               |              | ''  | ''    | 1     | ٠.    |       |                         |       |       |       | 1          |
| 4               |              |     |       | 1     |       |       | 1                       |       |       | ::    | 2          |
| 5               |              |     |       |       |       |       | 1                       |       |       | ١     | 1          |
| 6               |              |     |       |       |       |       |                         |       |       | ۱     |            |
| 7               |              |     |       |       |       |       |                         |       |       |       |            |
| 8               |              | ٠.  |       | 1     |       |       |                         |       |       |       | 1          |
| 9               |              |     |       | 1     |       |       |                         |       |       |       | 1          |
| 130             |              |     |       |       | ٠.    |       |                         |       |       |       |            |
| 1               |              |     |       |       |       |       |                         |       | 1     |       | 1          |
| 2               |              |     |       |       | 1     |       |                         |       |       |       | 1          |
| 3               | • •          |     |       |       | • •   | • •   | ٠.                      |       | ٠.    |       | • •        |
| 4               |              |     |       | • •   | • • • | • •   | 1                       | • •   |       |       | 1          |
| 5               | • •          | • • |       | • • • |       | • • • | 1                       |       |       |       | 1          |
| 6               | • •          | ••  | • •   | • •   | • •   | • •   | 1                       | • •   | • •   |       | 1          |
| 7               |              |     |       | • •   | ٠.    | • •   | 1                       | • •   |       |       | 1          |
| 8<br>9          |              | ٠٠. |       | • •   | 1     | • • • | •••                     | • •   | • • • |       | 1          |
| 140             | : :          |     |       | 1     |       |       |                         |       |       |       | 1          |
| 140             | • • •        |     | ٠.,   | . 1   |       | ٠     | • • •                   | • • • | • • • |       | 1 T        |

## 27. The heighest points of the aurora.

A similar research has been done for the highest points of the different forms. Here the material is still more scanty.

In table 9 the result is seen. We may further remark that the great heights for certain RB and D are due to the summits of some rays of the curtains reaching much higher than most of the other rays of the same curtains.

A point-diagram is seen on Fig. 18 page 45. The greater heights of the sunlit aurora rays are a striking feature, but the immense heights of these rays during years of maximum activity of the sun were not observed during the polar year, which belonged to years of minimum activity. See also section 29.

Table 9 (continued.)

Table 9 (continued.)

| <u>Tabl</u>   | e 9 (e | conti | ıued. | }     |       |     |     |       |     |       |            | Tabi                                    | e 9 (0 | contii | nued. | )     |       |     |     |       |     |       |            |
|---------------|--------|-------|-------|-------|-------|-----|-----|-------|-----|-------|------------|-----------------------------------------|--------|--------|-------|-------|-------|-----|-----|-------|-----|-------|------------|
| Н             | на     | нв    | PA    | DS    | PS    | RA  | RВ  | D     | R   | R′    | To-<br>tal | Н                                       | НА     | нв     | PA    | DS    | PS    | RA  | RB  | D     | R   | R′    | To-<br>tal |
| 1             |        |       |       |       |       |     |     |       |     |       |            | 6                                       |        |        |       |       |       |     |     |       | 1   |       | 1          |
| $\frac{1}{2}$ |        |       |       |       | • •   |     | ··· |       |     |       | 1          | 7                                       |        |        |       |       |       |     |     |       |     |       |            |
| 3             |        |       |       |       |       |     | 1   |       |     |       | 1          | 8                                       |        |        |       |       |       |     |     |       |     |       |            |
| 4             |        |       |       |       |       |     |     | ٠.    |     |       |            | 9                                       |        |        |       |       |       | ٠.  |     |       |     | ٠.    |            |
| 5             |        |       |       |       |       |     |     | ٠.    |     |       |            | 200                                     |        |        | • • • |       |       | ٠٠. | 1   |       |     | • • • | 1          |
| 6             |        | • •   | • •   |       |       | • • |     |       |     |       |            | 1                                       |        |        |       | • • • | ٠.    |     |     |       |     | • •   | ٠٠.        |
| 7             | • •    |       | ••    | • • • | ٠٠.   |     | 1   |       | ٠.  |       | 1          | $\frac{2}{3}$                           |        |        |       |       |       |     |     |       | 1   |       | 1          |
| $\frac{8}{9}$ | • • •  | • •   | • • • | ٠     |       |     |     |       | 1   |       | 1          | 4                                       |        |        |       |       |       |     |     |       |     |       |            |
| 150           |        |       |       |       |       |     |     |       | î   |       | 1          | 5                                       |        |        |       |       |       |     |     |       |     |       |            |
| 1             |        |       |       |       | ١     | ٠.  |     |       |     |       |            | 6                                       |        |        |       |       |       |     |     |       |     |       |            |
| 2             |        |       |       |       |       |     | 1   |       | 1   |       | 2          | 7                                       |        |        |       |       |       | ٠   |     |       |     |       |            |
| 3             |        |       |       |       |       |     |     |       |     |       |            | 8                                       |        |        |       |       | • •   | • • |     |       |     | 1     | 1          |
| 4             |        |       | • •   |       |       |     | 1   |       |     |       | 1          | 9                                       | • •    |        |       |       | • •   | • • |     | • •   |     | • •   | • • •      |
| 5             |        | • •   | ٠.    | • •   |       |     | 1   |       |     | • •   | 1          | 210                                     |        |        |       |       |       | ••  |     | • • • |     |       | • •        |
| 6             |        | • •   | • •   | • •   |       |     |     | • •   |     |       | • •        | $rac{1}{2}$                            |        |        |       |       | • •   |     | 1   |       |     |       |            |
| 7             | • • •  | • •   | • • • |       |       |     |     | ٠.    |     |       | • • •      | 3                                       | · · ·  |        |       |       |       |     |     |       |     |       |            |
| $\frac{8}{9}$ |        |       |       |       |       |     |     |       |     |       |            | 4                                       | ; ;    |        |       |       |       |     |     | ٠.    |     |       |            |
| 160           |        |       |       |       | ::    |     |     |       |     |       |            | 5                                       |        |        |       |       |       |     |     |       |     |       | ٠.         |
| 1             |        |       |       |       |       |     |     |       | ٠.  |       |            | 6                                       |        |        |       |       |       |     |     |       |     |       |            |
| <b>2</b>      | ļ<br>  |       |       |       |       |     |     |       | ٠.  |       |            | 7                                       |        |        |       |       |       |     | 1   | · :   |     |       | 1          |
| 3             |        |       |       |       |       |     |     |       |     |       |            | 8                                       |        |        |       | .:    |       |     | • • |       |     | ٠.    |            |
| 4             |        |       |       |       |       |     |     | ٠.    | 2   |       | 2          | 9                                       |        | • • •  |       | • • • | • •   |     |     |       | • • |       |            |
| 5             |        |       | • •   | • •   |       | ٠.  |     | • •   |     | • •   |            | 220                                     | • •    |        |       |       | • •   |     | 1   |       |     |       | 1          |
| 6             |        |       | • •   | • •   |       |     |     | • • • | ٠٠. | • • • | • •        | $\frac{1}{2}$                           |        | ٠.     |       |       | • •   |     |     |       |     |       |            |
| 7             |        | • •   | • •   |       | ٠٠.   | ••  |     | • •   |     |       | • •        | 3                                       |        |        |       |       |       |     | ::  |       |     |       |            |
| $\frac{8}{9}$ |        |       |       |       | ::    |     | ::  |       |     |       |            | 4                                       |        |        |       |       |       |     |     |       | ٠.  |       |            |
| 170           |        |       |       |       |       |     |     |       |     |       |            | 5                                       | ١.,    |        |       |       |       |     | 1   |       |     |       | 1          |
| 1             |        |       |       |       | ٠     |     | 1   |       | ٠.  |       | 1          | 6                                       |        |        | ٠     |       |       |     |     |       |     |       |            |
| 2             |        |       |       |       | ٠     |     |     |       |     |       |            | 7                                       |        |        |       |       |       |     | , . |       | 1   | • • • | 1          |
| 3             |        |       |       |       |       |     |     | • •   |     |       |            | 8                                       | ••     |        |       |       |       |     |     | • • • | 2   | • •   | 2          |
| 4             |        |       |       | • •   |       |     | ٠٠. | • •   |     |       | • •        | 9                                       | • •    |        |       | • •   | • •   |     |     |       | ٠٠. | • •   |            |
| 5             |        |       |       | • •   |       |     | ٠٠. | • •   | • • | ٠٠    | • •        | $\frac{230}{1}$                         |        | • •    |       |       | · ·   | ::  |     |       |     |       | ::         |
| 6             |        | • •   |       | ٠٠.   | • • • | ٠٠. |     | • • • |     |       | • •        | 2                                       |        |        |       |       |       | ::  |     | l     |     |       |            |
| 8             |        |       |       | ::    |       |     | ::  |       | 1   | ::    | 1          | 3                                       |        | .,     | ļ     |       |       | ١   |     | ٠     | 1   |       | 1          |
| 9             |        |       |       |       |       |     |     |       |     |       |            | 4                                       |        |        |       |       |       |     |     | ٠.    |     |       |            |
| 180           |        | ••    |       |       |       |     |     |       |     |       |            | 5                                       |        |        |       |       |       |     |     |       |     |       |            |
| 1             | ٠.     |       |       |       | ٠.    |     |     |       |     |       | • •        | 6                                       |        |        |       |       |       |     |     | ٠٠.   |     |       |            |
| 2             |        |       |       | • •   |       |     |     |       | • • |       |            | 7                                       | • •    |        |       |       |       |     | • • | ٠.    |     |       |            |
| 3             |        | • •   |       | • •   |       |     |     | • •   |     |       |            | 8                                       | • •    |        | • •   |       | • • • |     | • • | ٠٠.   | ٠.  |       |            |
| 4             | • •    | • •   | • •   |       | ٠.    |     |     | • •   |     |       |            | $\begin{array}{c} 9 \\ 240 \end{array}$ |        | ٠٠.    |       |       | • •   |     |     |       | 2   | ı     | 3          |
| 5<br>6        | • •    | • •   | • •   |       | ٠.    |     | • • | ••    | • • | ••    |            | 240<br>1                                |        | ::     |       |       |       |     | ::  |       |     |       |            |
| 6<br>7        |        | • •   |       |       |       |     |     | • •   |     |       |            | $\overset{1}{2}$                        |        |        |       |       |       |     |     |       |     |       |            |
| 8             | • •    |       | • •   |       |       | ::  | 1   |       |     |       | 1          | 3                                       |        |        |       |       |       |     |     |       |     |       |            |
| 9             |        |       | .,    |       |       |     |     |       | 1   |       | 1          | 4                                       |        |        |       |       |       |     |     | ٠.    |     |       |            |
| 190           |        |       |       |       |       |     |     |       | 2   |       | 2          | 5                                       |        |        |       |       |       |     |     | ٠.    |     |       |            |
| 1             |        |       |       |       |       |     |     |       | 1   |       | 1          | 6                                       |        |        |       | • •   |       |     |     |       |     |       | ٠.         |
| 2             |        |       |       | • • • |       |     |     |       | 1   |       | 1          | 7                                       |        | • •    |       | • •   | • •   | • • |     |       |     | 1     | 1          |
| 3             | • •    | • •   | • •   | • •   | • •   |     | • • | ٠.    | ٠.  | • •   |            | 8                                       |        | • •    |       | • •   | • •   |     |     | • • • | 1   | 1     | 2          |
| 4             | • •    | • •   | • •   | • •   | • •   | • • | • • | • •   |     |       | 1          | 9<br>250                                | ••     |        | • •   | •••   | ٠.    |     |     | ٠.    | 1   | 1     | 1          |
| 5             | ٠ ا    |       |       |       |       |     | !   | • •   | 1   |       | · 1        | 250                                     | ٠      |        |       | ١ • • | • • • |     |     | ٠     |     |       | , ,        |

Table 9 (continued.)

Table 9 (continued.)

| 1801            |       | Ollell | iucu. |       |       |       |        |     |       |                                    |                                         | Tabi          | 69 (  | conti | iueu., | ;     |       |       |       |     |       |                                         |               |
|-----------------|-------|--------|-------|-------|-------|-------|--------|-----|-------|------------------------------------|-----------------------------------------|---------------|-------|-------|--------|-------|-------|-------|-------|-----|-------|-----------------------------------------|---------------|
| Н               | НА    | нв     | PA    | DS    | PS    | RA    | RB     | D   | R     | R'                                 | To-<br>tal                              | Н             | на    | нв    | PA     | DS    | PS    | RA    | RB    | D   | R     | R'                                      | To-<br>tal    |
| 1               |       |        |       |       |       |       |        |     |       |                                    | -                                       | в             |       |       |        |       |       |       |       |     |       |                                         |               |
| 2               |       |        |       |       |       |       |        |     |       | 1                                  | 1                                       | $\frac{6}{7}$ |       |       |        | • • • |       | ٠٠.   | • •   |     |       | 1                                       | 1             |
| 3               |       |        |       |       |       |       |        |     |       |                                    |                                         | 8             |       |       |        |       |       |       |       |     |       |                                         |               |
| 4               |       |        |       |       |       |       |        |     |       | 2                                  | 2                                       | 9             |       |       |        |       |       |       |       |     |       | 2                                       | 2             |
| 5               |       |        |       |       |       |       | 1      |     |       |                                    | 1                                       | 310           |       |       |        |       |       |       |       |     |       |                                         |               |
| 6               |       |        |       |       |       |       |        |     |       |                                    |                                         | 1             |       |       |        |       |       |       |       | ٠.  |       |                                         |               |
| 7               |       | • •    |       |       |       |       |        | • • |       | 2                                  | 2                                       | 2             | ٠.    |       |        |       |       |       |       |     |       | 1                                       | 1             |
| $\frac{8}{9}$   | • •   | • •    | • •   | ٠٠    | ٠٠.   |       |        | • • | 1     | 1                                  | 2                                       | 3             |       |       | ••     | • •   | • •   |       | • • • |     |       |                                         | • •           |
| 260             |       | ••     | • • • |       |       | • •   |        | • • | • •   | 1                                  | 1                                       | 4             |       | • •   |        | • •   | • •   | • •   | • •   | • • | • •   | • • •                                   |               |
| 1               |       |        |       | ::    |       |       |        |     |       | ٠.                                 | • • •                                   | 5<br>6        |       |       |        | • •   | • •   | • •   | • •   | • • | ••    |                                         |               |
| 2               |       |        |       |       |       |       |        |     |       |                                    |                                         | 7             |       |       |        |       |       |       | • • • | • • |       | $\begin{array}{c c} 1 \\ 2 \end{array}$ | $\frac{1}{2}$ |
| 3               |       |        |       |       |       |       |        |     |       |                                    |                                         | 8             |       |       |        |       |       |       | 1     |     |       |                                         | 1             |
| 4               |       |        |       |       |       |       | ١      |     |       |                                    |                                         | 9             |       |       |        |       |       |       |       |     |       |                                         |               |
| 5               |       |        |       |       |       |       |        |     |       |                                    |                                         | 320           |       |       |        |       |       |       |       |     |       |                                         |               |
| 6               |       |        |       |       |       |       | ۱      |     |       |                                    | ٠.                                      | 1             |       |       |        |       |       |       |       |     |       | 1                                       | 1             |
| 7               | • • • | • •    |       |       |       |       |        |     |       |                                    |                                         | 2             |       |       |        |       |       |       |       |     |       |                                         |               |
| $\frac{8}{9}$   | • •   |        | • •   |       | • •   | • •   |        | • • | 1     |                                    | 1                                       | 3             |       |       |        |       | • •   |       |       |     |       |                                         | • •           |
| 270             | • •   | • •    | • •   | • • • |       |       | • •    |     | 1     | • •                                | l I                                     | 4             |       | ••    | •••    | • •   | • •   |       |       |     | • •   | ·1                                      | 1             |
| 1               | •••   | ٠٠     | • •   | ٠.    | • •   |       | •••    | 1   |       | 1                                  | $egin{array}{cccc} 1 & 1 & \end{array}$ | 5<br>6        | • •   | • •   |        | ••    | • •   |       | • •   | • • | • •   | ٠.,                                     |               |
| 2               | • • • |        | • •   |       |       |       |        |     |       | İ                                  | ĺ                                       | 7             | • • • | • •   | ٠٠ ا   | •••   |       | •••   | • •   | • • | • •   | 1                                       | 1             |
| 3               |       |        |       |       |       |       |        |     |       |                                    |                                         | 8             |       | · ·   |        |       | • •   |       |       | • • | • • • | • • •                                   |               |
| 4               |       |        |       |       |       |       | 1      |     |       |                                    | 1                                       | 9             |       |       |        |       |       |       | 1     |     |       | 1                                       | 2             |
| 5               |       |        |       |       |       |       |        |     |       |                                    | ٠.                                      | 330           |       |       |        |       |       |       |       |     |       | 2                                       | 2             |
| 6               | • • • |        |       |       |       |       |        |     |       |                                    |                                         | 1             |       |       |        |       |       |       |       |     |       |                                         |               |
| 7               | ٠.    | • • •  |       |       | • •   |       |        |     |       | 1                                  | 1                                       | 2             |       |       |        |       |       |       |       |     |       | 1                                       | 1             |
| 8               | • • • | • •    | • •   |       | • •   |       | • • •  |     |       | • •                                | • •                                     | 3             | • •   |       |        |       |       |       |       |     |       | 1                                       | 1             |
| 9               | • • • | • • •  | • •   |       | • •   |       | ••     | • • | • • • | 1                                  | 1                                       | 4             | • • • |       |        |       |       | • •   | • •   |     |       |                                         |               |
| 280<br>I        | • •   | ••     |       | • •   |       | • •   | ';     | • • | • • • | $egin{array}{c} 1 \ 2 \end{array}$ | 1                                       | 5             | ••    | ٠.    | ••     | • •   |       | • •   | • •   | • • | • • • | ٠.                                      |               |
| 2               |       |        |       |       |       | • • • | 1<br>1 | • • | 1     |                                    | $\frac{3}{2}$                           | $\frac{6}{7}$ | • •   | • • • | ••     | • •   | • •   | • •   | ٠.    | • • | • •   | I                                       | 1             |
| 3               |       |        |       |       |       |       |        |     |       |                                    |                                         | 8             |       |       |        |       |       |       | • • • | • • | •••   | •••                                     | • •           |
| 4               |       |        |       |       |       |       |        |     |       | 1                                  | 1                                       | 9             |       |       |        |       |       |       | • •   | • • |       | 1                                       | <br>I         |
| 5               |       |        |       |       |       |       |        |     |       |                                    |                                         | 340           |       |       |        |       |       |       |       |     |       |                                         |               |
| 6               |       |        |       |       |       |       |        |     |       |                                    |                                         | 1             |       |       |        |       |       |       |       |     |       | 1                                       | 1             |
| 7               |       |        | • •   |       |       |       |        |     | 1     |                                    | 1                                       | 2             |       |       |        |       |       |       |       |     |       |                                         |               |
| 8               |       | ••     | • •   |       |       |       | • •    | • • | • • • |                                    | • •                                     | 3             |       | ٠     |        |       |       | • •   |       |     |       |                                         |               |
| $\frac{9}{290}$ | • •   | •••    | • •   |       | • •   |       | ••     | • • | • •   |                                    | • •                                     | 4             | • •   | • •   | • •    |       |       | • •   | ٠. ا  | • • |       | 3                                       | 3             |
| 290<br>1        | • •   | •••    | • •   | • •   |       | • •   | ••     | • • | • • • |                                    |                                         | 5<br>6        | • •   | • •   | ••     | • •   | • •   | • • • | • •   | • • |       | • •                                     | • •           |
| 2               |       | • • •  |       |       |       |       |        |     |       |                                    |                                         | $\frac{6}{7}$ | • •   | • •   | • •    | • •   | • •   |       | ٠.    | • • | • •   | • •                                     | • •           |
| 3               |       |        | • •   |       |       |       |        |     |       |                                    |                                         | 8             |       |       |        |       |       | • •   | ••    | • • |       | • •                                     | ••            |
| 4               |       |        |       |       |       |       |        |     |       | 2                                  | 2                                       | 9             |       |       |        |       |       |       | • •   |     |       |                                         | • • •         |
| 5               |       |        |       |       |       |       |        |     |       |                                    |                                         | 350           |       |       |        |       |       |       |       |     |       |                                         | • •           |
| 6               |       |        |       |       |       |       |        |     |       | 1                                  | 1                                       | 1             |       |       |        |       |       |       |       |     |       |                                         |               |
| 7               | ••    |        |       | ٠.    |       |       |        |     |       | 1                                  | 1                                       | 2             |       |       |        |       |       |       |       |     |       | 1                                       | 1             |
| 8               | • •   | • •    |       | ٠.    | • • • |       |        | • • |       |                                    |                                         | 3             |       |       |        |       |       |       |       |     |       |                                         |               |
| 900             | • •   | • •    | • •   |       | • •   | • •   |        | • • |       |                                    |                                         | 4             | • •   | • •   |        |       | • •   | • • • |       |     |       | ٠. ا                                    | ٠.            |
| 300             | • •   | ••     | • •   | • • • | • • • |       | • •    | • • |       | • • •                              |                                         | 5<br>e        | • •   | • •   |        | • •   | • •   |       |       |     |       | 2                                       | 2             |
| $\frac{1}{2}$   | • •   | • •    | • •   | • •   | • •   | • •   |        | • • | • • • | • • •                              | • • •                                   | 6             | • •   |       | • •    |       | • •   | • •   |       | • • |       | 2                                       | 2             |
| 3               | • •   |        |       |       |       |       | 1      |     |       | ••                                 | 1                                       | 7<br>8        | ٠.    | ••    | • •    | ••    | • •   | • •   |       | • • |       | • •                                     | ··            |
| 4               | • • • |        |       |       |       |       |        |     |       | <br>                               |                                         | 9             |       |       |        | • •   | • •   | • •   | 1     | • • | • •   | • • •                                   | 1             |
| 5               |       |        |       |       |       |       | 1      |     |       | 1                                  | 2                                       | 360           |       |       |        |       |       |       |       | • • |       | 1                                       | 1             |
|                 |       |        |       |       | - '   |       |        |     | . •   |                                    | _                                       |               |       | . •   | '      | 1     | - • • |       | •••   | • • | •••   | 1                                       | •             |

| Н                 | НА  | НВ    | PA    | DS  | PS    | RA     | RB    | D   | R   | R′ | To-<br>tal |
|-------------------|-----|-------|-------|-----|-------|--------|-------|-----|-----|----|------------|
| 1                 |     |       |       |     |       |        |       |     |     |    |            |
| 2                 | ١   |       | ١     |     |       |        |       |     |     | 1  | 1          |
| 3                 |     |       |       |     |       |        |       |     |     | 2  | 2          |
| 4                 |     |       |       |     |       |        |       |     |     | 1  | 1          |
| 5                 | l i |       |       |     |       |        |       |     |     | 1  | 1          |
| 6                 |     |       |       |     |       |        |       |     |     | 1  | 1          |
| 7                 |     |       |       |     |       |        |       |     |     | _  | -          |
| 8                 |     |       |       |     |       |        |       |     |     |    | • •        |
| 9                 |     |       |       |     |       |        |       | ••  |     | 1  | 1          |
| 373               |     |       |       |     |       |        |       |     | · · | 1  | 1          |
| 378               |     | •     |       |     | • • • |        |       | ٠.  |     | 2  | 2          |
| 379               |     | • •   | ٠.    | • • |       | • •    |       | ٠.  | • • | 1  | 1          |
| 385               | '   |       | • •   | • • | • •   | - 1    | ••    | • • |     | 2  | 2          |
| 390               |     | ٠٠    | ٠.    | • • | • •   |        | ••    | • • | • • | 1  | 1          |
| 391               | '   | •••   |       |     | • •   | •••    | •••   | • • |     | 1  | 1          |
| 400               | ••  | ٠.    | • •   | • • | • •   | ٠٠     | • •   | • • |     | 1  | 1          |
| 406               |     | • •   | • • • | ••  |       | • •    | • •   | • • |     | 2  | 2          |
| 410               | '   | • • • | • • • | ••• | • •   | • •    | • •   | • • | • • | 1  | 1          |
| 416               | • • | ••    | ٠. ا  | ••• | • •   |        | • •   | ٠.  | ••  | 1  |            |
| 419               | ••  | • •   | ٠.    | ••  | • •   | • • •  | • •   | • • | • • | 1  | 1<br>1     |
| 422               | ••• | • •   | ••    | • • | ٠.,   |        | •••   | • • | • • | 1  | l          |
| 428               | *   | • •   | • • • | • • | • •   | • •    | • •   | • • | • • | 1  | 1          |
| 423<br>434        |     | • •   | ••    | ••  | ••    |        | ••    | • • | • • |    |            |
| 453               | ••• |       | • •   |     | • •   | • •    | •••   | • • | • • | 1  | 1          |
| 454               | ••• | • •   | ••    | ••  | • •   |        | • •   | • • | • • | 1  | 1          |
| 466               | ••  | • •   | • •   | ••  | • •   | • •    |       | • • |     | 1  | 1          |
| 484               | ••• | • •   | • • • | ••• | • •   | • •    |       | • • | • • | 1  | 1          |
|                   |     | ••    | • •   | • • | ••    | ••     | • •   | • • | • • | 1  | 1          |
| $\frac{516}{517}$ |     | ••    | • •   | ••  | • •   | ••     | • •   | • • | • • | 1  | 1          |
| 917               |     | 1     |       |     |       | • •    | 1     | • • | ••• | 1  | 1          |
|                   |     |       |       | Nun | nber  | of hei | ights |     |     |    |            |
|                   | 5   |       |       | 42  | 17    | $_2$   | 53    | 1   | 30  | 81 | 231        |

### PART IV.

# GEOGRAPHICAL POSITION OF THE MEASURED AURORA.

# 28. Geographical distribution of the aurora from 23—25 March and from 1—2 May 1933. Comparison with the three hour range magnetic indices K.

It is of special interest to consider the geographical positions of the measured points of aurora on the two nights 23–24 and 24–25 March photographed from Trondheim and Lökken Verk and to compare them with the positions of the points from the big aurora 1–2 May, photographed from Oslo and other southern stations.

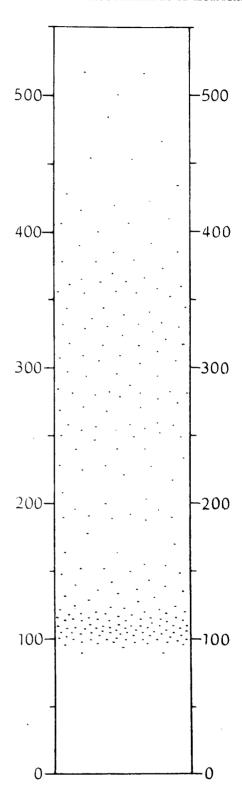



Fig. 18. Distribution of heights for the highest points of all aurorae.

The geographical positions of the points corresponding to the two first nights are seen in Fig. 19 and from the last night 1–2 May in Fig. 20.

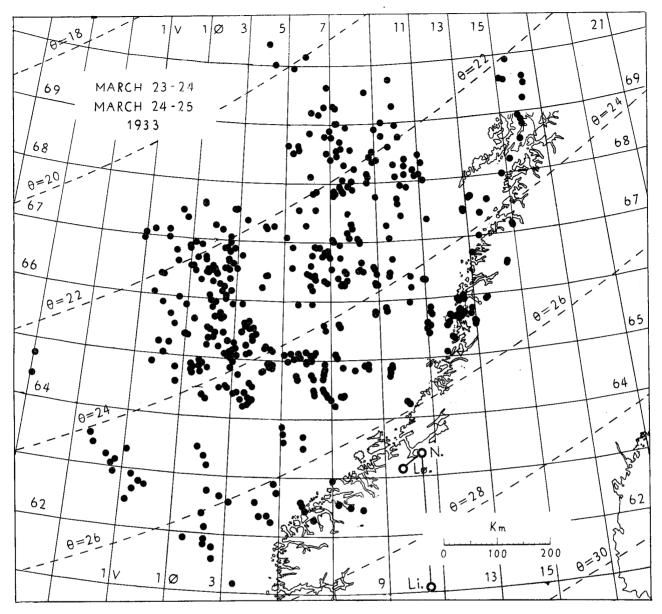



Fig. 19. Geographical positions of all the measured aurora points on March 23-24 and 24-25.

Drawn in the same figures are the lines  $\theta=$  constant, marking the angular distance from the point where the geomagnetic axes through the centre of the earth cuts its northern hemisphere. The aurora on May 1–2 was by far the greatest of all the aurorae observed from southern Norway during the polar year and reached furthest south. On account of the bright night (Sunset  $20^{\rm h}11^{\rm m}$ ) we did not see it earlier than about  $22^{\rm h}20^{\rm m}$ ; it is probable that it reached even further to the south before  $20^{\rm h}$ , judging from the big magnetic storm that evening.

It is a well known fact that aurora far away

from the auroral belts, for instance northern lights over central Europe or southern lights over Australia and south Africa, are always accompanied by severe magnetic storms. In 1911¹) I tried to explain this fact as an action of a corpuscular ring drawing the aurora from the aurora belts towards the geomagnetic equator and that the component of the magnetic perturbation parallel

<sup>1)</sup> Sur les trajectoires des corpuscules éléctriques dans l'espace sous l'action du magnétisme terrèstre avec application aux boréales etc. Second memoire § 20, Archives des sciences physiques et naturelles, 4. période, t. XXXII, 1911.

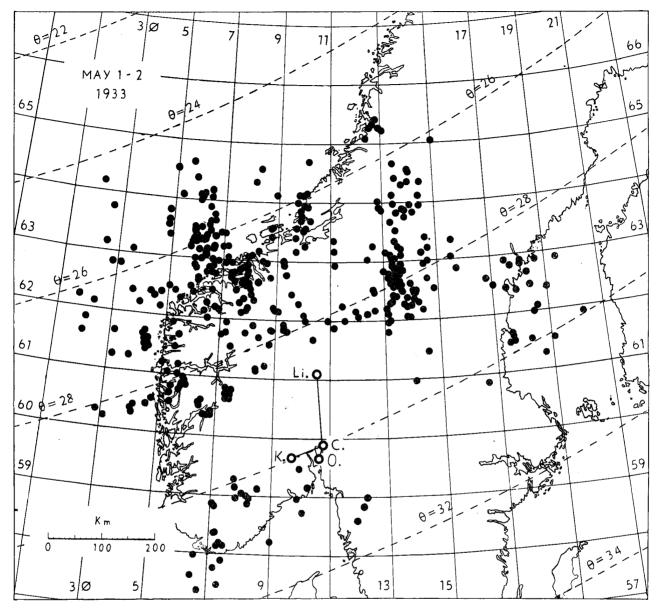



Fig. 20. Geographical positions of all the measured aurora points on May 1-2.

to the earth's geomagnetic axis was a measure of how far the aurora went towards the geomagnetic equator.

In my paper on the results of the measurements of height and position of aurora in southern Norway 1911–1922,¹) I came back to this theory in connection with the 6 greatest aurorae in this period, but I did not compare the aurorae with the component of the perturbation parallel to the geomagnetic axes.

Similarly for the polar year I have had no opportunity of doing this comparison. However,

for the aurora on May 1-2, it has been done by Tagesi Nagata, in his paper: Development of a Magnetic Storm. The southward Shifting of the Auroral Zone. 1)

He has found good agreement between theory and observation.

As an illustration we give in Table 10 page 48 the Three-Hour-Range indices K, which are a good measure of the intensity of the magnetic storm occurring simultaneously with the measured aurorae. We have used the K indices for Dombaas

<sup>1)</sup> Geofysiske Publikationer Vol. 4, § 24, p. 70.

Journal of Geophysical Research, June 1950, No. 2, Washington.

Table 10.

Comparison between the magnetic indices K and the distance  $\theta$  from the geomagnetic axis point to some of the measured aurorae during the polar year 1932–33.

|        |                        | Time        | K     | indices | Dombaa | as  |       | Kp in | ndices |     | 0     |
|--------|------------------------|-------------|-------|---------|--------|-----|-------|-------|--------|-----|-------|
| Year   | Date                   | MET         | 16–19 | 19–22   | 22-1   | 1–4 | 16-19 | 19–21 | 22-1   | 1–4 | ()    |
| 1932   | Aug. 29–30             | 22.46-23.12 | 5     | 6       | 5      | 6   | 4     | 5     | 5      | 4   | 23-26 |
|        | March 18-19            | 23,16- 3.03 | 3     | 3       | 7      | 5   | 4     | 3     | 6      | 5   | 19-27 |
| 1.//// | 10.20                  | 21.05-22.01 | 4     | 8       | 7      | 6   | 4     | 5     | 6      | 6   | 24-28 |
|        | " 99 94                | 0.21- 4.25  | 5     | 6       | 4      | 5   | 5     | 5     | 4      | 4   | 19-24 |
|        | " 94_95                | 20.27- 4.12 | 5     | 4       | 4      | 4   | 5     | 4     | 4      | 3   | 21-29 |
|        | " 24–28<br>April 15–16 | 22.39- 2.19 | 3     | 6       | 7      | 3   | 3     | 5     | 4      | 3   | 22-28 |
|        | 91 99                  | 0.41- 1.16  | 3     | 4       | 5      | 3   | 3     | 4     | 5      | 3   | 19-23 |
|        | " 21-22<br>May 1-2     | 22.21-1.14  | 8     | 9       | 8      | 7   | 8     | 8     | 7      | 6   | 24-32 |

and the planetary K<sub>p</sub> indices for the whole earth in accordance with Bartels.<sup>1</sup>)

In the same table, the lines  $\theta = \text{constant}$  between which the aurora was situated are also given.

From this table it is evident how much farther south the aurora May 1–2 went, corresponding to the much greater K indices for this night.

A comparison between the intensity of the magnetic storms and the southern limit of aurorae was also the subject of some papers by A. Røstad in 1927.<sup>2</sup>)

#### PART V.

# THE SUNLIT AURORA-RAYS.

# 29. Position relative to the Earth's shadow.

As stated earlier the sunlit aurora-rays did not reach the great heights 600 to 1000 km. observed for such rays during years of maximum activity of aurorae and sunspots. It had been observed earlier that the feet of aurora-rays have a tendency

International Union of Geodesy and Geophysics. Association of Terrestrial Magnetism and Electricity, Bulletin No. 12 d. Washington 1950. Before I got this paper, Mr. Wasserfall in Bergen had sent me the K indices for Dombaas.

<sup>2</sup>) A. Røstad: Ueber die Einwirkung der magnetischen Perturbationen auf die geographische Verbreitung des Nordlichts, Geofysiske Publikationer, Oslo, Vol. V, No. 5. and: Ueber Nordlichterscheinungen in niedriger Breiten, Gerlands Beiträge zur Geophysik, Vol. XVI, 1927. to follow the earths shadow, and it is of interest to see if this is the case here again.

For that purpose the position of the earth's shadow relative to the measured points of the ray has been calculated for each of the sunlit rays and further the position of the ray taken from the point where the shadow line touches the earth. The result for all the sunlit rays is seen in Fig. 21, representing a vertical section of the

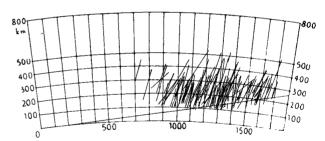



Fig. 21. The positions of sunlit aurora rays to the earth's shadow line (without refraction).

atmosphere with the border line between sunlit and dark atmosphere. Refraction is neglected.

From this figure, the above mentioned tendency is clear but not so marked as on other diagrams for March 22–23, 1920. September 18–19, 1928 and October 16–17, 1936.1)

Among the sunlit rays there are two special cases already mentioned in sections 16 and 19.

Carl Störmer: Sonnenbelichtede Nordlichtstrahlen, Zeits. f. Geophysik, Jahrg. 5, 1929.

and ibid: Some results etc. Geofysiske Publikasjoner, Vol. XII, No. 7, Oslo, 1938.

The first one, om March 19-20 between 21h6m and 21,9 showed some most interesting invisible rays, whose light was probably ultraviolet.

The second one, of a fine drapery, at 22,55 on March 24-25, shows a distinct weakening of the rays round the earth's shadow. This is a transition from undivided to divided1) rays.

Fine figures of both cases are seen in the preliminary report<sup>2</sup>) on the expedition, published in 1934. They are reproduced here on plate 1, middle figures and on plate 2, lower figures.

#### APPENDIX.

# AURORA OBSERVATIONS FROM SHIPS DURING THE POLAR YEAR 1932-33.

#### 30. Instructions.

In July 1932 circulars regarding auroraobservations were sent to the captains of a series of ships by Th. Hesselberg, Director of Det Norske Meteorologiske Institut. The circular was as follows after translation:

In the attached letter from Professor Störmer a request is sent to you asking you to order observations to be made during the winter 1932-33.

The neccessary instructions are sent in a separate cover containing:

- 1. Photographic Atlas of Auroral Forms with a norwegian translation attached.
- Observations of aurora from ships.

Further a logbook for aurora observations is enclosed and this should be returned to Professor Störmer when the polar year is ended. To this letter was attached the following letter:

"In the polar year from August 1, 1932 to August 31, 1933 simultaneous photographs and visual observations of aurora will be made from a series of land stations from Alaska, northern Canada, Scandinavia, Finland, Russia and Siberia.

The aim of these observations is to get informations about important features of the aurora, features which can not be obtained from a single station alone but only through the cooperation of a series of stations round the northern zone i.e.

one extending from end of the magnetic axis at Smits sund in northern Greenland to about 40° south-wards from that point.

Examples of such a feature are the length of a stationary homogeneous arc, the times when certain characteristic aurora variations occur, for instance when a homogeneous arc changes to an are with ray structure. Further we may observe if this occurs simultaneously or not over the region where the aurora is seen.

In between the series of land stations there are however important gaps, namely the Atlantic ocean, the North Sea and the northern part of the Pacific. Here observations according to the adjoined instructions will be extremely important.

Very important also are observations from other regions of the sea where aurora can be seen, both in the northern and in the southern hemisphere. Therefore I must ask you emphatically in the interest of Science to make these observations which will not only be of importance to Science but will also be an important contribution from Norway to the international cooperation during the polar year."

To this letter I attached a circular concerning observations of aurora from ships during the polar year as follows:

"Is is desirable that observations of aurora be made from ships north of a line from Valencia to Boston from August 1, 1932 to August 31, 1933. It is also desirable that corresponding observations be made from ships in the most northern part of the Pacific and in the Antarctic sea, in particular south of Australia and New Zealand when aurora occur."

#### Regular observations.

The times of observations are 01, 04, 07, 10, 13, 16, 18, (19) and 22 GMT.

The observations are to be written up schematically as follows:

The first four columns shall contain the date, time, geographic longitude in whole and tenths of a degree, geographic latitude in whole and tenths of a degree.

In the fifth colum is to be indicated the degree of cloudiness by numbers from 0 to 10, 0 meaning completely clear and 10 completely overcast.

In the sixth column is to be written the

See the above referred paper. Sonnenbelichtete Nordlichtstrahlen, from 1929.

Ueber eine Nordlichtexpedition nach Trondheim im März 1933, plate XI and XII, Gerlands Beiträge zur Geophysik, Bd. 41, 1934.

Aurorae form according to the descriptions in the Photographic Atlas where

HA = Homogeneous quitet arc (Atlas p. 4-6)

HB = Homogeneous band (Atlas p. 8)

PA = Pulsating are (Atlas p. 8)

DS = Diffuse luminous surface (Atlas p. 10)

PS = Pulsating surface (Atlas p. 10)

G = Feeble glow (Atlas p. 10)

RA, Arc with ray structure (Atlas p. 12)

RB, Band with ray structure (Atlas p. 12)

D Drapery (Atlas p. 14)

R = Ray (Atlas p. 16)

C = Corona (Atlas p. 18)

F = Flaming Aurora (Atlas p. 18)

If quiet homogeneous arcs are seen, the number of such arcs is to be given. If only one such arc is seen at the stated hour, measurements of the position of this arc, as mentioned below, will be of great importance.

In the seventh column is to be entered the southern limitation in the sky of the aurora for the northern hemisphere, and the northern limitation for the southern hemisphere. The limitation must be given in degrees, measured along the great circle from magnetic north to the lower border of the most southern are drapery or band. If for instance the lower border of an arc is 20° south of Zenith, 110° shall be noted as the southern limitation.

In the eighth column the colour of the aurora shall be denoted by one of the letters r, g or v, where

R means red

G ,, yellowgreen or grey

V ,, blue or violet

If no aurora can be seen at the fixed hour on account of clouds haze or fog, ships having a pocket spectroscope are asked to write in the ninth column if the yellow green line is visible in the spectroscope or not. These observations are to be denoted by one of the numbers 0 to 4, where

0 means that the aurora line can not be seen

1 ,, ,, ,, ,, is very weak
2 ,, ,, ,, ,, ,, is easely seen, but not strong
3 ,, ,, ,, ,, ,, is strong
4 ,, ,, ,, ,, ,, is very strong

Observations at times other than the fixed hours of observation.

If a stationary homogeneous arc is seen, it is very desirable to fix its position by measuring height and azimuth of 3 points along its lower border, one at its heighest point and the two others where it cuts the horizon. Azimuth can be measured by the ship's compass and the only height which needs to be measured is the heighest point of the lower border. This height must be measured (not extimated) and with an accuracy of half a degree. Such measurements are desirable each time such a homogeneous quiet arc is visible. As the arc probably can be seen over very big regions, a series of such observations over these regions is highly desirable and the measurements ought to be made every half hour, quarter hour or even each 5 or single minute if this is possible. The exact hour and minute and the position of the ship, must be noted as exactly as possible, for each observation.

Further it is of great importance to note times as GMT, when the aurora changes its aspect completely, for instance when a homogeneous are (without rays) changes into an arc or band with ray structure."

#### 31. The results obtained.

From the following ships I got aurora observations:

T/S Drottningholm

S/S Frederik VIII

M/S Gripsholm

M/S Kungsholm

D/S Mexicano

M/S Toledo

M/S Tønsbergfjord

S/S United States

In Table 11 are given the aurorae observations under the headings: Date, Time, Latitude, Longitude, Cloudiness, Aurora Form, Southern limitation, Colour and Spectrographic observations.

More detailed observations during the same period are seen in Table 12.

In both tables we have omitted the names of the observers because it was too difficult to read several of the names with certainty; observations with no visual aurora omitted.

Table 11.

Observations of Aurora from ships, from Aug. 1, 1932 to Aug. 31, 1933. (More detailed descriptions, see Table 12.)

T/S Drottningholm.

| Dε       | ite             | Time GMT | Lat.             | Long.    | Cl.                                 | F.           | Sl.            | Col.            | Sp.         |
|----------|-----------------|----------|------------------|----------|-------------------------------------|--------------|----------------|-----------------|-------------|
| Aug.     | 13              | 1.00     | N. 57°26′        | W.20°22′ | 3                                   | HA           | 29°            | $_{\mathrm{G}}$ |             |
| rug.     | 28              | 1.00     | 45°54′           | 54°24′   | 3                                   | G.           | 24°            | G <sup>+</sup>  |             |
|          | 40              | 1.43     | 45°58′           | 54°18′   | 3                                   | RA           | 81°            | G               |             |
|          |                 | 2.25     | 46°07′           | 53°57′   | $rac{3}{4}$                        | G            | 34°            | G               |             |
|          |                 | 4.00     | 46°22′           | 53°25′   | 4                                   | G            | 16°            | G               |             |
| Jank     | 0.0             | 23.00    | 40 22<br>50°40′  | 45°08′   |                                     | PS           | 22°            | G               | 9           |
| Sept.    | 26              |          |                  | ;        | 4                                   | PS           | 30°            |                 | 3           |
| LT.      | 27              | 1.15     | 51°00′           | 44°17′   | 8                                   | rs           | 30             | ( <del>}</del>  | 1           |
| Nov.     | 16              | 21.40    | 52°55′           | 39°05′   | 10                                  | 77.4         | 12°            | G<br>G          |             |
|          |                 | 22.58    | 52°40′           | 39°40′   | 6                                   | HA           |                | Cź              | 3           |
|          |                 | 23.17    | 4                |          | 3                                   | RA           | 26°            |                 |             |
| -        | 20              | 23.33    | <b>*****</b>     | 2=2=2    | 2                                   | R            | 50°            | G               |             |
| Jan.     | 23              | 21.42    | 53°30′           | 37°52′   | 4                                   | HA           | 23°            | G               | _           |
|          |                 | 22.13    | 53°34′           | 37°42′   | 3                                   | HA           | 39°            | G               | 3           |
|          |                 | 22.41    | 53°37′           | 37°34′   | 3                                   | HA           | 34°            | G               | 3           |
|          |                 | 22.50    | 53°38′           | 37°30′   | 3                                   | HA           | 52°            | G               | 3           |
|          |                 | 23.05    | 53° <b>4</b> 0′  | 37°25′   | 3                                   | HA,RB        | $49^{\circ}$   | G               | 3           |
|          | 24              | 0.25     | 5 <b>3°4</b> 3′  | 36°31′   | 6                                   | RB           | 34°            | G,V             | 4           |
|          |                 | 0.37     | $53^{\circ}45'$  | 36°23′   | 6                                   | HA           | 80°            | G               | 3           |
|          |                 | 0.51     | 53°56′           | 36°15′ . | 4                                   | RB           | $32^{\circ}$   | G,V             | 4           |
|          |                 | 0.56     | $53^{\circ}55'$  | 36°11′   | 4                                   | HA           | 78°            | G               | 4           |
|          |                 | 1.46     | 54°00′           | 35°48′   | 5                                   | HA           | 17°            | G               | 3           |
|          |                 | 4.00     | $54^{\circ}12'$  | 35°00′   | 4                                   | G            | 15°            | G               | 3           |
|          |                 | 6.30     | $54^{\circ}29'$  | 34°03′   | 4                                   | G            | 12°            | G               | 1           |
|          |                 | 21.40    | $56^{\circ}20'$  | 27°08′   | 4                                   | HA           | 31°            | G               | 2           |
|          |                 | 22.21    | $56^{\circ}22'$  | 27°03′   | 5                                   | RA           | 38°            | G               |             |
|          |                 | 22.27    | $56^{\circ}22'$  | 27°02′   | 5                                   | HA           | 32°            | G               | 2<br>2<br>3 |
|          |                 | 23.55    | $56^{\circ}36'$  | 25°50′   | 6                                   | HA           | 35°            | G               | 3           |
|          | 25              | 1.14     | $56^{\circ}42'$  | 25°20′   | 4                                   | D            |                | G               | 4           |
|          |                 | 1.31     | 56°43′           | 25°14′   | 3                                   | $\mathbf{R}$ | 71°            | G               | 4           |
|          |                 | 1.44     | 56°43′           | 25°13′   | 3                                   | R            | 44°            | G               | 2           |
|          |                 | 1.52     | 56°44′           | 25°12′   | 3                                   | HA           | 33°            | G               | 1           |
|          |                 | 4.00     | 56°21′           | 24°03′   | 10                                  |              |                |                 | 2           |
|          | 26              | 22.00    | 58°37′           | 11°38′   | 4                                   |              |                |                 | 1           |
|          | $\frac{20}{27}$ | 19.00    | 57°46′           | E. 9°25′ | 2                                   | HA           | 30°            | G               | -           |
| Febr.    | 20              | 0.00     | 42°35′           | W.65°37′ | $\frac{2}{2}$                       | HA           | 13°            | G               | 2           |
| E CIJI . | 20              | 1.00     | 42°49′           | 65°23′   | 2                                   | HA           | 18°            | G               | 2           |
|          |                 | 4.00     | 42 45<br>43°25′  | 64°42′   | $\frac{2}{2}$                       | HA           | 10°            | G               | 1           |
|          |                 | 7.50     | 43°23'<br>44°12' | 63°58′   | $\overset{\scriptscriptstyle 2}{2}$ | HA           | 10             | G               | 2           |
|          | 23              | 22.17    | 53°09′           | 34°00′   | 8                                   | HA           | 49°            | G               | 4           |
|          | 40              |          |                  | 33°30′   |                                     | HA           | 1              |                 |             |
|          | 94              | 23.46    | 53°20′           |          | 8                                   |              | 41.30,5<br>17° | G               | 3           |
|          | 24              | 1.00     | 53°30′           | 32°48′   | 8                                   | HA           | 17             | G               | 2           |
|          |                 | 4.00     | 53°55′           | 31°30′   | 10                                  | TT 4         | 000            |                 | 1           |
|          |                 | 7.00     | 54°18′           | 30°20′   | 8                                   | HA           | 9°             | G               | 2           |
|          |                 | 21.16    | 56°11′           | 23°50′   | 6                                   | HA           | 17°            | G               | 2           |
|          |                 | 21.23    |                  |          | 6                                   | RA           | 17°            | G               | 3           |
|          |                 | 21.26    |                  |          | 6                                   | HA           | 21°            | G               | 3           |
|          |                 | 21.29    | 56°11′           | 23°48′   | 8                                   | HA           | 16°            | G               | <b>2</b>    |
|          |                 | 22.20    | 56°14′           | 23°23′   | 5                                   | HA           | 23°            | G               | 2           |
|          |                 | 23.30    | $56^{\circ}14'$  | 23°20′   | 7                                   | HA           | 180°           | G               | 3           |
|          | 25              | 1.00     | 56°30′           | 22°10′   | 7                                   | HA           | 15°            | G.              | 2           |
|          |                 | 4.00     | $56^{\circ}44'$  | 21°00′   | 9                                   |              |                |                 | 1           |

Table 11 (continued).

| Da       | te          | Time GMT            | Lat.              | Long.   | C1.          | F.           | Sl.          | Col.         | Sp. |
|----------|-------------|---------------------|-------------------|---------|--------------|--------------|--------------|--------------|-----|
| Men-1.   | E           | 22.00               | N 59°20′          | W 6°28′ | 10           |              |              |              | 1   |
| March    | 5<br>6      | 1.00                | N 59 20<br>59°10′ | 7°47′   | 10           |              |              |              | 1   |
|          | v           | 21.00               | 57°41′            | 17°00′  | 2            | R            | 180°         | G            | 2   |
|          | 8           | 22.00               | 52°55′            | 35°02′  | 10           |              |              | G            | 1   |
|          | 9           | 1.00                | 52°09′            | 37°18′  | 10           |              |              | $\mathbf{G}$ | 1   |
|          | 11          | 1.00                | 45°12′            | 42°33′  | 10           |              | 1            |              | 1   |
|          | 22          | 1.00                | 45°29′            | 50°45′  | 10           |              |              | G            | 1   |
|          | 22          | 4.00                | 45°48′            | 49°20′  | 10           |              |              | G            | 1   |
|          | 24          | 1.00                | 52°51′            | 34°38′  | 10           |              |              |              | 3   |
|          | 24          | 1.10                | 52°53′            | 34°35′  | 9            | G            |              | G            | 3   |
|          |             | 2.40                | 53°05′            | 34°00′  | 7            | G            | 17°          | G            | 2   |
|          |             | 4.00                | 53°18′            | 33°20′  | 10           | G            |              | G            | 2   |
|          |             | 5.05                | 53°26′            | 32°55′  | 3            | HA           | 13           | G            | 4   |
|          |             | 21.36               | 55°40′            | 26°00′  | 3            | G            | 18°          | G            | 2   |
|          |             | 21.46               | 50 10             | 20 00   | 3            | HA           | 21° °        | G            | 2   |
|          |             | 21.40               |                   |         | 3            | RA           | 23°          |              |     |
|          |             | 21.58               |                   |         | 3            | RA           | 35°          | G            | 3   |
|          | 25          | 1.00                | 55°58′            | 24°40′  | 4            | HA           | 17°          | G            | 2   |
|          | 20          | 3.10                | 56°14′            | 23°38′  | 4            | PS           | 54°          | G            | 3   |
|          |             | 3.37                | 56°16′            | 23°31′  | 6            | HA           | 59°          | G            | 2   |
|          |             | 3.46                | 56°17′            | 23°28′  | 7            | G            | 21°          | G            | 1   |
|          |             | 4.00                | 56°18′            | 23°24′  | 9            | 1            |              |              | 1   |
|          |             | 22.00               | 57°50′            | 14°25′  | 9            |              |              |              | 2   |
|          | 26          | 4.00                | 58°10′            | 11°02′  | 4            | $_{ m HA}$   |              | G            | 1   |
| 3.0      |             | $\frac{4.00}{2.32}$ | 44°47′            | 56°58′  | 0            | HA           | 13°          | G            | 3   |
| May      | 23          | 0.20                | 51°00′            | 44°00′  | 1            | RA           | 16°          | G            | 2   |
| Aug.     | 18          | 1.15                | 51°00′            | 44°00′  | î            | HA           | 15°          | G            | 1-2 |
|          | 19          | 1.13                | 46°47′            | 11 00   | 9            | G            | 5°           | G            | 1   |
|          | 19<br>29    | 2.15                | 50°41′            | 45°00′  | 8            | G            |              | G            | 1   |
|          | 211         | 5.15                | 51°10′            | 44°00′  | 8            | , G          | 20°          | G            | 3   |
|          |             |                     |                   | 1       | redrik VIII. |              |              |              |     |
| Aug.     | 3           | 1.00                | 56°.3             | 28°.9   | 3            | RA           | 1            | G            |     |
| Aug.     | 5           | 5.08                | 48°.9             | 48°.8   | 3            | DS           |              | G            | 1   |
| Sept.    | 4           | 22.00               | 59°.4             | 2°.1    | 7            | DS           |              | G            |     |
| пере     | 7           | 23.15               | 54°.6             | 36°.0   | 6            | DS           |              | G            |     |
|          | 8           | 3.00                | 54°.1             | 37°.5   | 8            | R            |              | G            |     |
|          | 9           | 4.00                | 50°.1             | 46°.8   | 8            | DS           |              | G            | İ   |
|          | 20          | 23.15               | 48°.9             | 48°.7   | 0            | RA           |              | V            |     |
|          | 21          | 0.05                | 49°.0             | 48°.5   | 0            | HA           |              | V            |     |
|          | 4.1         | 22.50               | 52°.6             | 40°.3   | 1            | DS           |              | v            |     |
|          | 24          | 4.00                | 57°.9             | 16°.2   | 8            | DS           |              |              |     |
|          |             |                     |                   |         | Gripsholm    |              |              |              |     |
| Sept.    | 24          | 22.00               | 56°.5             | 28°.3   | 3            | DS           | $35^{\circ}$ | V            | 3   |
| , n 170. | <b>⊿</b> .∓ | 22.13               | 56°.5             | 28°.4   | 2            | RA           |              | V            | 4   |
|          |             | 22.15               | 56°.5             | 28°.4   | 2            | DS           |              | v            | 3   |
|          |             | 22.13               | 56°.5             | 28°.5   | 1            | $\mathbf{F}$ | 88°          | V            | 4   |
|          |             | 22.26               | 56°.4             | 28°.5   | 1            | $\mathbf{F}$ | 105°         | V            | 4   |
|          |             | 22.29               | 56°.4             | 28°.5   | 1            | DS           |              | v            | 3   |
|          |             | 22.40               | 56°.4             | 28°.6   | 2            | R            | 76°          | v            | 2   |
|          |             | 22.40               | 56°.4             | 28°.6   | 2            | F            | 98°          | v            | 2   |
|          |             |                     | 56°.4             | 28°.6   | 3            | R            | 40°          | v            | 3   |
|          |             | 22.55               | 56°.4             | 28°.7   | 3            | DS           | 16°          | v            | 1   |
|          |             | 23.06               | 56°.4             | 28°.7   | 2            | F            | 24°          | v            | 3   |
|          |             | 23.16               |                   | 28°.7   | 2            | R            | ⊒ F          | V            | 2—3 |
|          |             | 23.18               | 56°.4             | 28 .1   | 4            | 1.v          | l            | 1            |     |

Table 11 (continued).

| Dat   | e               | Time GMT | Lat.            | Long.          | Cl.                  | F.            | SI.           | Col. | Sp.           |
|-------|-----------------|----------|-----------------|----------------|----------------------|---------------|---------------|------|---------------|
|       | 05              | 4.00     | N 55°.9         | W 30°.9        | 7                    |               | !             | G    | 2             |
|       | 25              | 4.00     | 55°.8           | 31°.2          | 5                    | HA            | $27^{\circ}$  | G    | $\frac{1}{2}$ |
|       |                 | 4.55     |                 |                | i i                  | DS            | $20^{\circ}$  | v    | 1             |
|       |                 | 7.00     | 55°.5           | 32°.1          | 4                    | R R           | 48°           | v    | 4             |
|       | 27              | 0.13     | 49°.6           | 47°.5          | 2                    |               |               | v    | 3             |
|       |                 | 0.22     | $49^{\circ}.6$  | 47°.5          | 2                    | DS            | $26^{\circ}$  |      |               |
|       |                 | 0.31     | $49^{\circ}.6$  | 47°.6          | 1                    | R             |               | V    | 3             |
|       |                 | 0.38     | $49^{\circ}.6$  | 47°.6          | 1                    | F             | 75°           | V    | 4             |
|       |                 | 0.44     | $49^{\circ}.6$  | 47°.7          | 1                    | RA            | 48°           | V    | 3             |
|       |                 | 1.00     | $49^{\circ}.5$  | 47°.8          | 1                    | DS            | $15^{\circ}$  | V    | 2             |
| et.   | 23              | 19.55    | 59°.5           | 3°.8           | 3                    | HA            | $26^{\circ}$  | V    | 2             |
|       |                 | 22.00    | $59^{\circ}.5$  | $4^{\circ}.5$  | 2                    | DS            | $40^{\circ}$  | V    | 2             |
|       | 27              | 22.00    | 51°.9           | 42°.8          | 4                    | RA            | $23^{\circ}$  | V    | 3             |
|       | 28              | 1.00     | $51^{\circ}.5$  | 43°.7          | 0                    | DS            | $20^{\circ}$  | V    | 1             |
| ec.   | 16              | 18.0     | 59°.5           | 2°.8           | 0                    | DS            | $27^{\circ}$  | V    | 2             |
|       |                 | 20.5     | 59° 3           | 1°.3           | 0                    | $_{ m HA}$    | 8°            | G    | 3             |
| Aay   | 30              | 1.21     | 44°.5           | 59°.1          | 0                    | HA            | $10^{\circ}$  | G.V  | 1             |
| y     | 90              | 1.35     | 44°.5           | 59°.1          | o l                  | R             | 8°            | G.V  | 1             |
|       |                 | 1.40     | 44°.5           | 59°.1          | o l                  | HA            | $12^{\circ}$  | G.V  | 1             |
|       |                 | i        | 44°.5           | 58°.9          | o                    | HA            | 15°           | G.V  | 1-            |
|       |                 | 1.55     | 44°.5           | 58°.9          | 0                    | RB            | 10°           | G.V  | 2             |
|       |                 | 2.05     |                 |                | 0                    | RA            | 10°           | G.V  | 2-3           |
|       |                 | 2.16     | 44°.5           | 58°.8          |                      | RA            | $14^{\circ}$  | G.V  | 2             |
|       |                 | 2.25     | 44°.5           | 58°.7          | 0                    | RB            | 12°           | G.V  | 2             |
|       |                 | 2.30     | 44°.5           | 58°.7          | 0                    |               |               | I .  | 2_3           |
|       |                 | 2.49     | 44°.5           | 58°.6          | 0                    | RA            | 15°           | G.V  | 1             |
|       |                 | 2.57     | $44^{\circ}.5$  | 58°.5          | 0                    | HA            | 13°           | V    | 1-2           |
|       |                 | 3.02     | 44°.5           | 58°.5          | 0                    | RA            | $20^{\circ}$  | V    | 2             |
|       |                 | 4.00     | $44^{\circ}.5$  | . 58°.1        | 0                    | HA            | 15°           | G    | 2             |
|       |                 | 5.00     | $44^{\circ}.5$  | 57°.7          | 0                    | HA            | $15^{\circ}$  | G    | I             |
| *     |                 |          |                 |                | Kungsholm.           |               |               |      |               |
| Oct.  | 4               | 22.00    | 56°.3           | $26^{\circ}.5$ | 4                    | HA            | $170^{\circ}$ | G    |               |
|       | 5               | 1.00     | 56°.1           | 28°.0          | 2                    | $_{ m HA}$    | $175^{\circ}$ | G    |               |
|       | 21              | 1.00     | 58°.6           | 6°.6           | 3                    | $_{ m HA}$    | $26^{\circ}$  |      |               |
|       |                 | 2.43     | 58°.7           | 5°.6           | 5                    | HA            | $19^{\circ}$  |      |               |
|       |                 | . 4.00   | 58°.7           | <b>4</b> °.9   | 5                    | HA            | $12^{\circ}$  | G    | I             |
|       |                 |          |                 |                | Mexicano.            |               |               |      |               |
| Dec.  | 1               | 22.00    | 59°.4           | 12°.5          | 3                    | HA            | 8°            | G    |               |
| J00.  | 3               | 4.00     | 58°.8           | 17°.2          | 5                    | R             | 10°           | G    |               |
| Jan.  | 3<br>24         | 1.00     | 41°.5           | 65°.0          | 0                    | нв            | 8°            | G    |               |
| Jan.  | $\frac{24}{27}$ | 1.00     | 46°.2           | 48°.7          | 0                    | HA            | $5^{\circ}$   | G    |               |
| March |                 | 1.25     | 56°.9           | 25°.4          | 5                    | RA            | 7°            | G    |               |
| march | 4               | 1.20     | 6.00            | 20 .1          | '                    | 1111          |               |      |               |
| March | อง              | 22.00    | 62°.9           | 5°.6           | Toledo.              | HA            | 8°            | G    |               |
| March | 20              | 22.00    | 1 02.8          | 0.0            | '                    | '             | Ů,            | 1    | I             |
|       |                 | 1.00     | . <b>29</b> 0 0 | E10 0          | $Tonsbergfjord. \ 0$ | HA            |               | G    | ı             |
| Sept. | 4               | 1.00     | 53°.8           | 51°.8          |                      | PA            |               | G    |               |
|       |                 | 2.04     | 54°.0           | 51°.5          | 0                    |               |               | G    |               |
|       | ,               | 4.00     | 54°.4           | 50°.7          | 2                    | HA<br>DC (1 D | 1160          |      |               |
|       | 6               | 1.05     | 59°.8           | 35°.1          | 0                    | PS,G,R        | $115^{\circ}$ | V.G  |               |
|       |                 | 4.00     | 60°.0           | 34°.0          | 7                    | R             | $120^{\circ}$ | G    |               |
|       | 7               | 1.00     | 61°.5           | 25°.7          | 3                    | DS            | 0             | G    |               |
|       |                 | 4.00     | 61°.6           | $24^{\circ}.4$ | 4                    | G             | $40^{\circ}$  | G    |               |
|       |                 | 22.00    | 62°.5           | 15°.7          | 4                    | PA            |               | R.V  |               |
|       | 30              | 1.00     | 59°.2           | 12°.6          | 3                    | G             | $30^{\circ}$  | G    |               |
| Oct.  | 3               | 4.00     | 52°.9           | 40°.4          | 4                    | G             | $15^{\circ}$  | G    |               |

Table 11 (continued).

| Da    | ate             | Time GMT | Lat.            | Long.    | Cl                | F            | Sl            | ('ol.                    | Sp.           |
|-------|-----------------|----------|-----------------|----------|-------------------|--------------|---------------|--------------------------|---------------|
|       | 4               | 4.00     | N 49°.7         | W 47°.7  | 2                 | G            | 20°           | G                        |               |
|       | 27              | 22.00    | 59°.5           | 19°.4    | 6                 | DS           | 20            | G                        |               |
|       | 28              | 1.00     | 59°.6           | 18°.2    | 4                 | RA           |               | G                        |               |
|       | 20              | 4.00     | 59°.7           | 17°.0    | 6                 | DS           |               | G                        |               |
| loa   | o               | 22.00    | 52°.8           | 42°.6    |                   |              |               | G G                      |               |
| Jec.  | 8               |          |                 |          | 4                 | G            |               |                          |               |
|       | 26              | 1.00     | 52°.6           | 42°.4    | 5                 | G            |               |                          |               |
|       | 27              | 4.00     | 55°.7           | 34°.9    | 7                 | PS           |               | G                        |               |
| 1ai   | 6               | 1.00     | $49^{\circ}.1$  | 64°.3    | 0                 | RA           | $36^{\circ}$  | V                        | į             |
|       | 12              | 1.00     | $57^{\circ}.4$  | 24°.8    | 3                 | G            |               |                          |               |
|       | 13              | 1.00     | 59°.7           | 16°.0    | 2                 | G            |               |                          |               |
|       |                 |          |                 | $\iota$  | Inited States.    |              |               |                          |               |
| lug.  | 28              | 1.00     | 43°04′          | 65°00′   | 1                 | $RA,26^{1}$  | $20^{\circ}$  | G                        | i<br>I        |
| _     |                 | 4.00     | $42^{\circ}27'$ | 65°45′   | 2                 | HA,9         | $22^{\circ}$  | G                        |               |
| Sept. | 6               | 4.00     | 45°43′          | 55°12′   | 1                 | HA,9         | 16°           | v                        |               |
| 1 -   |                 | 7.00     | 46°07′          | 54°10′   | 1                 | RA,25        | 51°           | v                        |               |
|       | 8               | 7.00     | 52°28′          | 40°00′   | 9                 | 1011,20      | 0.1           | v                        | İ             |
|       | 24              | 1.00     | 58°03′          | E. 6°10′ | 1                 | HA,2         | $12^{\circ}$  | G G                      |               |
|       | $\frac{24}{25}$ | 22.00    | 59°00′          | W.14°10′ |                   |              |               |                          |               |
|       | 40              | 1        |                 |          | 5                 | R,41         | 60°           | G                        |               |
|       | 20              | 24.00    | 58°55′          | 15°00′   | 4                 | G,19         | 20°           | G                        |               |
|       | 26              | 1.00     | 58°50′          | 15°30′   | 3                 | HA,2         | 28°           | G                        |               |
|       | 28              | 4.00     | 54°40′          | 36°20′   | 6                 | G,19         | 8°            | G                        |               |
|       | 29              | 1.00     | 52°05′          | 43°01′   | 9                 | G,19         |               | G                        |               |
|       | 30              | 4.00     | 47°53′          | 50°42′   | 8                 | G,19         | $30_{\circ}$  | G                        |               |
| et.   | 30              | 22.00    | $59^{\circ}.5$  | 13°.0    | 6                 | G.19         |               |                          | 2             |
|       | 31              | 1.00     | $59^{\circ}.1$  | 14°.0    | 4                 | HA,2         |               | V                        | 2             |
|       |                 | 4.00     | $58^{\circ}.8$  | 15°.5    | 8                 |              |               |                          | 1             |
|       |                 | 21.00    | $57^{\circ}.8$  | 22°.7    | 4                 | HA,2         |               | G                        | 2             |
| lov.  | 1               | 1.00     | $57^{\circ}.6$  | 24°.2    | 9                 | ·            |               |                          | 1             |
|       |                 | 7.00     | $57^{\circ}.3$  | 25°.5    | 4                 | PS,21        | $102^{\circ}$ | G                        | 3             |
|       |                 | 22.00    | 56°.2           | 30°.5    | 8                 | " · ~,-·     | -~ <b>-</b>   | Ŭ.                       | 1             |
|       |                 | 24.00    | 56°.0           | 31°.4    | 5                 | G,R          |               | G                        | 3             |
|       | 2               | 1.00     | 56°.0           | 31°.8    | 7                 | G,R          |               | G                        | 2             |
|       | 4               | 4.00     | 55°.7           | 31°.8    | 3                 | !            |               | V                        |               |
|       |                 |          |                 |          |                   | HA,2         |               |                          | 3             |
|       |                 | 4.36     | 55°.8           | 33°.0    | $\frac{2}{2}$     | RA,25        |               | V                        | 3             |
|       |                 | 7.00     | 55°.2           | 33°.9    | 2                 | G,19         | 12°           | G                        | 3             |
|       |                 | 24.00    | 53°.5           | 39°.3    | 6                 | G,19         |               | G                        | 1             |
|       | 4               | 7.00     | 49°.8           | 46°.6    | 9                 |              |               | G                        | 1             |
|       | 16              | 3.00     | $47^{\circ}.5$  | 51°.4    | 0                 | HA           | <b>9</b> °    | G                        | 2             |
|       |                 | 4.00     | $47^{\circ}.7$  | 51°.3    | 0                 |              |               | :                        | 1             |
|       |                 | 4.45     | $47^{\circ}.8$  | 51°.0    | 0                 | R,39         |               | G                        | 3             |
|       |                 | 7.00     | $48^{\circ}.1$  | 50°.4    | 1                 | HA,2         |               | G                        | 3             |
|       | 19              | 19.00    | $57^{\circ}.4$  | 19°.7    | 5                 | G,19         |               | $\mathbf{G}$             | 2             |
|       |                 | 22.00    | 57°.5           | 18°.4    | 4                 | G.19         |               | $\mathbf{G}$             | 1             |
|       | 20              | 23.00    | $58^{\circ}.6$  | 6°.7     | 3                 | DS,19        |               | $\widetilde{\mathbf{G}}$ | 2             |
| ebr.  | 13              | 22.00    | 59°.0           | 8°.0     | $\frac{\circ}{2}$ | _ ~,         |               | ·-                       | 1             |
| •     | 14              | 20.15    | 58°.0           | 18°.0    | 3                 | HA           |               | v                        | $\frac{1}{2}$ |
|       |                 | 22.00    | 57°.5           | 19°.0    | 1                 | G            |               | G G                      | 1             |
|       | 16              | 4.00     | 54°.0           | 30°.2    | 10                | 3            |               | G                        |               |
|       |                 |          |                 |          |                   |              |               |                          | 1             |
|       | 17              | 4.00     | 50°.5           | 38°.0    | 10                | 700          |               | 204                      | 1             |
|       | 19              | 22.00    | 44°.1           | 57°.8    | 0                 | DS           |               | G                        | 2             |
|       | 20              | 0.00     | <b>44</b> °.0   | 58°.0    | 0                 | G            |               | G                        | <b>2</b>      |
|       |                 | 1.00     | <b>4</b> 3°.9   | 58°.3    | 0                 | HA           | 10°           | G                        | 3             |
| Iarch | 3               | 4.00     | $50^{\circ}.0$  | 39°.5    | 3                 | $\mathbf{G}$ |               | G                        | 1             |
|       | 4               | 1.00     | 53°.0           | 33°.0    | 2                 | G            |               | G                        | 2             |
|       | 5               | 1.00     | 56°.0           | 23°,5    | 4                 | G            |               | G                        | 1             |

 $<sup>^{\</sup>scriptscriptstyle 1}$  The number after the form refers to the photographic atlas.

#### Table 12.

More detailed observations supplementing the observations in Table 11. The time is GMT and the azimuth of the extension is measured by the ship's magnetic compass, along the horizon,  $N = 0^{\circ}$ ,  $E = 90^{\circ}$ ,  $S = 180^{\circ}$  and  $W = 270^{\circ}$ .

#### Drottningholm.

0.10 Extension of arc 30° to 295°. The aurora lasted from 23.30 to 3.17. Aug. 13

1.00 Extension 37° to 341°. Beginning 0.20. Aug. 28

1.43 The aurora changed from G to RA. Extension  $17^{\circ}$  to  $346^{\circ}$ .

1.52 The aurora changed again to G. Southern limitation 31°, extension 47° to 320°.

2.15 Grand RB. Southern limitation 91°, extension  $5^{\circ}$  to  $360^{\circ}$ .

2.25 Again changing to G extension 43° to 310°.

4.00 Extension 65° to 315°.

Between 0.20 and 2.35 strong illumination behind clouds. Position 0.20: N. 49 °15′, W. 46° 45′ and 0.35 Aug. 29 N. 50° 19′, W. 45° 51′.

Sept. 26 23.00 Extension  $40^{\circ}$  to  $320^{\circ}$ .

1.00 Extension  $40^{\circ}$  to  $340^{\circ}$ . Sept. 27

0.15 to 0.20, rays at mag. azimuth  $30^{\circ}$  up to about  $40^{\circ}$  over the horizon.

0.30 to 0.40, the same.

0.50 Strong. Extension 3° to 340°, up to 60°.

Between 21.40 and 22.25 the southern limitation was about 150°. The aurora was visible along great parts Nov. 16 of the horizon, but exact extension could not be seen on account of clouds.

22.58 Extension  $25^{\circ}$  to  $345^{\circ}.$  Lasted  $6^{m}.$ 

23.17 to 23.20 the rays reached from 14° to 26° and RA had the extension 30° to 335°.

23.33 The Rays were observed from the horizon up to about 50° over the horizon, Lasted 2<sup>m</sup>.

21.42 Extension 78° to 315°, southern limitation between 23° and 31°. Jan. 23

22.13 Extension  $89^{\circ}$  to  $280^{\circ}$ .

22.41 Same extension 89° to 280°.

22.50 Extension  $100^{\circ}$  to  $286^{\circ}$ .

23.05 RB towards azimuth 340°. A narrow ray from 10° to 26° over the horizon during 30°s. The arc HA had an extension of 85° to 315° and reached 49° over the horizon.

0.25 The HA changed into RB (RA?). Extension 87° to 284°. Jan. 24

0.37 RB changed to HA. Height  $80^{\circ}$ .

 $0.39\,$  The same HA up to  $86^{\circ}.$  Extension  $100^{\circ}\text{--}290^{\circ}.$ 

 $0.51\,$  Changed again in RB (RA?) up to  $32^\circ,$  extension  $70^\circ$  to  $290^\circ.$ 

0.56 Again RB changed into HA which during 4 minutes raised to a height of 83° with extension 97° to 264°.

1.46 The arc descending to  $17^{\circ}$  with extension  $60^{\circ}$  to  $298^{\circ}$ .

1.54 No more observations possible on account of clouds.

2.00 to 4.00 extension  $70^{\circ}$  to  $305^{\circ}$ .

 $57^{\circ}$  to  $320^{\circ}$ . 4.00 to 6.00 ..

 $64^{\circ}$  to  $320^{\circ}$ . 21.40

22.21 same extension. Jan. 24

22.27 Again an arc.

23.55 Extension  $66^{\circ}$  to  $295^{\circ}$ .

1.14 Towards azimuth 5° rapid moving flames upwards, upper limitation obscured by clouds. Lasted 10 to 15 Jan. seconds. Sometimes like draperies D, but the cloudiness made it difficult to decide.

1.31 Suddenly the aurora changed to rays.

1.34 The rays reached the greatest height 71°. Extension from 65° to 325°. The strongest rays in azimuth 3°.

1.36 Again HA.

1.44-1.52 Again rays between azimuth  $0^{\circ}$  and  $58^{\circ}$  southern limitation  $44^{\circ}$ .

1.52 Again HA.

19.00 Extension  $0^{\circ}$ -30°. Height 15°. Jan. 27

0.00 ——— 45°–335°. Febr. 20

1.00 ------ 40°-340°.

Between 0.50 and 1.00 some D.

1.25 The arc HA changed to RA.

1.25-1.43 extension of RA  $60^{\circ}$  to  $350^{\circ}$ , the height between  $20^{\circ}$  and  $45^{\circ}$ .

1.43 RA changed to D.

1.43--1.50 extension 30 to 330 and height 35°.

```
1.50 changed from D to RA. The rays reached 45°.
             1.50-2.10 extension 25^{\circ}-330^{\circ}.
             2.10 changed to HA, extension 55°-335°, height 15°. Lasted to 3.15.
             3.15-4.00 extension 10^{\circ} to 55^{\circ}, height 10^{\circ}.
             4.00 hidden by clouds.
             4.30 feeble auroræ, extension very changing. Height constant.
             7.50 The same.
 Febr. 21
                   Between 4.00 and 6.00 feeble glow, extension 25°-50°.
 Febr. 23
            22.17 The arc reached the height of 48^{\circ} towards azimuth 17^{\circ}. Extension impossible to measure on account of clouds.
            23.45 Extension impossible to measure.
 Febr. 24
            1.00 Between clouds the height was measured to 17° in azimuth 23°.
             7.00 A feeble glow, southern border not exceeding 8°.
            21.16 Strong aurora extension 92°-330°.
            21.23 Stronger, more luminous parts appearing in azimuth 2^{\circ}.
            21.26 2 concentric arcs, height of the most southern 21° of the lowest one 12°.
            21.29 Luminosity decreasing height 16° and extension 80°-315°.
            21.44 Hidden by clouds.
            22.20 Again visible, extension of the arc 90°-310°.
            22.30 Suddenly a ray appeared in azimuth 97° stretching from horizon to horizon.
            22.42 The original arc had moved, extension 35°-330°.
            22.55 Disappeared.
            22.30 Observed again.
            23.16 Southern limitation 28°. Soon lower, Extension variable but difficult to measure on account of clouds.
March 6
                   From 21.00 to 21.16 strong aurora over the entire sky.
       24
             1.10 Aurora seen in breaks of clouds in the direction azmuth 38°. Lasted to 1.27 then overcast sky.
             2.40–2.48 feeble glow. Extension 10^{\circ}–40^{\circ}.
             2.48 - 2.55
                                                350°-40°.
                                "
             2.55 - 3.06
                                                335^{\circ}-40^{\circ}.
             3.06- 3.15 Overcast.
             3.15- 3.21 Strong aurora, height 17°, extension 17°-28°.
             3.21-4.00 Almost overcast but auroraglow could be seen in breaks of clouds from azimuth 350°-35°.
             5.05-5.35 Arc fine, extension 320°-45°.
             5.35
                        Hidden by clouds.
             5.35-5.48 Some feeble rays up to 35° in azimuth 20°.
             5.48- 6.00 Rays and strong flames up to 50° in azimuth 10°-40°.
             6.00- 6.06 The same up to 65^{\circ} in Azimuth 350^{\circ}-40^{\circ}.
             6.06
                        Hidden by clouds.
             6.06- 6.22 Overcast.
             6.25
                        Glow along northern horizon from 345°-45°.
             6.27
                        Feeble rays in Azimuth 20°, up to 30°.
             6.27-6.40 Rays up to 65^{\circ} to 70^{\circ} extension along the horizon 355^{\circ}-25^{\circ}.
             6.40
                        Aurora gone.
           21.36
                        In azimuth 350° rather strong aurora in a break of clouds. Southern limitation about 18°.
           21.44
                        Decreasing in intensity.
           21.46
                        Very feeble, extension 310^{\circ}-70^{\circ}. Up to about 21^{\circ}.
           21.51
                        Rays begin to develope in particular between 350° and 10°.
           21.58
                        The intensity of the rays a maximum. Up to 35°.
March 25
            3.10
                        Since 21.58 aurora continuing between 330° and 55°. Pulsating waves going upwards, reaching to
                        about 54^{\circ} above the horizon.
            3.37
                        Feeble arc, extension 280°-76°.
            3.46
                        The aurora lower and more feeble. Extension 295°-67°.
            4.10
                        Northern sky overcast.
           22.00
                        Feeble aurora near northern horizon ca. 0°-40°, difficult to observe on account of clouds,
           23.55-24.00 A single ray in azimuth 50^{\circ}, from 15^{\circ} to 60^{\circ} height.
March 26
            4.00
                        A glow near magnetic north.
May 23
            2.32
                        A glow (arc?). Lower border 11° and upper 13° over the horizon, extension 45°-62°. Visible until 3.45
                        when it disappeared.
July
                        (Position 53°23· N, 37°50· W).
```

2.20- 2.35 Strong ray in azimuth 295° from the horizon to 55° over it.

<sup>1</sup> Doubtful. Carl Størmer.

- Aug. 18 0.30 RA of extension 300°-10°. Under this one another whose southern limitation was about 7°. Long rays upwards to 19°.
  - 1.10 Extension 330°-20°. Towards azimuth 350° two more intense patches. They disappeared after 4 minutes,
  - 1.15 The arc was an HA. Southern limitation about 15° and extension 310°-45°. Intensity much less than before, about 1 to 2.
  - 1.45 Only a feeble glow left, intensity 1.
- Aug. 19 1.43 From 1.43 to 1.46 feeble glow, extension  $333^{\circ}-360^{\circ}$ .
  - 1.50 Feeble rays near azimuth 340°.
  - 1.55 The same near  $360^{\circ}$ .
  - 1.55 to 2.10 A feeble patch at azimuth  $10^{\circ}$ .
  - 2.10 Nothing to observe on account of clouds.
- Aug. 29 2.15 to 2.46 Glow toward N. Too much cloud.
  - 5.15~ Extension  $260^{\circ}\text{--}0^{\circ}$  Feeble glow. Later hidden by clouds.

#### S/S Frederik VIII.

1932

- Aug. 3 1.00 Quiet arc. Extension 270°-20°. Height 25°.
- Aug. 5 5.08 The aurora lasted till dawn.
- Sept. 8 3.00 The rays from azimuth 285°-360°.
- Sept. 20 23.15 Extension 355°-15°. Heighest at 355°. Lasted to 23.21.
- Sept. 21 0.05 Extension 320°-355° .Heighest at 340°. Lasted to 0.08.
  - 22.50 The aurora lasted to about 23.00.
- Sept. 24 0.40 The aurora was seen as a strong glow from 340° to 10°.

#### M/S Gripsholm.

- Sept. 24 22.23 Strong flames over the whole sky between 95° and 250°.
  - 22.26 Narrow sharp flames in 313° azimuth.
  - 22.51 Narrow feeble flames in 320° azimuth.
- Scpt. 25 4.00 Feeble partly obscured by clouds.
  - 4.55 Feeble are. Western end 280°, height 8° in azimuth 330°.
- Sept. 27 0.13 Long narrow rays with broad intervals, from 302° to 66°.
  - 0.38 Flaming rays rapidly changing relative to position, height and intensity. Greatest height 75° and greatest intensity in azimuth 350°. The rays narrow.
- Dec. 16 20.35 Disappeared at 20.44.
- May 30 1.35 Some short rays toward azimuth 25°. 5 minutes later again HA.
  - 1.55 Aurora increasing in height and luminosity. Extension 255°-0°.
  - 2.05 Transformed to an arc or band, 3° broad, same extension.
  - 2.16 Short sharp rays, beginning at  $275^{\circ}$  azimuth. In north down to  $6.5^{\circ}$ .
  - 2.25 Decreasing in intensity and extension, rays becoming shorter.
  - 2.49 Strong rays along the whole arc.
  - 3.02 The same.
  - 4.00 Extension 300°-20°. Greatest height equal to 3° in azimuth 340°.
  - 5.00 The same. Now maximum height 3.5°.

#### S/S Mexicano.

- Dec. 1 22.00 Visible between Vega and UMa, the rest obscured by couds.
  - 3 4.00 About 10° over the horizon, azimuth 10°-12° narrow and broad rays are seen in break of clouds.
  - 4 4.00 (58.0° N, 23° W) a glow is seen through clouds between 10° and 15° over northern horizon. More details hindered by clouds.
- Jan. 24 1.00 The same form as fig. 15 and 16 p. 8 in the Photographic Atlas of auroral forms. Lasted 20 minutes.
- Jan. 27 1.00 The same form as fig. 2, page 21, in the Atlas. Lasted from 0.40 to 1.00.
- March 4 1.25 Form as fig. 26, p. 16 in the Atlas. Azimuth about 45°. Lasted 2 minutes.

#### M/S Tønsbergfjord.

- Sept. 4 1.00 Extension 305°-47°, from Bootes to Auriga. Regular are heighest point 9,5° in azimuth 340°.
  - $2.04\,$  Appeared and disappeared with intervals of 8–12 seconds.
  - 4.00 The highest and lowest points of the arc were: Height  $30^{\circ}$  in Azimuth 302. Height  $40^{\circ}$  in Azimuth 0, height  $15^{\circ}$  in A.  $45^{\circ}$ .

- Sept. 6 1.05 PS in Azimuth 60°, R in Azimuth 204°. Always in motion.
- Sept. 7 1.00 Observed from 0.30 to 1.00. Aurora did not change. Extension 52°-274°.
  - 4.00 Feeble quiet luminosity. Extension could not be observed on account of clouds.
  - 22.00 Azimuth 342. Period 8 secs.
  - 8 1.45 to 3.15 There was a pulsating arc. Extension 45°-270°. Southern limitation 85°. At last the arc changed to draperies and rays.
- Sept. 9 1.00 Feeble glow in N. Clouds prevented any measuring.
- Sept. 30 1.00 The same.
- Oct. 27 22.00 Extension 330° to 20°. Highest point 24,5° in Azimuth 350°.
- Oct. 28 1.00 Glow over clouds, who extend upwards to 31°.
  - 4.00 Highest point 31° in Azimuth 5°.
- May 5 1.00 Extension 350° to 32°. Highest point 29° in Azimuth 9°. Lasted 8 minutes.
- May 13 1.00 Strong red nearest the horizon. Higher up yellow green and still higher violet. Extension 351°-33°.

#### S/S United States.

- Aug. 28 1.00 Extension of arc 330°-20°.
  - 4.00 Homogeneous arc. Extension 325°-25°.
- Sept. 6 4.00 " 320°-30°
  - 5.35 Rays begin.
  - 7.00 Irregular arc, extension 270°-60°.
- Sept. 8 7.00 Clouds prevented measuring, but flames and rays to the south of zenith.
- Sept. 24 1.00 Regular arc from 300°-20°.
- Sept. 25 22.00 Some rays from  $290^{\circ}$  to  $360^{\circ}$ .
  - 24.00 Feeble yellowwhite glow from 270°-30°.
- Sept. 26 1.00 Strong yellowgreen arc from 255°-30°.
- Sept. 28 4.00 Feeble yellowwhite glow from 250°-340°.
- Sept. 29 1.00 Throught breaks in clouds in NW and N, DS (Atlas no. 19) seen.
  - 30 4.00 Through breaks in clouds feeble yellow glow between 270° and 340°.
- Oct. 31 1.00 Could not be measured on account of clouds.
- Nov. 2 1.00 Feeble aurora in breaks of clouds.
  - 4.00 Extension could not be measured on account of clouds. Strong aurora.
  - 24.00 The aurora line also visible in the southern sky.
- Nov. 4 7.00 Aurora visible in some breaks of the clouds.
- Nov. 16 3.00 The extension from  $315^{\circ}-20^{\circ}$ .
  - 4.00 Aurora only seen in spectroscope.
  - 4.45 Rays over northern horizon.
  - 7.00 Diffuse over northern horizon.
- Nov. 19 19.00 Aurora seen through breaks in clouds.
- Nov. 20 23.00 Also some single rays with short duration.
- Febr. 20-0.00 Feeble yellow glow over the northern horizon.
  - 1.00 Extension  $300^{\circ}$ – $40^{\circ}$ .

# 32. Possible application of the material in Table 12 and 13.

If the height of the lower border of auroral arcs (according to extensive measurements in southern Norway from 1911–1941) is taken as 107 km., it may be possible to map the geographical position of aurora-arcs over the Atlantic in the polar year and from other of the observations in the same table to draw similar

conclusions. In spite of the fact that these would only be approximate they might have a certain importance for those who try to coordinate all aurora observations from all countries in the polar year.

In this report we have refrained from doing this research and have only given the observation as we have found them in the aurora logs from the ships.

 $\label{eq:Table I.} \emph{List of aurora photographs which might be used.}$ 

| PN                                           | St                                                                                                                               | MET                                                                                         | Ex                                                                            | Fm                                     | Ref. Con.                                                                                                   | Remarks                                                                                                                             |
|----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
|                                              | August 29-30, 1                                                                                                                  | 1932.                                                                                       |                                                                               |                                        | ·                                                                                                           |                                                                                                                                     |
|                                              | -                                                                                                                                |                                                                                             | veter, Anda                                                                   | , myself), Li I                        | Höstmælingen), O (Bal                                                                                       | köy), T (Albert and Egil Tömte).                                                                                                    |
| 3                                            | T                                                                                                                                | 22.08.30                                                                                    | 60                                                                            | HA                                     | LMi, Lyn                                                                                                    |                                                                                                                                     |
| 4                                            | T, Li                                                                                                                            | 11.30                                                                                       | 60                                                                            | HA                                     | LMi, UMa, Lyn                                                                                               | The Li-camera out of focus                                                                                                          |
| 9                                            | O, T, Li                                                                                                                         | 25.00                                                                                       | 60                                                                            | HA                                     | LMi, UMa                                                                                                    |                                                                                                                                     |
| 10                                           | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,                                                                                          | 27.00                                                                                       | 00                                                                            | HA                                     | LMi, UMa                                                                                                    |                                                                                                                                     |
| 14                                           | ,,,                                                                                                                              | 38.00                                                                                       | 60                                                                            | HA                                     | LMi, UMa, Lyn                                                                                               |                                                                                                                                     |
| 15                                           | ,,                                                                                                                               | 40.00                                                                                       | 60                                                                            | ĤΑ                                     | LMi, Lyn                                                                                                    |                                                                                                                                     |
| 20                                           | О-Т                                                                                                                              | 46.57                                                                                       | 31                                                                            | HA, R                                  | LMi, UMa, CVn                                                                                               | Partly sunlit                                                                                                                       |
| 21                                           | $\mathbf{T}$                                                                                                                     | 47.59                                                                                       | 33                                                                            | HA                                     | UMa, Lyn                                                                                                    |                                                                                                                                     |
| 22                                           | ***                                                                                                                              | 49.02                                                                                       | 31                                                                            | HA                                     | UMa, Lyn                                                                                                    |                                                                                                                                     |
| 26                                           | C-O-T-Li                                                                                                                         | <b>54.5</b> 0                                                                               | 20                                                                            | R                                      | Boo                                                                                                         | Sunlit rays                                                                                                                         |
| 27                                           | С-О-Т                                                                                                                            | 55.56                                                                                       | 21                                                                            | R                                      | Boo                                                                                                         | 29 09                                                                                                                               |
| 29                                           | C-O-T-Li                                                                                                                         | 58.04                                                                                       | 32                                                                            | R                                      | Boo                                                                                                         | 25 29                                                                                                                               |
| 30                                           | 22                                                                                                                               | 59.04                                                                                       | 32                                                                            | R                                      | Boo                                                                                                         | 79' 99                                                                                                                              |
| 31                                           | ,,                                                                                                                               | 23.02.13                                                                                    | 35                                                                            | R                                      | CVn, Boo                                                                                                    | 75                                                                                                                                  |
| 32                                           | ,,                                                                                                                               | 03.17                                                                                       | 33                                                                            | $\mathbf{R}$                           | Boo                                                                                                         | ***                                                                                                                                 |
| 33                                           | С-О-Т                                                                                                                            | 04.32                                                                                       | 33                                                                            | $\mathbf{R}$                           | CVn, Boo                                                                                                    | 23 49                                                                                                                               |
| 34                                           | ,,                                                                                                                               | 05.40                                                                                       | 33                                                                            | R                                      | Boo                                                                                                         | 25 25                                                                                                                               |
| 35                                           | C-O-T-Li                                                                                                                         | 06.43                                                                                       | 32                                                                            | R                                      | Boo                                                                                                         | pt = 15                                                                                                                             |
| 36                                           | ,,                                                                                                                               | 07.42                                                                                       | 29                                                                            | R                                      | CrB, Boo                                                                                                    | 15 25                                                                                                                               |
| 38                                           | **                                                                                                                               | 11.17                                                                                       | 37                                                                            | R                                      | Boo                                                                                                         | " "                                                                                                                                 |
|                                              | Sentember 23                                                                                                                     | _24 1932                                                                                    |                                                                               |                                        |                                                                                                             |                                                                                                                                     |
| 1 5                                          | 0                                                                                                                                | 10.30–2.00. C (<br>21.27.36                                                                 | 45                                                                            | HA                                     | ) (Bakøy), Li Høstmæ<br>  UMa<br>  UMa                                                                      | Arc near the horizon                                                                                                                |
| 1 5                                          | Worked from O                                                                                                                    | 10.30–2.00. C (<br>21.27.36<br>32.00                                                        |                                                                               |                                        |                                                                                                             |                                                                                                                                     |
|                                              | Worked from O October 23–24,                                                                                                     | 10.30–2.00. C (<br>21.27.36<br>32.00<br>1932.                                               | 45<br>29                                                                      | НА<br>НА                               | UMa<br>UMa                                                                                                  | Arc near the horizon                                                                                                                |
|                                              | Worked from O Cotober 23-24, Worked from                                                                                         | 10.30–2.00. C (<br>21.27.36<br>32.00<br>1932.<br>21.00–0.30. C                              | 45<br>29<br>(Tveter, Sa                                                       | HA<br>HA<br>ndöy, myself)              | UMa<br>UMa<br>T (Albert and Egil                                                                            | Arc near the horizon —,,— Tömte), Li (Ole Høstmælingen)                                                                             |
| 5<br>2                                       | Worked from O October 23–24,                                                                                                     | 10.30–2.00. C (<br>21.27.36<br>32.00<br>1932.<br>21.00–0.30. C<br>21.52.15                  | 45<br>29<br>(Tveter, Sa<br>60                                                 | HA HA ndöy, myself)                    | UMa<br>UMa<br>T (Albert and Egil                                                                            | Arc near the horizon                                                                                                                |
| 5<br>2<br>11                                 | Worked from O Cotober 23-24, Worked from                                                                                         | 10.30–2.00. C (<br>21.27.36<br>32.00<br>1932.<br>21.00–0.30. C<br>21.52.15<br>22.09.42      | 45<br>29<br>(Tveter, Sa<br>60<br>90                                           | HA HA ndöy, myself) HA HA              | UMa UMa T (Albert and Egil UMa UMa                                                                          | Arc near the horizon —,,— Tömte), Li (Ole Høstmælingen)                                                                             |
| 5<br>2<br>11<br>14                           | Worked from O October 23-24, Worked from                                                                                         | 10.30–2.00. C ( 21.27.36 32.00  1932. 21.00–0.30. C 21.52.15 22.09.42 18.01                 | 45<br>29<br>(Tveter, Sa<br>60<br>90<br>120                                    | HA HA ndöy, myself) HA HA HA           | UMa UMa T (Albert and Egil UMa UMa CVn, UMa                                                                 | Arc near the horizon —,,— Tömte), Li (Ole Høstmælingen)                                                                             |
| 5<br>2<br>11                                 | Worked from O October 23-24, Worked from Li "                                                                                    | 10.30–2.00. C (<br>21.27.36<br>32.00<br>1932.<br>21.00–0.30. C<br>21.52.15<br>22.09.42      | 45<br>29<br>(Tveter, Sa<br>60<br>90                                           | HA HA ndöy, myself) HA HA              | UMa UMa T (Albert and Egil UMa UMa                                                                          | Arc near the horizon —,,— Tömte), Li (Ole Høstmælingen)                                                                             |
| 5<br>2<br>11<br>14                           | Worked from O October 23-24, Worked from Li "                                                                                    | 10.30–2.00. C ( 21.27.36 32.00  1932. 21.00–0.30. C 21.52.15 22.09.42 18.01 21.01           | 45<br>29<br>(Tveter, Sa<br>60<br>90<br>120                                    | HA HA ndöy, myself) HA HA HA           | UMa UMa T (Albert and Egil UMa UMa CVn, UMa                                                                 | Arc near the horizon —,,— Tömte), Li (Ole Høstmælingen)                                                                             |
| 5<br>2<br>11<br>14                           | Worked from O Cotober 23-24, Worked from Li , , February 18-1                                                                    | 10.30–2.00. C ( 21.27.36 32.00  1932. 21.00–0.30. C 21.52.15 22.09.42 18.01 21.01  9, 1933. | 45<br>29<br>(Tveter, Sa<br>60<br>90<br>120                                    | HA HA ndöy, myself) HA HA HA           | UMa UMa T (Albert and Egil UMa UMa CVn, UMa                                                                 | Arc near the horizon —,,— Tömte), Li (Ole Høstmælingen)                                                                             |
| 5<br>2<br>11<br>14<br>15                     | Worked from O Cotober 23-24, Worked from Li " " February 18-1 Lö (Herstad)                                                       | 10.30–2.00. C ( 21.27.36 32.00  1932. 21.00–0.30. C 21.52.15 22.09.42 18.01 21.01  9, 1933. | 45<br>29<br>(Tveter, Sa<br>60<br>90<br>120<br>120                             | HA HA ndöy, myself) HA HA HA HA        | UMa UMa T (Albert and Egil UMa UMa CVn, UMa CVn, UMa                                                        | Arc near the horizon —,,—  Tömte), Li (Ole Høstmælingen)  Arc near the horizon —,— —,— —,— —,—                                      |
| 5<br>2<br>11<br>14<br>15                     | Worked from O Cotober 23-24, Worked from Li , , February 18-1                                                                    | 10.30–2.00. C ( 21.27.36 32.00  1932. 21.00–0.30. C 21.52.15 22.09.42 18.01 21.01  9, 1933. | 45<br>29<br>(Tveter, Sa<br>60<br>90<br>120<br>120                             | HA HA  HA HA HA HA HA HA HA            | UMa UMa T (Albert and Egil UMa UMa CVn, UMa CVn, UMa And.                                                   | Arc near the horizon —,,— Tömte), Li (Ole Høstmælingen)                                                                             |
| 5<br>2<br>11<br>14<br>15                     | Worked from O Cotober 23-24, Worked from Li " " February 18-1 Lö (Herstad)                                                       | 10.30–2.00. C ( 21.27.36 32.00  1932. 21.00–0.30. C 21.52.15 22.09.42 18.01 21.01  9, 1933  | 45<br>29<br>(Tveter, Sa<br>60<br>90<br>120<br>120                             | HA HA HA HA HA HA HA HA HA             | UMa UMa T (Albert and Egil UMa UMa UMa CVn, UMa CVn, UMa And.                                               | Arc near the horizon —,,—  Tömte), Li (Ole Høstmælingen)  Arc near the horizon —,— —,— —,— —,—                                      |
| 5<br>2<br>11<br>14<br>15                     | Worked from O Cotober 23-24, Worked from Li " " February 18-1 Lö (Herstad)                                                       | 10.30–2.00. C ( 21.27.36 32.00  1932. 21.00–0.30. C 21.52.15 22.09.42 18.01 21.01  9, 1933. | 45<br>29<br>(Tveter, Sa<br>60<br>90<br>120<br>120                             | HA HA  HA HA HA HA HA HA HA            | UMa UMa T (Albert and Egil UMa UMa CVn, UMa CVn, UMa And.                                                   | Arc near the horizon  —,,—  Tömte), Li (Ole Høstmælingen)  Arc near the horizon  —,—  —,—  —,—  —,—                                 |
| 5<br>2<br>11<br>14<br>15                     | Worked from O " October 23-24, Worked from Li " " " Lö (Herstad) Lö " " February 18-1                                            | 10.30–2.00. C ( 21.27.36 32.00  1932. 21.00–0.30. C 21.52.15 22.09.42 18.01 21.01  9, 1933  | 45<br>29<br>(Tveter, Sa<br>60<br>90<br>120<br>120<br>180<br>180<br>180        | HA HA HA HA HA HA HA HA HA             | UMa UMa  T (Albert and Egil UMa UMa CVn, UMa CVn, UMa And. And. Peg. And. Ari.                              | Arc near the horizon —,,—  Tömte), Li (Ole Høstmælingen)  Arc near the horizon —,— —,— —,— —,—                                      |
| 5<br>2<br>11<br>14<br>15                     | Worked from O " October 23-24, Worked from Li " " " Lö (Herstad) Lö " " February 22- Lö (Herstad)                                | 10.30–2.00. C ( 21.27.36 32.00  1932. 21.00–0.30. C 21.52.15 22.09.42 18.01 21.01  9, 1933  | 45<br>29<br>(Tveter, Sa<br>60<br>90<br>120<br>120<br>180<br>180<br>180        | HA HA HA HA HA HA HA HA HA HA          | UMa UMa  T (Albert and Egil UMa UMa CVn, UMa CVn, UMa And. And. Peg. And. Ari. And. Peg.                    | Arc near the horizon —,,—  Tömte), Li (Ole Høstmælingen)  Arc near the horizon —,— —,— —,— —,—  Sharp lower border. —,— —,— —,— —,— |
| 5<br>2<br>11<br>14<br>15<br>1<br>2<br>3<br>4 | Worked from  O  October 23-24,  Worked from  Li  "  Lö (Herstad)  Lö  February 22-  Lö (Herstad)  Lö (Herstad)                   | 10.30–2.00. C ( 21.27.36 32.00  1932. 21.00–0.30. C 21.52.15 22.09.42 18.01 21.01  9, 1933  | 45<br>29<br>(Tveter, Sa<br>60<br>90<br>120<br>120<br>180<br>180<br>180        | HA HA HA HA HA HA HA HA HA HA HA       | UMa UMa UMa UMa UMa UMa CVn, UMa CVn, UMa And. Peg. And. Ari. And. Peg.                                     | Arc near the horizon —,,—  Tömte), Li (Ole Høstmælingen)  Arc near the horizon —,— —,— —,— —,—                                      |
| 5<br>2<br>11<br>14<br>15<br>1<br>2<br>3<br>4 | Worked from O October 23–24, Worked from Li February 18–1 Lö (Herstad) Lö February 22– Lö (Herstad) Lö February 22– Lö (Herstad) | 10.30–2.00. C ( 21.27.36 32.00  1932. 21.00–0.30. C 21.52.15 22.09.42 18.01 21.01  9, 1933  | 45<br>29<br>(Tveter, Sa<br>60<br>90<br>120<br>120<br>180<br>180<br>180<br>180 | HA HA HA HA HA HA HA HA HA HA HA HA HA | UMa UMa  T (Albert and Egil UMa UMa CVn, UMa CVn, UMa CVn, UMa And. Peg. And. Ari. And. Peg. Lyr. Cyg. Cyg. | Arc near the horizon —,,—  Tömte), Li (Ole Høstmælingen)  Arc near the horizon —,— —,— —,— —,—  Sharp lower border. —,— —,— —,— —,— |
| 5<br>2<br>11<br>14<br>15<br>1<br>2<br>3<br>4 | Worked from  O  October 23-24,  Worked from  Li  "  Lö (Herstad)  Lö  February 22-  Lö (Herstad)  Lö (Herstad)                   | 10.30–2.00. C ( 21.27.36 32.00  1932. 21.00–0.30. C 21.52.15 22.09.42 18.01 21.01  9, 1933  | 45<br>29<br>(Tveter, Sa<br>60<br>90<br>120<br>120<br>180<br>180<br>180        | HA HA HA HA HA HA HA HA HA HA HA       | UMa UMa UMa UMa UMa UMa CVn, UMa CVn, UMa And. Peg. And. Ari. And. Peg.                                     | Arc near the horizon —,,—  Tömte), Li (Ole Høstmælingen)  Arc near the horizon —,— —,— —,— —,—  Sharp lower border. —,— —,— —,— —,— |

Table 1 (continued).

| PN        | St         | MET              | Ex             | Fm           | Ref. Con.                | Remarks                                             |
|-----------|------------|------------------|----------------|--------------|--------------------------|-----------------------------------------------------|
|           | March 18-1 | 19, 1933.        |                | I            |                          |                                                     |
|           | Worked fro |                  |                |              | Da (Hassel), $K_4$ (Odlo | eiv Busengdal), Li (Höstmælingen)                   |
| 1         | N          | 22.35.55         | 120            | HA           | + Cyg.                   | Clouds hindering.                                   |
| 2         | ,,,        | 39.00            | 120            | HA           | Cas. And.                |                                                     |
| 3         | ***        | 42.00            | 120            | HA           | Cyg.                     |                                                     |
| 5         | ,,         | 49.00            | 120            | HA           | Cas. And.                | Very diffuse.                                       |
| 7         | ,,         | 55.30            | 60             | HA           | Cyg.                     |                                                     |
| 10        | 11         | 23.03.30         | 60             | HA           | Cyg.                     |                                                     |
| 11        | **         | 06.00            | 60             | HA           | Cas. And.                |                                                     |
| 15        | N, Lö      | 13.05            | 24             | RA           | Cyg.                     | Lower border sharp.                                 |
| 17        | N          | 14.31            | 14             | RA           | Cyg.                     |                                                     |
| 18        | "          | 15.04            | 13             | RA           | Cyg.                     |                                                     |
| 20        | N-Lö       | 16.41            | 6              | RA           | Cyg.                     | Fine rays, but clouds at th                         |
| 22        | "          | 17.59            | 10             | $\mathbf{R}$ | Tau                      | station Lö.                                         |
| 25        | "          | 20.05            | 5              | R            | Cas. And.                |                                                     |
| 26        | N          | 20.58            | 2              | $\mathbf{R}$ | Cyg.                     | Tangential view of curtain.                         |
| 28        | Lö         | 22.02            | 7              | RA           | Tau                      | ——————————————————————————————————————              |
| 30        | N–Lö       | 23.31            | 6              | RB           | Ori, Tau                 |                                                     |
| 33        | ,,         | 25.27            | 5              | RB           | Tri, Ari                 |                                                     |
| 35        | ,,         | 27.06            | 6              | RB           | Tri, Ari                 | Fine small curtain.                                 |
| 4**       | Da         | 30.05            | 10             | HA           | Cas. And                 | Arc near the horizon.                               |
| 5**       | 57         | 32.03            | 15             | RA           | Per.                     | Rays along the arc.                                 |
| 41        | N          | 0.03.09          |                | HA           | Tau                      | Western end of low arc.                             |
| 42        | "          | 04.09            | 20             | HA           | Tri                      | The same. Pulsation above the arc                   |
| 43        |            | 05.42            | 14             | HA           | Tri, And.                | <b>—</b> "—                                         |
| 47        | N-Lö       | 07.52            | 9              | RA           | Tri, And.                | 35                                                  |
| 48        | N          | 08.19            | 10             | RA           | Tri, And.                |                                                     |
| 49        | N, Lö      | 09.44            | 8              | RA           | Per, And.                |                                                     |
| 53        | N-Lö       | 12.32            | 13             | RB           | Tri, And.                | Distant curtain lower down.                         |
| 56<br>~7  | "          | 15.15            |                | TO TO        | Tri, And                 | The same.                                           |
| 57        | "          | 17.17            | 8              | RB           | Tri, And                 | Two horsehoeformed curtains.                        |
| 62        | 77         | 22.36            | 5              | R            | Per, Tri, And            | Not sunlit.                                         |
| 63<br>2*  | <br>C–Li   | $23.08 \\ 23.25$ | 9<br>20        | RB           | Tri, And                 | Fine distant curtain.                               |
| 64        | N-Lö       | 23.47            | $\frac{32}{9}$ | HA<br>RB     | Per                      | Very feeble.                                        |
| 65        | N-LO       | 24.30            |                |              | Tri, And                 | The same as No. 63                                  |
| 00<br>3*  |            | 24.30            | $\frac{8}{33}$ | RB<br>HA     | And Cas                  | Fine are clouds                                     |
| 67        | N-Lö       | 26.13            | ээ<br>З        | R, HA        | And, Cas<br>Cyg.         | Fine arc, clouds.  Double arc. The same as 3* and 4 |
| 4*        | C-Li       | 26.18            | 33             | HA           | Cas, Lac. Cyg.           | Can be used with 67 for heigh measuring.            |
| 68        | N–Lö       | 26.36            | 3              | R, HA        | Cyg.                     | The arc is double.                                  |
| 69        | N, Lö      | 26.54            | $^{\circ}_{2}$ | HA           | Cyg.                     | Can be used with 5*.                                |
| 5*        | C–Li       | 27.34            | 34             | HA           | Cyg., Landscape.         |                                                     |
| 72        | N–Lö       | 29.36            | 3              | HA, R        | Cyg.                     | Double arc, eastern part.                           |
| 7*        | Li         | 30.04            | 20             | HA           | Tau, Aur                 |                                                     |
| 73        | N–Lö       | 30.46            | 2              | RA, R        | Her, Cyg, Lyr            | Multiple arc, eastern part.                         |
| 8*        | C–Li       | 31.08            | 37             | HA, R        | Tau                      |                                                     |
| <b>74</b> | N–Lö       | 31.19            | 4              | RA, R        | Her, Lyr, Cyg            |                                                     |
| 75        | "          | 31.47            | 5              | HA, R        | Cyg.                     | 4 arcs, eastern end.                                |
| •9*       | C-Li       | 32.17            | 30             | HA           | Tau                      |                                                     |
| 76        | N–Lö       | 32.34            | 7              | RB           | And                      | 3 curtains.                                         |
| 10*       | C          | 33.25            | 31             | HA           | Tau                      |                                                     |
| 77        | N-Lö       | 33.35            | 8              | RB           | $\mid_{	ext{Cyg}}$       | 1                                                   |

Table 1 (continued).

|                 | St            | MET              | Ex            | Fm       | Ref. Con.  | Remarks                                          |
|-----------------|---------------|------------------|---------------|----------|------------|--------------------------------------------------|
| 78              | N-Lø          | 0.34.03          | 5             | RA       | Lyr, Her   | Multiple arc                                     |
| 79              | ,,            | 35.16            | 3             | RB       | Gem        | Very luminous band.                              |
| 81              | 27            | 36.01            | 2             | RB       | Gem        | ,,                                               |
| 82              | n-Lö          | 36.16            | $\frac{-}{2}$ | RB       | Gem        |                                                  |
| 83              | Lö            | 37.05            | 1             | RB       | Gem        |                                                  |
| 13*             | C–Li          | 37.22            | 20            | RB       | Landscape  | Horseshoe-formed band.                           |
| 85              | N-Lö          | 38.41            | 4             | нВ       | Cyg        | The same. Very fine.                             |
| 86              |               | 39.13            | 3             | НВ       | Cyg        | — »—                                             |
| 87              | **            | 39.24            | 12            | HB       | Cyg        |                                                  |
| 88              | **            | 40.28            | 4             | нв       | Cyg        |                                                  |
| 89              | ,,            | 42.36            | 3             | HB       | Cyg        |                                                  |
|                 | 27            | 43.15            | 6             | RB       | Per        |                                                  |
| 90              | NT Tu         | l i              |               | RB       | i          |                                                  |
| 91              | N, Lö         | 44.59            | 7             |          | Cyg        | Pu.lsations since 1 <sup>h</sup> 18 <sup>m</sup> |
| 96              | N-Lö          | 1.20.08          | 4             | PS       | CMi        | Pullsations since 1º 18º                         |
| 20*             | Li            | 40.29            | 24            | HA       | And        |                                                  |
| 24*             | "             | 44.49            | 31            | HA       | And        |                                                  |
| 25*             | **            | 46.27            | 31            | HA       | And        |                                                  |
| 26*             | **            | 47.22            | 27            | HA       | And        |                                                  |
| 97              | N             | 59.03            | 9             | HA       | Aur        |                                                  |
| 98              | N–Lö          | 59.52            | 11            | HA       | Aur        | Fine lower border.                               |
| 99              | N             | 2.00.47          | 10            | HA       | Per        |                                                  |
| 100             | N–Lö          | 01.27            | 12            | HA       | Gem        |                                                  |
| 101             | Lö            | 02.33            | 9             | HA       | Landscape  | Eastern end.                                     |
| 102             | N–Lö          | 03.20            | 10            | HA       | Aur        |                                                  |
| 103             | ,,            | 04.46            | 11            | HA       | Gem        |                                                  |
| 104             | ,,            | 05.29            | 11            | HA       | Aur        |                                                  |
| 105             | N N           | 06.06            | 14            | HA       | Cas        | Double are                                       |
| 106             |               | 07.14            | 6             | HA       | And        | ", eastern end.                                  |
| 107             | n-Lö          | 08.03            | 10            | RB       | Gem        | , ,                                              |
| 107             |               | 12.30            | 9             | HA, RB   | Aur, Tau   |                                                  |
| 111             | ,,            | 27.16            | 12            | RB       | Cnc        | Irregular short rays.                            |
| 112             | 77            | 28.21            | 15            | RB       | Leo, Cnc   | integular short rays.                            |
|                 | ,,,           | 29.18            | 10            | R        | Leo, Cnc   |                                                  |
| 113             | ,,<br>21      | 1                |               | HA       | Aur, Tau   |                                                  |
| 114             | N<br>N T "    | 30.02            | 12            |          | 1          | Eine mulgeting netches                           |
| 116             | N–Lö          | 3.01.23          | 3             | PS       | Aur .      | Fine pulsating patches.                          |
| 117             | "             | 01.48            | 5             | PS       | Aur        |                                                  |
| 118             | **            | 02.23            | 9             | PS       | Aur        | 99                                               |
| 119             | ,,            | 02.59            | 10            | PS       | Aur        | — " <del>—</del>                                 |
| 120             | 17            | 03.25            | 8             | PS       | Aur        |                                                  |
| $\mathbf{a}$    | Lö            | 44.46            | 30            | HA       | Gem        | From this time clouds at station                 |
| b               | ,,            | 45.48            | 30            | HB       | Aur        | Irregular.                                       |
| $\mathbf{e}$    | 79            | 46.42            | 30            | RA, R    | And        | Probably sunlit rays.                            |
| d               | ,,            | 47.41            | 30            | HB       | Aur        |                                                  |
| e               | ••            | 49.34            | 20            | HA       | Gem        |                                                  |
| f               | 79            | 50.18            | 20            | HA       | Gem, Aur   |                                                  |
| $\mathbf{g}$    | 75            | 51.25            | 20            | HA       | Aur        |                                                  |
| h               | ,,            | 52.35            | 20            | HA       | Per        |                                                  |
| i               | ,,            | 53.18            | 20            | R        | And        | Probably sunlit rays.                            |
| k               | "             | 55.42            | 20            | HA       | Gem        |                                                  |
| 1               |               | 57.52            | 20            | HA       | Aur        |                                                  |
| 1               | **            | 58.44            | 20            | R        | And        | Probably sunlit rays.                            |
| m               |               |                  |               | : LV     | LAMA       | # TONGONT & DIGHTO TOLOGO                        |
| m               | w Ta          | 1                |               |          | 1          | •                                                |
| m<br>124<br>125 | N–Lö<br>N, Lö | 4.00.51<br>11.05 | 20<br>20      | HA<br>HA | Gem<br>Gem |                                                  |

Table 1 (continued).

| PN                                                                  | St                                                  | MET                                                                                                                                  | Ex                                                                   | Fm                                    | Ref. Con.                                                            | Remarks                                         |
|---------------------------------------------------------------------|-----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------|----------------------------------------------------------------------|-------------------------------------------------|
|                                                                     | March 19-                                           | 20. 1933.                                                                                                                            |                                                                      |                                       |                                                                      |                                                 |
|                                                                     |                                                     | om 20h-1h30m. S                                                                                                                      | tation N (I                                                          | Koren, myself)                        | . Lö (Herstad).                                                      |                                                 |
| 1                                                                   | N-Lö                                                | 21.05.59                                                                                                                             | 25                                                                   | HA, R                                 | Ari                                                                  | Sunlit rays over broad HA, in sible to the eye. |
| 2                                                                   | N                                                   | 06.45                                                                                                                                | 21                                                                   | HA                                    | Cas                                                                  | Lower border of the arc.                        |
| 3                                                                   | N–Lö                                                | 07.56                                                                                                                                | 25                                                                   | R                                     | Per                                                                  | Sunlit, invisible to the eye.                   |
| 4                                                                   |                                                     | 08.55                                                                                                                                | 29                                                                   | R                                     | Tau, Ari                                                             | The same, very fine                             |
| 9                                                                   | 1                                                   | 27.20                                                                                                                                | 27                                                                   | R                                     | Tau                                                                  | Sunlit.                                         |
| 10                                                                  |                                                     | 21.28.21                                                                                                                             | 25                                                                   | DS                                    | Tau                                                                  | Summe.                                          |
| 15                                                                  |                                                     | 37.09                                                                                                                                | 30                                                                   | R                                     | Boo, CVn, UMa                                                        | Very feeble.                                    |
| 17                                                                  | ,                                                   | 47.55                                                                                                                                | 4                                                                    | R                                     | Tau, Ori                                                             | Fine R in shadow.                               |
| 18                                                                  | ,,                                                  | 48.11                                                                                                                                | 4                                                                    | R                                     | Tau, Ori                                                             | ——                                              |
| 23                                                                  | ,,                                                  | 51.47                                                                                                                                | 13                                                                   | RB                                    | Ori                                                                  | Diffuse raymasses.                              |
| 24                                                                  | -                                                   | 52.15                                                                                                                                | 7                                                                    | DS                                    | Ori                                                                  | Cloudlike                                       |
| 27                                                                  | **                                                  | 59.21                                                                                                                                | 11                                                                   | PA, RA                                | CMi, Mon                                                             | , pulsating                                     |
| 28                                                                  | ,,                                                  | 22.00.16                                                                                                                             | 5                                                                    | DS, PA                                | Ori                                                                  | , parama                                        |
| Q                                                                   | N                                                   | 23.30.03                                                                                                                             | $\frac{3}{22}$                                                       | HA                                    | Ari, Tri                                                             | -                                               |
| R                                                                   | ,                                                   | 30.51                                                                                                                                | 28                                                                   | HA                                    | Tri, And                                                             |                                                 |
| S                                                                   | ,,                                                  | 31.40                                                                                                                                | 24                                                                   | HA                                    | And, L ac, Per                                                       |                                                 |
|                                                                     | •                                                   | •                                                                                                                                    |                                                                      |                                       |                                                                      | 1                                               |
| 13**<br>1*                                                          | Da<br>O–Li                                          | 23.47.12<br>0.29.30                                                                                                                  | 25 $24$                                                              | $_{ m HA}$                            | And, Cas<br>And, Lac                                                 | All near northern horizon.                      |
|                                                                     | O–Li                                                | 1                                                                                                                                    |                                                                      |                                       |                                                                      |                                                 |
| 2*                                                                  | 30                                                  | 31.28                                                                                                                                | 22                                                                   | HA                                    | And, Tri                                                             | ,                                               |
| 3*                                                                  | <br>T.                                              | 32.32                                                                                                                                | 21                                                                   | HA                                    | Per, Tri                                                             |                                                 |
| 4*                                                                  | Li                                                  | 33.45                                                                                                                                | 25                                                                   | HA                                    | Per                                                                  |                                                 |
| 2                                                                   | T, K <sub>4</sub>                                   | 34.08                                                                                                                                | 32                                                                   | HA                                    | And, Cas                                                             |                                                 |
| 3<br>4                                                              | 777                                                 | 35.18                                                                                                                                | 26                                                                   | HA                                    | Per                                                                  | <del></del> ,,                                  |
|                                                                     | K <sub>4</sub>                                      | 36.28                                                                                                                                | $\frac{32}{20}$                                                      | HA                                    | Per And                                                              |                                                 |
| 5<br>7*                                                             | T, K <sub>4</sub><br>Li                             | 37.54                                                                                                                                | 32                                                                   | HA                                    | Per, And                                                             |                                                 |
| 8*                                                                  |                                                     | 57.02<br>58.01                                                                                                                       | 1 <b>4</b><br>9                                                      | HA<br>HA                              | Cas, And                                                             |                                                 |
| 13                                                                  | "<br>K <sub>4</sub> T                               | 1.04.03                                                                                                                              |                                                                      | PS PS                                 | Per, And<br>Tri, And                                                 |                                                 |
|                                                                     | O-Li                                                | 05.03                                                                                                                                | 14<br>9                                                              | PS                                    | Cas, And                                                             | — <u>"</u> —                                    |
|                                                                     | 1 0-11                                              | 09.09                                                                                                                                | 9                                                                    | rs                                    | Cas, And                                                             | -,                                              |
| 11*                                                                 |                                                     |                                                                                                                                      |                                                                      |                                       |                                                                      | •                                               |
| 11*                                                                 | March 23-2                                          |                                                                                                                                      |                                                                      |                                       |                                                                      |                                                 |
| 11*                                                                 | March 23-2                                          |                                                                                                                                      | ation N (W                                                           | Vestin, myself)                       | , Lö (Herstad), Li (I                                                | Höstmælingen).                                  |
| 3                                                                   | March 23-2                                          |                                                                                                                                      | ation N (W                                                           | R                                     | , Lö (Herstad), Li (I<br>  Per, And, Tau                             | Höstmælingen).                                  |
|                                                                     | March 23-2<br>Worked fro                            | om 18 <sup>h</sup> -4 <sup>h</sup> 30 <sup>m</sup> . St                                                                              |                                                                      | R<br>R                                |                                                                      | Höstmælingen).                                  |
| 3                                                                   | March 23-2<br>Worked fro<br>Li-Lö                   | om 18 <sup>h</sup> -4 <sup>h</sup> 30 <sup>m</sup> . St<br>  21.35.29                                                                | 11                                                                   | R                                     | Per, And, Tau                                                        | Höstmælingen).                                  |
| $\frac{3}{12}$                                                      | March 23-2<br>Worked fro<br>Li-Lö<br>N-Lö           | om 18 <sup>h</sup> -4 <sup>h</sup> 30 <sup>m</sup> . St<br>21.35.29<br>23.01.44                                                      | 11<br>25                                                             | R<br>R                                | Per, And, Tau<br>And                                                 | Höstmælingen).                                  |
| 3<br>12<br>14                                                       | March 23-2<br>Worked fro<br>Li-Lö<br>N-Lö<br>Lö     | om 18 <sup>h</sup> -4 <sup>h</sup> 30 <sup>m</sup> . St<br>21.35.29<br>23.01.44<br>52.54                                             | 11<br>25<br>40                                                       | R<br>R<br>HA                          | Per, And, Tau<br>And<br>Tau                                          | Höstmælingen).                                  |
| 3<br>12<br>14<br>15<br>17<br>20                                     | March 23-2<br>Worked fro<br>Li-Lö<br>N-Lö<br>Lö     | om 18h-4h30m. St<br>21.35.29<br>23.01.44<br>52.54<br>53.55                                                                           | 11<br>25<br>40<br>20<br>25<br>11                                     | R<br>R<br>HA<br>HA<br>PS              | Per, And, Tau And Tau Tau And, Cas Cas                               | Höstmælingen).<br>Foeble.                       |
| 3<br>12<br>14<br>15<br>17<br>20<br>25                               | March 23-2 Worked fro Li-Lö N-Lö Lö N               | om 18h-4h30m. St<br>21.35.29<br>23.01.44<br>52.54<br>53.55<br>55.24<br>0.15.39<br>21.20                                              | 11<br>25<br>40<br>20<br>25<br>11<br>25                               | R<br>R<br>HA<br>HA<br>PS<br>R, RB     | Per, And, Tau And Tau Tau And, Cas Cas And, Tri                      |                                                 |
| 3<br>12<br>14<br>15<br>17<br>20<br>25                               | March 23-2 Worked fro Li-Lö N-Lö Lö , N N-Lö        | om 18h-4h30m. St<br>21.35.29<br>23.01.44<br>52.54<br>53.55<br>55.24<br>0.15.39<br>21.20<br>22.36                                     | 11<br>25<br>40<br>20<br>25<br>11                                     | R<br>R<br>HA<br>HA<br>PS<br>R, RB     | Per, And, Tau And Tau Tau And, Cas Cas                               |                                                 |
| 3<br>12<br>14<br>15<br>17<br>20<br>25<br>26                         | March 23-2 Worked fro Li-Lö N-Lö Lö N N-Lö , N N-Lö | om 18h-4h30m. St<br>21.35.29<br>23.01.44<br>52.54<br>53.55<br>55.24<br>0.15.39<br>21.20                                              | 11<br>25<br>40<br>20<br>25<br>11<br>25                               | R<br>R<br>HA<br>HA<br>PS<br>R, RB     | Per, And, Tau And Tau Tau And, Cas Cas And, Tri                      |                                                 |
| 3<br>12<br>14<br>15<br>17<br>20<br>25<br>26<br>27                   | March 23-2 Worked fro Li-Lö N-Lö Lö N N-Lö , N-Lö   | om 18h-4h30m. St<br>21.35.29<br>23.01.44<br>52.54<br>53.55<br>55.24<br>0.15.39<br>21.20<br>22.36                                     | 11<br>25<br>40<br>20<br>25<br>11<br>25<br>23                         | R<br>R<br>HA<br>HA<br>PS<br>R, RB     | Per, And, Tau And Tau Tau And, Cas Cas And, Tri Cas, And             |                                                 |
| 3<br>12<br>14<br>15<br>17<br>20<br>25<br>26<br>27<br>28             | March 23-2 Worked fro Li-Lö N-Lö Lö N N-Lö , N-Lö   | om 18h-4h30m. St<br>21.35.29<br>23.01.44<br>52.54<br>53.55<br>55.24<br>0.15.39<br>21.20<br>22.36<br>23.10                            | 11<br>25<br>40<br>20<br>25<br>11<br>25<br>23<br>22                   | R R HA HA PS R, RB R                  | Per, And, Tau And Tau Tau And, Cas Cas And, Tri Cas, And And         |                                                 |
| 3<br>12<br>14<br>15<br>17<br>20<br>25<br>26<br>27<br>28<br>29       | March 23-2 Worked fro Li-Lö N-Lö N N-Lö " " " " "   | om 18h-4h30m. St<br>21.35.29<br>23.01.44<br>52.54<br>53.55<br>55.24<br>0.15.39<br>21.20<br>22.36<br>23.10<br>24.52                   | 11<br>25<br>40<br>20<br>25<br>11<br>25<br>23<br>22<br>19             | R R HA HA HA PS R, RB R R             | Per, And, Tau And Tau Tau And, Cas Cas And, Tri Cas, And And         |                                                 |
| 3<br>12<br>14<br>15<br>17<br>20<br>25<br>26<br>27<br>28<br>29<br>30 | March 23-2 Worked fro Li-Lö N-Lö N N-Lö " " " " "   | om 18h-4h30m. St<br>21.35.29<br>23.01.44<br>52.54<br>53.55<br>55.24<br>0.15.39<br>21.20<br>22.36<br>23.10<br>24.52<br>26.53          | 11<br>25<br>40<br>20<br>25<br>11<br>25<br>23<br>22<br>19             | R R HA HA HA PS R, RB R R RB PS       | Per, And, Tau And Tau Tau And, Cas Cas And, Tri Cas, And And         | Feeble.                                         |
| 3<br>12<br>14<br>15<br>17<br>20<br>25<br>26<br>27                   | March 23-2 Worked fro Li-Lö N-Lö N N-Lö " " " " "   | om 18h-4h30m. St<br>21.35.29<br>23.01.44<br>52.54<br>53.55<br>55.24<br>0.15.39<br>21.20<br>22.36<br>23.10<br>24.52<br>26.53<br>27.50 | 11<br>25<br>40<br>20<br>25<br>11<br>25<br>23<br>22<br>19<br>19<br>24 | R R HA HA HA PS R, RB R R RB RB PS RB | Per, And, Tau And Tau Tau And, Cas Cas And, Tri Cas, And And Per And | Feeble.  The same as No. 28.                    |

Table 1 (continued).

| PN         | St          | MET     | Ex              | Fm             | Ref. Con.            | Remarks                                         |
|------------|-------------|---------|-----------------|----------------|----------------------|-------------------------------------------------|
| 38         | N–Lö        | 0.38.37 | 16              | R, RB          | Aur, Per             | Fine ray.                                       |
| 39         | N-110       | 39.34   | 23              | R              | "                    | The same.                                       |
| 40         | "           | 40.24   | $\frac{26}{24}$ | RB, DS         | Per                  | Cloudlike diffuse curtain.                      |
| 43         | "           | 44.00   | 21              | RB, DS         |                      |                                                 |
| 49         | ,,          | 56.17   | 18              | RA, PS         |                      | Broad are with dentated lower border.           |
| 44         |             | 57.03   | 21              | RA, PS         | And, Per, Tau        | Western end of the same.                        |
| 45         | *           | 58.12   | 25              | RA             | Per, And, Tri        | The same are                                    |
| 1          | "<br>N      | 1.00.56 | 20              | RA             | And                  | — "— western end.                               |
|            | N–Lö        | 03.46   | 20              | RA             | Cas, And             | -,- eastern end.                                |
| <b>~</b> 0 |             |         | 20              | RA, RB         | And                  | , and bar                                       |
| · ·        | "<br>NT     | 04.42   | 20              | i I            | And                  | , and par                                       |
|            | N           | 06.34   |                 | HA             |                      |                                                 |
|            |             | 07.55   | 10              | HA             | T)                   | **                                              |
|            | N–Lö        | 08.43   | 18              | HA             | Per                  | Now two ares.                                   |
|            | N           | 09.47   | 22              | HA             | Aur,Tau              | The same, western end.                          |
|            | N–Lö        | 14.43   | 23              | RB             | **                   | The same                                        |
| 56         | N           | 16.08   | 27              | RB             | Cas, And             | —,— eastern end.                                |
| 59         | N-Lö        | 20.35   | 30              | RB             | Per                  |                                                 |
| eo.        |             | 23.11   | 30              | RB             | Per                  | -,- fine picture.                               |
| 1          | ",<br>N, Lö | 35.38   | 20              | HA             | Cas, And             | ,- very fine.                                   |
|            | I, Lø       | 36.29   | 20              | HA             | Tau, Pec             | Triple, Western end.                            |
| an         | i           | 39.07   | 8               | HA             | Aur, Tau             | Western end.                                    |
| 64         | **          | 39.45   | 10              | HA             | And, Per             | The same arc.                                   |
| 0.5        | **          | 40.24   | 20              | HA             | Cas, And             | -,- eastern end.                                |
| 1          | 77          |         |                 | HA             | And                  | —"— Castern Cher.                               |
|            | "           | 41.26   | 18              |                |                      |                                                 |
|            | N-Lö        | 46.06   | 12              | PS             | Aur, Per             | mi                                              |
| 1          | N, Lö       | 49.56   | 20              | HA             | Tau                  | The same arc, western end.                      |
|            | N–Lö        | 51.56   | 10              | PS             | Gem                  |                                                 |
| 1          | N, Lö       | 54.49   | 23              | HA             | Per                  | Arc, very fine.                                 |
|            | **          | 2.05.59 | 15              | 57             | Tau                  | The same, W. end.                               |
| 77         | *           | 06.50   | 19              | **             | Per                  | — "— in N.                                      |
| 78         | ,,          | 07.37   | 18              | **             | And                  | —,— eastern end.                                |
| 79         | ,,          | 12.47   | 21              | **             | "                    | ,-                                              |
| 80         | ,,          | 13.33   | 23              | "              | $\operatorname{Per}$ | —"— in N.                                       |
| 81         | N–Lö        | 14.28   | 20              | ,,             | Aur                  | , western end.                                  |
| 82         | ,,          | 20.52   | 16              | HA, RB         | Aur, Tau             | Band, at the lower border.                      |
|            | N           | 21.41   |                 | HA             |                      |                                                 |
|            | N–Lö        | 24.15   | 18              | HA, DS         | Aur, Tau             | The same as No. 82, cloudlike the upper border. |
| 86         | 77          | 26.40   | 10              | HB, DS         | Per                  | The same as No. 82, mov eastwards.              |
| 87         |             | 27.54   | 13              | нв             | Per                  | The same arc.                                   |
| 88         |             | 29.12   | 20              | DS             | Gem                  | Over the arc.                                   |
| 89         | •           | 30.18   | 25              | DS             | Aur                  | The same.                                       |
| 90         | "           | 31.15   | 20              | HA             | Per, And, Tri        | The same arc as No. 82.                         |
|            | **          | 35.17   | 20              | DS             | And, Per, Cas        | The same as No. 88.                             |
| 91         | "           |         |                 | ł.             | Gem                  | The same.                                       |
| 92         | **          | 36.20   | 23              | DS<br>DS HA DA | Gem<br>Aur, Tau      |                                                 |
| 93         | **          | 48.03   | 12              | PS, HA, RA     |                      | The same, now pulsating.                        |
| 95         | **          | 3.01.25 | 12              | PS             | Aur, Per             | ,                                               |
| 96         | ,,          | 20.37   | 14              | PS             | Aur, Gem             | — "—                                            |
| 103        | -           | 45.07   | 21              | DS             | Aur, Per             | Cloudlike arc.                                  |
| 104        | ,,          | 46.13   | 27              | DS             | Per, And             | Cloudlike patches.                              |
| 105        | N-Lö-Li     | 49.00   | 31              | R, D           | Per, And, Tri        | Sunlit rays over cloudlike patch                |
| 107        | N-Lö        | 52.49   | 20              | DS             | Aur, Cam             | The same.                                       |

Table 1 (continued).

| PN  | St      | MET     | Ex | Fm     | Ref. Con. | Remarks                                                 |
|-----|---------|---------|----|--------|-----------|---------------------------------------------------------|
| 108 | N–Lö    | 3.54.05 | 20 | R, DS  | Aur, Cam  | Upper part in sunshine, red violet, lower yellow green. |
| 110 |         | 4.00.02 | 6  | RB, DS | Gem       | Horeshoe-formed curtain begins to be formed.            |
| 111 |         | 00.27   | 5  | RB     | Gem       | The same. Not sunlit.                                   |
| 112 | ,.      | 01.20   | 8  | RB     | Gem, Aur  |                                                         |
| 113 | N       | 01.53   | 6  | RB     | Gem       |                                                         |
| 114 | ,,      | 02.23   | 6  | RB     | **        |                                                         |
| 115 | ,,      | 03.34   | 8  | RB     | ,,        |                                                         |
| 116 | .,      | 04.11   | 8  | RB     | Leo       | —"— W. end.                                             |
| 117 | N–Lö    | 04.48   | 2  | RB     | Gem       | The same, Short rays along the                          |
|     |         |         |    |        |           | curtain. Very luminous.                                 |
| 118 | ,,      | 05.09   | 6  | RB     | **        | The same                                                |
| 119 | 91      | 05.51   | 5  | RB     | Aur       | , very fine.                                            |
| 120 | ,,      | 06.23   | 3  | RB     | "         | - ,,                                                    |
| 121 | 94      | 07.04   | 5  | RB     | **        |                                                         |
| 122 | ,,      | 07.59   | 10 | RB, R  | Aur, Per  | -, , rays up-                                           |
|     |         |         |    |        |           | wards to sunlit atmosphere.                             |
| 123 | ,,      | 09.08   | 13 | RB     | **        | The same.                                               |
| 124 | Lö      | 12.36   | 6  | RB     |           | W. end of the same.                                     |
| 125 | N–Lö    | 14.41   | 14 | RB, R  | Aur       | The same with rays farther north.                       |
| 126 | ,,      | 15.37   | 12 | RB, R  | **        | The same with sunlit ray.                               |
| 127 | N       | 16.59   |    | RA     |           | ,                                                       |
| 128 | ,,      | 19.30   | 7  | RB     | ,,        | The same curtain.                                       |
| 130 | N-Lö-Li | 23.40   | 12 | R      | Gem       | Sunlit                                                  |
| 131 | 77      | 24.26   | 17 | R      | ,,        | ,                                                       |
| 132 | N-Lö    | 25.51   | 28 | R      | UMa       | Feeble red violet sunlit ray.                           |

## March 24-25, 1933.

Worked from  $20^{\rm h}-5^{\rm h}$ . Stations: N (Westin, myself), Lö (Herstad).

| 4         | N–Lö | 20.27.40 | 2        | RB           | Lyr           | Yellow green curtain.     |
|-----------|------|----------|----------|--------------|---------------|---------------------------|
| 7         | ,,   | 29.31    | <b>2</b> | RB           | Lyr, Cyg, Dra | The same, very luminous.  |
| 8         | ,,   | 29.52    | 2        | RB           | Lyr, Cyg      |                           |
| 9         | 97   | 31.57    | 10       | R            | Tau, Ori      | Sunlit rays.              |
| 10        | 27   | 32.27    | 15       | $\mathbf{R}$ | **            | <del></del> ,             |
| 11        | ,,   | 33.33    | 12       | R            | 77            | <del></del>               |
| 13        | N    | 39.25    | 9        | RB           | Cyg           |                           |
| 15        | N–Lö | 44.28    | 8        | R            | UMi           | Diffuse sunlit ray.       |
| 16        | **   | 45.15    | 18       | R            | Aur           | Sunlit.                   |
| 19        | N    | 49.37    | 19       | HA           | Cyg           |                           |
| 22        | N–Lö | 55.24    | 9        | RB           | Cas           | Very fine, partly sunlit. |
| 23        | **   | 55.56    | 7        | RB           | **            | The same.                 |
| 26        | ,,   | 57.52    | 2        | RB           | Cyg           | Very luminous curtain.    |
| 28        | ,,   | 59.31    | 8        | R            | Aur           | Summits of rays.          |
| 29        | **   | 21.00.16 | . 10     | R            | Aur, Tau      | <del>,</del>              |
| 30        | **   | 01.19    | 9        | R            | Aur           | Sunlit rays.              |
| 38        | **   | 14.09    | 5        | R            | Per, Cas      | Partly sunlit rays.       |
| 39        | ,,   | 15.17    | 10       | HA, R        | And           | <del>,</del>              |
| 41        | ,,   | 17.22    | 7        | RB           | Ari           | RB with rays.             |
| <b>42</b> | "    | 17.46    | 8        | RB, R        | Tri, Ari      | The same. Very fine.      |
| 43        | 77   | 18.28    | 4        | RB           | Landscape     | Very luminous.            |
| 47        | ,,   | 20.57    | 9        | R            | Tau, Per      | Sunlit.                   |
| 48        | ••   | 21.25    | 12       | $\mathbf{R}$ | "             | <del></del>               |
| 49        | "    | 22.18    | 15       | R            | ja .          | Partly sunlit.            |

Table 1 (continued).

| PX  | St          | MET      | Ex             | Fm     | Ref. Con. | Remarks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-----|-------------|----------|----------------|--------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 50  | N-Lö        | 21.22.53 | 16             | R      | Tau, Per  | Partly sunlit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 53  | -           | 25.08    | 13             | R      | Aur, Tau  | Sunlit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 55  | ,,          | 28.47    | 24             | R, HA  | Ari, Tri  | R sunlit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 56  | N, Lö       | 32.58    | 20             | HA     | And, Tri  | To summe.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 57  | N-Lö        | 33.47    | 21             | HA     | Ari, Tri  | Western end.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 58  | N, Lö       | 38.50    | 21             | НА     | Cyg       | Eastern end, yellowgreen. Ovit another violet diffuse arc.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 59  | N–Lö        | 39.51    | 20             | НА     | Tri, And  | Lower HA with very sharp low border.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 60  |             | 40.46    | 30             | HA     | Ari, Tri  | Western ends of both arcs.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 61  | Lö          | 41.57    | 26             | HA     | ('as      | Upper violet are.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 62  | •           | 42.51    | 27             | HA     | Cas       | The same, eastern end.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 63  | N-Lö        | 43.51    | 19             | HA     | Tri, And  | Lower yellow green arc.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 64  | •           | 44.41    | õ              | HA, RB | **        | RB under lower are.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| (5  |             | 45.13    | 3              | HA, RB |           | The same.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 66  |             | 45.47    | 9              | RB     |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 68  |             | 48.56    | 21             | HA     | Lyr       | Upper violet arc.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 69  |             | 51.31    | 10             | RB     | Tri, And  | Lower are has gone at 21.50.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 70  |             | 56.32    | 23             | R      | *         | Violet rays, partly sunlit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 71  | i           | 57.16    | 27             | R      | ••        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 72  | N           | 22.05.29 | 22             | HA     | Cyg       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 73  |             | 27.45    | 20             | HA     | Tri, And  | Two ares, the lower narrow.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 74  |             | 28.42    | 22             | HA     | Cyg       | The same, eastern end.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 75  |             | 29.35    | 19             | НА     | Tri, And  | The same, western end of upp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 76  |             | 30,55    | 20             | HA     | Cyg       | The same, eastern end of upp are.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 77  | N-Lö        | 31.47    | 21             | HA, R  | Tri, And  | The same with a short ray.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 78  | <del></del> | 32.43    | $oldsymbol{5}$ | RB     | ••        | The arc transformed in RB.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 79  | N           | 33.22    | 3              | RB     | **        | The same.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 80  | N-Lö        | 33.47    | 2              | RB     | •         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 81  |             | 34.10    | 3              | RB     | -         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 83  | **          | 39.22    | 5              | R      | Cyg       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 84  | 5*          | 47.04    | 9              | R      | **        | In shadow.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 89  | N           | 0.39.14  | 37             | HA     | Per, Tau  | Broad diffuse arc.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 90  | <del></del> | 40.44    | 33             | HA     | Tri, And  | The same.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 91  | !           | 42.25    | 35             | HA     | Peg, And  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 92  |             | 43.46    | 34             | HA     | Tri, And  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 96  | N-Lö        | 58.02    | 30             | нв -   | And, Per  | HB under the arc.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 98  |             | 1.07.33  | 16             | HA, R  | -         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 99  | N           | 09.23    | 19             | HA     | And       | The same No. 89.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 100 | •           | 12.25    | 19             | HA     | Aur, Tau  | Western end.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 101 | **          | 13.10    | 19             | HA     | And, Per  | Fine lower border,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 102 | **          | 13.57    | 24             | HA     | And       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 103 | ,,          | 26.37    | 20             | HA     | Aur, Tau  | The same arc.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 104 |             | 29.44    | 24             | HA     | And       | The same.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 105 | **          | 31.05    | 20             | HA     | Peg, And  | Eastern end.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 106 | 77          | 31.59    | 20             | HA     | Aur, Tau  | Western end.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 107 | Lö          | 32.45    | 20             | HA     | And, Per  | and the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of th |
| 108 | ,,          | 36.36    | 15             | HA     | ,,        | Since 1 <sup>h</sup> 34 <sup>m</sup> feeble pulsations of the arc.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 109 | ,,          | 39.56    | 10             | HB     | Aur, Tau  | HB bends in left end.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 110 | N           | 40.32    | 10             | HA     | Per, And  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Ш   | ļ <u>"</u>  | 41.01    | 6              | RA     | And       | Intensity increasing.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

Table 1 (continued).

| PN  | St         | MET     | $\mathbf{E}\mathbf{x}$ | Fm          | Ref. Con.     | Remarks                   |
|-----|------------|---------|------------------------|-------------|---------------|---------------------------|
| 116 | <br>  N–Lö | 2.52.16 | 20                     | PS          | Aur           | Pulsating patch.          |
| 120 | **         | 58.13   | 20                     | PS          | Per           |                           |
| 125 | N          | 3.10.38 |                        | HA          |               |                           |
| 126 | N-Lö       | 11.47   | 24                     | DS          | Per, And      |                           |
| 127 | N          | 13.51   | 20                     | HA          | Tau, Aur      | Pulsations over the arc.  |
| 128 | **         | 15.08   | 33                     | HA          | Gem           |                           |
| 129 |            | 21.30   | 32                     | HA          | Tau, Aur      | 3.16-3.18 flames upwards. |
| 130 | ** ,       | 25.24   | 32                     | HA          | Gem           | Western end.              |
| 131 | .,,        | 29.00   | 33                     | HA          | Tau, Aur      | The same arc.             |
| 135 | N–Lö       | 34.16   | 30                     | DS          | Gem           | Cloudlike.                |
| 136 | **         | 35.18   | 45                     | DS          | Cnc, Leo      |                           |
| 137 | 21         | 36.26   | 45                     | DS          | Gem, Cnc      |                           |
| 138 |            | 37.39   |                        | DS          |               |                           |
| 141 |            | 41.28   | 30                     | DS          |               |                           |
| 142 |            | 42.19   | 30                     | DS          | Gem           |                           |
| 143 | ,,         | 43.14   | 30                     | DS          |               | <del></del>               |
| 145 | .,         | 46.10   | 30                     | DS, PS      |               | Upper part pulsating.     |
| 147 | N          | 52.22   |                        | HA          |               |                           |
| 148 | ,,         | 53.04   |                        | $_{\rm HA}$ |               |                           |
| 149 | ,,         | 57.13   |                        | HA          |               |                           |
| 151 | N-Lö       | 4.04.04 | 34                     | PS, DS      | Cnc, Leo      | Now begins a fine series. |
| 152 |            | 04.53   | 30                     | PS, DS      | Gem           | Fine                      |
| 153 |            | 05.50   | 34                     | DS          | Cnc, Leo      |                           |
| 154 |            | 06.46   | 35                     | DS          | Cnc Gem       | <del></del>               |
| 155 | 25         | 07.53   | 34                     | DS          | Cnc, Gem      | et .                      |
| 156 | ,,         | 08.51   | 35                     | DS          | Cnc, Gem, Lyn | **                        |
| 157 | •,         | 10.43   | 24                     | R           | UMa           | Pulsating, sunlit ray.    |
| 158 |            | 12.00   | 21                     | R           |               | The same, colour violet.  |

April 15-16, 1933.

Worked from  $21^{\rm h}$  to  $3^{\rm h}$   $30^{\rm m}$ . Stations: C (Tveter, Anda, Sandøy, Johnsen), O (Bakøy),  $K_4$  (Odleiv Busengdal), Li (Høstmælingen), Lö (Herstad), Da (Hassel).

|     | 131 (110001110 | ciii.goii), 110 (110. | 1.50000, | (1,100,001) |                    |                     |
|-----|----------------|-----------------------|----------|-------------|--------------------|---------------------|
| 2   | Li-C           | 22.37.22              | 15       | R           | Stars not yet ider | 1-                  |
|     |                |                       |          |             | fied               |                     |
| 4   |                | 39.10                 | 18       | RB          | Per                |                     |
| 13  |                | 58.45                 | 22       | HA          | Ari, Tau, Per      |                     |
| 14  | ,,             | 59.53                 | 20       | HA          | Per                |                     |
| 15  | C              | 23.01.19              | 21       | HA          | Cyg, Lac           |                     |
| 16  | Li             | 02.48                 | 30       | HA          | $\mathbf{Cyg}$     | Eastern end of are. |
| 17  | C              | 04.51                 | 21       | HA          | Per, And           | In N.               |
| 12* | C-0-K          | 08.56                 | 30       | HA, R       | Cyg                |                     |
| 19  | Li-('          | 14.16                 | 22       | RA          | **                 | Eastern end.        |
| 13* | C              | 14.49                 | 31       | RA          |                    | —·                  |
| 20  | Li-C           | 15.08                 | 20       | RA          | And, Lac           |                     |
| 21  | C!             | 15.48                 | 20       | RA          | Cas, And           | In N.               |
| 14* | C              | 16.00                 | 30       | RA          | Cyg, Lac           |                     |
| 15* | $\mathbf{C}$   | 16.49                 | 30       | HA          | Cas, And           | In N.               |
| 23  | Li-('          | 17.11                 | 28       | HA          | Aur, Per           |                     |
| 25  | 11.            | 20.05                 | 26       | HA          | Cyg, Lac           | Triple arc.         |
| 26  | <b>,.</b>      | 20.50                 | 20       | HA          | Lac, And           | Now double.         |
| 22* | $\mathbf{C}$   | 26.31                 | 30       | HA          | Cas, And           | Near the horizon.   |
|     | Da             | 26.45                 | 180      | HA          | Cas, And           |                     |
| 32  | Li             | 29.18                 | 23       | HA          | Aur, Per           | Western end.        |
| 33  | Li             | 30.02                 | 27       | HA.         | Per                | In N.               |

Table 1 (continued).

| PN               | St                  | MET                                                              | Ex                                     | Fm                      | Ref. Con.                                                | Remarks                                                               |
|------------------|---------------------|------------------------------------------------------------------|----------------------------------------|-------------------------|----------------------------------------------------------|-----------------------------------------------------------------------|
| 34               | Li                  | 23.32.14                                                         | 32                                     | HA                      | And, Per                                                 | Eastern part.                                                         |
| 3 <del>5</del>   | Li-C                | 33.15                                                            | 31                                     | HA                      | Lac, And                                                 | end.                                                                  |
| 27*              | C-K                 | 37.19                                                            | 30                                     | R                       | Per                                                      | Sunlit.                                                               |
| 57-34*           | Li-O                | 56.15                                                            | 31                                     | HA                      | Per                                                      | Estative.                                                             |
| 38               | Li-C                | 57.23                                                            | 33                                     | HA                      | Per, And                                                 |                                                                       |
| 40               |                     | 0.00.59                                                          | 31                                     | RA                      | And                                                      | Eastern part                                                          |
| 41               | **                  | 02.24                                                            | 37                                     | RA                      | Lac, And                                                 |                                                                       |
| 42               | Li                  | 03.34                                                            | 34                                     | RA                      | Aur, Tau                                                 | Western part.                                                         |
| 43               |                     | 2.03.55                                                          | 57                                     | RA                      | Gem                                                      | —,— end.                                                              |
| 45               | Li-C                | 07.42                                                            | 32                                     | RA                      | Gem                                                      | Ray in RB.                                                            |
| 46               |                     | 08.42                                                            | 15                                     | RB                      | Per                                                      | Sunlit RB with limiting ray the right.                                |
| 37*              | C-O-K4              | 11.52                                                            | 15                                     | RB                      | Per                                                      |                                                                       |
| 48               | Li-C                | 13.07                                                            | 34                                     | RB                      | Per, And, Tri                                            |                                                                       |
| 38*              | ('-O-K <sub>4</sub> | 13.18                                                            | 12                                     | RB                      | Per, And                                                 |                                                                       |
| 49               | Li-('-Lö            | 14.42                                                            | 32                                     | RB                      | Per, And, Tri                                            |                                                                       |
| 50               | 13                  | 15.43                                                            | 32                                     | RB                      |                                                          |                                                                       |
| 51               |                     | 16.50                                                            | 37                                     | RB                      | And, Tri                                                 | AL                                                                    |
| 39*              | C-O-K <sub>1</sub>  | 18.03                                                            | 17                                     | RB                      | Per, And, Tri                                            | The time not quite exact.                                             |
| 52               | Li-('-Lö            | 18.07                                                            | 33                                     | RB                      | And, Tri                                                 |                                                                       |
| a<br>b<br>c<br>d | Worked from Lö      | m 23h to 2h. Sta<br>23.35.15<br>38.15<br>40.15<br>42.15<br>50.15 | 30<br>30<br>30<br>30<br>30<br>30<br>30 | erstad). HA HA HA HA RB | And, Lac<br>Tri, And<br>Per, Tri<br>Tau, Aur<br>Tau, Aur | Eastern end.  —.— part. In N. Western end. The western end bends nort |
|                  |                     |                                                                  |                                        |                         |                                                          | wards again.                                                          |
| g                |                     | 59.13                                                            | 25                                     | RB                      | Per                                                      |                                                                       |
| h                | ••                  | 0.01.13                                                          | 25                                     | RB                      | Tri, And.                                                | ~                                                                     |
| m                | -                   | 25.15                                                            | 30                                     | RB                      | Tri, And                                                 | Double arc.                                                           |
| n                |                     | 38.10                                                            | 20                                     | RB                      | And, Peg                                                 |                                                                       |
| O                |                     | 40.10                                                            | 20                                     | HA                      | Per, And                                                 | Fine arc again.                                                       |
| $\mathbf{p}$     | -                   | 42.10                                                            | 20                                     | HA                      | Tau, Aur                                                 | , W. end.                                                             |
| 8                |                     | 55.10                                                            | 20                                     | HA                      | Tau, Aur, Per                                            | W. part begins to bend.                                               |
| $\mathbf{t}$     | -                   | 57.08                                                            | 15                                     | HA                      | Per, And                                                 | Eastern Part.                                                         |
| v                |                     | 1.00.05                                                          | 10                                     | RB                      | Per, And, Tri                                            | About 0 <sup>h</sup> 59 <sup>m</sup> dissolved in ra                  |
| w.               | -                   | 03.08                                                            | 15                                     | RB                      | Per                                                      |                                                                       |
| Ŋ.               | -                   | 24.15                                                            | 30                                     | HA                      | Gem                                                      | Western end.                                                          |
| Z                |                     | 25.15                                                            | 30                                     | HA                      | Tau, Aur                                                 | The arc sinking towards t                                             |

April 21-22, 1933.

Worked from  $23^{\rm h}$  to  $3^{\rm h}$ , Stations C (Tveter, Anda), K<sub>4</sub> (Busengdal), T (Albert and Egil Tömte), Da (Hassel),

| 1 | C-K <sub>4</sub> -T | 0.41.55 | 35 | R | Per | Sunlit rays. |
|---|---------------------|---------|----|---|-----|--------------|
| 2 |                     | 44.47   | 49 | R | ••  | ,            |
| 3 |                     | 1.03.57 | 32 | R |     | ,,           |
| 4 |                     | 15.25   | 59 | R |     |              |

May 1-2, 1933.

Worked from 22h to 2h. Stations: C (Tveter, Anda, Sandøy, myself), O (Bakøy), K4 (Odleiv Busengdal), Li (Höstmælingen), Da (Hassel), Lö (Herstad).

| 4 | C-K <sub>4</sub>   | 22.13.15 | 10 | R | Gem, Cne, MMi | ]            |
|---|--------------------|----------|----|---|---------------|--------------|
| 7 | C-O-K <sub>4</sub> | 21.40    | 8  | R | Leo           | Sunlit rays. |

Table 1 (continued).

| PN              | St                        | мет      | Ex | Fm         | Ref. Con.     | Remarks                                                                         |
|-----------------|---------------------------|----------|----|------------|---------------|---------------------------------------------------------------------------------|
| 8               | ('-()-K <sub>4</sub>      | 22.22.48 | 9  | R          | Leo, UMa      | Sunlit rays                                                                     |
| 9               | C, K <sub>4</sub>         | 23.57    | 8  | C          | CVn, Com      |                                                                                 |
| 10              | C, K4                     | 24.27    | 8  | C          | .,            |                                                                                 |
| 11              | -,                        | 24.57    | 10 | Ċ          | <u></u>       |                                                                                 |
| 12              | O-K4                      | 25.49    | 9  | RB, R      | Per, Aur      | Sunlit.                                                                         |
| 13              | ('-0                      | 27.44    | 10 | R          | Leo           |                                                                                 |
| 14              | , ,,                      | 28.32    | 9  | R          | 17            | Partly sunlit.                                                                  |
| 15              | Ű, O, K₄                  | 29.49    | 8  | Č'         | CVn, UMa      |                                                                                 |
| 16              | ., 0,                     | 30.30    | 7  | l è        | 7,            |                                                                                 |
| 17              | C-O-K <sub>4</sub>        | 31.42    | 4  | RB         | Cyg           | Sunlit.                                                                         |
| 18              |                           | 32.09    | 5  | RB         | Per, And      | , Allier                                                                        |
| 23              | "<br>O-K <sub>4</sub>     | 37.42    | 9  | RB         | 101, 11111    | · "                                                                             |
| 29              | C-O-K <sub>4</sub>        | 43.28    | 14 | R          | Aur           | •                                                                               |
| $\frac{25}{32}$ | ('-()                     | 45.48    | 20 | R          | 23.01         | ·                                                                               |
| 33              |                           | 46.20    | 20 | C          | UMa, CVn      | •                                                                               |
|                 | "<br>C-O-K <sub>4</sub>   | 1 i      |    |            |               | •                                                                               |
| 35<br>          |                           | 48.31    | 18 | R          | Aur           |                                                                                 |
| 37              | C-0, K <sub>4</sub>       | 50.58    | 9  | C          | UMa, CVn      | **                                                                              |
| 41              | C-K <sub>4</sub>          | 54.40    | 9  | RB         | Per           | ,,                                                                              |
| 42              | C-O                       | 55.03    | 12 | RB         | Cyg           | 0 12                                                                            |
| 43              | C-O-K <sub>4</sub>        | 55.48    | 5  | D          | Per           | Sunlit western end, From here to<br>No. 52 a very fine series of the<br>same D. |
| 44              |                           | 56.04    | 5  | D          | Per, Aur      | Sunlit W. end.                                                                  |
| 23*             | Li                        | 56,05    | 4  | D          | Aur           |                                                                                 |
| 45              | $C-O-K_4$                 | 56.18    | 5  | D          | Per, Aur      |                                                                                 |
| 46              | ,,                        | 56.34    | 5  | D          | Per, Aur      |                                                                                 |
| 47              | , ,,                      | 56.58    | 19 | D          | Per           | 7                                                                               |
| 48              | ,,                        | 57.31    | 9  | D          | Per, Cam      |                                                                                 |
| 26*             | Li                        | 58.10    | 5  | D          | Aur           |                                                                                 |
| 49              | C-O-K <sub>4</sub>        | 58.13    | 14 | D          | Per           |                                                                                 |
| 50              | 1                         | 58.38    | 11 | D          | Aur, Cam, Per |                                                                                 |
| 51              | ,,                        | 59.00    | 6  | D          | Per, Cam      |                                                                                 |
| 51 - 52         | ***                       | 59.33    | 11 | D          |               | Eastern part of the same.                                                       |
| 55              | "<br>('-O                 | 23.01.16 |    | R          | Cyg<br>Aur    |                                                                                 |
|                 |                           |          | 14 | R          | ì             | Sunlit.                                                                         |
| 56<br>          | "<br>('-()-K <sub>1</sub> | 01.52    | 16 | R          | Aur, Cam      | The same.                                                                       |
| 57<br>50        | (-()-121                  | 02.29    | 8  | R          | Gem           | Sunlit.                                                                         |
| 58<br>50        | ,,                        | 02.54    | 10 |            | 0             | · ·                                                                             |
| 59<br>27        | "                         | 03.29    | 11 | R          | Gem           | <del>"</del>                                                                    |
| 61              |                           | 05.06    | 10 | D          | Cas           | "                                                                               |
| 62              | ••                        | 05.38    | 6  | R          | Cep, Lac, Cyg | , very fine bundle.                                                             |
| 63              |                           | 05.56    | 7  | R          | *             | The same, very fine.                                                            |
| 32*             | Li                        | 06.10    | 5  | D, R       | Cyg, Lac      | · · · · · · · · · · · · · · · · · · ·                                           |
| 64              | C-O-K <sub>4</sub>        | 06.15    | 9  | D, R       | Cep, Lac, Cyg | — <del></del>                                                                   |
| 33*             | Li                        | 06.36    | 6  | D, R       | And, Cyg, Lac |                                                                                 |
| 65              | C-O-K <sub>4</sub>        | 06.39    | 13 | D, R       | Cep, Cyg, Lac |                                                                                 |
| 66              | "                         | 07.03    | 12 | R          | Cep, Lac, Cyg | Sunlit.                                                                         |
| 67              | **                        | 08.12    | 9  | R          | Cas, Cyg, Lac | " , very fine.                                                                  |
| 68              | **                        | 08.36    | 8  | D, R       | ,,            | Partly sunlit.                                                                  |
| 37*             | Li                        | 08.50    | 5  | D, R       | ?             | The same D                                                                      |
| 69              | C-O-K <sub>4</sub>        | 08.58    | 12 | D, R       | Cas, And, Per |                                                                                 |
| 38*             | Li                        | 09.16    | 6  | D, R       | Cyg           |                                                                                 |
| 70              | C-O-K <sub>4</sub>        | 09.21    | 9  | D, R       | Cas, Lac, Per |                                                                                 |
| 72              | ,,                        | 10.13    | 8  | D          | Aur           | Western part of the same.                                                       |
| 40*             | l "la                     | 10.19    | 6  | $\perp$ DC | Cyg           | Eastern                                                                         |

Table 1 (continued).

| PN                  | St                       | MET                   | $\mathbf{E}\mathbf{x}$ | Fm            | Ref. Con.            | Remarks                  |
|---------------------|--------------------------|-----------------------|------------------------|---------------|----------------------|--------------------------|
| 73                  | C-O-K <sub>4</sub>       | 23.11.41              | 11                     | D, R          | Cyg, Lac, And        | Eastern part of the same |
| 41*                 | Li Li                    | 11.43                 | 6                      | D, Te         | Cyg, Date, Miki      | Lastern part of the same |
| 42*                 | **                       | 12.03                 | 6                      | D             | 0,18                 |                          |
| 74                  | C-O-K <sub>4</sub>       | 12.11                 | 12                     | D             | Cyg, Lac, And        |                          |
| 44*                 | Li                       | 19.15                 | 28                     | $\frac{1}{D}$ | Cyg, Lao, And        |                          |
| 76                  | 0-K <sub>4</sub>         | 20.42                 | 13                     | R             | Gem, Aur             | Sunlit                   |
| 77                  | C-O-K <sub>4</sub>       | 21.24                 | 11                     | R             | "                    |                          |
| 45*                 | Li                       | 21.31                 | 18                     | D             | Cyg                  | Eastern part.            |
| 78 ,                | C-K <sub>4</sub>         | 22.06                 | 13                     | D             | Aur, Cam             | Feeble.                  |
| 46*                 | Li Li                    | 22.11                 | 14                     | D             | Cyg                  | Eastern part.            |
| 47*                 |                          | 23.29                 | 15                     | D             | J Cyg                | Dastern part.            |
| 80                  | <br>C, O, K <sub>4</sub> | 24.00                 | 13                     | HA            | Cas                  |                          |
| 48*                 | Li                       | 24.11                 | 15                     | HA            | Cyg                  |                          |
| 81                  | C-O-K <sub>4</sub>       | 24.56                 | 14                     | $\frac{1}{D}$ | Per                  | Feeble.                  |
| 82                  | 0-0-134                  | 25.27                 | 18                     | D             |                      |                          |
| 86                  | <br>C-K <sub>4</sub>     | 28.20                 | 17                     | R             |                      | **                       |
| 87                  |                          | 28.51                 | 14                     | R             | 1                    | Sunlit.                  |
| 88                  | 0-K <sub>4</sub>         | 29.43                 | 12                     | R             | Cas, Per, And        | Sunit.                   |
| 91                  | C-O-K <sub>4</sub>       | 38.59                 | 21                     | R             | Per, Cas             | 77                       |
| 92                  | _                        | 40.39                 | 26                     | R             |                      | 71                       |
| 93                  | "                        | 41.55                 | 20                     | R             | **                   | <del></del>              |
| 98                  | **                       | 49.20                 | $\frac{20}{24}$        | R             | Per, Cas, And        | <del>"</del>             |
| 02                  | "<br>O-K <sub>4</sub>    | 0.14.15               | 9                      |               | Gem                  | More luminous.           |
| 3**                 | Lö                       | 17.35                 | ,10                    | RB            | Jupiter              |                          |
| 07                  | 0                        | 17.35                 | 12                     | RB            | _                    | Fine bands.              |
| 09                  | K <sub>4</sub>           | 19.43                 | 16                     | HB            | Aur<br>Aur           |                          |
| 1**                 | Lö                       | 20.10                 |                        | 1             | And                  | Tractom want             |
| 11                  | C-O-K <sub>4</sub>       | $\frac{20.10}{21.35}$ | 20<br>11               | RB<br>R       |                      | Eastern part.            |
| ***                 | Da                       | 21.35                 | 20                     | НА, НВ        | UMa, Lyn<br>Gem, Aur |                          |
| ***                 |                          | 23.35                 | $\frac{20}{20}$        |               | Aur, Per             | The same as 1***.        |
| 14                  |                          | 24.55                 | $\frac{20}{14}$        | R "           | Gem                  | The same as 1            |
| ***                 | Da Da                    | 25.20                 | 30                     | HA, HB        | Aur, Per, Cas        |                          |
| 3**                 | Lö                       | 27.08                 | 30<br>15               | RB            | And And              |                          |
| ,<br>19             | O-K <sub>4</sub>         | 40.30                 | 9                      | R             | UMa                  |                          |
| 1 . <i>,,</i><br>1* | Li                       | 42.08                 | 15                     | HA            | Cas                  |                          |
| ·<br>)**            | Lö                       | 54.10                 | 20                     | HB            | UMa                  |                          |
| 3**                 |                          | 55.10                 | 20                     | нв            |                      |                          |
| 21                  | C-O                      | 55.31                 | $\frac{20}{21}$        | R             | UMa, Cas, Lyn        | Sunlit.                  |
| 22                  | C                        | 56.15                 | 20                     | R             | Oma, Cas, Lyn        | The same.                |
| 5*                  | Li                       | 56.47                 | 26                     | R             | UMa                  | Perhaps the same?        |
| ,<br>29             | C-K <sub>4</sub>         | 1.06.54               | 26<br>16               | R             | UMi                  | Feeble ray.              |
| 32                  | -                        | 11.01                 | 14                     | R             | Aur, Cam             | Sunlit.                  |
| )**<br>]**          | Lö                       | 12.10                 | 20                     | R             | Jupiter              | Sumu.                    |
| 33                  | C-K <sub>4</sub>         | 12.10                 | 28                     | R             | And, Lac, Cyg        |                          |
| 34                  |                          | 13.01                 | 20                     | R             | Cyg, Cep             | -                        |
| 35                  | **                       | 13.47                 | 7                      | R             | Aur, Cam             |                          |
| );;<br>7**          | <br>Lö                   | 25.08                 | 15                     | RB            | Jupiter              | 27                       |
| / ***<br>***        | Da                       | 25.08 $25.20$         | 10                     | RB            |                      |                          |
| 3**                 | Lö                       |                       |                        |               | Gem, Aur             | Tine west-in             |
| )**                 |                          | 26.05<br>27.05        | 10                     | RB            | Jupiter, Vir         | Fine curtain.            |
| ***                 | Da                       | 27.05                 | 10                     | RB            | Boo                  | 99                       |
| }**                 |                          | 32.20                 | 10                     | D             | Cas                  |                          |
| 5**                 | Lö                       | 37.05                 | 10                     | RB            | Boo                  |                          |

 ${\it Table~2}.$  Height and situation of measured Aurora points.

| No       | Pt      | MET        | St  | F     | s       | $\epsilon_2$ | p    | h        | a      | D           | Н      | Remarks                      | 0    |
|----------|---------|------------|-----|-------|---------|--------------|------|----------|--------|-------------|--------|------------------------------|------|
| <br>lugi | ıst 29- | -30, 1932. |     |       | · · · · | <u> </u>     |      | <u> </u> | ·      |             |        |                              |      |
| 3        | 1       | 22.08.30   | T   | HA    | 1       | 1 1          |      | 5,8      | 144,0  | 664         | İ      | H supposed == 100 km         | 24-2 |
|          | 2       | _          |     | -     |         |              |      | 6.3      | 148.0  | 617         |        | _                            | _    |
|          | 3       | -          | -   | _     | -       |              |      | 7.0      | 154.0  | 585         |        | _                            | _    |
|          | 4       | ~~*        | -   | -     | -       |              |      | 7.6      | 162.0  | 558         |        | _                            | _    |
|          | 5       |            | -   | _     | -       |              |      | 7.7      | 173.0  | 553         |        | ****                         | -    |
|          | 6       | _          | -   |       |         |              |      | 7.5      | -178.7 | 563         | ĺ      |                              | -    |
| 4        | 1       | 22.11.30   | T   |       | -       |              |      | 7.5      | 158.0  | 564         |        |                              | -    |
|          | 2       | _          |     | _     | _       |              |      | 7.6      | 166.0  | 558         |        | _                            | -    |
|          | 3       | Name       | _   | •     |         |              |      | 7.5      | 174.0  | 564         |        | -                            | -    |
|          | 4       | _          |     | -     | -       |              |      | 7.1      | 180.0  | 581         |        | _                            | -    |
|          | 5       | _          |     | -     | -       |              |      | 6.7      | -174.9 | 599         | l<br>i | _                            | -    |
| 9        | 1       | 22.25.00   | T   | -     | _       |              |      | 7.1      | 142.0  | 581         |        | _                            | _    |
|          | 2       |            | -   | -     | -       |              |      | 7.9      | 147.0  | 544         |        | _                            | -    |
|          | 3       | _          | -   | -     | -       |              |      | 8.5      | 154.0  | 519         | }      | _                            |      |
|          | 4       | -          | _   |       | _       |              |      | 9.0      | 162.0  | 500         |        | _                            | -    |
|          | 5       | _          | _   | -     | _       |              |      | 9.0      | 169.0  | 500         |        | _                            | _    |
|          | 6       |            |     | -     | _       |              |      | 8.7      | 176.6  | 512         |        | _                            | -    |
| 0        | 1       | 22.27.00   | Т   | -     | _       |              |      | 8.9      | 158.0  | 503         |        | _                            | -    |
|          | 2       |            | -   | -     | _       |              |      | 8.9      | 164.0  | 503         |        | _                            | _    |
|          | 3       | ***        | -   | -     | ~       |              |      | 8.4      | 174.0  | 523         |        | _                            | -    |
|          | 4       |            |     | _     | -       |              |      | 7.1      | -176.3 | 581         |        | _                            | -    |
| 4        | 1       | 22.38.00   | О   | -     | -       |              |      | 7.2      | 160.0  | 570         |        |                              | -    |
|          | 2       | -          | -   | -     | -       |              |      | 7.4      | 166.0  | 560         |        |                              | -    |
|          | 3       | -          | _   | -     | -       |              |      | 7.3      | 174.0  | 573         |        | _                            |      |
|          | 4       | -          |     | -     | -       |              |      | 6.8      | -178.0 | 594         |        | _                            | -    |
|          | 5       | _          | _   |       | _       |              |      | 6.1      | -170.0 | 629         |        | and a                        | _    |
|          | 6       |            |     | -     | -       |              |      | 5.7      | 166.0  | 651         |        | _                            | -    |
| 5        | 1       | 22.40.00   | T   | -     | -       | -            |      | 7.3      | 150.0  | 578         |        | _                            | -    |
|          | 2       | _          |     | -     | -       |              |      | 7.8      | 156.0  | 549         |        | _                            | -    |
|          | 3       | ₩          | _   | -     |         |              |      | 8.1      | 164.0  | 536         |        | _                            | -    |
|          | 4       | -          | -   | -     | -       |              |      | 7.8      | 174.0  | 550         |        | _                            | _    |
|          | 5       |            | _   | -     | -       |              |      | 7.4      | -178.0 | 567         |        | _                            | -    |
|          | 6       | _          | _   | -     | -       | ì            |      | 7.1      | -174.0 | 581         |        | 2                            | -    |
| 1        | 1       | 22.47.59   | T   | -     | -       |              |      | 8.05     | 156.0  | 538         |        | -                            | -    |
|          | 2       |            | _   | -     | -       |              |      | 8.0      | 162.0  | <b>54</b> 0 |        | _                            | -    |
| 1        | 3       | -          | _   |       | -       |              |      | 7.7      | 170.0  | 553         |        | _                            | -    |
| -        | 4       | ****       | ~   | -     |         | !            |      | 7.2      | 178.0  | 576         |        | -                            | -    |
|          | 5       | -          | _   | -     |         |              |      | 6.7      | -176.0 | 600         |        | -                            | -    |
| 0        | 1       | 22.46.57   | T-O | R     | m       | -44.7        | 4.7  | 18.0     | 152.7  | 589         | 226    | The O-picture diffuse        | -    |
|          | 2       | -          | _   |       | m       | -46.3        | 4.6  | 10.2     | 152.8  | 613         | 143    |                              | -    |
|          | 3       | -          |     | -     | h       |              |      | 20.8     | 152.6  | 581         | 257    | 1-4 belong to one ray        |      |
|          | 4       |            | -   | _     | 1       |              |      | 8.3      | 152.8  | 619         | 123    |                              | -    |
| $^2$     | 1       | 22.49.02   | T   | HA    | -       |              |      | 8.1      | 168.0  | 536         |        | H supposed = 100 km          | -    |
|          | 2       | -          | _   | -     | _       |              |      | 8.0      | 174.0  | 540         |        |                              | _    |
|          | 3       |            |     | -     | _       |              |      | 7.7      | 180.0  | 553         |        |                              |      |
|          | 4       | -          |     |       | -       |              |      | 7.3      | -174.0 | 572         |        | -                            | _    |
| 6        | 1       | 22.54.50   | Т-О | R     | h'      | -10.9        | 4.8  | 17.1     | 116.7  | 790         | 308    | Good set of pictures         | 24-2 |
|          | 2       | -          |     |       | m       | -12.3        | 4.9  | 11.4     | 117.9  | 802         | 220    |                              | -    |
| İ        | 3       | -          | -   | _     | h′      | - 7.8        | 4.4  | 16.4     | 113.8  | 869         | 334    | 1, 2, 6, 7 belong to one ray | _    |
|          | 4       | _          | _   | _     | m       | - 8.6        | 4.4  | 12.7     | 114.6  | 891         | 275    | 3, 4, 5, 8, 9 to another ray | _    |
|          | 5       | -          | -   | -     | l'      | - 9.7        | 4.45 | 7.1      | 115.7  | 906         | 184    |                              | _    |
| 1        | 6       | <b>⊸</b> 1 | -   | ا ـــ | h       | 1 1          | l    | 18.7     | 116.4  | 787         | 332    |                              | _    |

Table 2 (continued).

| No  | Pt                                     | MET      | St . | F | s      | $\epsilon_2$  | p<br>†        | h                                           | a             | D          | Н                 | Remarks                              | 0     |
|-----|----------------------------------------|----------|------|---|--------|---------------|---------------|---------------------------------------------|---------------|------------|-------------------|--------------------------------------|-------|
|     | 7                                      | 22.54.50 | T-O  | R | 1      |               |               | 6.7                                         | 118.8         | 811        | 152               |                                      | 24-2  |
|     | 8                                      | _        | _    |   | h      |               |               | 17.9                                        | 113.5         | 874        | 364               |                                      |       |
|     | 9                                      |          | -    | _ | 1      |               |               | 6.2                                         | 115.9         | 908        | 172               |                                      | _     |
| 27  | 1                                      | 22.55.56 | TC   | R | m      | 0.3           | 3.15          | 16.7                                        | 111.2         | 779        | 295               | Very diffuse set.<br>Small base line | 24-20 |
|     | 2                                      | _        | -    | - | m      | — 1.2         | 3.15          | 12.7                                        | 112.2         | 799        | 240               |                                      | -     |
|     | 3                                      |          | -    | - | 1'     | 2.2           | 3.15          | 8.5                                         | 113.2         | 817        | 180               | 1-5 belong to the same ray           | _     |
|     | 4                                      | -        | -    | _ | 1      |               |               | 7.3                                         | 113.6         | 823        | 163               |                                      | _     |
|     | 5                                      | _        | -    | - | h      |               |               | 20.8                                        | 110.3         | 762        | 355               | _                                    | _     |
| 29  | 1                                      | 22.58.04 | Т-О  | R | h'     | _ 2.3         | 5.05          | 17.6                                        | 107.3         | 760        | 300               | The ray (1, 2) gives the best result | 25-20 |
|     | 2                                      |          | -    | - | m      | - 4.0         | 5.2           | 10.7                                        | 109.1         | 775        | 200               |                                      | -     |
|     | 3                                      |          | _    | - | h'     | - 2.0         | 5.0           | 16.5                                        | 107.0         | 777        | 292               | 1, 2, 5, 6 belong to one ray         | -     |
|     | 4                                      |          | _    | - | 1'     | - 3.3         | 5.2           | 10.8                                        | 108.4         | 775        | 202               | 3, 4, 7, 8 to another                | _     |
|     | 5                                      | _        | _    | _ | h      |               |               | 18.7                                        | 107.0         | 758        | 318               |                                      |       |
|     | 6                                      |          | _    | _ | l      |               |               | 6.9                                         | 110.1         | 784        | 147               |                                      | -     |
|     | 7                                      |          | -    | - | h      |               |               | 17.3                                        | 106.8         | 775        | 303               |                                      | -     |
|     | 8                                      | -        | -    | _ | 1      |               | 1             | 8.7                                         | 108.9         | 790        | 175               |                                      | -     |
| 30  | 1                                      | 22.59.04 | T-O  | R | m      | - 2.2         | 4.5           | 16.7                                        | 107.9         | 857        | 333               | The O-picture diffuse and            | 1     |
|     | 2                                      | -        | _    | _ | l'     | - 3.4         | 4.3           | 10.8                                        | 109.4         | 926        | 255               | measurements not so good             | -     |
|     | 3                                      | -        | _    | _ | m      | 0.9           | 4.7           | 15.6                                        | 104.5         | 829        | 300               |                                      | -     |
|     | 4                                      | -        | _    | - | 1'     | 0.1           | 4.5           | 10.7                                        | 105.7         | 894        | 241               |                                      | -     |
|     | 5                                      | _        |      | _ | h      |               |               | 20.7                                        | 106.8         |            | 385               | 1, 2, 5, 6 belong to one ray         | -     |
|     | 6                                      | _        |      |   | 1      |               | -             | 9.9                                         | 109.6         |            | 244               | 3, 4, 7, 8 to another                | -     |
|     | 7                                      | -        | _    | - | h      |               |               | 19.3                                        | 103.7         |            | 344               |                                      | -     |
| _   | 8                                      | _        | _    |   | 1      |               |               | 9.5                                         | 106.0         |            | 229               | m 0 11                               | -     |
| 31  | 1                                      | 23.02.13 | T-0  | R | m      | -12.9         | 4.7           | 16.7                                        | 118.7         | 802        | 307               | The O-picture                        | 23-20 |
|     | 2                                      | -        |      | - | m      | -13.9         | 4.6           | 11.8                                        | 119.7         | 842        | 241               | not so good.                         | -     |
|     | 3                                      |          | -    | - | 1      | -15.2         | 4.4           | 6.7                                         | 121.2         | 899        | $\frac{175}{323}$ | 1, 2, 3, 7 belong to one ray         |       |
|     | 4                                      | _        | -    | - | m      | -9.3          | $5.4 \\ 5.35$ | $\begin{array}{c} 21.5 \\ 18.8 \end{array}$ | 114.3 $114.9$ | 685<br>706 | 293               | 4, 6, 8 to another                   | _     |
|     | 5<br>6                                 |          | _    | _ | m<br>l | -9.9 $-10.8$  | 5.3           | 15.4                                        | 115.8         | 727        | 252               |                                      |       |
|     | 7                                      |          | _    | _ | h      | 10.8          | 9.9           | 21.6                                        | 117.9         | 782        | 379               |                                      | _     |
|     | 8                                      | _        |      | - | h      |               |               | $\frac{21.0}{24.0}$                         | 114.0         | 692        | 365               |                                      |       |
| 31  | 1                                      | -        | Li-O |   | m      | 34.1          | 9.5           | 18.8                                        | 99.7          | 701        | 301               | The Li picture out of focus          | 25-20 |
| 91  | $\begin{vmatrix} 1 \\ 2 \end{vmatrix}$ | -        | -    | _ | m      | -35.5         | 9.2           | 13.5                                        | 100.6         | 760        | 236               | Points 1, 2, 3 the same as before    | _     |
|     | 3                                      | _        | _    | _ | 1      | -37.0         | 9.1           | 8.1                                         | 101.9         | 777        | 163               |                                      |       |
| 32  | 1                                      | 23.03.17 | T-O  | R | h'     | -11.9         | 5.3           | 21.7                                        | 117.3         | 691        | 329               | The right border gave the            | 24-2  |
| .,_ | $\frac{1}{2}$                          |          | _    | _ | m      | -13.4         | 5.4           | 16.6                                        | 118.6         | 703        | 260               | best results                         | _     |
|     | 3                                      |          | _    | _ | 1      | -14.5         | 5.4           | 12.7                                        | 119.6         | 718        | 209               | 1, 2, 3, 7 belong to one ray         | -     |
|     | 4                                      | _        |      | _ | h'     | 11.5          | 5.0           | 16.7                                        | 117.0         | 761        | 287               | 4, 6, 8, 9 to another                | _     |
|     | 5                                      | _        | _    | _ | m      | -12.3         | 4.9           | 12.7                                        | 117.9         | 795        | 238               |                                      | _     |
|     | 6                                      | Noon     | _    | _ | 1'     | 13.3          | 4.6           | 8.1                                         | 119.1         | 863        | 188               |                                      | _     |
|     | 8                                      | _        | -    | - | h      |               |               |                                             |               |            | 305               |                                      | -     |
|     | 9                                      |          | _    | _ | 1      |               |               |                                             |               |            | 177               |                                      | -     |
|     | 4                                      |          | Li-O | R | m      | -32.4         | 9.9           | 18.4                                        | 111.4         | 710        | 289               | Points 4, 5, 6 the same as           | 24-2  |
|     | 5                                      | -        | -    |   | m      | 33.7          | 9.7           | 14.1                                        | 112.4         | 735        | 236               | before                               | _     |
|     | 6                                      | -        | -    | - | 1'     | -35.0         | 9.4           | 9.3                                         | 113.7         | 768        | 177               |                                      | -     |
| 33  | 1                                      | 23.04.32 | T-O  | R | h      | - 9.1         | 5.1           | 24.3                                        | 114.5         | 703        | 378               | Good set                             | 25-2  |
|     | 2                                      | _        |      | - | m      | -10.9         | 5.3           | 18.5                                        | 116.1         | 713        | 291               |                                      | -     |
|     | 3                                      | _        | -    | _ | m      | -12.7         | 5.6           | 12.7                                        | 117.5         | 700        | 202               | 1-4 belong to one ray                | -     |
|     | 4                                      | _        | -    | - | 1      |               |               | 9.9                                         | 118.2         | 727        | 171               |                                      | -     |
| 34  | 1                                      | 23.05.40 | T-O  | R | h      | <b>—4.</b> 75 | 4.55          |                                             | 110.4         | 795        | 428               | Diffuse ray, difficult to            | 24-2  |
|     | 2                                      | _        | l    | _ | m      | - 6.0         | 4.7           | 18.7                                        | 111.5         | 806        | 342               | measure                              | -     |

Table 2 (continued).

| No        | Pt                                                     | MET                   | St     | F            | s   | $\epsilon_2$ | p    | h         | a                         | D           | Н   | Remarks               | 0     |
|-----------|--------------------------------------------------------|-----------------------|--------|--------------|-----|--------------|------|-----------|---------------------------|-------------|-----|-----------------------|-------|
| 34        | 3                                                      | 23.05.40              | Т-О    | R            | m   | <b>—</b> 7.5 | 4.7  | 12.6      | 112.9                     | 838         | 253 |                       | 24-20 |
|           | 4                                                      |                       | -      | _            | 1   | - 8.7        | 4.6  | 7.8       | 114.2                     | 875         | 187 | 1-4 belong to one ray | _     |
| 35        | 1                                                      | 23.06.43              | T-O    | R            | m   | - 3.6        | 4.8  | 19.1      | 108.9                     | 788         | 340 | Very diffuse ray      | 24-20 |
|           | 2                                                      |                       | _      | -            | m   | <b>— 4.5</b> | 4.6  | 14.6      | 110.2                     | 851         | 292 | 1-5 belong to one ray | _     |
|           | 3                                                      | _                     | _      | -            | m   | - 5.5        | 4.5  | 10.7      | 111.4                     | 888         | 240 |                       | _     |
|           | 4                                                      | _                     |        | -            | 1   | - 6.3        | 4.3  | 8.1       | 112.3                     | 937         | 211 |                       | _     |
|           | 5                                                      | _                     |        |              | h   |              |      |           |                           |             | 390 | Î.                    | _     |
| 36        | 1                                                      | 23.07.42              | T-0    | R            | h'  | 1.8          | 4.8  | 18.7      | 107.0                     | 792         | 335 | Diffuse ray           | 24-20 |
|           | 2                                                      | -                     | _      |              | m   | - 2.3        | 4.8  | 15.7      | 107.6                     | 809         | 293 | 1–5 belong to one ray | _     |
|           | 3                                                      | -                     | _      |              | m   | 2.8          | 4.7  | 12.7      | 108.3                     | 844         | 257 | ,                     | _     |
|           | 4                                                      | -                     | _      | _            | 1 1 | - 3.9        | 4.6  | 9.2       | 109.6                     | 878         | 210 |                       | _     |
|           | 5                                                      | -                     |        | ļ <u> </u>   | h   |              |      | 19.5      | 106.9                     | 805         | 356 |                       | _     |
| 38        | 1                                                      | 23.11.17              | _      |              | h   |              |      | 25.3      | 116.0                     | 605         | 332 | Diffuse ray           | 25-26 |
|           | 2                                                      | -                     |        | _            | m   | -11.5        | 6.0  | 20.6      | 116.9                     | 621         | 275 | 1-5 belong to one ray |       |
| 38        | 3                                                      | _                     | T-0    | $\mathbf{R}$ | m   | -12.4        | 5.9  | 16.7      | 117.7                     | 648         | 236 |                       | 25-26 |
|           | 4                                                      |                       | _      | _            | m   | 13.3         | 6.0  | 12.6      | 118.7                     | 654         | 185 |                       |       |
|           | 5                                                      | _                     |        | _            | 1   |              |      | 10.3      | 119.9                     | 666         | 160 |                       | _     |
| 38        | 2                                                      | _                     | Li-O   | _            | m   | 32.0         | 11.0 | 23.3      | 110.2                     | 619         | 312 |                       | 24-26 |
|           | 3                                                      |                       |        |              | m   | -33.4        | 10.9 | 19.2      | 111.1                     | 637         | 264 |                       | 24-20 |
|           | 4                                                      | _                     | _      |              | 1'  | -34.7        | 10.8 | 14.2      | 112.1                     | 654         | 212 |                       | _     |
| Sonta     | onhor                                                  | 23-24, 193            | .,     |              |     |              |      |           |                           |             |     |                       |       |
| 1         | 1 1                                                    | 21.27.36              | 0      | HA           | 1   | 1 1          | 1    | 10.6      | 168.0                     | 445         | ,   | U gupramal 100 km     | 1     |
|           | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$ | 21.27.90<br>-         | _      |              |     |              |      | 10.3      | 176.0                     | 455         |     | H  supposed = 100  km |       |
|           | 3                                                      | _                     | _      | _            |     |              |      | 9.4       |                           | 1           |     | _                     | 1 .   |
|           | 4                                                      | _                     | _      | nave         |     |              |      |           | -176.0                    | 486         |     | _                     |       |
|           | 5                                                      | _                     | _      |              |     |              | 1    | 8.3       | -169.0                    | 527         |     | <del></del>           |       |
| 5         | 2                                                      | 21.32.25              | 0      | HA           |     |              |      | 7.5       | 163.0                     | 563         |     | _                     |       |
| •,        | 3                                                      | 21.02.20              | _      |              | _   |              |      | 8.6       | 175.0                     | 515         |     | ******                | İ     |
|           | 4                                                      | _                     |        | -            | _   |              |      | 8.4       | -178.0                    | 523         |     | _                     |       |
|           | 5                                                      |                       | _      | _            | -   |              |      | 7.6 $6.5$ | $-17\tilde{0}.0$ $-162.0$ | 558<br>608  |     |                       |       |
| 2.5       | 7 - 40                                                 | 40 4000               |        |              |     |              |      |           |                           |             |     |                       |       |
| Mare<br>1 | ch 18-<br>  1                                          | -19, 1933. $22.35.55$ | N      | HA           | 1   | 1 1          |      | 4.0       | 153.0                     | 755         | 1   | H supposed == 100 km  | ı     |
| _         | 2                                                      | _                     | _      | _            | _   |              |      | 6.6       | 168.0                     | 605         |     | 11 supposed == 100 km |       |
|           | 3                                                      | _                     | _      | _            | _   |              |      | 8.5       | 176.0                     | 520         |     | _                     |       |
| 2         | 1                                                      | 22.39.00              | N      | НА           | _   |              |      | 9.3       | 170.0                     | 490         |     |                       |       |
| -         | 2                                                      | _                     |        |              | _   |              |      | 8.7       | 158.0                     | 513         |     |                       |       |
|           | 3                                                      | ***                   | _      | _            |     |              |      | 8.2       | 148.0                     | 532         |     | _                     |       |
| 3         | 1                                                      | 22.42.00              | N      | HA           |     |              |      | 5.3       | <b>—153.</b> 0            | 673         |     |                       |       |
| .,        | $\begin{array}{ c c } \hline 2 \end{array}$            |                       | -11    |              |     |              |      | 7.5       | -166.0                    | 562         |     | <del></del>           |       |
|           | 3                                                      | _                     |        | _            | -   |              |      | 9.6       | —100.0<br>—178.0          | 479         |     |                       |       |
| 5         | 1                                                      | 22.49.00              | N      | HA           | _   |              |      | 10.2      |                           |             |     | _                     |       |
| J         | $\begin{vmatrix} 1 \\ 2 \end{vmatrix}$                 | 22.49.00              |        | TA.          |     |              |      | 10.2      | 174.0                     | 458         |     | _                     | ļ     |
|           | 3                                                      | _                     |        | _            | _   |              |      |           | 162.0                     | 453         |     | _                     |       |
| 7         | 1                                                      | $\frac{-}{22.55.30}$  | <br>N' | i            | _   |              |      | 10.3      | 148.0                     | 455         |     |                       |       |
| '         | 1 1                                                    | 44.99.90              | N      | HA           |     |              |      | 8.0       | 152.0                     | 540         |     | _                     |       |
|           | 2                                                      | _                     | -      | _            | _   |              |      | 10.0      | -162.0                    | 465         |     | -                     | ĺ     |
| 10        | 3                                                      | 99 09 90              | <br>N  | Tra          | -   |              | •    | 11.7      | -172.0                    | 414         |     | _                     |       |
| 10        | 1                                                      | 23.03.30              | N      | HA           | -   |              |      | 7.9       | -146.0                    | 544         |     | _                     | 1     |
|           | $\begin{vmatrix} 2 \\ 0 \end{vmatrix}$                 | _                     | _      | -            | -   |              |      | 10.4      | -156.0                    | <b>4</b> 53 |     | -                     |       |
|           | 3                                                      | -                     |        | -            | -   |              |      | 12.6      | -168.0                    | 390         |     |                       | 1     |
| 11        | I                                                      | 23.06.41              | N      | HA           | -   |              |      | 13.6      | 168.0                     | 365         | ŀ   |                       | 1     |
|           | 2                                                      |                       | _      |              | -   |              |      | 14.1      | 158.0                     | 355         |     | _                     |       |
|           | 3                                                      |                       | _      | _            | -   |              |      | 14.1      | 146.0                     | 355         | ļ   | -                     |       |
| 15        | 1 1                                                    | 23.13.05              | N      | RA           | _   | 1 ]          | ļ    | 10.6      | 144.0                     | 446         |     | _                     | 1     |

Table 2 (continued).

| No   | Pt                                     | MET      | St    | F        | s        | $\epsilon_2$                                    | p                 | h                                            | a             | D           | Н   | Remarks                    | 0          |
|------|----------------------------------------|----------|-------|----------|----------|-------------------------------------------------|-------------------|----------------------------------------------|---------------|-------------|-----|----------------------------|------------|
|      | 2                                      | 23.13.05 | N     | RA       | 1        |                                                 |                   | 14.3                                         | -156.0        | 350         |     | H supposed 100 km          |            |
|      | 3                                      |          | _     |          | _        |                                                 |                   | 16.7                                         | -170.0        | 305         |     | _                          |            |
| 17   | 1                                      | 23.14.31 | N     | RA       | -        | 1                                               |                   | 13.6                                         | 148.0         | 365         |     |                            |            |
|      | 2                                      | _        |       | _        |          |                                                 |                   | 15.4                                         | -158.0        | 327         |     |                            |            |
|      | 3                                      |          | _     | _        | _        |                                                 |                   | 17.0                                         | 170.0         | 300         |     |                            |            |
| 18   | 1                                      | 23.15.04 | N     | RA       | _        |                                                 |                   | 14.8                                         | 151.0         | 340         |     |                            |            |
|      | 2                                      | _        | _     |          | _        |                                                 |                   | 15.8                                         | 155.0         | 320         |     |                            |            |
|      | 3                                      | _        | -     |          | _        |                                                 |                   | 16.2                                         | -160.0        | 312         |     |                            |            |
|      | 4                                      |          | _     | _        | _        |                                                 |                   | 16.3                                         | 164.0         | 310         |     | _                          |            |
|      | 5                                      | _        |       |          |          |                                                 |                   | 16.8                                         | -169.0        | 303         |     | _                          |            |
| 20   | 1                                      | 23.16.41 | N-Lo  | RA       | _        | -57.6                                           | 3.6               | 16.6                                         | 163.8         | 388         | 130 | 1–2 along one ray          | 242        |
|      | 2                                      | -        |       | _        | m        | 56.5                                            | 3.7               | 20.5                                         | 163.3         | 377         | 156 | 3–4 along another          | 24-2       |
|      | 3                                      | _        | _     | _        | _        | -70.0                                           | 2.1               | 12.2                                         | -149.8        | 434         | 110 | o I would without          |            |
|      | 4                                      |          | _     | _        | l'       | -69.3                                           | 2.1               | 13.7                                         | -149.7        | 441         | 125 |                            |            |
| 22   | 1                                      | 23.17.59 | N-Lo  | R        | ì        | 22.9                                            | 4.9               | 11.3                                         | 110.3         | 502         | 122 |                            | 23-24      |
|      | 2                                      | 20.11.00 |       | _        | m        | 23.9                                            | 4.9               | 18.6                                         | 108.1         | 477         | 184 | 1-3 belong to one ray      | 20,5-2     |
|      | 3                                      |          |       |          | h        | 20.0                                            | <b>T.</b> 0       | 23.6                                         | 106.6         | 411         | 228 | 1-3 belong to one ray      | -          |
| 25   | 1                                      | 23.20.05 | N-Lø  |          | l'       | -32.5                                           | 6.5               | 17.3                                         | 163.8         | 337         | 115 | Not so good; the ray far   | 23-24      |
| ,    | $\frac{1}{2}$                          |          |       |          | m        | -31.0                                           | 6.6               | 24.8                                         | 163.3 $163.7$ | 320         | 159 | from optical center        | 2029       |
|      | 3                                      | _        |       |          | h'       | -29.3                                           | 6.5               | 30.5                                         | 163.5         | 311         | 196 | 1-3 belong to the same ray |            |
| 30   | 1                                      | 23.23.31 | N–Lø  | RB       | 1'       | 54.3                                            | $\frac{0.5}{2.5}$ | 9.4                                          | 80.4          | 624         | 137 | Very feeble ray along we-  | -<br>25-20 |
| •,() | 2                                      | <i></i>  | 14.   |          | m        | 54.3                                            | $\frac{2.5}{2.7}$ | 13.7                                         | 78.8          | 567         | 169 | stern edge                 | )ئے۔۔۔(ب   |
|      | 3                                      |          | -     | _        | h'       | 54.1                                            | 2.6               | 17.2                                         | 73.6          | 578         | 212 | 1-3 belong to this edge    | _          |
| 33   | 1                                      | 23.25.27 | N–Lø  | RB       | l        | <b>4.5</b>                                      | 3.7               | 4.4                                          | 139.4         | 734         | 101 | 1-5 belong to this edge    | 90.9       |
| 99   | $\begin{vmatrix} 1\\2 \end{vmatrix}$   | 20.20.21 | N-170 | L D      | h'       | 1                                               |                   |                                              |               |             |     |                            | 20-2       |
|      | 3                                      | No.      |       | _        | l n      | - 4.2                                           | $\frac{3.6}{5.5}$ | $\begin{array}{c c} 7.4 \\ 10.3 \end{array}$ | 139.2         | 745         | 144 |                            |            |
|      | 4                                      | _        |       |          | Ī        | $\begin{array}{ c c c } 0.2 \\ 2.3 \end{array}$ |                   | 11.3                                         | 132.8         | 488         | 108 |                            | 22-24      |
|      | 5                                      | _        |       | -        | 1        |                                                 | 5.5               |                                              | 130.6         | 485         | 114 |                            | ****       |
|      | 6                                      |          | -     | _        | h        | 2.6                                             | 5.4               | 13.0                                         | 130.5         | 488         | 134 |                            |            |
|      | 7                                      | _        | -     | -        | l<br>h   | 5.0                                             | 5.8               | 11.7                                         | 127.6         | 458         | 113 |                            | *          |
| 35   | 1 1                                    | 99 95 06 | N. T. | $^{-}$   |          | 5.4                                             | 5.6               | 14.7                                         | 127.3         | 466         | 142 |                            | ~<br>~     |
| 99   | $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$ | 23.27.06 | N–Lø  |          |          | 2.2                                             | 4.8               | 7.4                                          | 131.4         | 563         | 99  | Good set, sharp lower      | 21-2:      |
|      | l i                                    | _        | -     | -        | 1        | 0.6                                             | 4.1               | 5.5                                          | 133.8         | 665         | 100 | border                     | -          |
| 4.1  | 3                                      |          | - N   | <br>TT 4 | 1        | - 0.2                                           | 3.8               | 4.3                                          | 134.9         | 717         | 97  | TY 1 70018                 | -          |
| 41   |                                        | 0.03.09  | N     | HA       | 1        |                                                 |                   | 3.8                                          | 120.4         | 780         |     | H supposed == 100 km       |            |
|      | 2                                      | -        | -     | _        | 1        |                                                 |                   | 4.3                                          | 128.7         | 742         |     | -                          |            |
| 4.5  | 3                                      |          | _     |          | 1        |                                                 |                   | 4.8                                          | 138.9         | 710         |     |                            |            |
| 42   |                                        | 0.04.09  | N     | HA       | 1        |                                                 |                   | 4.5                                          | 127.3         | 728         |     | _                          |            |
|      | 2                                      | _        | -     |          |          |                                                 |                   | 4.6                                          | 134.0         | 721         |     | -                          |            |
|      | 3                                      |          | -     | _        | <u> </u> |                                                 |                   | 4.8                                          | 141.0         | 710         |     | -                          |            |
|      | 4                                      |          | -     | -        | -        |                                                 |                   | 4.9                                          | 148.0         | 702         |     | <del>-</del>               |            |
|      | 5                                      |          | _     | _        | -        |                                                 |                   | 4.9                                          | 155.3         | 702         |     | -                          |            |
| 43   | $\frac{1}{2}$                          | 0.05.42  | N     | HA       | _        |                                                 |                   | 5.5                                          | 166.0         | 663         |     | -                          |            |
|      | $\begin{vmatrix} 2 \end{vmatrix}$      | _        | -     | -        | _        |                                                 |                   | 6.0                                          | 155.0         | 635         |     | -                          |            |
|      | 3                                      | -        |       |          | -        |                                                 |                   | 6.0                                          | 142.0         | 604         |     |                            |            |
| 47   | I                                      | 0.07.52  | N-Lo  | PS       | h        | -15.9                                           | 5.5               | 11.1                                         | 149.3         | 477         | 113 | Short pulsating ray        | 22-2:      |
|      | 2                                      | _        | _     | -        | 1        | 15.9                                            | 5.4               | 7.9                                          | 149.2         | 483         | 87  | along RA                   | _          |
| 48   | 1                                      | 0.08.19  | N     | HA       | -        |                                                 |                   | 7.2                                          | 170.0         | 577         |     | H  supposed = 100  km      |            |
|      | $\begin{vmatrix} 2 \end{vmatrix}$      | -        | -     | -        | -        | 1                                               |                   | 7.6                                          | 162.0         | <b>56</b> 0 |     | -                          |            |
|      | 3                                      | -        | -     | ***      | -        |                                                 |                   | 7.6                                          | 154.0         | 560         |     | _                          |            |
|      | 4                                      | -        | -     |          | -        |                                                 |                   | 8.1                                          | 146.0         | 536         |     | -                          |            |
| 53   | 1                                      | 0.12.32  | N-Lø  | RB       | l'       | -18.5                                           | 3.1               | 4.3                                          | 154.0         | 831         | 119 |                            | 19-21      |
|      | 3                                      | -        |       | -        | m        | 17.3                                            | 3.3               | 4.3                                          | 152.6         | 785         | 110 |                            |            |
|      | 4                                      | -        | -     | _        | 1′       | - 9.7                                           | 3.9               | 6.0                                          | 144.4         | 684         | 110 |                            |            |
|      | a                                      |          | N     | ****     | 1        |                                                 |                   | 5.7                                          | 146.5         | 653         |     | a—i along lower border of  | 20-22      |
|      | ь                                      |          |       | -        | _        | İ                                               |                   | 5.5                                          | 148.5         | 662         |     | the distant RB             | -          |

Table 2 (continued).

| No  | Pt                                      | MET     | St       | F       | s       | $\epsilon_2$                         | p                 | h ·          | a                | D                 | Н                 | Remarks                       | 0        |
|-----|-----------------------------------------|---------|----------|---------|---------|--------------------------------------|-------------------|--------------|------------------|-------------------|-------------------|-------------------------------|----------|
|     | (:                                      | 0.12.32 | N        | RB      | 1       |                                      |                   | 5.3          | 150.4            | 673               | <u> </u>          | H supposed = 100 km           | <br>  –  |
|     | d                                       |         | _        | _       | -       |                                      | 5                 | 4.9          | 152.0            | 695               |                   |                               | -        |
|     | e                                       | _       | -        | -       | i –     |                                      |                   | 3.5          | 152.3            | 790               |                   |                               | 18-2     |
|     | f                                       | _       | -        | -       | -       |                                      |                   | 3.2          | 151.2            | 814               |                   |                               | -        |
|     | g                                       | _       | -        | -       |         |                                      |                   | 3.4          | 150.0            | 802               |                   |                               | j –      |
|     | h                                       |         | _        | -       |         |                                      |                   | 3.6          | 148.8            | 782               |                   |                               | -        |
|     | i                                       | -       | -        | -       | _       |                                      |                   | 3.8          | 148.2            | 770               |                   |                               | -        |
| 57  | 1                                       | 0.17.17 | N-Lo     |         | 1'      | 17.5                                 | 5.8               | 10.8         | 150.6            | 439               | 100               |                               | 20-2     |
|     | 2                                       | -       | _        | _       | h'      | -19.5                                | 3.8               | 12.2         | 154.7            | 655               | 180               |                               | -        |
|     | 3                                       | Name    | _        | _       | 1       | -19.8                                | 4.0               | 7.5          | 154.8            | 635               | 118<br>126        |                               | _        |
|     | 4<br>5                                  | _       | <u> </u> |         | m<br>l  | -20.8 $-21.0$                        | $\frac{3.6}{3.8}$ | 6.9<br>5.2   | 156.3<br>156.3   | 702<br>670        | 98                |                               |          |
|     | 6                                       |         |          | _       | h'      | -21.0 $-22.7$                        | 5.8<br>4.1        | 12.2         | 150.5            | 596               | 161               |                               | _        |
|     | 7                                       | -       | _        | _       | 1'      | -23.0                                | -3.8              | 6.9          | 158.2            | 656               | 115               |                               | _        |
| 62  | 1                                       | 0.22.36 | N-Lø     |         | 1′      | 17.8                                 | 4.1               | 7.4          | 152.5            | 627               | 114               | 1–2 the same ray              | 21-2     |
|     | $\begin{vmatrix} 1 \\ 2 \end{vmatrix}$  | -       |          |         | m       | -16.9                                | 4.3               | 15.0         | 151.7            | 579               | 187               | 3–4 another ray               |          |
|     | 3                                       | _       |          | _       | 1'      | -19.2                                | 4.6               | 9.0          | 153.4            | 553               | 113               | 5–6 —                         | _        |
|     | 4                                       |         | _        | _       | m       | -18.1                                | 4.5               | 15.8         | 152.7            | 548               | 183               |                               | _        |
|     | 5                                       | _       | _        | _       | 1       | 21.4                                 | 4.8               | 10.3         | 155.7            | 518               | 117               | Pt. 5 and 6 not so good as    | _        |
|     | 6                                       | _       | _        |         | h'      | -20.2                                | 4.5               | 16.7         | 155.1            | 537               | 189               | the earlier ones              | _        |
| 63  | 1                                       | 0.23.08 | N-Lø     | RB      | h'      | -22.9                                | 5.2               | 22.0         | 157.8            | 442               | 199               |                               | 21-2     |
|     | 2                                       | _       | -        | _       | m       | -24.6                                | 4.9               | 12.6         | 158.8            | 491               | 131               |                               |          |
|     | 3                                       | -       |          | _       | 1       | 23.6                                 | 4.8               | 9.5          | 157.8            | 514               | 108               |                               | _        |
|     | 4                                       | _       |          | -       | 1       | -21.2                                | 4.3               | 8.0          | 155.6            | 583               | 110               |                               |          |
|     | 5                                       | _       | - 1      | -       | 1       | -19.8                                | 3.8               | 6.6          | 154.7            | 672               | 115               |                               | _        |
|     | 6                                       |         |          |         | 1       | -18.9                                | 3.7               | 6.2          | 153.8            | 690               | 115               |                               | _        |
|     | 7                                       |         | _        |         | m       | -18.7                                | 3.9               | 9.1          | 153.5            | 653               | 140               | D 1                           | -        |
| 0.4 | 8                                       | 0.09.47 |          | -<br>DD | 1'      | -30.3                                | 3.4               | 5.3          | 165.8            | $\frac{690}{328}$ | $\frac{103}{118}$ | Belong to another RB          | 22-2     |
| 64  | $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$  | 0.23.47 | N–Lø     | RB<br>- | m<br>1' | -15.8 $-16.0$                        | 7.6 $7.4$         | 18.1<br>15.6 | $147.2 \\ 147.5$ | $\frac{328}{342}$ | 106               | Interesting isolated curtains | 22-2     |
|     | 3                                       | -       | _        | _       | h       | -18.9                                | 6.3               | 17.4         | 151.8            | 389               | 137               | Very good                     | _        |
|     | 4                                       |         | _        | _       | l       | -19.4                                | 6.1               | 13.7         | 152.2            | 410               | 115               | voly good                     | _        |
|     | 5                                       | _       |          | _       | h'      | -19.8                                | 5.8               | 12.7         | 152.8            | 432               | 113               |                               | _        |
|     | 6                                       | 0       | _        | _       | l'      | -20.1                                | 5.9               | 10.6         | 153.0            | 429               | 96                |                               | _        |
|     | 7                                       | _       | _        | _       | h       | -24.1                                | 4.4               | 19.9         | 159.6            | 523               | 217               |                               | 20-2     |
|     | 8                                       | -       | _        |         | 1       | -25.7                                | 4.3               | 8.8          | 160.2            | 565               | 114               |                               | <u>:</u> |
|     | 9                                       | _       |          | _       | 1       | 23.4                                 | 3.7               | 7.0          | 158.3            | 670               | 120               |                               | -        |
|     | 10                                      | -       |          |         | 1'      | 22.0                                 | 3.8               | 7.1          | 156.9            | 660               | 118               |                               | -        |
|     | 11                                      | -       |          | _       | 1'      | -35.4                                | 3.1               | 6.5          | 170.8            | 711               | 123               |                               | . –      |
| 65  | 2                                       | 0.24.30 | N-Lø     | RB      | 1       | -28.3                                | 4.0               | 7.6          | 163.1            | 594               | 108               | Pt. 2, 3, 4, 5 along RB to    | 21-2     |
|     | 3                                       | _       |          | _       | 1       | -26.6                                | 4.6               | 9.0          | 160.9            | 523               | 107               | the left                      | _        |
|     | 4                                       | -       | -        | -       | m       | -24.1                                | 4.4               | 10.4         | 158.9            | 553               | 127               |                               | -        |
|     | 5                                       | -       | _        | _       | h'      | -23.4                                | 4.4               | 14.2         | 158.1            | 546               | 165               |                               | -        |
|     | 6                                       | -       | _        |         | m       | -39.6                                | 3.6               | 9.2          | 175.4            | 576               | 121               |                               | -        |
|     | 7                                       | *****   | _        | _       | l'      | <b>-40.1</b>                         | 3.4               | 6.0          | 175.8            | 610               | 95<br>97          |                               | _        |
|     | 8 9                                     |         | _        | _       | 1'<br>1 | -40.9<br>-43.3                       | $\frac{3.3}{3.3}$ | $6.0 \\ 8.3$ | 176.7 $179.3$    | 620<br>594        | 116               | Along lower border            |          |
|     | 10                                      |         | _        |         | 1       | <del>-43.3</del><br><del>-47.4</del> | $\frac{3.3}{3.8}$ | 9.7          | -176.9           | 480               | 102               | Along lower border            |          |
|     | 10                                      | _       | N        |         | 1       | ±1.±                                 | 0.0               | 5.5          | 176.2            | ±00               | 92                | Left edge of RB               | _        |
| 67  | 1                                       | 0.26.13 | N–Lø     |         | 1'      | -62.0                                | 4.4               | 19.0         | -157.9           | 275               | 102               | Rays under HA                 | 25-2     |
| "   | 2                                       | -       | -        |         | h'      | -58.6                                | 4.6               | 26.3         | -156.8           | 275               | 144               | 1–2 one ray                   |          |
|     | 3                                       | _       | _        |         | 1'      | -73.3                                | 2.3               | 14.4         | -143.5           | 330               | 94                | 3-4 another ray               | _        |
|     | 4                                       | ***     |          | _       | h'      | -71.3                                | 2.5               | 17.7         | -143.2           | 333               | 117               |                               | _        |
| 68  | $\begin{bmatrix} \hat{1} \end{bmatrix}$ | 0.26.30 | N–Lø     |         | h'      | -59.2                                | 3.9               | 25.6         | 155.5            | 321               | 165               | All measurements              | 24-2     |
|     | 2                                       | -       |          | _       | 1       | -63.6                                | 3.1               | 15.5         | 156.8            | 376               | 117               | doubtful on account of        |          |
|     | 3                                       |         |          | _       | h'      | 67.0                                 | 2.3               | 19.3         |                  | 432               | 170               | small parallaxes.             |          |

Table 2 (continued).

| No  | Pt | MET     | St   | $\mathbf{F}$ | S  | ε <sub>2</sub> | p    | h    | a      | D   | Н   | Remarks                       | 0        |
|-----|----|---------|------|--------------|----|----------------|------|------|--------|-----|-----|-------------------------------|----------|
|     | 4  | 0.26.30 | N-Lø | R            | l' | _70.0          | 2.1  | 13.7 | -148.8 | 430 | 121 | 1-2, 3-4, 5-6, 7-8 and        | _        |
|     | 5  |         | _    | _            | h' | -68.3          | 2.2  | 19.1 | -145.6 | 427 | 161 | 9–10 each belong to sepa-     | -        |
|     | 6  | -       | -    | _            | 1' | -71.2          | 2.2  | 14.3 | -146.7 | 386 | 112 | rate rays                     | _        |
|     | 7  | _       | _    | _            | h' | -72.5          | 2.4  | 16.3 | -142.3 | 328 | 106 |                               | _        |
|     | 8  | -       |      | -            | l' | -74.1          | 2.0  | 13.5 | -142.7 | 364 | 99  |                               | _        |
|     | 9  | _       |      | _            | h  | -73.0          | 2.6  | 17.5 | -139.6 | 293 | 100 |                               |          |
|     | 10 | wat     |      | -            | l' | -75.7          | 2.0  | 13.1 | -140.5 | 329 | 86  |                               | -        |
| 69, | I  | 0.27.14 | N-Li | HA           | 1  | 67.5           | 23.2 | 22.8 | 139.6  | 229 | 101 | Correction made for mo-       | 25-2     |
| i5* | 2  | _       | -    | _            | l  | 68.9           | 25.6 | 27.1 | -140.7 | 190 | 101 | tion of the arc at N.         | _        |
|     | 3  | -       | -    | ~~           | l  | 69.9           | 27.2 | 31.2 | -143.6 | 165 | 103 | Time mean of the two          |          |
|     | 4  | -       | -    |              | 1  | 70.7           | 28.6 | 35.1 | -145.1 | 144 | 105 | times for N and Li            | _        |
|     | 5  | -       | ·    | _            | 1  | -71.5          | 29.8 | 38.8 | -148.4 | 128 | 105 |                               | -        |
| 72  | 1  | 0.29.36 | N-Lø | HA           | 1  | -71.1          | 2.1  | 16.0 | -144.7 | 403 | 131 | Very feeble remains of arc    | 24-      |
|     | 2  | -       | -    |              | m  | 69.9           | 2.5  | 19.3 | -143.3 | 351 | 135 | under the main one.           | _        |
|     | 3  |         |      | -            | ]  | -73.1          | 1.5  | 12.6 | -144.4 | 513 | 138 | Doubful                       |          |
| 73  | 7  | 0.30.46 | N-Lø | RA           | 1  | 74.0           | 2.6  | 18.5 | -127.0 | 273 | 98  | Lower border                  | 26-2     |
|     | 8  | name.   | _    |              | 1  | -67.6          | 5.8  | 28.2 | -129.2 | 159 | 98  | The points 1–6 dropped on     | -        |
|     | 9  | _       | -    | _            | l  | 62.9           | 8.4  | 35.5 | 132.6  | 128 | 94  | account of unfavourable       | -        |
|     |    |         |      |              |    |                |      |      |        |     |     | direction of parallaxe        | -        |
| 74  | 3  | 0.31.19 | N-Lø | RB           | I' | 72.5           | 2.5  | 16.9 | -120.4 | 313 | 104 | Points 3–7 tangential view    | 26-2     |
|     | 4  | -       | _    | _            | m  | 66.6           | 3.3  | 23.6 | -118.3 | 298 | 139 | of curtains to the right of   | _        |
|     | 5  | -       | _    | _            | h' | 60.0           | 4.2  | 30.6 | -115.7 | 276 | 173 | the main arc 8–9              | _        |
|     | 6  | _       | _    | i –          | m  | 70.0           | 2.3  | 20.0 | -121.1 | 278 | 151 |                               |          |
|     | 7  | _       | -    |              | h' | 64.3           | 3.0  | 26.0 | 119.2  | 350 | 185 |                               |          |
|     | 8  | _       | -    | RA           | 1  | -73.8          | 2.7  | 19.0 | 130.0  | 267 | 99  |                               | _        |
|     | 9  | -       |      | -            | 1  | 69.6           | 4.2  | 24.4 | 133.3  | 207 | 98  |                               | -        |
| 75  | 4  | 0.31.47 | N-Lø | RA           | 1  | -72.5          | 2.7  | 18.8 | -138.8 | 288 | 105 |                               | 25-      |
|     | 5  | _       | -    |              | ]  | 69.1           | 4.0  | 22.1 | 143.3  | 225 | 97  |                               | -        |
|     | 6  |         | _    | -            | 1  | -64.0          | 5.3  | 25.6 | -150.0 | 203 | 102 |                               | _        |
| 77  | 2  | 0.33.35 | N-Lø | RB           | 1  | 75.7           | 1.7  | 15.6 | -134.8 | 380 | 119 | 1                             | _        |
|     | 3  | _       | -    | -            | 1  | -72.3          | 2.8  | 18.3 | -140.4 | 280 | 100 |                               |          |
|     | 4  | -       | -    | -            | 1  | 62.8           | 5.1  | 27.8 | -148.5 | 216 | 119 | -                             | -        |
|     | 5  | _       | _    |              | 1  | -57.6          | 6.5  | 31.9 | -155.5 | 190 | 123 |                               | -        |
| 78  | 1  | 0.34.03 | N-Lø | RA           | m  | -61.5          | 7.5  | 35.5 | 122.3  | 141 | 104 |                               | 26-      |
|     | 2  | _       | -    | -            | m  | -64.9          | 5.3  | 29.2 | -121.4 | 189 | 110 |                               | -        |
|     | 3  |         | -    | -            | m  | 68.4           | 3.8  | 23.4 | 120.9  | 262 | 111 |                               |          |
| 79  | 1  | 0.35.16 | N-Lø | RB           | l  | 35.0           | 13.2 | 33.3 | 75.8   | 144 | 97  |                               | 26       |
| 81  | 1  | 0.36.01 | N-Lø | RB           | -  | 39.3           | 11.7 | 31.7 | 72.7   | 155 | 98  | ·                             | 26-      |
|     | 2  | _       |      | _            | -  | 36.9           | 13.1 | 32.6 | 73.1   | 142 | 94  |                               |          |
|     | 3  | -       | -    |              | _  | 33.3           | 14.1 | 35.4 | 73.7   | 134 | 98  |                               | -        |
|     | 4  | _       | -    |              | -  | 30.0           | 14.9 | 38.4 | 74.2   | 127 | 101 |                               | -        |
| 85  | 1  | 0.38.41 | N-Lø | HB           | _  | 59.3           | 9.9  | 38.1 | 147.3  | 112 | 90  | No 85-89 a most interesting   | 26-      |
|     | 2  | _       | -    | _            |    | -62.3          | 8.0  | 34.4 | -141.8 | 132 | 92  | horseshoeformed band          | <u> </u> |
|     | 3  | _       | -    | _            | -  | -65.3          | 6.3  | 30.6 | 136.9  | 157 | 96  | Mean of all H for $p>5^\circ$ | -        |
|     | 1  | _       | _    | -            | -  |                |      | 38.1 | -147.3 | 117 |     | equal to 94 km. This H        | -        |
|     | 2  | -       | _    | -            | _  |                |      | 34.4 | -141.8 | 134 |     | used for finding geogra-      | _        |
|     | 3  |         | -    | -            | -  |                |      | 30.6 | -136.9 | 154 |     | phical situation              | -        |
|     | 4  | _       | -    | _            | -  |                |      | 23.3 | -129.9 | 207 |     |                               | -        |
|     | 5  | _       |      | ****         | -  |                |      | 20.6 | -127.0 | 236 |     |                               | -        |
|     | 6  | -       | _    | _            | -  |                |      | 12.2 | 131.5  | 379 |     |                               | -        |
|     | 7  | _       | _    | -            |    |                |      | 13.6 | -139.4 | 344 |     |                               | -        |
|     | 8  | _       | _    | _            | -  |                |      | 15.7 | -145.4 | 304 |     |                               | -        |
|     | 9  | _       |      | -            | _  |                |      | 20.5 | -150.7 | 237 |     |                               |          |
|     | 10 | _       |      | -            | _  |                |      | 21.0 | 155.9  | 231 |     |                               |          |
|     | 11 | _       |      |              | _  | 1              |      | 21.4 | -160.8 | 228 |     |                               | -        |

Table 2 (continued).

| Nο  | Pt                                          | MET       | St   | F                      | s    | $arepsilon_2$ | p                 | h              | a               | D          | Н        | Remarks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0      |
|-----|---------------------------------------------|-----------|------|------------------------|------|---------------|-------------------|----------------|-----------------|------------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| 86  | 1                                           | 0.39.13   | N-Lø | нв                     | l    | 57.3          | 9.8               | 36.6           | 154.5           | 123        | 93       | Same remarks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 26-27  |
|     | 2                                           | _         | _    | _                      | _    | 63.2          | 7.3               | 31.7           | 144.5           | 144        | 92       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |
|     | 3                                           | _         | -    | _                      |      | 67.1          | 5.2               | 27.4           | -137.7          | 182        | 97       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | _      |
|     | 1                                           | -         | N    | _                      | -    |               |                   | 36.6           | 154.5           | 123        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -      |
|     | 2                                           |           | -    | -                      | -    |               |                   | 31.7           | -144.5          | 148        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -      |
|     | 3                                           | _         |      |                        | -    |               |                   | 27.4           | 137.7           | 173        | •        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -      |
|     | 4                                           | _         |      | -                      | -    |               |                   | 20.8           | -131.3          | 234        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | _      |
|     | 5                                           | _         |      |                        | -    | ĺ             |                   | 17.3           | -128.2          | 279        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |
|     | 6                                           | _         | -    | _                      |      |               |                   | 11.3           | -132.0          | 399        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 25-20  |
|     | 7                                           | ~         | _    | _                      | -    |               |                   | 13.1           | -142.0          | 356        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -      |
| 87  | 8                                           | 0.20.24   | N Ta | TED                    |      | 60 G          | 7.0               | 16.7           | -156.0          | 287        | ne.      | Carro managales                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 90. 05 |
| 01  | $\frac{1}{2}$                               | 0.39.24   | N-Lø | НВ                     |      | -60.6 $-64.6$ | $\frac{7.9}{6.8}$ | $33.4 \\ 30.0$ | -150.0 $-144.0$ | 142<br>150 | 96<br>89 | Same remarks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 26-27  |
|     | $\begin{bmatrix} \frac{z}{1} \end{bmatrix}$ |           | N    | _                      | _    | 04.0          | 0.8               | 33.4           | -144.0 $-150.0$ | 139        | 88       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | _      |
|     | 2                                           | _         |      | _                      | _    |               |                   | 30.0           | -150.0 $-144.0$ | 158        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | _      |
|     | $\frac{2}{3}$                               | _         | _    | _                      | _    |               |                   | 24.9           | -137.4          | 194        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | _      |
|     | 4                                           | _         |      | _                      |      |               |                   | 19.6           | -137.4 $-132.5$ | 248        | i        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |
|     | 5                                           | _         |      | _                      | _    |               |                   | 17.8           | -132.5 $-130.6$ | 271        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |
|     | 6                                           |           | _    |                        | _    | ĺ             |                   | 11.4           | -131.6          | 401        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 25-20  |
|     | 7                                           |           | _    |                        |      |               |                   | 12.3           | -141.3          | 376        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |
|     | 8                                           | _         | _    | _                      | _    |               |                   | 14.1           | -149.1          | 335        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | _      |
| 38  | 1                                           | 0.40.28   | N–Lø | $_{\mathrm{HB}}$       | _    | 56.6          | 8.6               | 32.4           | -159.6          | 149        | 97       | Same remarks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | _      |
|     | 2                                           | _         | _    | _                      |      | -62.5         | 6.5               | 28.6           | 150.0           | 171        | 96       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |
|     | 1                                           | _         | N    |                        | _    | 92.0          | 0.0               | 32.4           | -159.6          | 144        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |
|     | 2                                           |           | _    | _                      | _    |               |                   | 28.6           | 150.0           | 167        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | _      |
|     | 3                                           | _         | _    |                        |      |               |                   | 23.9           | -140.0          | 204        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 26-27  |
|     | 4                                           |           |      |                        | _    |               |                   | 18.0           | -133.6          | 269        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | _      |
|     | 5                                           |           | -    | -                      | -    |               |                   | 14.0           | -130.0          | 337        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |
| ĺ   | 6                                           |           | -    |                        | _    |               | :                 | 10.8           | -136.0          | 417        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 25-20  |
|     | 7                                           | _         | _    |                        | -    |               |                   | 11.0           | 144.0           | 412        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | _      |
|     | 8                                           |           | _    | -                      | _    |               |                   | 11.6           | -150.0          | 395        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |
| 39  | 1                                           |           | N    | $\mathbf{H}\mathbf{B}$ | -    |               |                   | 25.8           | 152.0           | 186        |          | Same remarks. H supposed = 94 km                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |
|     | 2                                           | _         | _    | -                      | -    |               |                   | 21.3           | -146.0          | 228        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -      |
|     | 3                                           | _         | - '  | _                      | -    |               |                   | 16.0           | 141.3           | 300        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | _      |
| 7   | 1                                           | 1.59.03   | N    | HA                     | -    |               |                   | 16.3           | 122.0           | 294        |          | H  supposed = 95  km                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 24-2   |
|     | $2 \mid$                                    | -         |      |                        | -    |               |                   | 18.2           | 132.0           | 267        |          | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |
| İ   | 3                                           | -         | -    | -                      | _    | İ             |                   | 19.4           | 142.0           | 251        |          | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -      |
|     | 4                                           |           | -    |                        | _    |               |                   | 20.4           | 154.0           | 239        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -      |
| )8  | 1                                           | 1.59.52   | N-Lø | $_{\rm HA}$            |      | - 1.6         | 9.6               | 17.8           | 130.3           | 272        | 94       | Unfavourable direction of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 242    |
|     | 2                                           | _         |      |                        | _    | 5.2           | 9.8               | 16.3           | 123.0           | 268        | 85       | parallaxe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -      |
|     | 1*                                          | _         | N    | Traces.                | **** |               |                   | 13.9           | 114.0           | 338        |          | H supposed = 95  km                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        |
|     | 2*                                          | -         | -,   | _                      | _    |               |                   | 16.0           | 122.0           | 299        |          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |
|     | 3*                                          |           |      |                        | -    |               |                   | 18.2           | 132.0           | 265        |          | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | İ      |
|     | 4*                                          |           | -    |                        | _    |               |                   | 20.0           | 144.0           | 243        |          | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |
| 99  | 1                                           | 2.00.47   | N    | $_{\rm HA}$            | -    |               |                   | 21.3           | 152.0           | 228        |          | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |
|     | $\frac{2}{9}$                               |           | -    | _                      | -    |               |                   | 20.8           | 164.0           | 234        |          | <b>-</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | İ      |
| , l | 3                                           | - 0.01.05 | \    | <br>TT A               | -    |               |                   | 19.8           | 174.0           | 245        |          | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |
| 00  | 1                                           | 2.01.27   | N    | HA                     | 1    |               |                   | 6.0            | 94.0            | 613        |          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |
|     | $\frac{2}{2}$                               | _         | -    | _                      | _    |               |                   | 9.1            | 100.0           | 472        |          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |
|     | 3                                           |           | -    | _                      | -    |               |                   | 11.3           | 106.0           | 404        |          | - Common of the Common of the Common of the Common of the Common of the Common of the Common of the Common of the Common of the Common of the Common of the Common of the Common of the Common of the Common of the Common of the Common of the Common of the Common of the Common of the Common of the Common of the Common of the Common of the Common of the Common of the Common of the Common of the Common of the Common of the Common of the Common of the Common of the Common of the Common of the Common of the Common of the Common of the Common of the Common of the Common of the Common of the Common of the Common of the Common of the Common of the Common of the Common of the Common of the Common of the Common of the Common of the Common of the Common of the Common of the Common of the Common of the Common of the Common of the Common of the Common of the Common of the Common of the Common of the Common of the Common of the Common of the Common of the Common of the Common of the Common of the Common of the Common of the Common of the Common of the Common of the Common of the Common of the Common of the Common of the Common of the Common of the Common of the Common of the Common of the Common of the Common of the Common of the Common of the Common of the Common of the Common of the Common of the Common of the Common of the Common of the Common of the Common of the Common of the Common of the Common of the Common of the Common of the Common of the Common of the Common of the Common of the Common of the Common of the Common of the Common of the Common of the Common of the Common of the Common of the Common of the Common of the Common of the Common of the Common of the Common of the Common of the Common of the Common of the Common of the Common of the Common of the Common of the Common of the Common of the Common of the Common of the Common of the Common of the Common of the Common of the Common of the Common of the Common of the Common of the Common of the Common of the Common of the Common of the Common of the Common of the |        |
|     | 4                                           | _         | _    |                        | _    |               |                   | 14.1 $16.6$    | 114.0<br>122.0  | 335<br>290 |          | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |
| )]  | 5                                           | 9 09 99   | N N  | —<br>П Л               | _    |               |                   | 16.6<br>15.4   | -161.9          | 310        |          | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -      |
| /1  | $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$      | 2.02.33   | N    | HA                     | _    |               |                   |                | -161.9 $-153.0$ | 384        |          | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |

Table 2 (continued).

| (o | Pt                                                     | MET     | St   | F                | s  | $\varepsilon_2$ | p    | h             | a               | D                 | Н   | Remarks                         | $\theta$ |
|----|--------------------------------------------------------|---------|------|------------------|----|-----------------|------|---------------|-----------------|-------------------|-----|---------------------------------|----------|
|    | 3                                                      | 2.02.33 | N    | НА               | 1  |                 | !    | 9.0           | -147.0          | 474               |     | Same remarks.                   |          |
| İ  | 4                                                      | -       | -    | -                | -  |                 |      | 6.0           | 142.0           | 613               |     |                                 |          |
| 2  | 1                                                      | 2.03.20 | N    | HA               | -  |                 |      | 15.7          | 116.0           | 304               |     | -                               |          |
| İ  | 2                                                      | -       | -    | -                |    |                 |      | 18.2          | 124.0           | 266               |     | _                               |          |
|    | 3                                                      | -       | -    | _                | -  |                 |      | 20.7          | 134,0           | 235               |     | _ !                             |          |
|    | 4                                                      | -       | -    |                  | -  | 20. 0           |      | 22.5          | 146.0           | 216               | 0.0 |                                 |          |
| 3  | 1                                                      | 2.04.46 | N-Lo | $_{\rm HA}$      | -  | 33.3            | 5.2  | 10.5          | 99.4            | 433               | 96  | Unfavourable direction of       | 24       |
|    | $\frac{2}{1^*}$                                        | _       | N N  | _                | _  | 25.8            | 6.8  | $13.0 \\ 6.5$ | 104.8<br>90.0   | 354<br>587        | 94  | parallaxe<br>H supposed = 95 km |          |
|    | 2*                                                     | _       | 77   | _                | _  |                 |      | 9.9           | 94.0            | 447               |     | 1, 2, 3, 4 upper are            |          |
|    | 3*                                                     | _       | _    | _                | _  |                 |      | 13.3          | 100.0           | 352               |     | 5, 6, 7, 8 lower are            |          |
|    | 4*                                                     |         | _    |                  | _  |                 |      | 16.8          | 106.0           | 286               |     | H supposed == 95 km             |          |
|    | 5*                                                     | no.     | _    | _                |    |                 |      | 6.5           | 94.0            | 582               |     |                                 |          |
|    | 6*                                                     | _       | _    |                  | _  |                 |      | 9.4           | 98.0            | 462               |     | <u> </u>                        |          |
|    | 7*                                                     |         | _    | _                | _  |                 |      | 11.4          | 102.0           | 401               |     |                                 |          |
|    | 8*                                                     |         | _    | _                |    |                 |      | 13.4          | 106.8           | 349               |     |                                 |          |
| 4  | 1                                                      | 2.05.29 | N    | $_{\mathrm{HA}}$ | _  |                 |      | 18.7          | 123.2           | 260               |     | _                               |          |
|    | 2                                                      | ****    | _    | -                | _  |                 |      | 20.7          | 130.0           | 235               |     |                                 |          |
|    | 3                                                      | _       | _    | _                | -  |                 |      | 22.3          | 138.0           | 218               |     | _                               |          |
|    | 4                                                      | -       |      | _                | -  |                 |      | 23.2          | 146.0           | 209               |     | · –                             |          |
|    | 5                                                      |         | -    | -                | _  |                 |      | 22.9          | 154.0           | 213               |     |                                 |          |
| 5  | 1                                                      | 2.06.06 | N    | $_{\mathrm{HA}}$ | -  | 1               |      | 27.4          | 168.0           | 174               |     | _                               |          |
|    | 2                                                      |         |      |                  | -  |                 |      | 25.5          | 180.0           | 188               |     | – 1–4 upper arc                 |          |
|    | 3                                                      | _       | -    | -                | -  |                 | 4-   | 23.0          | 170.0           | 211               |     | = 5-8 lower arc                 |          |
|    | 4                                                      | _       | -    | _                |    |                 |      | 20.7          | -162.0          | 235               |     | -                               |          |
|    | 5                                                      | -       | -    | _                | -  |                 |      | 23.6          | 168.0           | 206               |     | -                               |          |
|    | 6                                                      | -       | -    | -                | -  | İ               |      | 21.8          | 178.0           | 223               |     | -                               |          |
|    | 7                                                      | _       |      |                  | -  |                 |      | 20.0          | 174.0           | 243               |     | _                               |          |
|    | 8                                                      | _       | -    | _                | -  |                 |      | 17.9          | -166.0          | 269               |     |                                 |          |
| 6  | 1                                                      | 2.07.14 | N    | HA               | -  |                 |      | 18.4          | -154.0          | 263               |     |                                 |          |
|    | 2                                                      |         | -    | _                | -  |                 |      | 15.4          | 148.0           | 309               |     | - 1-4 upper are                 |          |
|    | 3                                                      |         | -    |                  | _  |                 |      | 12.2          | -142.0          | 380               |     | 5–8 lower are                   |          |
|    | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$ |         | _    |                  | -  |                 |      | 9.9           | -138.0          | 447               |     | _                               |          |
|    | 5<br>6                                                 | _       | _ i  |                  | -  |                 |      | 14.8<br>11.4  | -154.0 $-147.0$ | $\frac{320}{401}$ |     | -                               |          |
|    | 7                                                      |         | -    |                  | _  |                 |      | 8.8           | -147.0 $-142.0$ | 484               |     | _                               |          |
|    | 8                                                      |         | -    | _                | _  |                 |      | 6.6           | 138.0           | 582               |     | <del></del>                     |          |
| 7  | 2                                                      | 2.08.03 | N–Lo |                  | m  | 21.4            | 5.9  | 13.7          | 110.5           | 418               | 117 |                                 | 24       |
| •  | 3                                                      | 2.00.00 |      | -                | 1' | 24.6            | 6.0  | 11.6          | 107.4           | 406               | 98  |                                 |          |
|    | 4                                                      | _       | _    | _                | m  | 26.0            | 5.8  | 16.4          | 105.3           | 404               | 134 |                                 |          |
|    | 5                                                      |         | _    | R                | 1  | 19.4            | 6.3  | 14.3          | 112.1           | 397               | 115 |                                 |          |
|    | 6                                                      | -       |      | _                | h  | 20.0            | 6.0  | 18.4          | 111.2           | 402               | 149 |                                 |          |
| 8  | 1                                                      | 2.12.30 | N-Lø | R                | h' | 8.0             | 5.9  | 15.0          | 124.4           | 441               | 136 | Rest of RB                      | 23       |
|    | 2                                                      |         | _    |                  | _  | 7.7             | 5.8  | 11.1          | 124.8           | 457               | 108 |                                 |          |
|    | 3                                                      | _       | _    | RB               | I  | 6.6             | 6.0  | 9.2           | 126.6           | 447               | 89  |                                 |          |
|    | 4                                                      | _       | _    | R                | h′ | 11.3            |      | 14.7          | 121.2           | 444               | 135 |                                 |          |
|    | 5                                                      |         | _    | -                | 1' | 11.4            | 5.6  | 12.7          | 121.4           | 466               | 124 |                                 |          |
| 1  | 1                                                      | 2.27.16 | N–Lø | RB               | 1' | 35.0            | 11.0 | 21.8          | 87.8            | 190               | 80  | The Lø picture out of focus     | 26       |
|    | 2                                                      | -       | _    | ****             | 1' | 34.4            | 11.0 | 22.0          | 88.5            | 190               | 80  | and not so good                 |          |
|    | 3                                                      | _       | -    | -                | h' | 33.8            | 10.9 | 28.6          | 85.4            | 183               | 104 | 1,3 one ray of RB               |          |
|    | 4                                                      |         | _    | _                | h' | 33.3            | 10.9 | 28.8          | 86.0            | 183               | 105 | 2,4 another ray of RB           |          |
|    | 5                                                      |         | _    |                  | h  | 37.9            | 9.6  | 26.3          | 83.3            | 203               | 104 |                                 |          |
|    | 6                                                      | -       |      |                  | l' | 39.1            | 9.4  | 20.3          | 85.6            | 213               | 83  |                                 |          |
|    | 1*                                                     | -       | -    | _                | 1  |                 |      |               |                 |                   | 77  | Close to point 1                |          |
|    | 2*                                                     | -       |      |                  | 1  |                 |      |               | 1               | i                 | 78  | —, <u> </u>                     |          |

Table 2 (continued).

| No  | Pt    | MET        | St    | F                | S    | $\epsilon_2$ | p     | h              | a             | D   | Н   | Remarks                         | 0    |
|-----|-------|------------|-------|------------------|------|--------------|-------|----------------|---------------|-----|-----|---------------------------------|------|
| 12  | 1     | 2,28,21    | N-Lø  | RB               | 1'   | 41.6         | 8.0   | 20.4           | 84.0          | 240 | 95  |                                 | 26-2 |
|     | 2     | -          | -     | -                | h    | 41.1         | 8.2   | 23.4           | 82.7          | 231 | 105 |                                 | _    |
|     | 3     |            | _     |                  | 1    | 42.4         | 9.1   | 22.6           | 80.5          | 206 | 90  | , ,                             | _    |
| ]   | 4     |            | _     | _                | m    | 41.5         | 9.4   | 25.6           | 78.9          | 198 | 99  |                                 |      |
|     | 5     |            | arves | -                | l    |              |       |                |               | -   | 94  | Close to point 1                |      |
| 16  | 1     | 3.01.23    | N-Lø  | $_{\mathrm{PS}}$ | h    | -16.3        | 6.8   | 19.0           | 148.7         | 362 | 139 | Very diffuse                    | 23-2 |
|     | 2     | -          | -     |                  | 1    | -16.0        | 6.7   | $17.1^{\circ}$ | 149.0         | 375 | 129 |                                 | _    |
| 17  | 1     | 3.01.48    | N-Lø  | PS               | h    | -23.7        | 8.1   | 18.6           | 155.3         | 294 | 107 |                                 | 23-2 |
|     | 2     |            | -     |                  | 1    | 23.9         | 7.7   | 16.6           | 155.7         | 311 | 102 |                                 | -    |
| 18  | 1     | 3.02.23    | NLø   | PS               | 1'   | 13.0         | 8.4   | 16.6           | 161.2         | 305 | 99  | Diffuse outline                 | 24   |
|     | 2     | -          |       |                  | 1'   | -17.6        | 8.2   | 16.2           | 165.8         | 306 | 98  |                                 | _    |
| 19  | 1     | 3.02.59    | N-Lø  | PS               | 1    | -22.4        | 7.9   | 17.0           | 153.8         | 307 | 103 | Diffuse outline                 | 23-2 |
|     | 2     | -          | _     | _                | m    | -21.4        | 7.9   | 19.0           | 152.9         | 304 | 113 |                                 | -    |
|     | 3     | -          | -     | -                | m    | -21.3        | 8.1   | 21.0           | 152.8         | 293 | 120 |                                 | -    |
|     | 4.    | -          |       |                  | h    | -21.2        | 8.0   | 22.9           | 153.0         | 292 | 132 |                                 | -    |
|     | March | 19-20, 193 | 33.   |                  |      |              |       |                |               |     |     |                                 |      |
| l i |       | 21.05.59   |       | R                | i h' | 34.0         | 3.6   | 26.0           | 96.0          | 547 | 304 | Sunlit rays                     | 24-2 |
|     | 2     | _          |       | _                | m    | 34.0         | 3.65  | 24.6           | 96.6          | 548 | 285 | 1-4 belong to one ray,          |      |
|     | 3     | _          | _     | _                | m    | 34.1         | 3.6   | 21.5           | 97.6          | 570 | 259 | 5–8 to another                  | _    |
|     | 4     | _          |       |                  | 1    | 34.1         | 3.7   | 19.8           | 98.2          | 562 | 235 |                                 | _    |
|     | 5     | _          |       |                  | h'   | 37.5         | 2.8   | 23.6           | 93.8          | 685 | 353 |                                 |      |
|     | 6     | -          | _     |                  | m    | 37.5         | 2.9   | 22.1           | 94.3          | 678 | 321 |                                 | _    |
|     | 7     | _          | _     |                  | m    | 37.6         | 3.0   | 19.1           | 95.2          | 664 | 276 |                                 |      |
|     | 8     | _          | _     |                  | 1    | 37.8         | 2.9   | 17.1           | 95.7          | 692 | 261 |                                 | _    |
|     | 9     |            |       |                  | h    |              |       | 27.6           | 95.3          | 545 | 324 |                                 | _    |
|     | 10    | _          |       | _                | h    |              |       | 24.7           | 93.5          | 681 | 369 |                                 | _    |
| 3   | 1     | 21.07.56   | N-Lø  | R                | h    |              |       | 53.0           | 93.9          | 256 | 362 | Sunlit rays                     | 24-2 |
|     | 2     | _          | _     |                  | m    | 19.7         | 6.0   | 50.2           | 96.1          | 265 | 339 | 1-5 belong to one ray           |      |
|     | 3     | _          | _     |                  | m    | 20.2         | 6.1   | <b>46.</b> 0   | 98.9          | 283 | 313 | 6-9 to another                  |      |
|     | 4     | _          | -     | <u> </u>         | m    | 20.7         | 6.2   | 39.5           | 102.6         | 310 | 274 |                                 | _    |
|     | 5     | _          |       |                  | 1    | 20.9         | 6.3   | 34.7           | 104.8         | 325 | 242 |                                 | _    |
|     | 6     | _          |       |                  | h    | 23.7         | 5.9   | 46.3           | 93.1          | 284 | 317 |                                 |      |
|     | 7     | _          | _     |                  | m    | 24.5         | 6.1   | 41.0           | 96.2          | 300 | 278 |                                 | _    |
|     | 8     |            | _     | _                | m    | 25.3         | 6.2   | 34.6           | 99.1          | 322 | 238 |                                 |      |
|     | 9     | _          | _     | _                | 1    |              |       | 31.5           | 100.4         | 332 | 218 | -                               |      |
| 4   | 1     | 21.08.55   | N-Lø  | R                | m    | 36.8         | 3.85  |                | 87.2          | 458 | 332 | Sunlit rays                     | 24-1 |
| _   | 2     | _          | _     |                  | m    | 37.6         | 3.95  | 29.7           | 88.8          | 462 | 292 | 1-4 belong to one ray           | _    |
|     | 3     |            | _ :   | -                | m    | 38.0         | 4.05  | 27.0           | 90.0          | 461 | 261 | 6.                              |      |
|     | 4     | _          | _     | _                | m    | 38.4         | 4.2   | 24.1           | 91.1          | 455 | 227 |                                 | _    |
|     | 5     | _          |       | _                | 1    |              |       | 22.3           | 91.7          | 463 | 212 |                                 | _    |
|     | 6     |            | :     | -                | h    | 47.1         | 2.0   | 20.2           | 84.8          | 835 | 385 | 1                               | _    |
|     | 7     | _          | _     |                  | m    | 47.3         | 2.25  | 17.5           | 85.7          | 761 | 299 |                                 |      |
|     | 8     | _          | -     | _                | m    | 47.4         | 2.45  | 13.7           | 86.9          | 720 | 224 |                                 |      |
|     | 9     | _          |       | _                | 1    | 47.3         | 2.55  | 11.7           | 87.5          | 701 | 189 |                                 |      |
|     | 10    |            | _ :   | _                | h    |              | į     | 36.3           |               | 458 | 373 |                                 | _    |
| 10  | 1     |            |       | DS               | h    | 48.9         | 4.9   | 19.0           | 80.0          | 344 | 129 | Difficult to decide aurora form | 25–2 |
|     | 2     |            | _     | _                | m    | 49.3         | 4.9   | 16.7           | 80.6          | 347 | 115 |                                 | _    |
|     | 3     | _          | _     | -                | m    | 49.5         | 4.8   | 14.5           | 81.5          | 357 | 104 |                                 | _    |
|     | 4     |            | _     | _                | 1    | 49.1         | 4.7   | 13.1           | 82.7          | 370 | 98  |                                 | _    |
| 15  | 1     | 21.37.09   | N–Lø  | 1                | h    | -40.9        | 13.3  | 48.3           | <b>— 86.0</b> | 103 | 119 | Not sunlit                      | 27-  |
| 10  | 2     |            |       |                  | m    | -43.8        | 13.35 | 45.1           | — 88.2        | 105 | 107 | 1-4 belong to one ray           |      |
|     | 3     |            |       |                  |      | -46.0        | 13.35 |                | — 89.8        | 106 | 98  | T + neiong to one 1st           | _    |
|     | 1 - 6 | i -        |       | . –              | m    | 40.0         | 10.00 | 42.0           | -89.8 $-91.4$ |     | 96  |                                 | _    |

Table 2 (continued).

| 0 | Pt            | MET             | St   | F            | $\mathbf{s}$ | $\varepsilon_2$ | р    | h    | a      | D   | н   | Remarks                    | 0    |
|---|---------------|-----------------|------|--------------|--------------|-----------------|------|------|--------|-----|-----|----------------------------|------|
| 7 | 1             | 21.47.55        | N-Lø | R            | h            |                 |      | 31.9 | 68.2   | 295 | 195 |                            | 25-  |
|   | 2             | _               | _    |              | m            | 51.0            | 5.4  | 26.5 | 70.2   | 282 | 149 | 2-4 belong to one ray      | _    |
|   | 3             |                 | _    | _            | m            | 52.8            | 5.1  | 23.2 | 71.5   | 291 | 135 | 5–7 to another             | _    |
| İ | 4             |                 | _    | -            | 1            | 54.1            | 4.8  | 20.1 | 72.6   | 311 | 123 |                            |      |
| Ì | 5             | _               | _    | _            | h′           | 46.9            | 4.7  | 21.1 | 81.3   | 367 | 155 |                            | _    |
|   | 6             | _               | _    | +            | m            | 47.2            | 5.0  | 17.7 | 82.4   | 352 | 124 |                            |      |
|   | 7             | _               | _    | _            | 1            | 47.3            | 5.0  | 15.0 | 83.3   | 377 | 107 |                            |      |
|   | 8             | _               | _    |              | h            |                 |      | 22.1 | 80.9   | 367 | 164 |                            |      |
| 8 | 1             | 21.48.11        | N–Lø | R            | h            |                 |      | 37.3 | 65.9   | 287 | 233 | 1-5 belong to one ray      | 25   |
|   | 2             |                 | _    | _            | m            | 48.0            | 5.2  | 30.6 | 69.2   | 295 | 186 | 6-8 to another             |      |
|   | 3             |                 | _    |              | m            | 50.4            | 5.5  | 26.9 | 70.8   | 280 | 150 | 9–11 to another            |      |
|   | 4             | _               |      | _            | m            | 52.2            | 5.5  | 22.5 | 72.6   | 280 | 123 |                            |      |
|   | 5             |                 | _    | _            | 1            | 53.7            | 5.4  | 16.8 | 75.1   | 286 | 94  |                            |      |
| ļ | 6             | _               | _    | _            | h            | 50.6            | 3.7  | 20.1 | 78.9   | 435 | 178 |                            |      |
| Ì | 7             | _               | _    | _            | m            | 51.0            | 3.9  | 17.8 | 79.7   | 415 | 150 |                            |      |
|   | 8             | _               | _    | <del>-</del> | 1            | 50.7            | 4.1  | 15.6 | 80.8   | 406 | 128 |                            |      |
|   | 1             | _               |      | ĺ            | h            | 30.7            | 4.1  | 20.6 | 79.9   | 450 | 190 |                            |      |
|   | 9             | _               |      |              |              | -0.1            | 9.05 |      |        |     |     |                            | İ    |
|   | 10            | *******         |      |              | m            | 50.1            | 3.85 | 16.0 | 81.5   | 435 | 142 |                            | i    |
|   | 11            |                 |      | -<br>  D.D.  | 1            | 50.25           | 3.65 | 13.5 | 82.5   | 462 | 130 |                            | 1 20 |
| 3 | 1             | 21.51.47        | N-Lø |              | h            | 58.3            | 4.95 | 21.9 | 64.3   | 268 | 115 |                            | 26   |
|   | 2             |                 | -    | _            | m            | 59.6            | 4.85 | 19.5 | 65.1   | 269 | 101 |                            |      |
|   | 3             | -               | _    | -            | 1            | 60.9            | 4.8  | 17.2 | 66.0   | 265 | 88  |                            |      |
| 4 | 1             | 21.52.15        | N-Lø | DS           | h            | 68.0            | 3.0  | 17.9 | 55.6   | 323 | 114 | The lower border difficult | 26   |
|   | 2             | -               | -    | -            | m            | 69.7            | 2.7  | 16.1 | 56.2   | 337 | 108 | to measure                 | İ    |
|   | 3             | _               | _    |              | m            | 70.5            | 2.5  | 15.1 | 56.7   | 351 | 105 |                            |      |
|   | 4             | -               |      | -            | h            | 67.8            | 2.35 | 16.4 | 60.1   | 419 | 140 |                            |      |
|   | 5             |                 | -    | "            | m            | 68.7            | 2.15 | 14.7 | 61.4   | 442 | 133 |                            |      |
|   | 6             |                 |      | _            | m            | 67.6            | 2.15 | 13.6 | 64.1   | 466 | 132 |                            |      |
|   | . 7           | -               | -    | -            | m            | 64.6            | 3.45 | 17.7 | 62.7   | 323 | 110 |                            |      |
|   | 8             | _               | -    | -            | m            | 66.0            | 3.7  | 14.9 | 63.6   | 336 | 99  |                            |      |
| 7 | 1             | 21.59.21        | N-Lø | PA           | 1            | 65.9            | 4.25 | 19.2 | 42.5   | 248 | 92  | Feeble dots along the are  | 27   |
|   | 2             | _               | i –  | _            | 1            | 62.6            | 5.0  | 20.4 | 38.7   | 236 | 93  |                            |      |
|   | 3             |                 |      |              | ı            | 58.6            | 6.55 | 21.1 | 35.1   | 203 | 82  |                            | Ì    |
|   | 5             |                 | _    |              | 1            | 52.1            | 8.1  | 22.7 | 28.5   | 193 | 84  |                            |      |
| 3 | 1             | 22.00.11        | N-Lø | DS           | 1            | 69.9            | 2.85 | 16.9 | 49.7   | 315 | 105 |                            | 27   |
|   | 2             | _               | _    | _            | 1            | 71.0            | 2.45 | 16.0 | 52.2   | 349 | 111 | İ                          |      |
|   | 3             | _               | _    | _            | 1            | 71.5            | 2.4  | 14.7 | 54.4   | 348 | 102 |                            |      |
|   | 4             |                 |      | _            | i            | 71.9            | 2.45 | 13.3 | 56.3   | 338 | 90  |                            | !    |
|   | 5             | _               | _    | _            | i            | 71.9            | 2.15 | 12.1 | 59.1   | 384 | 95  |                            |      |
| ) | 1             | 23.30.03        | N    | HA           | i            | 11.0            | 2.10 | 6.0  | 124.9  | 637 |     | H supposed = 100 km        |      |
| - | $\frac{1}{2}$ | 20.00.00        |      | -            | i            |                 |      | 7.4  | 133.2  | 567 |     | too kiii                   |      |
|   | 3             | _               | _    | _            | 1            |                 |      | 9.3  | 140.0  | 490 |     |                            |      |
|   | 4             | _               |      |              | l .          |                 | ļ    | 9.1  | 147.1  | 497 |     |                            | ĺ    |
|   | . !           | -<br>- 20 00 51 |      | TT A         | l I          |                 |      | 7.9  | 136.0  | 1   |     | _                          | :    |
| ; | 1             | 23.30.51        | N    | HA           | 1            |                 |      |      |        | 545 |     | _                          |      |
|   | 2             | -               | -    |              | l            |                 |      | 9.0  | 146.0  | 500 |     | _                          |      |
|   | 3             | _               | -    | -            | 1            |                 |      | 9.2  | 154.0  | 494 |     |                            | 1    |
|   | 4             | -               | _    | _            | 1            | 1               |      | 9.4  | 162.0  | 487 |     | _                          | į    |
|   | 5             | _               |      |              | 1            |                 |      | 9.4  | 170.0  | 487 | İ   | _                          | 1    |
|   | 1             | 23.31.40        | N    | HA           | l            |                 |      | 9.3  | 158.0  | 490 |     | _                          | 1    |
|   | 2             | _               | _    | -            | 1            |                 |      | 9.3  | 166.0  | 490 |     | _                          | :    |
|   | 3             | -               | -    |              | 1            |                 |      | 9.1  | 174.0  | 498 |     | _                          | 1    |
| 1 | 4 !           | _               | ļ    | -            | 1            |                 |      | 9.2  | -176.0 | 493 |     | _                          | !    |

Table 2 (continued).

| No | Pt            | MET           | St           | F          | s      | $\mathcal{E}_2$ | р  | h                                           | a              | D          | Н              | Remarks                               | 0 |
|----|---------------|---------------|--------------|------------|--------|-----------------|----|---------------------------------------------|----------------|------------|----------------|---------------------------------------|---|
|    | March         | h 21–22, 195  | 33.          |            |        |                 |    |                                             |                |            |                |                                       |   |
| *  | 1             | 0.29.39       | Li           | HA         | 1      | 1               |    | 6.6                                         | -166.0         | 605        | l <sub>i</sub> | $H$ supposed $\approx 100 \text{ km}$ | i |
|    | 2             |               |              | _          | 1      |                 |    | 7.7                                         | 174.0          | 553        | 1              | _                                     | İ |
|    | 3             | -             | -            | -          | 1      |                 |    | 8.5                                         | 178.0          | 520        |                | -                                     |   |
|    | 4             | -             | _            | -          | 1      |                 |    | 8.6                                         | 174.0          | 516        |                | _                                     |   |
| 2* | 1             | 0.31.28       | Li           | HA         | I      | ļ               |    | 9.4                                         | 152.0          | 486        |                | -                                     |   |
|    | 2             | -             | -            | _          | 1      |                 |    | 9.1                                         | 162.0          | 496        |                | _                                     |   |
|    | 3             | -             | _            | -          | 1      |                 |    | 8.8                                         | 172.0          | 508        |                | _                                     |   |
|    | 4             | _             | _            | -          | 1      | 1               | ļ  | 8.1                                         | -179.0         | 536        |                | _                                     |   |
| 3* | 1             | 0.32.32       | Li           | HA         | l      |                 |    | 8.0                                         | 130.0          | 538        |                | _                                     | 1 |
|    | 2             | No. Alexander | -            | -          | 1      |                 |    | 8.6                                         | 140.0          | 516        |                | -                                     |   |
|    | 3             |               | -            | _          | 1      | ,               |    | 9.2                                         | -150.0         | 493        |                | _                                     |   |
|    | 4             | _             | -            | -          | 1      |                 |    | 9.0                                         |                | 500        |                |                                       |   |
| 3* | 1             | 0.32.32       | 0            | HA         | 1      |                 |    | 5.9                                         | 148.6          | 643        |                | -                                     |   |
|    | 2             | -             | -            | -          | 1      |                 |    | 6.1                                         | 152.0          | 630        |                | _                                     |   |
|    | 3             | •             | _            | _          | 1      |                 | į  | 6.2                                         | 156.0          | 624        |                | <u>-</u>                              |   |
|    | 4             |               | _            | -          | 1      |                 | !  | 6.1                                         | 160.0          | 630        | !              |                                       |   |
|    | 5             | - 0.00.45     | -            | - TT.4     | 1      |                 | 1  | 6.0                                         |                | 635        |                | <del></del>                           |   |
| 4* | 1             | 0.33.45       | Li           | HA         | 1      |                 | -  | 5.3                                         | !              | 673        |                | _                                     |   |
|    | 2             |               | -            | _          | 1      |                 |    | 6.9                                         | 124.0          | 588        |                | _                                     | 1 |
|    | 3             | -             | -            | _          | l      |                 | 1  | 8.1                                         | 132.0          | 536        |                | _                                     |   |
|    | 4             | - 0.94 No     | /II          | TT A       | ŀ      |                 |    | 9.3                                         | 140.0          | 489        |                |                                       |   |
| 2  | $\frac{1}{2}$ | 0.34.08       | T            | HA         | 1      |                 |    | 6.9                                         | 164.0          | 588<br>585 |                |                                       |   |
|    | 3             |               | _            |            | l      |                 | 1  | 7.0                                         | 170.0<br>176.0 | 588        |                |                                       | 1 |
|    | 4             | _             | _            | _          | 1      |                 |    | 6.6                                         | -179.6         | 605        |                |                                       |   |
|    | 5             | -             |              | _          | l      |                 |    | 6.3                                         | -176.0         | 623        |                |                                       |   |
| 2  | 1             | 0.34.08       | $K_{a}$      | HA         | 1      |                 |    | 6.0                                         | 160.0          | 635        |                |                                       |   |
| -  | 2             | _             |              | _          | 1      |                 |    | 6.1                                         | 166.0          | 630        |                | -                                     |   |
|    | 3             | _             | _            |            | 1      |                 | Ì  | 5.9                                         | 171.0          | 643        |                |                                       | İ |
|    | 4             | _             | _            |            | 1      | ĺ               | 1  | 5.7                                         | 176.0          | 654        |                | _                                     |   |
| 3  | 1             | 0.35.18       | $\mathbf{T}$ | HA         | 1      |                 |    | 6.3                                         | 144.9          | 620        |                |                                       | : |
|    | 2             |               | _            | 1 -        | 1      |                 |    | 6.7                                         | 150.0          | 600        |                |                                       |   |
|    | 3             | _             |              |            | 1      |                 |    | 7.2                                         | 156.0          | 576        |                |                                       | i |
|    | 4             | ren           | -            | -          | 1      |                 |    | 7.4                                         | 162.0          | 567        |                | ***                                   | į |
| 3  | 1             | 0.35.18       | $K_4$        | HA         | 1      |                 |    | 5.3                                         | 144.0          | 673        |                |                                       | ļ |
|    | 2             |               | l –          | -          | 1      |                 |    | 5.6                                         | 149.0          | 658        |                |                                       | 1 |
| İ  | 3             | -             |              | -          | l      |                 |    | 5.8                                         | 153.0          | 647        |                |                                       |   |
|    | 4             |               | i –          |            | l      |                 |    | 6.0                                         | 156.5          | 635        |                | -                                     |   |
|    | 5             |               | -            | _          | 1      |                 |    | 6.2                                         | 162.0          | 624        |                |                                       |   |
| 4  | 1             | 0.36.28       | $K_{1}$      | HA         | i      |                 |    | 5.5                                         | 140.0          | 665        |                | <u>-</u>                              |   |
|    | 2             |               | -            | -          | 1      |                 |    | 5.7                                         | 144.0          | 654        |                |                                       |   |
|    | 3             |               | -            | _          | 1      |                 |    | 5.8                                         | 148.0          | 647        |                | d desired                             |   |
|    | 4             | -             | -            | ļ <u>-</u> | 1      |                 | İ. | 5.9                                         | 152.0          | 643        |                |                                       |   |
| 5  | 1             | 0.37.54       | T            | HA         | 1      | i               | !  | 7.1                                         | 164.0          | 581        |                |                                       |   |
|    | 2             | -             | _            | _          | 1      |                 |    | 7.1                                         | 170.0          | 581        |                |                                       |   |
|    | 3             |               | -            |            | 1      | 1               |    | 6.8                                         | 176.0          | 594        |                |                                       |   |
|    | 4             |               | -            | _          | 1      |                 |    | 6.4                                         | -178.0         | 615        |                | remain .                              |   |
| _  | 5             | 0.05.54       | 12           |            | l      | ļ               |    | 6.0                                         | -174.5         | 635        | <br>           | _                                     |   |
| 5  | 1             | 0.37.54       | $K_4$        | HA         | 1      |                 |    | 5.6                                         | 146.0          | 638        | -              | _                                     |   |
|    | 2             | -             | _            |            | 1      |                 |    | 6.0                                         | 152.0          | 635        |                | _                                     | ļ |
|    | 3             |               | _            | _          | l<br>l |                 |    | 6.1                                         | 158.0          | 630        |                | _                                     | İ |
|    | 4 5           | -             | -            | _          | l      |                 |    | $\begin{array}{c c} 6.2 \\ 6.2 \end{array}$ | 164.0<br>170.0 | 624<br>624 |                |                                       |   |
|    | 5<br>6        | _             | -            | _          | 1      | į               |    | 6.1                                         | 170.0          |            |                |                                       |   |
|    | O             |               |              |            | L      | 1               | I  | 0.1                                         | 174.0          | 030        | ŀ              |                                       | 1 |

Table 2 (continued).

| No | Pt                      | MET          | St    | F        | s       | $\varepsilon_2$ | p                 | h                                                   | a                | D          | н                 | Remarks                    | θ                |
|----|-------------------------|--------------|-------|----------|---------|-----------------|-------------------|-----------------------------------------------------|------------------|------------|-------------------|----------------------------|------------------|
| 13 | 1                       | 1.04.03      | K-T   | PS       | ı       | _37.3           | 10.2              | 10.1                                                | 166.5            | 458        | 99                | Pulsating dot              | 25-26            |
| !  | 2                       | Alamb        | -     |          | h′      | -37.3           | 10.3              | 12.2                                                | 166.6            | 449        | 114               |                            |                  |
|    | Manal                   | h 23-24, 193 | ) ?   |          |         |                 |                   |                                                     |                  |            |                   |                            |                  |
| 25 |                         | 0.21.20      | N–Lø  | R,RB     | 1       | 30.2            | 4.5               | 8.3                                                 | 164.7            | 520        | 98                | Ray behind the RB          | 22-23            |
|    | 2                       | -            |       | -        | m       | -29.6           | 4.5               | 12.0                                                | 164.5            | 515        | 132               | -                          |                  |
|    | 3                       | ***          | _     |          | h       | -25.5           | 4.4               | 17.5                                                | 164.1            | 512        | 188               | _                          | _                |
| 26 | 1                       | 0.22.36      | N-Lø  | R        | h       | -28.6           | 3.7               | 21.4                                                | 165.5            | 589        | 268               | Ray far away               | 20-22            |
|    | 2                       | -            | -     |          | m       | 30.0            | 3.9               | 15.5                                                | 165.9            | 575        | 191               |                            | _                |
|    | 3                       | _            | -     |          | m       | 30.8            | 3.7               | 10.1                                                | 166.2            | 619        | 143               |                            | _                |
|    | 4                       | -            |       | -        | 1'      | -30.9           | 3.5               | 7.3                                                 | 166.3            | 662        | 121               |                            | _                |
|    | 5                       |              | _     | _        | l       | 30.1            | 3.5               | 5.6                                                 | 165.4            | 670        | 103               |                            |                  |
| 27 | 1                       | 0.23.10      | N-Lø  | R        | m       | -30.6           | 3.6               | 16.3                                                | 166.8            | 616        | 217               | The same ray               | 19–22            |
|    | 2                       | -            | _     | _        | m       | -31.3           | !                 | 11.8                                                | 166.9            | 629        | 166               | 1-4 belong to one ray      | _                |
|    | 3                       | _            | _     | -        | m       | -31.7           | 3.4               | 7.2                                                 | 167.1            | 676        | 124               | 5-6 to another             | _                |
|    | 4                       |              | -     | <u> </u> | 1       | -31.0<br>-26.3  | $\frac{3.0}{3.0}$ | 5.7 $12.7$                                          | 166.7<br>162.5   | 774<br>780 | $\frac{127}{231}$ | I                          | _                |
|    | 5<br>6                  | _            | _     | _        | m<br>l  | -26.5 $-26.7$   | 2.9               | 9.3                                                 | 162.5            | 820        | 193               |                            |                  |
| į  | 7                       | _            |       | _        | h       | 20.1            | 2.9               | $\frac{3.3}{21.0}$                                  | 166.8            | 020        | 269               |                            | _                |
| 28 | 1                       | 0.24.52      | N-Lø  | i        | h       | _30.8           | 3.8               | 21.6                                                | 167.9            | 560        | 255               | 1-4 belong to the same R   | 20-22            |
|    | 2                       | -            | -     | _        | m       | -31.7           | 3.7               | 16.9                                                | 168.0            | 591        | 214               | of RB                      |                  |
|    | 3                       | _            | ;<br> | _        | m       | -32.4           | 1 i               | 11.6                                                | 168.3            | 639        | 167               | 5-6 belong to the another  |                  |
|    |                         |              |       |          |         |                 | 4c                |                                                     |                  |            |                   | R of RB                    |                  |
|    | 4                       |              | -     | <u>.</u> | 1'      | -32.7           | 3.2               | 7.5                                                 | 168.4            | 709        | 136               |                            | _                |
|    | 5                       | -            | -     |          | h'      | -25.3           | 4.3               | 19.7                                                | 161.0            | 530        | 218               |                            |                  |
|    | 6                       | -            | - 1   | _        | l'      | 26.0            |                   | 14.3                                                | 161.1            | 560        | 171               |                            |                  |
|    | 7                       | -            | _     | -        | 1       | -28.2           |                   | 10.3                                                | 163.7            | 637        | 150               |                            | _                |
|    | 8                       | _            | -     |          | l       | 29.1            | 3.1               | 6.5                                                 | 164.8            | 760        | 135               | !<br>                      | -                |
| 30 | 1                       | 0.27.50      | N-Lø  | 1        | h       | -40.05          | 1                 | 18.3                                                | 178.2            | 701        | 282               |                            | 21-22            |
|    | 2                       | _            | - '   | -        | m       | 41.1            | 3.0               | 15.1                                                | 178.3            | 651        | $\frac{215}{163}$ |                            |                  |
|    | 3<br>4                  | -            | _     | _        | m<br>l  | -42.0<br>-42.7  | 1                 | 11.9<br>10.8                                        | 178.5 $178.9$    | 615<br>593 | 103               |                            |                  |
|    | . <del>4</del><br>. 5 ! | _            | _     | . –      | h       | -42.7<br>-39.1  | !                 | 16.3                                                | 176.9            | 623        | 221               |                            |                  |
|    | 6                       | _            | -     | _        | m       | -39.7           | ļ                 | 12.4                                                | 175.9            | 598        | 163               |                            |                  |
|    | 7                       |              |       | ! _      | m       | -39.1           | 3.4               | 9.3                                                 | 174.9            | 611        | 131               |                            | _                |
|    | 8                       | _            | _     |          | 1       | -38.3           | 1                 | 6.9                                                 | 174.2            | 684        | 122               |                            | _                |
| 33 | 1                       | 0.32.00      | N-Lø  | R        | m       | -22.5           |                   | 28.3                                                | 157.5            | 364        | 212               | 1, 2, 3, 6 belong to the   | 22-24            |
|    | 2                       | _            | -     | _        | m       | -23.5           | 6.4               | 25.2                                                | 157.8            | 350        | 179               | same ray                   | !                |
|    | 3                       | . –          | i –   | -        | 1       | -24.6           | 6.6               | 22.3                                                | 158.7            | 346        | 154               |                            |                  |
|    | 4                       | _            | -     | PS       | h       | -23.7           | 5.8               | 14.0                                                | 157.1            | 418        | 119               |                            |                  |
|    | 5                       | _            | -     | _        | 1       | -24.5           | 5.8               | 12.2                                                | 157.7            | 418        | 105               |                            | -                |
|    | 6                       |              | _     | R        | h       |                 |                   | 32.0                                                | 157.2            | 338        | 227               |                            |                  |
| 34 | 1                       | 0.32.47      | N-Lø  | R        | h       | 25.4            | i .               | 25.5                                                | 160.1            | 369        | 192               | 1-2 belong to the same ray | _ 2 <b>2</b> −24 |
|    | 2                       | _            | _     | -        | 1'      | -26.3           |                   | 20.7                                                | 160.2            | 364        | 150               |                            |                  |
|    | 3                       |              | _     | PS       | m       | -22.4           |                   |                                                     | 156.7            | 429        | 108               |                            | -                |
|    | 4                       | _            | _     |          | 1       | <u>-27.1</u>    |                   | $\begin{array}{ c c }\hline 12.7\\ 12.0\end{array}$ | 160.4            | 395        | 102<br>103        |                            |                  |
| 37 | 5                       | 0.36.24      | N–Lø  | R        | l<br>h' | -27.9 $1.6$     |                   | 25.3                                                | $161.5 \\ 131.1$ | 418<br>472 | 249               | 1-3 the same ray           | 22-23            |
| +) | 2                       | 0.30.24      | N-LØ  | N        | m       | 1.0             |                   | $\begin{array}{c c} 25.3 \\ 22.3 \end{array}$       | 131.7            | 486        | 225               | T O OUT SWITE TOLY         |                  |
|    | 3                       |              | _     | _        | 1       | 0.5             |                   | 19.4                                                | 131.7 $132.7$    | 498        | 200               |                            |                  |
|    | 4                       | _            |       | RB       | m       | - 1.1           | ,                 | 9.7                                                 | 134.8            | 548        | 119               |                            | _                |
|    | 5                       | _            | _     | -        | l'      | _ 1.4           |                   | 8.4                                                 | 135.2            | 551        | 107               |                            | _                |
|    | 6                       | _            |       | -        | 1'      | _ 5.3           |                   | 8.8                                                 | 139.0            | 537        | 107               |                            | _                |
|    | 7                       |              | -     |          | 1       |                 |                   |                                                     |                  |            | 98                |                            |                  |
| 38 | ı                       | 0.38.57      | N-Lø  | R        | h       | 2.0             | 5.25              | 25.4                                                | 131.1            | 455        | 240               | 1-3 on the same ray        | 22-23            |

Table 2 (continued).

| No  | Pt                                | MET     | St   | F        | s   | $\epsilon_2$ | p    | h            | a                | D          | Н        | Remarks                   | 0     |
|-----|-----------------------------------|---------|------|----------|-----|--------------|------|--------------|------------------|------------|----------|---------------------------|-------|
|     | 2                                 | 0.38.57 | N–Lø | R        | m   | 0.9          | 4.95 | 19.3         | 132.4            | 512        | 206      |                           | 22-23 |
|     | 3                                 |         | _    | -        | 1   | 0.4          | 4.9  | 15.1         | 133.2            | 532        | 170      |                           | _     |
|     | 4                                 | -       | _    | RB       | h   | 4.6          | 5.45 | 10.1         | 138.0            | 492        | 108      |                           | _     |
|     | 5                                 | _       | _    | _        | 1   | - 4.7        | 5.35 | 7.9          | 138.2            | 505        | 91       | -                         | -     |
| 39  | 1                                 | 0.39.34 | N-Lø | R        | h   | 4.7          | 5.0  | 24.7         | 128.0            | 483        | 249      |                           |       |
|     | 2                                 |         | -    | -        | m   | 4.1          | 5.05 | 21.3         | 128.9            | 493        | 217      |                           | -     |
|     | 3                                 | -       | _    | -        | 1   | 3.3          | 5.15 |              | 129.9            | 500        | 178      | ·                         | -     |
| 4() | 1                                 | 0.40.24 | N-Lø | DS       | h   | - 4.6        | 5.2  | 11.2         | 138.0            | 513        | 124      |                           | -     |
|     | 2                                 |         | _    | -        | 1′  | <b>— 4.7</b> | 5.2  | 9.8          | 138.2            | 516        | 111      |                           | -     |
|     | 3                                 | -       | _    |          | h'  | - 6.0        | 5.1  | 10.0         | 139.5            | 524        | 115      |                           | _     |
|     | 4                                 | -       | -    |          | 1   | - 6.0        | 5.05 | 8.9          | 139.6            | 534        | 97       |                           |       |
| 43  | 1                                 | 0.56.17 | N-Lø |          | 1'  | 11.6         | 7.2  | 14.1         | 143.1            | 362        | 102      |                           | 23-24 |
|     | $\begin{vmatrix} 2 \end{vmatrix}$ |         |      |          | l'  | 15.1         | 7.4  | 14.7         | 146.5            | 346        | 101      |                           | -     |
|     | 3                                 |         | _    | -        | 1'  | -24.7        | 6.9  | 15.5         | 157.3            | 347        | 107      | None maint 3              |       |
|     | 4                                 |         | N    | 73.4     | 1   | 17.0         | = 0  | 13.1         | 143.0            | 490        | 95       | Near point 1              | 23-24 |
| 44  | 1                                 | 0.57.03 | N-Lø | RA       | l l | 17.8         | 5.9  | 8.6          | 115.0            | 438<br>457 | 81<br>96 |                           | 2.)24 |
|     | 2                                 | _       | _    | _        | l   | 12.9         | 5.75 | 1            | 120.0            | 390        | 90<br>93 |                           | -     |
|     | 3                                 |         |      | _        | 1   | 3.9          | 6.85 | I            | $128.0 \\ 134.0$ | 368        | 9.0      | 4–8 with supposed H equal | 23-25 |
|     | 4                                 |         | N    |          |     |              |      | 12.7<br>13.9 | 140.0            | 340        |          | to 95 km                  | 20-26 |
|     | 5                                 | -       |      |          | 1   |              |      | 12.0         | 116.0            | 386        |          | to so kin                 | _     |
|     | 6                                 |         | -    |          | i   |              |      | 13.5         | 122.0            | 350        |          |                           | -     |
|     | 7                                 |         | -    | _        | 1   |              |      | 14.9         | 122.0            | 321        |          |                           |       |
|     | 8                                 | _       |      |          | 1   |              |      | 8.6          | 115.0            | 473        |          | H supposed == 90 km       | 22-24 |
|     | 1 2                               | _       |      | _        | 1   |              |      | 9.8          | 120.0            | 429        |          | n supposed · · so kin     |       |
|     | 3                                 | -       |      |          | 1   |              |      | 11.6         | 128.0            | 376        |          | _                         | _     |
|     | 4                                 | -       | _    | -        | 1   |              |      | 12.7         | 134.0            | 348        |          |                           | _     |
|     | 1                                 |         | _    |          | 1   |              |      | 8.6          | 115.0            | 555        |          | H supposed = 110 km       |       |
|     | 2                                 | _       |      | _        | 1 1 |              |      | 9.8          | 120.0            | 508        |          | _                         |       |
|     | 3                                 | _       | _    |          | l   |              |      | 11.6         | 128.0            | 443        |          |                           | _     |
|     | 4                                 |         |      |          | l i |              |      | 12.7         | 134.0            | 418        | •        | _                         | _     |
| 45  | 1                                 | 0.58.12 | N-Lø | RA       | h   | _34.5        | 6.7  | 16.1         | 168.1            | 323        | 103      | One short ray of the arc  | 23-24 |
| 11, | 2                                 |         |      | _        | m   | -34.7        | 6.75 | 1            | 168.0            | 323        | 93       | ,                         | _     |
|     | 3                                 | _       | _    | _        | 1   | -34.4        |      | 1            | 167.5            | 326        | 89       |                           | _     |
|     | 4                                 | _       | N    | _        | i   |              |      | 15.1         | 152.0            | 302        |          | H upposed == 90 km        | 23-24 |
|     | 5                                 |         | _    | _        | 1   |              |      | 14.9         | 158.0            | 307        |          |                           | _     |
|     | 6                                 |         | _    | _        | 1   |              |      | 14.5         | 164.0            | 313        |          | _                         | _     |
|     | 7                                 | _       | _    | _        | l   |              |      | 13.2         | 176.0            | 340        |          | _                         | -     |
|     | 8                                 | _       | _    | _        | 1   |              |      | 11.8         | -176.0           | 373        |          | _                         | _     |
|     | 4                                 |         | _    | _        | 1   |              |      | 15.1         | 152.0            | 363        |          | H supposed = 110 km       |       |
|     | 5                                 | _       | _    |          | 1   |              |      | 14.9         | 158.0            | 367        | 1        | _                         | -     |
|     | 6                                 | _       |      | -        | 1   |              |      | 14.5         | 164.0            | 374        |          | _                         | -     |
|     | 7                                 |         | _    | _        | 1   |              |      | 13.2         | 176.0            | 406        |          | _                         | -     |
|     | 8                                 | -       | _    | -        | 1   |              |      | 11.8         | -176.0           | 445        |          | _                         |       |
| 47  | 1                                 | 1.00.54 | N    | RA       | 1   |              |      | 14.3         | 176.0            | 316        |          | H supposed = 90 km        | 23-2  |
|     | 2                                 |         | _    | -        | 1   |              |      | 13.0         | 178.0            | 342        |          | _                         | -     |
|     | 3                                 | _       | _    | -        | 1   |              |      | 12.0         | -172.0           | 366        |          | _                         | -     |
|     | 4                                 | _       | -    | _        | I   |              |      | 10.3         | 166.0            | 414        |          | -                         |       |
|     | 5                                 | _       | _    | -        | 1   |              | 1.   | 8.4          | -161.3           | 478        |          | _                         | -     |
|     | 1                                 | _       | -    | -        | 1   |              |      | 14.3         | 176.0            | 378        |          | H  supposed = 110  km     | -     |
|     | 2                                 |         | -    | -        | 1   |              |      | 13.0         | -178.0           | 410        |          | -                         | -     |
|     | 3                                 |         | _    | -        | 1   |              |      | 12.0         | -172.0           | 438        |          | _                         | -     |
|     | 4                                 |         | -    | -        | 1   |              |      | 10.3         | -166.0           | 492        |          | _                         | -     |
|     | 5                                 |         |      | -        | 1   |              |      | 8.4          | 161.0            | 564        |          | _                         | -     |
| 49  | 1                                 | 1.03.46 | N-Lo | $^{-}$ R | h   | -42.7        | 3.5  | 22.1         | -178.7           | 520        | 240      | 1-2 on the same ray       | 22-2- |

Table 2 (continued).

| No  | Pt                                     | MET      | St     | F   | s      | $\epsilon_2$  | p    | h              | a              | D          | Н   | Remarks              | 0     |
|-----|----------------------------------------|----------|--------|-----|--------|---------------|------|----------------|----------------|------------|-----|----------------------|-------|
| `   | 2                                      | 1.03.46  | N–Lø   | R   | 1      | _44.7         | 3.5  | 14.5           | -178.5         | 531        | 163 |                      | 22-24 |
|     | 3                                      | -        | _      |     | h      | 56.3          | 3.2  | 11.5           | -166.7         | 462        | 113 | 3–4 on another       |       |
|     | 4                                      | -        | -      | -   | 1′     | 56.7          | 3.2  | 9.2            | 166.9          | 464        | 93  |                      | -     |
|     | 5                                      | -        | N      | RA  | l      |               |      | 15.1           | 174            | 302        |     | H supposed = 90 km   | 232   |
|     | 6                                      |          | -      | -   | 1      |               |      | 13.7           | -176           | 327        |     | _                    |       |
|     | 7   8                                  | -        |        | -   | l<br>1 |               |      | $12.7 \\ 10.3$ | —168<br>—162   | 350<br>414 |     |                      | _     |
|     | 9                                      | -        | _      | _   | 1      |               |      | 8.3            | —162<br>—159   | 482        |     | _                    | _     |
|     | 5                                      |          | _      |     | .<br>  |               |      | 15.1           | 174            | 363        |     | H upposed = 110 km   | _     |
|     | 6                                      | _        | _      | _   | 1      |               |      | 13.7           | -176           | 392        |     |                      | _     |
|     | 7                                      | _        | -      | _   | 1      |               |      | 12.7           | -168           | 419        |     | -                    | _     |
|     | 8                                      |          |        |     | 1      |               |      | 10.3           | -162           | 492        |     | _                    | _     |
|     | 9                                      | _        | - 1    |     | 1      | İ             |      | 8.3            | 159            | 569        |     | _                    | _     |
| 50  | 1                                      | 1.04.42  | N-Lø   | R   | h      | -45.9         | 3.35 | ì              | -177.0         | 546        | 164 | 1–2 on the same ray  | 22-2  |
|     | 2                                      | _        | _      |     | 1      | <b>—4</b> 7.5 | 3.55 | 1              | 176.7          | 514        | 97  |                      |       |
|     | 3                                      | -        | -      | RB  | l      | -44.2         | 3.5  | 7.1            | 179.8          | 555        | 95  |                      | _     |
|     | 5                                      | _        | _      | -   | 1      | -38.0         | 4.35 | i              | 172.9          | 490        | 90  |                      | _     |
|     | 6                                      | -        | _      | -   | l      | -36.8         | 4.2  | 7.8            | 171.8          | 518        | 92  | TT                   | -     |
|     | $\begin{bmatrix} 7 \\ 8 \end{bmatrix}$ | _        | N<br>_ |     | 1      |               |      | 15.2<br>14.5   | 164.0<br>170.0 | 299<br>313 |     | H supposed = 90 km   | 23-2  |
|     | 9                                      | _        |        | _   | 1 1    |               |      | 14.0           | 178.0          | 322        |     | _                    |       |
|     | 10                                     | _        | _      | _   | 1      |               |      | 12.6           | -170.0         | 352        |     | _                    |       |
|     | 11                                     | _        | _      | _   | i      |               |      | 10.8           | -164.0         | 400        | İ   |                      | _     |
|     | 7                                      |          | _      | _   | 1      |               | *    | 15.2           | 164            | 358        |     | H supposed = 110 km  | _     |
|     | 8                                      |          | _      |     | 1      |               |      | 14.5           | 170            | 374        |     |                      | _     |
|     | 9                                      | and a    |        | _   | 1      |               |      | 14.0           | 178            | 384        |     | _                    | -     |
|     | 10                                     | _        | -      |     | 1      |               |      | 12.6           | -170           | 420        |     | - man-               |       |
|     | 11                                     | _        | -      |     | 1      |               |      | 10.8           | 164            | 476        |     | -                    | -     |
| 51  | 1                                      | 1.06.34  | N      | HA  | 1      |               |      | 9.1            | 116.0          | 453        |     | H supposed = 90 km   | 23-2  |
|     | 2                                      | _        | -      | -   | 1      |               |      | 11.6           | 122.0          | 377        |     |                      | -     |
|     | 3                                      | -        | -      | -   | 1      |               |      | 13.6           | 128.0          | 330        |     | _                    | -     |
|     | 4                                      | _        |        |     | 1 1    |               |      | 15.3           | 134.0          | 298        |     | Militar              | _     |
|     | 5                                      | -        | _      | _   | 1      |               |      | 16.5<br>9.1    | 140.0<br>116.0 | 278<br>535 |     | H supposed = 110 km  | _     |
|     | 2                                      | _        | _      | _   | 1      |               |      | 11.6           | 122.0          | 450        |     | it supposed = 110 km |       |
|     | 3                                      | _        | _      | _   | l      |               |      | 13.6           | 128.0          | 393        |     |                      |       |
|     | 4                                      | _        | _      |     | l i    |               |      | 15.3           | 134.0          | 357        |     | -                    | _     |
|     | 5                                      |          | _      | _   | l      |               |      | 16.5           | 140.0          | 334        | 1   | _                    | _     |
| 52  | 1                                      | .1.07.55 | N      | HA  | 1      |               |      | 17.3           | 144.0          | 266        |     | H supposed = 90 km   | 23-2  |
|     | 2                                      |          | -      | -   | 1      |               |      | 17.7           | 150.0          | 260        |     |                      | -     |
|     | 3                                      | -        |        | _   | 1      |               |      | 17.8           | 156.0          | 258        |     | _                    | -     |
|     | 4                                      |          | -      | -   | 1      | 1             |      | 17.4           | 162.0          | 264        |     | _                    | _     |
|     | 5                                      | -        | _      | _   | 1      |               |      | 16.7           | 168.0          | 275        |     |                      | -     |
|     | 1                                      | -        | -      | -   | 1      |               |      | 17.3           | 144.0          | 320        |     | H supposed = 110 km  | -     |
|     | 2                                      |          |        | -   | 1      |               |      | 17.7           | 150.0          | 313        |     | -                    | -     |
|     | 3                                      |          | _      | -   |        |               |      | 17.8           | 156.0          | 311        |     | _                    | -     |
|     | 5                                      |          | _      | _   | 1      |               |      | 17.4<br>16.7   | 162.0<br>168.0 | 318<br>331 |     |                      | _     |
| 53  | 3                                      | 1.08.43  | N _    | HA  | 1      |               |      | 17.2           | 140.0          | 267        |     | H supposed = 90 km   | 23-2  |
| 163 | 4                                      | T100149  |        | 11A | 1      |               |      | 18.4           | 152.0          | 251        |     | 3, 4, 5, 6 upper,    | 2.5-2 |
|     | 5                                      | _        | _      | _   | 1      |               |      | 18.3           | 164.0          | 252        |     | 7, 8, 9 lower are    | _     |
|     | 6                                      | -        | _      | _   | ì      |               |      | 17.1           | 174.0          | 269        |     |                      | _     |
|     | 7                                      |          | · -    | _   | 1      |               |      | 12.7           | 148.0          | 374        |     |                      | 22-2  |
|     | 8                                      | -        | _      | _   | 1      |               |      | 12.9           | 158.0          | 368        | !   |                      |       |
|     | 9                                      |          |        |     | 1      |               |      | 12.7           | 168.0          | 374        |     |                      |       |

Table 2 (continued).

| Vo | Pt                                                     | MET     | St   | F             | s   | $\epsilon_2$     | p    | h    | a      | D          | Н      | Remarks                | θ       |
|----|--------------------------------------------------------|---------|------|---------------|-----|------------------|------|------|--------|------------|--------|------------------------|---------|
| 54 | 1                                                      | 1.09.47 | N    | HA            |     |                  | ···· | 11.4 | 118.0  | 383        |        | H supposed = 90 km     | 23-2    |
|    | 2                                                      | _       | _ 1  | _             | 1   |                  |      | 13.4 | 124.0  | 333        |        | Upper are -            |         |
|    | 3                                                      | _       |      | _             | 1   |                  |      | 15.4 | 130.0  | 296        |        |                        | _       |
| ı  | 4                                                      | _       |      | _             | 1   |                  |      | 17.9 | 138.0  | 257        |        |                        | _       |
|    | 1                                                      | _       | _    |               | l   |                  |      | 11.4 | 118.0  | 456        |        | H supposed = 110 km    | _       |
|    | 2                                                      | _       | _    |               | l   |                  |      | 13.4 | 124.0  | 398        |        | _                      | _       |
|    | 3                                                      | _       |      | _             | 1   |                  |      | 15.4 | 130.0  | 353        |        |                        |         |
|    | 4                                                      | _       |      | _             | 1   |                  |      | 17.9 | 138.0  | 310        |        | _                      |         |
| 55 | 1                                                      | 1.14.43 | N-Lø | RB            | 1   | 8.8              | 6.9  | 12.2 | 122.5  | 383        | 95     |                        | 23-2-   |
|    | 2                                                      | _       | _    | _             | 1   | 8.2              | 7.0  | 11.7 | 123.1  | 379        | 90     |                        |         |
|    | 3                                                      | _       |      |               | i   | 11.6             | 6.0  | 11.5 | 120.5  | 437        | 105    |                        |         |
|    | 4                                                      |         |      |               | 1   | 12.8             | 5.2  | 10.1 | 120.3  | 503        | 111    | ,                      | _       |
| 9  | 1                                                      | 1.20.35 | N-Lø | RB            | m   | -17.8            | 5.6  | 11.0 | 150.9  | 456        | 106    | !<br>:<br>!            | 22-2    |
| ., | 2                                                      |         |      | _             | 1   | -16.6            | 5.1  | 7.9  | 150.0  | 509        | 92     |                        |         |
| 0  | 1                                                      | 1.23.11 | N-Lø |               | 1   | -22.8            | 5.7  | 11.2 | 156.1  | 434        | 101    |                        | 22-2-   |
| '' | $\frac{1}{2}$                                          |         |      |               | 1   | -22.6 $-23.1$    | 5.95 |      | 156.1  | 413        | 101    |                        | 1 22-2  |
|    | $\begin{bmatrix} \frac{2}{3} \end{bmatrix}$            | _       | _    | _             | 1   | -25.1 $-24.2$    | 6.3  | 13.0 | 150.5  | 385        | 104    |                        | -       |
|    | 4                                                      | _       | _    | _             | 1   | $-24.2 \\ -27.1$ | 6.7  | 13.7 | 159.9  | 353        | 97     |                        | 1       |
|    | 5                                                      | _       | N    | _             | l i | -27.1            | 0.7  | 10.6 | 100.0  | 445        | 31     | H supposed == 100 km   | -       |
|    | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$ | _       |      |               | 1   |                  |      | 10.0 |        | 458        |        | n supposed == 100 km   | İ       |
|    | 7                                                      | _       |      | -             | 1   |                  |      | 10.2 |        |            |        | _                      |         |
|    | 1                                                      |         | _    | _             | 1 ' |                  |      |      |        | 445        |        |                        | !       |
|    | 8                                                      | _       | _    | _             | 1   |                  |      | 10.9 |        | 437        |        | _                      | i       |
|    | 9                                                      | -       | -    | _             | 1   |                  |      | 13.9 |        | 358        |        | _                      |         |
|    | 10                                                     | _       |      |               | 1   |                  |      | 13.5 | 7000   | 367        |        | -                      |         |
| 1  | 1                                                      | 1.35.38 | N    | HA            | 1   |                  |      | 9.9  | 166.0  | 427        |        | H supposed == 90 km    | 22-2    |
|    | 3                                                      | _       | -    | ! <del></del> | 1   |                  |      | 9.8  | 176.0  | 428        |        | _                      | -       |
|    | 4                                                      | _       | -    | _             | 1   |                  |      | 9.1  | -174.0 | 453        |        | _                      | -       |
|    | 5                                                      | -       | -    | -             | 1   |                  |      | 7.5  | -164.0 | 515        |        |                        | ļ -     |
|    | 7                                                      |         | -    |               | 1   |                  |      | 5.1  | -154.0 | 638        |        |                        | -       |
|    | 1                                                      | -       | _    | _             | 1   | İ                |      | 9.9  | 166.0  | 506        |        | H supposed == 110 km   | -       |
|    | 3                                                      | _       | -    | _             | 1   |                  |      | 9.8  | 176.0  | 508        |        | _                      |         |
|    | 4                                                      | _       | -    |               | 1   |                  |      | 9.1  | 174.0  | 535        |        | <u> </u>               | _       |
|    | 5                                                      | _       |      | -             | I   |                  |      | 7.5  | -164.0 | 605        |        | _                      | _       |
|    | 7                                                      | _       | -    | -             | 1   |                  |      | 5.1  | -154.0 | 727        |        | -                      | _       |
| 2  | 1                                                      | 1.36.29 | N    | HA            | 1   |                  |      | 6.8  | 126.0  | 549        |        | H supposed = 90 km     | 21-2    |
|    | 3                                                      | -       | -    | _             | 1   |                  |      | 8.5  | 140.0  | 474        |        | 1, 3, 4, 6 upper,      | -       |
|    | 4                                                      |         | -    | _             | 1   |                  |      | 9.3  | 150.0  | 446        |        | 7, 9, 11, 12 lower arc |         |
|    | 6                                                      |         | _    |               | 1   |                  |      | 9.7  | 162.0  | 432        | i<br>İ | _                      | -       |
|    | 7                                                      |         | _    |               | . 1 |                  |      | 8.8  | 124.0  | 463        |        |                        | 22-2    |
|    | 9                                                      | w.,     |      |               | 1   |                  |      | 11.1 | 138.0  | 390        |        |                        | -       |
|    | 10                                                     |         | -    | <u> </u>      | 1   |                  |      | 11.9 | 148.0  | 368        |        | -                      | _       |
| İ  | 12                                                     | _       |      | _             |     |                  |      | 12.6 | 162.0  | 352        |        | -<br>                  |         |
|    | ı                                                      | _       |      |               | 1   |                  |      | 6.8  | 126.0  | 642        |        | H supposed == 110 km   | 21-2    |
|    | 3                                                      | _       | _    | _             | 1   |                  |      | 8.5  | 140.0  | 560        |        | _                      |         |
|    | 4                                                      |         |      | _             | 1   |                  |      | 9.3  | 150.0  | 527        | :      | Man.                   |         |
|    | 6                                                      |         | -    | _             | 1   |                  |      | 9.7  | 162.0  | 513        |        |                        | _       |
|    | 7                                                      | _       | _    |               | 1   |                  |      | 8.8  | 124.0  | 548        | İ      | _                      | 22 -2   |
| -  | 9                                                      |         | _    | _             | 1   |                  |      | 11.1 | 138.0  | 464        |        |                        |         |
|    | 10                                                     |         | _    | _             | i   |                  |      | 11.9 | 148.0  | 440        |        | _                      | _       |
|    | 12                                                     |         | _    | _             | i   |                  |      | 12.6 | 162.0  | 420        |        |                        |         |
| 3  | 1                                                      | 1.39.07 | N    | HA            | i   |                  |      | 6.8  | 124.0  | 549        |        | H supposed = 90 km     | 21-2    |
| '  | 2                                                      | 1,00,01 | 17   | п.А           |     |                  |      | 8.1  | 130.0  | 490        |        | 1, 2, 3, 4 lower arc - | 1. 21-2 |
|    | 3                                                      | •       | _    | _             | 1   |                  |      | 9.0  | 136.0  |            |        | 5, 6 upper arc -       |         |
|    | 4                                                      | _       |      | _             |     |                  |      |      |        | 456<br>510 |        | ο, υ upper are         |         |
|    | 4                                                      |         |      | -             | 1   | 1                |      | 10.1 | 144.0  | 519        |        |                        |         |

Table 2 (continued).

| No   | Pt   | MET                  | St   | F        | s | $arepsilon_2$ | p    | h    | a      | D           | Н   | Remarks               | 0      |
|------|------|----------------------|------|----------|---|---------------|------|------|--------|-------------|-----|-----------------------|--------|
|      | 6    | 1.39. <sub>0</sub> 7 | N    | HA       | 1 |               |      | 14.1 | 134.0  | 320         |     |                       | 2325   |
|      | 1    | -                    | -    | _        | 1 |               |      | 6.8  | 124.0  | 642         |     | H supposed = 110 km   | 21-2:  |
|      | 2    | -                    | -    | -        | 1 |               |      | 8.1  | 130.0  | 577         |     |                       |        |
|      | 3    | _                    | _    | -        | 1 |               |      | 9.0  | 136.0  | 538         |     | NAMA .                | -      |
|      | 4    |                      |      | _        | 1 |               |      | 10.1 | 144.0  | 498         |     | _                     | -      |
|      | 5    | _                    | _    | _        | I |               |      | 13.0 | 128.0  | 410         |     |                       | 23 - 2 |
|      | 6    | -                    | -    | <u> </u> | I |               |      | 14.1 | 134.0  | 383         |     | _                     |        |
| 34   | 3    | 1.39.45              | N    | HA       | 1 |               |      | 9.8  | 156.0  | 429         |     | H supposed = 90 km    | 22-2   |
|      | 4    | -                    | -    | _        | 1 |               |      | 10.7 | 166.0  | 402         |     | -                     | -      |
|      | 5    | -                    | _    |          | 1 |               |      | 10.9 | 174.0  | 396         |     | _                     | _      |
|      | 6    | NOTE:                |      | _        | 1 | i l           |      | 10.9 | 178.0  | 396         |     | _                     | -      |
|      | 3    | _                    |      | -        | 1 |               |      | 9.8  | 156.0  | 508         |     | H  supposed = 110  km | -      |
|      | 4    |                      |      | -        | 1 |               |      | 10.7 | 166.0  | 478         |     | -                     | -      |
|      | 5    | _                    |      | _        | 1 |               |      | 10.9 | 174.0  | 472         |     | _                     | -      |
| i    | 6    | -                    | _    | _        | I |               |      | 10.9 | 178.0  | 472         |     | -                     | -      |
| 55   | 1    | 1.40.24              | N    | HA       | 1 |               |      | 10.6 | 176.0  | 408         |     | H supposed = 90 km    | 22-2-  |
|      | 2    | -                    | -    | _        | 1 | 1             |      | 9.7  | 176.0  | 432         |     | _                     | -      |
|      | 3    | -                    |      | _        | 1 |               |      | 8.4  | -168.0 | 478         |     | _                     | -      |
|      | 4    |                      | -    | -        | 1 |               |      | 7.1  | -162.0 | 535         |     | _                     | -      |
|      | 5    | -                    | -    | -        | 1 |               |      | 5.7  | -156.0 | 606         |     |                       | _      |
| -    | 1    | -                    |      | _        | 1 |               |      | 10.6 | 176.0  | 483         |     | H supposed = 110 km   | _      |
|      | 2    | -                    | _    |          | 1 |               |      | 9.7  | -176.0 | 513         |     | _                     | _      |
| !    | 3    | -                    | -    |          | 1 |               |      | 8.4  | -168.0 | 564         |     | -                     | _      |
|      | 4    | -                    | _    |          | 1 |               | 41   | 7.1  | -162.0 | 623         |     | -                     |        |
|      | 5    | _                    | _    | _        | 1 |               |      | 5.7  | 156.0  | 700         | Ì   | _                     | _      |
| 9    | 1    | 1.46.06              | N–Lø | PS       | h | - 2.8         | 12.8 | 30.8 | 127.6  | 185         | 114 |                       | 25-26  |
|      | 2    |                      | _    | _        | m | - 3.3         | 13.2 | 28.8 | 127.8  | 182         | 104 |                       | -      |
|      | 3    | -                    | -    | -        | 1 | - 4.0         | 13.5 | 26.8 | 128.4  | 181         | 96  |                       | -      |
| ľ    | 4    | _                    | N    | HA       | 1 |               |      | 7.3  | 131.0  | 525         |     | H  supposed = 90  km  | 22-2   |
|      | 2    | ****                 | _    | ****     | l |               |      | 9.4  | 142.0  | 444         |     | _                     | -      |
|      | 5    | -                    | _    | _        | 1 |               |      | 11.3 | 156.0  | 385         |     | _                     | -      |
|      | 4    | _                    | -    |          | l |               |      | 7.3  | 131.0  | 616         |     | H  supposed = 110  km | 21-2   |
|      | $^2$ | _                    | -    | -        | 1 |               |      | 9.4  | 142.0  | 523         |     | _                     | _      |
|      | 5    | -                    | _    | _        | 1 |               |      | 11.3 | 156.0  | <b>46</b> 0 |     | _                     | _      |
| $^2$ | 1    | 1.49.56              | N    | HA       | l |               |      | 5.3  | 122.0  | 626         |     | H  supposed = 90  km  | 21-2   |
| İ    | 2    | -                    | -    | _        | 1 |               |      | 6.9  | 126.0  | 543         |     | _                     | -      |
|      | 3    | -                    | -    | -        | 1 |               |      | 7.9  | 132.0  | 498         |     | _                     | -      |
|      | 4    | -                    | -    | _        | I |               |      | 8.9  | 140.0  | 460         |     |                       | -      |
|      | 5    | . —                  | - 1  | -        | 1 |               |      | 9.8  | 150.0  | 429         |     | _                     | -      |
| İ    | 1    | -                    |      | -        | l |               |      | 5.3  | 122.0  | 726         |     | H  supposed = 110  km | -      |
|      | 2    |                      |      | -        | I |               |      | 6.9  | 126.0  | 634         |     |                       | -      |
|      | 3    | -                    | -    | -        | l |               |      | 7.9  | 132.0  | 585         |     | -                     | -      |
|      | 4    | -                    | -    | _        | l | 2             |      | 8.9  | 140.0  | 543         |     |                       | _      |
|      | 5    | -                    | _    | _        | 1 |               |      | 9.8  | 150.0  | 508         |     | _                     | _      |
| 5    | 1    | 1.54.49              | N    | HA       | 1 |               |      | 9.6  | 152.0  | 436         |     | H  supposed = 90  km  | 22-24  |
|      | 2    | -                    |      | _        | l |               |      | 9.6  | 159.0  | 436         |     |                       | -      |
|      | 3    | -                    | -    | -        | 1 |               |      | 9.6  | 166.0  | 436         |     |                       | -      |
| :    | 4    | -                    | -    | -        | 1 |               |      | 9.6  | 173.0  | 436         |     | -                     | -      |
|      | 5    | -                    | - !  | -        | 1 | ! !           |      | 9.3  | 180.0  | 446         |     | -                     | -      |
|      | 1    |                      | -    | -        | 1 |               |      | 9.6  | 152.0  | 515         |     | H  supposed = 110  km | _      |
|      | 2    | -                    |      |          | 1 |               |      | 9.6  | 159.0  | 515         |     |                       | -      |
|      | 3    | -                    | - !  | -        | 1 |               |      | 9.6  | 166.0  | 515         |     | -                     | -      |
|      | 4    |                      | -    | -        | I |               |      | 9.6  | 173.0  | 515         |     |                       | -      |
|      | 5    | -                    | -    | -        | I |               |      | 9.3  | 180.0  | 527         |     | _                     | -      |
| 6    | 1    | 2.05.59              | N    | HA       | 1 |               |      | 9.4  | 138.0  | 442         |     | H  supposed = 90  km  | 22-24  |

Table 2 (continued).

| No | Pt                                     | MET     | St   | F          | s      | $arepsilon_2$ | р    | h            | a               | D          | Н  | Remarks                                        | 0     |
|----|----------------------------------------|---------|------|------------|--------|---------------|------|--------------|-----------------|------------|----|------------------------------------------------|-------|
|    | 2                                      | 2.05.59 | N    | HA         | 1      |               |      | 10.4         | 142.0           | 411        |    | H supposed = 90 km                             | 22-2  |
|    | 3                                      | -       | -    | -          | 1      |               |      | 11.5         | 148.0           | 379        |    | -                                              | . –   |
|    | 1                                      |         | -    | -          | 1      |               |      | 9.4          | 138.0           | 523        |    | H  supposed = 110  km                          |       |
|    | 2                                      |         | -    | -          | l      |               |      | 10.4         | 142.0           | 489        |    | -                                              |       |
|    | 3                                      | _       | _    | _          | 1      |               |      | 11.5         | 148.0           | 452        |    | -                                              |       |
| 77 | 1                                      | 2.06.50 | N    | HA         |        |               |      | 11.4         | 154.0           | 383        |    | H supposed = 90 km                             | 22-2  |
|    | 2                                      | _       | _    | -          | 1      |               |      | 11.5         | 161.0           | 379        |    | -                                              | -     |
|    | 3 4                                    | _       |      | -          | 1      |               |      | 11.2         | 168.0           | 387        |    |                                                | _     |
|    | 5                                      | _       | _    | _          | 1      |               |      | 11.0<br>10.5 | 175.0<br>178.0  | 393<br>408 |    | W.1                                            |       |
|    | - <sup>"</sup> <sub>1</sub>            | _       |      |            | 1      |               |      | 11.4         | 154.0           | 456        |    | H supposed = 110 km                            |       |
| ļ  | 2                                      | _       | _    | _          | ı<br>L |               |      | 11.4         | 161.0           | 452        |    | rt supposed = 110 km                           | _     |
|    | 3                                      |         | _    | _          | 1      |               |      | 11.3         | 168.0           | 462        |    |                                                | _     |
|    | 4                                      | _       | _    | _          | i      |               |      | 11.0         | 175.0           | 468        |    | _                                              |       |
|    | 5                                      | _       | _    |            | i      | :             |      | 10.5         | -178.0          | 485        | İ  |                                                |       |
| 78 | 1                                      | 2.07.37 | N    | HA         | 1      |               |      | 7.8          | 164.0           | 502        |    | H supposed = 90 km                             | 22-24 |
|    | 2                                      |         | _    | _          | 1      |               |      | 6.0          | -158.0          | 588        |    |                                                |       |
|    | 3                                      |         | -    | _          | 1      |               |      | 4.5          | -154.0          | 677        |    | -                                              | _     |
|    | 1                                      |         | -    | _          | 1      |               |      | 7.8          | 164.0           | 589        |    | H supposed = 110 km                            | _     |
| 1  | 2                                      | -       | -    | -          | 1      |               |      | 6.0          | -158.0          | 683        |    |                                                | _     |
|    | 3                                      | _       | _    | -          | 1      |               |      | 4.5          | 154.0           | 780        |    | _                                              | _     |
| 79 | 2                                      | 2.12.47 | N    | HA         | 1      |               |      | 9.6          | -176.0          | 436        |    | H supposed = 90 km                             | 22-2  |
|    | 3                                      | ~       | _    | _          | 1      |               |      | 8.7          | -168.0          | 467        |    | 2, 3, 4, 5 upper are                           |       |
|    | 4                                      | -       | -    |            | I      |               | İ    | 7.7          | 162.0           | 507        |    |                                                |       |
|    | 5                                      | -       | -    | _          | 1      |               |      | 6.8          | -158.0          | 549        |    |                                                | -     |
|    | 6                                      | _       | _    | -          | l      |               |      | 8.5          | -176.0          | 474        |    | 6, 7, 8, 9 lower are                           | -     |
|    | 7                                      | -       | _    | -          | l      |               | İ    | 7.3          | -170.0          | 525        |    | -                                              | -     |
|    | 8                                      |         | _    | -          | 1      |               |      | 6.0          | -164.6          | 588        |    | _                                              | -     |
|    | 9                                      | _       | _    | -          | l      |               |      | 4.5          | 160.0           | 677        |    | -                                              | -     |
|    | $\begin{bmatrix} 2 \\ 3 \end{bmatrix}$ | _       | _    | -          | 1 1    |               |      | 9.6          | <b>—176.0</b>   | 515        |    | H  supposed = 110  km                          | 22-24 |
|    | 4                                      | -       | _    | _          | 1      |               |      | $8.7 \\ 7.7$ | -168.0 $-162.0$ | 542<br>595 |    | enseni                                         | _     |
| Ì  | 5                                      | _       | _    | _          | l      |               |      | 6.8          | 158.0           | 642        |    | _                                              |       |
|    | 6                                      | _       |      | _          | 1      |               |      | 8.5          | -176.0          | 560        |    |                                                |       |
|    | 7                                      |         | _    | _          | 1      |               |      | 7.3          | -170.0<br>170.0 | 616        |    | _                                              |       |
|    | 8                                      | _       |      | _          | i      |               |      | 6.0          | 164.6           | 683        |    |                                                | _     |
|    | 9                                      |         | _    | _          | 1      |               | ĺ    | 4.5          | -160.0          | 780        |    | _                                              |       |
| 0  | 1                                      | 2.13.33 | N    | $_{ m HA}$ | 1      |               | i    | 11.0         | 152.0           | 393        |    | H supposed = 90 km                             | 22-24 |
|    | 2                                      | _       | _    | _          | 1      |               |      | 11.4         | 159.0           | 383        |    |                                                |       |
|    | 3                                      |         | -    | _          | 1      |               |      | 11.1         | 166.0           | 390        |    | _                                              | _     |
|    | 4                                      | -       | _    |            | 1      |               |      | 10.7         | 173.0           | 402        |    | _                                              | _     |
|    | 5                                      |         | _    | _          | ŧ      |               |      | 10.0         | 180.0           | 423        |    |                                                |       |
|    | 1                                      | -       | -    |            | 1      |               |      | 11.0         | 152.0           | 468        |    | H  supposed = 110  kom                         | _     |
| ı  | 2                                      |         |      | -          | 1      |               |      | 11.4         | 159.0           | 456        |    | _                                              | _     |
|    | 3                                      | -       | _    |            | 1      |               |      | 11.1         | 166.0           | 464        |    | -                                              | -     |
|    | 4                                      | -       | -    | _          | 1      |               |      | 10.7         | 173.0           | 478        |    |                                                | _     |
|    | 5                                      | -       | -    | _          | 1      |               |      | 10.0         | 180.0           | 502        |    |                                                | -     |
| 1  | 2                                      | 2.14.28 | N-Lø | HA         | 1      | 9.1           | 6.0  | 9.4          | 142.0           | 444        | 90 | Very disfavourable direc-<br>tion of parallaxe | 22–23 |
| 2  | 1                                      | 2.20.52 | N-Lø | RB         | l      | - 7.2         | 5.05 | 6.9          | 140.9           | 534        | 88 |                                                | 22-23 |
|    | 2                                      | _       | -    |            | m      | 7.0           | 5.15 | 7.4          | 140.7           | 522        | 90 |                                                |       |
|    | 3                                      | -       |      | _          | h      | <b>-</b> 7.5  | 5.35 | 8.3          | 140.9           | 502        | 94 |                                                | _     |
| 3  | 1                                      | 2.21.41 | N    | HA         | 1      |               |      | 9.8          | 178.0           | 429        |    | H supposed = 90 km                             | 22-24 |
|    | 2                                      | -       |      | _          | 1      |               |      | 8.9          | -170.0          | 460        |    | -                                              | -     |
|    | 3                                      | -       | -    |            | 1      |               |      | 7.8          | -162.0          | 502        | ļ  |                                                |       |
| i  | 4                                      | _ !     |      |            | 1      | 1             |      | 6.8          | -156.0          | 549        | !  | -                                              | _     |

Table 2 (continued).

| NT . | D. | MEM         | CIA      | הד                     | G   |                                              |      | l.   |        | D   | Н   | Remarks                  | 0       |
|------|----|-------------|----------|------------------------|-----|----------------------------------------------|------|------|--------|-----|-----|--------------------------|---------|
| No   | Pt | MET         | St       | F                      | S   | $\epsilon_2$                                 | р    | h    | a      | ש   | n n | Lemarks                  | "       |
|      | 1  | 2.21.41     | N        | HA                     | 1   |                                              |      | 9.8  | -178.0 | 508 |     | H supposed = 110 km      | 22-2    |
|      | 2  | _           | _        | -                      | 1   |                                              |      | 8.9  | -170.0 | 543 |     | _                        |         |
|      | 3  | -           | _        | -                      | ] 1 |                                              |      | 7.8  | -162.0 | 489 |     | _                        | l       |
|      | 4  | -           | -        | -                      | 1   |                                              |      | 6.8  | -156.0 | 642 |     |                          |         |
| 85   | 1  | 2.24.15     | N-Lø     | RB                     | m   | -11.8                                        | 4.6  | 7.9  | 146.0  | 575 | 107 |                          | 21-23   |
|      | 2  | _           | -        | _                      | 1   | 11.8                                         | 4.65 | 6.9  | 145.9  | 576 | 97  | *                        | -       |
|      | 3  | -           | -        | -                      | m   | -14.9                                        | 5.05 | 8.8  | 148.8  | 516 | 102 |                          |         |
|      | 4  | _           | _        | _                      | 1   | -15.0                                        |      | 7.8  | 148.7  | 512 | 92  |                          |         |
|      | 5  |             | _        | DS                     | h   | - 6.9                                        | 9.35 | 19.7 | 136.5  | 274 | 106 |                          | 24-2    |
|      | 6  | -           | -        |                        | 1   | <b>-</b> 7.1                                 | 9.5  | 17.6 | 136.4  | 273 | 93  |                          |         |
|      | 7  |             |          | HA                     | I   | -17.3                                        | 5.3  | 9.2  | 151.1  | 476 | 96  |                          | 21-23   |
|      | 8  |             | <b>-</b> | _                      | 1   | -22.0                                        | 5.2  | 10.1 | 156.1  | 479 | 105 |                          | _       |
|      | 9  | -           | N        |                        | l   |                                              |      | 11.5 | 164.0  | 419 |     | Height supposed equal to | _       |
|      | 10 |             | -        |                        | l   |                                              |      | 6.0  | 144.0  | 634 |     | 100 km                   |         |
|      | 11 |             | -        |                        | 1   |                                              |      | 6.5  | 140.0  | 608 |     |                          | _       |
|      | 12 |             | _        |                        | 1   |                                              | }    | 6.9  | 135.0  | 588 |     |                          |         |
| 86   | 1  | 2.26.40     | N–Lø     | $\mathbf{H}\mathbf{B}$ | m   | -25.4                                        | 4.9  | 9.5  | 159.5  | 497 | 104 | Along a fold in the band | 2223    |
|      | 2  |             | -        |                        | m   | -26.1                                        | 4.6  | 8.1  | 160.3  | 528 | 98  |                          | -       |
| 87   | 1  | 2.27.54     | N-Lø     | RB                     | m.  | -32.0                                        | 4.3  | 8.3  | 166.7  | 533 | 102 | The same                 | 22-2    |
|      | 2  | -           | _        |                        | m   | 31.6                                         | 4.9  | 9.3  | 165.7  | 469 | 95  | No. 2 the best one       |         |
|      | 3  | -           |          | HA                     | 1   | 36.6                                         | 5.4  | 10.2 | 166.2  | 420 | 91  |                          | _       |
|      | 4  |             | N        | -                      | 1   |                                              |      | 10.7 | 169.6  | 423 |     | Height supposed equal to | -       |
|      | 5  |             |          |                        | 1   |                                              |      | 11.0 | 174.0  | 414 |     | 100 km                   |         |
|      | 6  | <b>→</b> .  | _        | -                      | 1   |                                              | **   | 11.1 | 178.0  | 411 |     |                          |         |
|      | 7  | <del></del> | _        | _                      | 1   |                                              |      | 10.9 | →172.0 | 417 |     |                          |         |
|      | 8  |             |          | _                      | 1   |                                              |      | 7.8  | 166.0  | 527 |     |                          |         |
|      | 9  | _           | _        | _                      | 1   |                                              |      | 7.0  | 160.0  | 561 |     |                          | 21-22   |
| 88   | 1  | 2.29.12     | N-Lø     | DS                     | h   | 4.6                                          | 10.7 | 25.7 | 121.6  | 230 | 116 |                          | 24 -26  |
|      | 2  | -           | -        | _                      | m   | 4.0                                          | 10.8 | 23.5 | 122.5  | 233 | 106 |                          |         |
|      | 3  | _           | -        |                        | 1   | 3.3                                          | 10.8 | 21.6 | 123.4  | 236 | 99  |                          | _       |
| 89   | 1  | 2.30.18     | N–Lø     | DS                     | h   | 1.0                                          | 11.5 | 27.7 | 124.7  | 211 | 116 | :                        | 24 20   |
|      | 2  |             |          | _                      | m   | 0.7                                          | 11.4 | 25.7 | 125.2  | 218 | 109 |                          | _       |
|      | 3  | _           |          | -                      | . 1 | 0.0                                          | 11.4 | 23.8 | 126.3  | 221 | 102 |                          |         |
|      | 4  |             | -        | _                      | h   | - 2.1                                        | 9.2  | 21.9 | 131.0  | 275 | 118 |                          | í       |
|      | 5  | -           |          |                        | 1'  | - 2.7                                        | 9.3  | 19.4 | 131.6  | 277 | 105 |                          |         |
| 90   | 1  | 2.31.15     | N–Lø     | HA                     | 1   | -44.4                                        | 3.7  | 7.7  | 179.7  | 525 | 94  |                          | 22-2    |
|      | 2  | -           |          | _                      | l   | 45.1                                         | 3.8  | 8.5  | -179.6 | 500 | 96  |                          |         |
|      | 3  |             | N        | _                      | 1   |                                              |      | 9.7  | 177.3  | 454 |     | Height supposed equal to | 22-24   |
|      | 4  |             | -        |                        | 1   | i                                            |      | 10.3 | -172.6 | 436 |     | 95 km                    | -       |
|      | 5  | _           | -        | -                      | 1   |                                              |      | 10.1 | -166.0 | 441 |     |                          |         |
|      | 6  |             | -        | _                      | 1   |                                              |      | 9.8  | 162.0  | 451 |     |                          |         |
| ļ    | 7  |             | -        | _                      | 1   |                                              | 1    | 7.1  | 178.0  | 559 |     |                          | _       |
|      | 8  |             | -        | _                      | 1   |                                              |      | 6.0  | 172.0  | 612 |     |                          | 21-2:   |
| 91   | 1  | 2.35.17     | N–Lø     | $\mathbf{DS}$          | h   | 56.7                                         | 5.1  | 24.3 | -161.8 | 267 | 128 | Diffuse DS over arc      | 24 - 20 |
|      | 2  |             | _        | _                      | m   | -58.3                                        | 4.9  | 22.3 | -161.2 | 270 | 118 |                          |         |
|      | 3  | _           | -        | _                      | m   | 59.4                                         | 4.7  | 19.7 | 161.3  | 278 | 107 |                          | _       |
|      | 4  |             | _        |                        | 1   | -59.0                                        | 4.5  | 17.3 | 162.8  | 299 | 101 |                          |         |
|      | 5  | _           |          | _                      | m   | -43.6                                        | 6.5  | 20.7 | 179.2  | 284 | 115 |                          | -       |
|      | 6  | -           | _        | _                      | m   | -44.6                                        | 5.9  | 18.9 | -179.8 | 311 | 115 |                          | _       |
| ļ    | 7  | _           | -        |                        | 1   | <b>—44.</b> 5                                | 5.6  | 17.5 | 179.9  | 331 | 114 |                          | _       |
| )2   | 1  | 2.36.20     | N-Lø     | DS                     | h′  | -51.0                                        | 6.2  | 21.6 | -172.0 | 262 | 111 | The same                 | 24 - 2  |
| -    | 2  |             |          | _                      | m   | -51.2                                        | 6.2  | 19.7 | -172.7 | 266 | 102 | İ                        | _       |
|      | 3  | _           | _        |                        | I   | -51.5                                        | 5.9  | 17.8 | -172.7 | 275 | 95  |                          |         |
| 93   | 1  | 2.48.03     | N-Lø     | RA                     | h   | -7.9                                         | 4.3  | 7.5  | 142.3  | 622 | 114 |                          | 2122    |
| ,.,  | 2  | 2.20.00     | 74 -776  | J. V.C.L.              | l   | $\begin{bmatrix} -7.9 \\ -7.9 \end{bmatrix}$ | 4.3  | 5.1  |        | 623 | 88  |                          | ~-      |

Table 2 (continued).

| No  | Pt                                     | MET     | St        | F                | S       | $\epsilon_2$                                   | p                 | h             | a                | D                 | Н                | Remarks                                            | 0            |
|-----|----------------------------------------|---------|-----------|------------------|---------|------------------------------------------------|-------------------|---------------|------------------|-------------------|------------------|----------------------------------------------------|--------------|
|     | 3                                      | 2.48.03 | N-Lø      | PS               | h       | -14.1                                          | 8.6               | 19.2          | 144.9            | 291               | 110              |                                                    | 24-2         |
|     | 4                                      | _       | _         |                  | l       | -14.7                                          | 8.5               | 15.6          | 144.5            | 301               | 92               |                                                    |              |
| 95  | 1                                      | 3.01.25 | N-Lø      | PS               | h       | -17.5                                          | 6.9               | 14.4          | 149.3            | 366               | 105              |                                                    | 23-2         |
|     | 2                                      | -       | -         | -                | I       | -17.8                                          | 6.8               | 11.7          | 149.5            | 375               | 90               |                                                    | -            |
|     | 3                                      | _       | -         | _                | h       | -18.7                                          | 6.4               | 13.2          | 150.9            | 394               | 106              |                                                    |              |
|     | 4                                      | _       | -         |                  | m       | -19.0                                          | 6.5               | 11.6          | 151.1            | 390               | 93               |                                                    | _            |
|     | 5                                      | -       |           | _                | 1′      | -19.6                                          | 6.7               | 10.2          | 151.5            | 380               | 80               |                                                    | -            |
|     | 6                                      | www     | -         |                  | h       | -21.5                                          | 6.7               | 13.1          | 153.6            | 370               | 98               |                                                    |              |
|     | 7                                      |         |           | _                | 1       | 22.0                                           | 6.8               | 12.2          | 154.0            | 363               | 89               |                                                    |              |
|     | 8                                      |         | -         |                  | h       | -31.3                                          | 6.3               | 13.3          | 164.6            | 361               | 97               |                                                    |              |
|     | 9                                      | _       |           | _                | 1       | -31.3                                          | 6.4               | 10.7          | 164.3            | 360               | 79               |                                                    | -            |
|     | 10                                     | _       | _         | _                | h       | -32.1                                          | 6.3               | 13.4          | 165.5            | 357               | 96               |                                                    |              |
| 96  | 11                                     | 3.20.37 | –<br>N–Lø | PS               | l<br>L  | -32.3                                          | 6.1               | 10.7          | 165.6            | 374               | 82               |                                                    | 34.3         |
| 90  | $\begin{vmatrix} 1\\2 \end{vmatrix}$   | 5.20.57 | N-LØ      | -                | h<br>1  | 19.8<br>19.6                                   | $6.4 \\ 6.4$      | 13.4<br>10.9  | 111.3<br>111.7   | $\frac{391}{296}$ | 107<br>89        |                                                    | 24-2         |
|     | $\begin{bmatrix} 2\\3 \end{bmatrix}$   | _       | _         | _                | h       | 10.7                                           | 7.6               | 15.9          | 111.7            | 341               | 103              |                                                    | _            |
|     | 4                                      | _       | _         | _                | l l     | 10.7                                           | 7.5               | 12.4          | 119.3            | 339               | 84               |                                                    | _            |
|     | 5                                      | ware    |           |                  | h       | 2.6                                            | 13.1              | 28.1          | 120.9            | 185               | 103              |                                                    | _            |
|     | 6                                      | nous .  | _         |                  | m       | 2.2                                            | 12.6              | 25.3          | 122.6            | 198               | 97               |                                                    | _            |
|     | 7                                      | _       | _         |                  | 1       | 2.0                                            | 12.3              | 22.5          | 123.2            | 207               | 89               |                                                    |              |
| 03  | 1                                      | 3.46.07 | N-Lø      | DS               | h       | -33.3                                          | 6.2               | 14.7          | 166.8            | 357               | 105              |                                                    | 24-2         |
|     | 2                                      |         | _         |                  | 1       | -33.6                                          | 6.3               | 12.1          | 166.7            | 354               | 86               |                                                    |              |
|     | 3                                      | _       | -         | _                | h       | -37.1                                          | 5.1               | 11.7          | 171.6            | 418               | 101              |                                                    | _            |
|     | 4                                      | _       | -         | _                | 1       | -37.3                                          | 5.1               | 10.3          | 171.5            | 420               | 91               |                                                    | _            |
| .04 | 1                                      | 3.46.13 | N–Lø      | $_{\mathrm{DS}}$ | h       | -63.9                                          | 4.2               | 21.4          | -153.3           | 265               | 111              |                                                    | 25-2         |
|     | 2                                      |         | -         | _                | m       | 65.2                                           | 4.0               | 18.9          | -153.6           | 270               | 100              |                                                    |              |
|     | 3                                      | _       |           | _                | l       | 66.3                                           | 3.9               | 16.3          | -154.0           | 271               | 86               |                                                    | -            |
| 05  | 1                                      | 3.49.00 | N–Lø      | R                | h       | -56.3                                          | 2.0               | 23.5          | -159.3           | 668               | 344              | Sunlit rays                                        | 21-2         |
|     | 2                                      | -       |           | _                | m       | -58.9                                          | 2.0               | 16.5          | 160.3            | 661               | 239              |                                                    | -            |
|     | 3                                      | -       | -         | -                | 1       | 60.4                                           | 1.8               | 9.1           | —16Ĭ.3           | 732               | 164              |                                                    | -            |
|     | 4                                      | _       | -         | _                | h'      | 55.3                                           | 2.0               | 17.7          | 164.0            | 719               | 283              |                                                    | -            |
|     | 5                                      |         | -         | _                | m       | -56.2                                          | 1.9               | 14.5          | -164.3           | 754               | 250              |                                                    | -            |
|     | 6                                      |         | -         | - DG             | 1       | -57.3                                          | 2.0               | 9.8           | -164.6           | 718               | 169              |                                                    | -            |
|     | 7                                      | _       | -         | DS               | h<br>1' | -63.1                                          | 4.2               | 18.4          | 156.9            | 279               | 100              |                                                    | 25-2         |
|     | $\begin{vmatrix} 8 \\ 9 \end{vmatrix}$ | _       | -         | -                | 1       | $\begin{vmatrix} -63.8 \\ -49.2 \end{vmatrix}$ | 4.0<br>4.0        | $16.2 \\ 9.7$ | -157.2           | 290               | 92               |                                                    | 00.6         |
|     | 1                                      | _       | N-Li      | R                | m<br>m  | -49.2 $-73.0$                                  | 5.7               | 12.5          | -175.1 $-161.3$  | 440<br>723        | $\frac{91}{209}$ | Sunlit rays                                        | 23-2<br>22-2 |
|     | 2                                      | _       | N-L1      | _                | 1       | -70.3                                          | 6.6               | 18.0          | -161.3 $-160.7$  | 695               | 275              | Sumit rays                                         | 22-2         |
|     | 3                                      | -       | _         | _                | m<br>h' | 67.1                                           | 7.7               | 23.7          | -160.1           | 655               | 338              |                                                    | _            |
| .07 | 1                                      | 3.52.49 | N–Lø      | DS               | h       | -22.7                                          | 12.0              | 29.7          | 151.0            | 183               | 108              |                                                    | 25-2         |
|     | 2                                      |         | _         | -                | m       | -23.3                                          | 12.0              | 26.7          | 151.3            | 188               | 98               |                                                    |              |
|     | 3                                      | _       | _         | _                | 1       | -24.4                                          | 12.1              | 22.9          | 152.1            | 191               | 85               |                                                    | _            |
|     | 4                                      | _       | _         | -                | h       | -31.9                                          | 12.6              | 34.7          | 162.1            | 153               | 109              |                                                    | _            |
|     | 5                                      | _       |           | -                | m       | -32.8                                          | 12.4              | 31.1          | 162.5            | 159               | 99               |                                                    | _            |
|     | 6                                      | _       | _         | _                | 1       | -33.5                                          | 12.2              | 28.7          | 162.8            | 165               | 93               |                                                    | _            |
| 08  | 1                                      | 3,54.05 | N–Lø      | DS               | h       | -33.7                                          | 11.5              | 31.9          | 164.8            | 168               | 108              |                                                    | 25-          |
|     | 2                                      |         | -         | -                | m       | -34.3                                          | 11.4              | 29.7          | 164.8            | 172               | 102              |                                                    | -            |
|     | 3                                      | -       | _         |                  | l       | -35.1                                          | 11.6              | 26.8          | 165.1            | 173               | 91               |                                                    | -            |
|     | 4                                      |         | -         | $\mathbf{R}$     | h       | -30.6                                          | 3.5               | 22.1          | 168.2            | 604               | 287              | Very feeble, sunlit                                | 21-2         |
|     | 5                                      | -       | -         | _                | m       | -31.7                                          | 3.4               | 17.1          | 168.6            | 639               | 237              |                                                    | -            |
|     | 6                                      |         | _         | -                | l'      | -32.6                                          | 3.3               | 12.9          | 168.9            | 669               | 194              |                                                    | _            |
|     | 7                                      | _       | -         | -                | I       | -32.5                                          | 3.3               | 12.3          | 168.7            | 672               | 187              |                                                    | -            |
|     | !                                      |         |           |                  |         |                                                | 1 =               |               | 100 A            | 594               | 122              | 1 1 0 -1 4b1-b.                                    | 000 6        |
| 110 | 1 2                                    | 4.00.02 | N-Lø      | RB<br>-          | h<br>l  | 6.1<br>6.2                                     | $\frac{4.5}{4.5}$ | 8.8<br>7.2    | $128.0 \\ 128.0$ | 598               | 105              | 1, 2 along the right border, not sunlit, 3–9 along | 23-2         |

Table 2 (continued).

| No  | Pt                                                   | MET     | St   | F      | s   | $\mathcal{E}_{\underline{o}}$ | p    | h            | a                | D           | H   | Remarks                              | 0          |
|-----|------------------------------------------------------|---------|------|--------|-----|-------------------------------|------|--------------|------------------|-------------|-----|--------------------------------------|------------|
|     | 4                                                    | 4.00.02 | N    | RB     | İ   |                               |      | 7.0          | 118.0            | 606         |     | supposed equal to 105 km             | 22-24      |
|     | 5                                                    | _       |      | _      | 1   |                               |      | 7.2          | 122.0            | 597         |     |                                      | _          |
|     | 6                                                    | _       |      |        | 1   |                               |      | 7.2          | 126.0            | 597         |     |                                      |            |
|     | 7                                                    | _       | _    | -      | 1   |                               |      | 6.7          | 127.3            | 621         |     |                                      | 21-22      |
|     | 8                                                    |         |      |        | l   |                               |      | 6.0          | 124.7            | 658         |     |                                      | _          |
|     | 9                                                    | _       | _    | -      | 1   |                               |      | 5.2          | 121.4            | 701         |     |                                      | _          |
| 111 | 1                                                    | 4.00.27 | N-Lø | RB     | h   | 2.1                           | 4.9  | 15.2         | 131.3            | .530        | 171 | 1, 2 along the right edge.           | 23-2       |
|     | 2                                                    |         | -    | -      | m   | 1.5                           | 4.85 | 11.3         | 132.1            | 549         | 136 | Not sunlit                           |            |
|     | 3                                                    |         | _    | -      | 1'  | 1.0                           | 4.85 |              | 132.7            | 558         | 100 |                                      | -          |
|     | 4                                                    |         | _    | _      | 1   | 1.4                           | 4.85 |              | 132.4            | 559         | 95  |                                      |            |
|     | 5                                                    | -       | N    | -      | l l |                               |      | 7.5          | 117.1            | <b>54</b> 0 |     | 5-11 along the lower bor-            | $22-2^{4}$ |
|     | 6                                                    | _       | _    | _      | l   |                               |      | 8.0          | 122.0            | 516         |     | der                                  |            |
|     | 7                                                    |         | -    | _      | l   |                               |      | 8.0          | 126.0            | 516         |     | H supposed = 95 km                   |            |
|     | 8                                                    | -       | -    | _      | l   |                               |      | 7.9          | 131.5            | 521         |     |                                      |            |
|     | 9                                                    |         | -    | _      | 1   |                               |      | 7.1          | 131.8            | 560         |     |                                      |            |
|     | 10                                                   | -       | _    | _      | 1   |                               |      | 6.7          | 128.0            | 579         |     |                                      |            |
|     | 11                                                   |         |      |        | 1   |                               |      | 6.4          | 124.8            | 591         |     |                                      |            |
| 112 | 1                                                    | 4.01.20 | N-L3 | RB     | h   | -12.3                         |      | 9.4          | 146.4            | 546         | 115 | 1,2 belong to the main RB            | 22-2       |
|     | 2                                                    | _       |      |        | 1'  | -12.0                         | 4.6  | 8.3          | 146.1            | 574         | 111 |                                      |            |
|     | 3                                                    | -       |      |        | h   | 3.5                           | 7.5  | 15.0         | 127.4            | 340         | 101 | 3,4 belong to another                | 25-20      |
|     | 4                                                    | -       | _    | -      | I   | 3.5                           | 7.5  | 12.5         | 127.5            | 344         | 86  | short one over the main RB           |            |
|     | 5                                                    | _       | N    |        | 1   |                               | ė.   | 8.8          | 124.8            | 508         |     | 5-12 along the lower bor-            | 22-2       |
|     | 6                                                    | -       | -    | -      | 1   |                               | **   | 8.7          | 132.0            | 512         |     | der of the main RB                   |            |
|     | 7                                                    | _       | -    | -      | 1   |                               |      | 8.6          | 138.0            | 515         | İ   | Along the lower border of            | ***        |
|     | . 8                                                  | _       | -    | _      | 1   |                               |      | 8.2          | 144.6            | 532         |     | the main RB, with H =                | 21.0       |
|     | 9                                                    | _       | - :  | -      | 1   |                               |      | 7.9          | 145.0            | 544         |     | 100 km                               | 21-2       |
|     | 10                                                   | _       | _    | _      | l   |                               |      | 7.6          | 142.0            | 558         |     | The vertical thickness of            |            |
|     | $egin{array}{ c c c c c c c c c c c c c c c c c c c$ | _       | _    |        | 1   |                               |      | 7.0          | 136.0            | 584<br>609  |     | the most luminous part               |            |
| 113 | 12                                                   | 4.01.53 | N    | RB     | l   |                               |      | $6.5 \\ 7.2$ | $131.1 \\ 112.0$ | 575         |     | only 9 km  For all points is H taken | 22 2       |
| 110 | $\begin{vmatrix} 1 \\ 2 \end{vmatrix}$               | 4.01.00 | i    | ļ      | l   |                               |      | 7.9          | 112.0            | 544         |     | equal to 100 km                      | ات الديد   |
|     | 3                                                    | _       | _    | _<br>_ | l   |                               |      | 8.6          | 126.0            | 515         |     | equal to 100 km                      |            |
|     | 4                                                    | _       | _    |        | 1   |                               |      | 8.8          | 132.0            | 508         |     | _                                    |            |
|     | 5                                                    | _       | _    |        | l   |                               |      | 8.5          | 138.0            | 520         |     |                                      |            |
|     | 6                                                    |         | _    | _      | l   |                               |      | 6.6          | 138.0            | 603         |     |                                      | 21-2       |
|     | 7                                                    |         | _    | _      | 1   |                               |      | 6.0          | 134.0            | 633         |     |                                      |            |
|     | 8                                                    | _       | _    |        | 1   |                               |      | 6.5          | 130.0            | 609         |     |                                      |            |
|     | 9                                                    | _       | _    | _      | ?   |                               |      | 8.5          | 140.0            | 520         |     | <del></del>                          | 22-2       |
|     | 10                                                   | -       | _    | -      | ?   |                               |      | 8.1          | 144.0            | 535         |     | otera                                | _          |
|     | 11                                                   | -       | _    | _      | 1   |                               |      | 7.0          | 140.0            | 584         |     |                                      | 21-2       |
|     | 12                                                   | _       | _    | -      | l   |                               |      | 7.4          | 144.0            | 567         |     |                                      | _          |
| 114 | 1                                                    | 4.02.23 | N    | RB     | 1   |                               |      | 7.7          | 116.0            | 546         |     | For all points is H sup-             | 22-2       |
|     | 2                                                    | _       | _    |        | l   |                               |      | 8.3          | 124.0            | 520         |     | posed = 98 km                        |            |
|     | 3                                                    | -       | _    | -      | ī   |                               |      | 8.5          | 132.0            | 512         |     |                                      |            |
|     | 4                                                    | ****    | -    | _      | 1   |                               |      | 8.1          | 138.0            | 528         |     |                                      |            |
|     | 5                                                    | -       | -    |        | 1   |                               |      | 6.7          | 142.0            | 591         |     |                                      | 21-2       |
|     | 6                                                    |         | _    | -      | 1   |                               |      | 7.9          | <b>146.</b> 0    | 535         |     |                                      | -          |
| 115 | 1                                                    | 4.03.34 | N    | RB     | 1   |                               |      | 8.2          | 114.0            | 524         |     | Same supposition                     |            |
|     |                                                      |         |      | Ì      |     |                               |      |              |                  |             | 1   | H = 98 km                            | 22-2       |
|     | 2                                                    | -       | -    | -      | 1   |                               |      | 8.4          | 120.0            | 516         |     | -                                    |            |
|     | 3                                                    | -       | -    | _      | 1   |                               |      | 8.7          | 126.0            | 505         | 1   | _                                    | -          |
|     | 4                                                    |         | -    | -      | 1   |                               |      | 9.0          | 132.0            | 493         | 1   |                                      |            |
|     | 5                                                    | -       | -    |        | 1   |                               |      | 8.0          | 135.3            | 530         |     |                                      |            |
|     | 6                                                    | _       |      |        | 1   |                               |      | 7.2          | 132.0            | 568         |     | alana.                               |            |

Table 2 (continued).

| No             | Pt                                             | MET     | St             | F        | S      | $\epsilon_2$ | p    | h            | a             | D          | н   | Remarks                             | 0         |
|----------------|------------------------------------------------|---------|----------------|----------|--------|--------------|------|--------------|---------------|------------|-----|-------------------------------------|-----------|
|                | 7                                              | 4.03.34 | N              | RB       | 1      |              |      | 7.7          | 138.0         | 546        |     | H = 98 km                           | 21-2      |
|                | 8                                              |         |                | _        | 1      |              |      | 7.7          | 144.0         | 546        |     | _                                   |           |
|                | 9                                              | _       | -              |          | 1      |              |      | 7.7          | 148.0         | 546        |     |                                     | _         |
| 116            | 1                                              | -       | -              | -        | 1      |              |      | 4.3          | 100.0         | 708        |     | H  supposed = 95  km                | 22-2      |
|                | 2                                              | -       |                | _        | 1      | 1            |      | 5.9          | 106.0         | 617        |     | _                                   |           |
|                | 3                                              | -       | _              | -        | 1      |              |      | 7.3          | 112.0         | 550        |     | _                                   | -         |
|                | 4                                              |         | -              | -        | 1      |              |      | 8.2          | 118.0         | 509        |     | -                                   | -         |
|                | 5                                              | ***     | _              | -        | 1      |              |      | 8.6          | 122.0         | 495        | İ   | _                                   | -         |
| J7             | 1                                              | 4.04.48 | N-La           | RB       | m      | 15.2         | 5.65 |              | 117.9         | 459        | 98  |                                     | 24-2      |
|                | 2                                              | -       | -              | -        | h'     | 11.2         | 5.8  | 11.3         | 121.5         | 453        | 107 | Short ray in RB                     | _         |
|                | 3                                              | _       | _              | -        | 1'     | 11.1         | 5.75 | 10.4         | 121.7         | 458        | 101 | Same as no 2                        |           |
|                | 4                                              | _       | _              | _        | 1'     | 6.5          | 5.8  | 10.2         | 126.2         | 460        | 100 | Short ray in RB                     | -         |
|                | 5                                              | _       | _              | -        | h      | 3.0          | 5.6  | 11.5         | 129.9         | 476        | 116 | Another ray in RB                   | _         |
|                | $\left \begin{array}{c}6\\7\end{array}\right $ |         | -              | -        | 1      | 2.7          | 5.6  | 9.8          | 130.1         | 480        | 102 | The same as no 5                    | -         |
|                |                                                | -       |                |          | h      | - 1.3        | 6.2  | 11.7         | 133.8         | 432        | 105 | Another short ray in RB             |           |
|                | 8<br>a                                         | 4.04.48 | N              | RB       | 1      | - 1.7        | 6.25 | $9.9 \\ 9.0$ | 134.1 $116.0$ | 431<br>480 | 91  | The same as no 7                    | 90.0      |
|                | b                                              | 4.04.40 |                |          | 1      |              |      | 10.0         | 121.6         | 446<br>446 |     | H supposed = 95 km                  | 22-2      |
|                | e                                              | _       | ! <del>-</del> | _        | 1      |              |      | 9.9          | 126.2         | 449        |     | _                                   | _         |
|                | d                                              |         |                | _        | 1 1    |              |      | 9.7          | 130.2         | 455        |     | _                                   | _         |
|                | e                                              | _       | _              | _        | '      |              |      | 9.8          | 134.0         | 450        |     | _                                   | _         |
|                | f                                              |         | _              | _        | ii     |              |      | 9.8          | 140.0         | 450        |     |                                     | _         |
|                | g                                              | _       |                | _        | 1      |              |      | 9.5          | 146.0         | 460        |     |                                     |           |
|                | h                                              |         | _              | _        | i      |              | i    | 7.1          | 134.0         | 556        |     |                                     |           |
|                | i                                              | _       |                | _        | 1      |              |      | 7.4          | 142.0         | 543        |     | _                                   |           |
| i              | j                                              | _       | _              |          | 1      |              |      | 7.9          | 150.0         | 520        |     |                                     | _         |
| $ \mathbf{s} $ | 1                                              | 4.05.09 | N-Lø           | RB       | 1      | - 2.6        | 4.75 | 6.6          | 136.6         | 570        | 93  |                                     | 2324      |
|                | 2                                              | -       | -              | _        | I      | _ 2.2        | 4.65 | 6.7          | 136.2         | 582        | 96  |                                     |           |
| l              | 3                                              | _       | _              | _        | 1      | - 0.6        | 4.65 | 6.7          | 134.6         | 583        | 96  |                                     |           |
|                | 4                                              |         | N              | -        | 1      |              |      | 6.7          | 138.0         | 578        |     | H supposed = 95 km                  | 21-2      |
|                | 5                                              | →       | _              |          | 1      |              | ĺ    | 7.1          | 142.0         | 559        |     | -                                   | _         |
|                | 6                                              |         |                | -        | 1      |              | !    | 7.6          | 145.0         | 534        |     |                                     | _         |
| ļ              | 7                                              |         | -              | -        | 1      |              |      | 7.9          | 148.0         | 521        |     | _                                   | _         |
| ĺ              | 8                                              | - 1     | _              | _        | 1      |              |      | 9.1          | 116.0         | 475        |     |                                     | 23-24     |
|                | 9                                              |         | _              |          | 1      |              |      | 9.7          | 122.0         | 455        |     |                                     | -         |
| - [            | 10                                             |         | -              | -        | 1      |              |      | 10.3         | 130.0         | 436        |     |                                     |           |
|                | 11                                             | -       |                | _        | 1      |              |      | 11.1         | 140.0         | 412        |     |                                     | -         |
|                | 12                                             |         | -              | _        | ì      |              |      | 10.7         | 148.0         | 423        |     |                                     | 22 -2     |
|                | 13                                             | -       | -              | -        | 1      |              |      | 10.3         | 152.0         | 436        |     |                                     |           |
|                | 14                                             | _       | -              | -        | I      |              |      | 7.9          | 153.0         | 512        |     | -                                   | -         |
| 9              | 1                                              | 5.05.51 | N–Lø           | RB       | 1      | 17.7         | 6.4  | 11.4         | 150.3         | 399        | 96  |                                     | 22-2      |
| -              | 2                                              | -       | -              | _        | 1      | -19.5        | 6.2  | 11.3         | 152.4         | 408        | 95  |                                     | -         |
|                | 3                                              |         | -              |          | 1      | 22.3         | 5.7  | 10.4         | 155.7         | 436        | 96  |                                     | -         |
|                | 4                                              | -       |                | -        | l      | -31.7        | 4.5  | 8.5          | 166.3         | 510        | 98  |                                     |           |
|                | 5                                              | -       | -              | <br>T)   | 1      | -22.5        | 4.9  | 7.8          | 156.3         | 510        | 92  | AT 0 1 - 1                          |           |
|                | 6                                              |         | -              | R        | m      | -31.4        | 4.45 | 10.1         | 166.2         | 514        | 114 | No. 6 and 7 along the ray           | -         |
|                | 7                                              | -       | -<br>NT        | <br>D.D. | h      | -30.7        | 4.35 | 13.7         | 166.0         | 520        | 152 | forming edge of curtain to          | _         |
|                | 8                                              | -       | N              | RB       | l      |              |      | 12.2         | 146.0         | 382        |     | the right                           |           |
|                | 9                                              |         | -              | -        | 1      |              |      | 9.7          | 160.0         | 455        | İ   | For points 8–14                     |           |
|                | 10                                             | -       | -              | -        | l      |              |      | 9.1          | 164.0         | 475        |     | H  supposed = 95  km                |           |
|                | 11                                             | -       | -              | -        | 1      |              | ĺ    | 7.6          | 164.0         | 534        |     | Ventical Aldelener C                | <br>51 34 |
|                | 12                                             | _       |                | -        | l<br>1 |              |      | 7.5          | 160.0         | 540        |     | Vertical thickness of curtain 11 km | 21-22     |
|                |                                                |         | Taxon P        | Name .   |        | 1            | - 1  | 8.2          | 150.0         | 509        |     | bam itkm                            | 22-24     |
|                | 13<br>14                                       | _       |                |          | 1      |              | 1    | 8.1          | 146.0         | 513        |     |                                     |           |

Table 2 (continued).

| No | Pt   | MET     | St        | $\mathbf{F}$           | s       | €2           | р    | h    | a     | D   | Н   | Remarks                    | 0     |
|----|------|---------|-----------|------------------------|---------|--------------|------|------|-------|-----|-----|----------------------------|-------|
|    | 1 1  |         |           | 1                      | 1       |              |      |      | ,     |     |     | <u> </u>                   |       |
|    | 2    | 4.06.23 | N-Lø      | $\mathbf{R}\mathbf{B}$ | 1       | -20.2        | 6.35 | 12.2 | 152.9 | 395 | 98  |                            | 22-   |
|    | 3    | _       |           |                        | h       | -27.3        | 5.4  | 11.9 | 161.1 | 439 | 109 | 3-4 same short ray of RB   |       |
|    | 4    | _       | . –       | -                      | 1       | 27.4         | 5.4  | 10.5 | 161.1 | 441 | 98  |                            | 4     |
|    | 5    | _       | -         | _                      | h       | -33.6        | 4.3  | .95  | 168.6 | 520 | 110 |                            | -     |
|    | 6    |         |           | -                      | m       | -33.7        | 4.2  | 8.3  | 168.8 | 535 | 102 |                            | -     |
|    | 7    |         | -         | -                      | 1       | -33.0        | 4.3  | 8.3  | 167.9 | 527 | 100 |                            |       |
|    | 8    |         | Z         |                        | į l     |              | į    | 7.1  | 162.0 | 572 |     | For points 8-16            | • 21- |
|    | 9    |         |           | -                      | 1       |              | İ    | 7.2  | 156.0 | 567 |     | H is supposed equal to     | -     |
|    | 10   |         |           |                        | l       |              |      | 7.7  | 152.7 | 544 |     | 98 km                      | -     |
|    | l II | _       |           |                        | 1       |              |      | 8.1  | 150.0 | 526 |     |                            | -     |
|    | 12   | _       | _         | _                      | 1       |              |      | 8.9  | 158.0 | 495 |     |                            | -     |
|    | 13   | _       | _         | _                      | I       |              |      | 7.4  | 168.0 | 557 |     |                            | -     |
|    | 14   | -       | _         | -                      | 1       |              |      | 8.4  | 154.0 | 516 |     |                            | -     |
|    | 15   | _       |           |                        | l       |              |      | 9.4  | 165.0 | 476 |     |                            | -     |
|    | 16   | -       | _         | -                      | l       |              |      | 13.1 | 149.0 | 370 |     |                            | 23    |
| 21 | 1    | 4.07.04 | N–Lø      | R                      | m       | -31.0        | 5.2  | 22.7 | 166.6 | 410 | 189 | 1, 2 and 21 belong to a    | 21-   |
|    | 2    | _       | -         | _                      | 1'      | 31.7         | 5.3  | 19.1 | 166.7 | 411 | 158 | diffuse ray over RB        | -     |
|    | 3    | _       | _         | RB                     | h'      | -37.2        | 3.8  | 13.2 | 173.3 | 552 | 157 | 6-7, 8-9 and 10-11 short   | -     |
|    | 4    | _       | _         | _                      | m       | -37.9        | 3.7  | 9.9  | 173.7 | 571 | 127 | rays of RB.                | -     |
|    | 5    | _       |           | _                      | 1'      | -38.6        | 3.8  | 8.1  | 174.3 | 556 | 105 | 3-4-5 edge of RB           | -     |
|    | 6    | -       | -         | _                      | h       | -31.5        | 5.2  | 11.5 | 165.8 | 439 | 105 |                            | -     |
|    | 7    |         | -         | _                      | I       | 31.6         | 5.1  | 10.3 | 165.9 | 448 | 98  |                            | -     |
|    | 8    |         | -         | -                      | h       | 30.3         | 5.4  | 12.3 | 164.5 | 425 | 108 |                            | -     |
|    | 9    |         | -         |                        | 1       | -30.4        | 5.3  | 10.7 | 164.5 | 436 | 98  |                            | -     |
|    | 10   | -       |           | _                      | h       | -24.4        | 5.9  | 13.6 | 157.7 | 409 | 114 |                            | -     |
|    | 11   | _       | _         | _                      | 1       | -24.7        | 6.0  | 12.3 | 157.8 | 404 | 102 |                            | -     |
|    | 12   |         | _         | -                      | I       | -37.4        | 3.8  | 8.2  | 173.0 | 563 | 108 |                            | -     |
|    | 13   | _       | N         | _                      | 1       |              |      | 7.5  | 174.0 | 553 |     | For the points 12–20 H is  | 21-   |
|    | 14   | _       |           | -                      | 1       |              |      | 6.9  | 168.0 | 580 |     | supposed equal to 98 km    | -     |
|    | 15   | _       | _         | _                      | 1       |              |      | 6.7  | 160.0 | 589 |     |                            | -     |
|    | 16   |         |           | -                      | 1       |              | !    | 7.0  | 154.0 | 575 |     |                            |       |
|    | 17   | -       | -         | _                      | 1       |              | ļ    | 9.3  | 168.7 | 481 |     |                            | -     |
|    | 18   | _       | -         | _                      | 1       | j l          |      | 11.6 | 160.0 | 409 |     |                            | 23-   |
|    | 19   | _       | _         | -                      | 1       |              |      | 12.7 | 152.0 | 381 |     |                            | -     |
|    | 20   | -       | -         | _                      | 1       |              |      | 12.9 | 146.0 | 374 |     |                            | -     |
|    | 21   | _       | -         | R                      | h       |              |      | 26.4 | 166.5 | 401 |     |                            |       |
| 22 | 1    | 4.07.59 | N–Lø      | $\mathbf{R}$           | h'      | -30.8        | 5.7  | 31.6 | 169.0 | 357 | 222 | 1-2-3 on the same sunlit   | 22    |
|    | 2    | -       | -         | -                      | m       | -32.3        | 5.75 | 25.9 | 168.8 | 356 | 187 | ray                        | -     |
|    | 3    |         | -         | _                      | l       | -33.1        | 5.8  | 22.3 | 168.6 | 360 | 161 | 4-5-6 on another ray,      |       |
|    | 4    | ****    |           | ****                   | m       | -33.4        | 5.0  | 33.9 | 174.4 | 368 | 269 | upper part sunlit          |       |
|    | 5    |         | -         | _                      | m       | -37.0        | 4.85 | 22.8 | 174.5 | 408 | 189 |                            |       |
|    | 6    |         | _<br>N/4T | <br>D.D.               | l       | 39.2         | 4.74 | 12.7 | 174.3 | 433 | 113 | 5 0 0 10 11 1 5            |       |
|    | 7    | _       | N∸Lø      |                        | h       | -37.2        | 4.15 | 29.0 | 177.9 | 446 | 274 | 7, 8, 9, 10, 11 edge of    | -     |
|    | 8    | -       | -         | -                      | m<br>1/ | -40.2        | 4.15 | 18.5 | 177.6 | 470 | 178 | curtain, upper part sunlit | J     |
|    | 9    | -       | - i       | _                      | 1'      | 41.6         | 4.15 | 12.1 | 177.4 | 479 | 122 |                            | -     |
|    | 10   | -       |           | _                      | m       | <b>-42.0</b> | 3.85 | 8.7  | 177.4 | 521 | 103 |                            |       |
|    | 11   | ~       | -         |                        | m       | -42.1        | 3.8  | 7.3  | 177.3 | 544 | 94  |                            |       |
|    | 12   |         | -         |                        | h       | -24.4        | 3.85 | 10.8 | 159.6 | 629 | 154 | mi                         | 21    |
|    | 13   |         |           | -                      | 1       | -25.0        | 4.0  | 6.7  | 159.9 | 614 | 103 | The vertical thickness of  |       |
|    | 14   |         | -         | -                      | 1       | -37.8        | 3.7  | 7.7  | 176.6 | 578 | 106 | most luminous part of RB   |       |
|    | 15   |         | -         | -                      | 1       |              |      | 12.8 | 150.0 | 378 |     | equal to 15 km             | 22    |
|    | 16   | -       |           | -                      | 1       |              |      | 12.4 | 156.0 | 390 |     | For points 15-22 H is      | -     |
|    | 17   | -       | -         |                        | 1       |              |      | 11.7 | 162.0 | 406 |     | supposed = 98 km           | -     |
|    | 18   |         | -         |                        | 1       |              |      | 10.1 | 170.0 | 453 |     | i                          |       |

Table 2 (continued).

| No  | Pt            | МЕТ                 | St         | F                      | S   | $\epsilon_2$   | p    | h                   | a      | D   | Н                 | Remarks                     | 0        |
|-----|---------------|---------------------|------------|------------------------|-----|----------------|------|---------------------|--------|-----|-------------------|-----------------------------|----------|
|     | 20            | 4.07.59             | N-Lø       | RB                     | 1   |                |      | 6.5                 | 176.0  | 598 |                   |                             | 21-2:    |
|     | 21            | _                   | _          |                        | 1   |                |      | 6.3                 | 170.0  | 609 |                   |                             | _        |
|     | 22            | _                   | _          | -                      | 1   | i l            |      | 6.6                 | 162.0  | 595 |                   |                             | 22-2     |
|     | 23            | _                   | _          | R                      | h   |                |      | 37.4                | 174.3  | 358 | 297               | H found by sxtrapolation    |          |
| 23  | ı             | 4.09.08             | N-Lø       | i                      | h   | -36.6          | 4.0  | 11.7                | 172.0  | 533 | 125               | 1-2 a ray of the RB. No 1   | 22-2     |
|     | 2             | _                   |            | _                      | 1   | -37.0          | 4.1  | 8.5                 | 171.9  | 526 | 102               | in sunlight.                | 22 2     |
|     | 3             |                     |            |                        | ì   | -42.7          | 3.9  | 10.5                | 178.3  | 504 | 115               | m satingne .                |          |
|     | 4             | _                   |            | _                      | i   | -42.7<br>-43.8 | 3.6  | 9.3                 | 179.5  | 540 | 113               | 1                           | _        |
|     | 5             | -                   | N          | _                      | 1   | -10.0          | 3.0  | 13.3                | 150.0  | 372 | 110               | For the points 5–11 H is    | 22-2     |
|     | 6             | -                   |            |                        | 1   |                |      |                     |        |     |                   | -                           |          |
|     | 7             |                     |            | _                      | 1   |                |      | 13.2                | 158.0  | 374 |                   | supposed equal to 100 km    | -        |
|     |               |                     | -          | _                      | 1   |                |      | 12.7                | 166.0  | 388 |                   |                             | _        |
|     | 8             | _                   |            | _                      | !   |                |      | 11.8                | 174.0  | 410 |                   |                             | _        |
|     | 9             |                     | -          |                        | 1   |                |      | 10.6                | 178.0  | 446 |                   |                             |          |
|     | 10            | -                   | -          |                        | 1   | İ              |      | 6.8                 | 178.0  | 594 |                   |                             | 21-2     |
|     | 11            |                     | -          | -                      | 1   |                |      | 6.7                 | 170.0  | 599 |                   |                             |          |
| 25  | 1             | 4.14.41             | N–Lø       | R                      | m   | -31.6          | 3.85 |                     | 167.2  | 588 | 150               | 1–2 one ray                 | 21-2     |
|     | 2             | _                   |            | -                      | 1   | -31.8          | 3.95 | 9.4                 | 167.1  | 578 | 124               |                             | -        |
|     | 3             |                     | -          | _                      | m   | -25.7          | 3.9  | 11.4                | 161.1  | 612 | 156               | 3-4 another ray in sunlight | -        |
|     | 4             | -                   | -          | _                      | ¦ 1 | -26.1          | 3.9  | 8.0                 | 161.3  | 621 | 120               |                             | -        |
|     | 5             |                     | N          | RB                     | 1   |                |      | 10.5                | 150.0  | 448 |                   | For the points 5–9 H sup-   | 22-2     |
|     | 6             |                     | -          |                        | 1   |                |      | 11.4                | 156.0  | 421 |                   | posed = 100  km             | !        |
|     | 7             |                     | <i>-</i> _ |                        | 1   |                |      | 11.7                | 168.0  | 414 |                   |                             | -        |
|     | 8             | -                   | -          | -                      | l   |                |      | 11.5                | 176.0  | 419 |                   |                             | :<br>i — |
|     | 9             | -                   | -          | _                      | 1   |                | İ    | 10.9                | -176.0 | 437 |                   |                             | _        |
| 6   | 1             | 4.15.37             | N-Lø       | R                      | h   | -30.7          | 3.65 | 27.8                | 169.7  | 548 | 329               | 1-4 belong to a sunlit R    | 21-2     |
| l   | 2             |                     | _          |                        | m   | -32.5          | 3.6  | 20.4                | 169.9  | 585 | 255               |                             | _        |
| 1   | 3             | _                   | _          | _                      | m   | -33.7          | 3.5  | 11.8                | 169.9  | 628 | 166               |                             | -        |
|     | 4             | _                   | N          |                        | 1   |                |      | 8.5                 | 169.9  | 646 | 132               |                             |          |
|     | 5             |                     | _          | RB                     | i   |                |      | 10.4                | 156.0  | 451 | 101               | For 5-9 H is supposed       |          |
| i   | 6             | _                   | _          | _                      | li  |                |      | 11.3                | 162.0  | 425 |                   | = 100  km                   |          |
| ĺ   | 7             |                     | _          | _                      | i   |                |      | 11.6                | 170.0  | 416 |                   | = 100 Km                    | 23-2     |
| . 1 | $\frac{1}{8}$ |                     | !          | _                      | 1   |                |      | 10.9                | 180.0  | 437 |                   |                             | 20,0-2   |
|     | 9             | -                   | _          | _                      | 1 1 |                |      | 9.3                 | -172.0 | 490 |                   |                             | _        |
| 7   | 1             | $\frac{-}{4.16.59}$ | N          |                        | 1 1 |                |      | 9.3<br>9.4          |        | 1   |                   | The height is gunnessed to  | -        |
| '   | 2             | 4.10.09             |            | RA                     | 1 1 |                | ļ    |                     | 156.0  | 484 |                   | The height is supposed to   |          |
|     | ı             |                     | -          |                        | 1   |                |      | 10.3                | 164.0  | 454 |                   | be 100 km                   |          |
|     | 3             | _                   |            | _                      | l   |                | 1    | 10.7                | 170.0  | 442 |                   | •                           |          |
| 1   | 4             | •                   | -          | -                      | l   |                | İ    | 10.4                | 176.0  | 450 |                   |                             | _        |
|     | 5             | -                   | -          | _                      | l I |                | į    | 9.6                 | 176.0  | 477 |                   |                             | -        |
| 8   | 1             | 4.19.30             | N          | $\mathbf{R}\mathbf{A}$ |     |                |      | 6.9                 | 150.0  | 589 |                   | H  supposed = 100  km       | -        |
|     | 2             | -                   |            | -                      |     |                |      | 8.4                 | 160.0  | 522 |                   |                             |          |
| ļ   | 3             | -                   | -          |                        |     |                |      | 8.9                 | 170.0  | 503 |                   |                             | -        |
| Į   | 4             | -                   |            | _                      |     |                |      | 8.0                 | 180.0  | 540 |                   |                             |          |
| 0   | 1             | 4.23.40             | N–Lø       | $\mathbf{R}$           | h'  | 0.3            | 4.7  | 22.1                | 133.3  | 527 | 244               | Sunlit                      | 22-2     |
|     | 2             | _                   | -          | -                      | l'  | - 0.2          | 4.8  | 18.5                | 133.8  | 530 | 205               |                             | ****     |
|     | 3             | -                   | -          | _                      | h   |                |      | 22.6                | 133.2  |     | 247               |                             |          |
|     | 4             | -                   | -          | _                      | 1   |                | -    | 17.6                | 133.9  |     | 198               |                             | _        |
| 1   | 1             | 4.24.26             | N-Lø       | $\mathbf{R}$           | h'  | - 0.6          | 4.8  | 22.6                | 134.4  | 513 | 242               | 1-2-5 one ray               | 22-2     |
| ļ   | 2             | _                   | _          | _                      | 1   | - 0.8          | 4.9  | 19.2                | 134.6  | 517 | 207               | ,                           | _        |
|     | 3             | _                   | _          | _                      | h'  | - 1.0          | 4.7  | 22.6                | 134.9  | 524 | 249               | 3-4-6 another bot sunlit    | _        |
|     | 4             | _                   | _          |                        | 1   | - 1.3          | 4.8  | 18.9                | 135.1  | 529 | 209               | 2 2 3 WILLS IN STREET       |          |
|     | 5             |                     | _          | _                      | h   | 1.0            | 1.0  | 23.3                | 134.3  | 520 | 250               |                             |          |
| -   | 6             | _                   | _          | _                      | h   |                | [    | $\frac{23.3}{23.3}$ | 134.9  |     | $\frac{250}{257}$ |                             |          |
| 1   | U             | - 1                 | 1          | _                      | 111 | 1              | +    | ر د.ن⊿              | 194.9  | į   | 201               | 1                           |          |

Table 2 (continued).

| No | Pt      | MET          | St   | F            | s   | $\mathcal{E}_2$ | p    | h           | a      | D   | Н   | Remarks                   | 0    |
|----|---------|--------------|------|--------------|-----|-----------------|------|-------------|--------|-----|-----|---------------------------|------|
|    | March   | h 24–25, 193 | 33.  |              |     |                 |      |             |        |     |     | •                         |      |
| 4  | 1       | 20.27.40     | N-Lø | RB           | 1   | [-50.0          | 6.8  | 23.5        | -173.5 | 237 | 109 | 1-2, 3-4, 5-6, 7-8 and    | 24-2 |
|    | 2       |              | -    | -            | h'  | -48.7           | 6.5  | 26.6        | -173.5 | 247 | 130 | 9-10 along 5 rays of RB.  | -    |
|    | 3       | -            | -    | -            | l   | -51.1           | 6.9  | 23.2        | -172.6 | 229 | 103 | All sunlit                | -    |
|    | 4       | _            | -    |              | h   | -49.2           | 6.5  | 27.9        | -172.4 | 243 | 135 |                           | -    |
|    | 5       | _            | _    | -            | 1   | 56.4            | 5.6  | 23.1        | -165.0 | 248 | 111 |                           | -    |
|    | 6       | -            | -    |              | h'  | -53.9           | 5.2  | 28.8        | -164.4 | 269 | 151 |                           | -    |
|    | 7       | <u>-</u>     | -    | -            | 1   | -56.9           | 5.4  | 22.9        | -164.4 | 254 | 113 |                           | -    |
|    | 8       | -            | -    | -            | h'  | -54.4           | 5.2  | 28.5        | -163.8 | 267 | 153 |                           | -    |
|    | 9       | _            | -    | -            | 1   | -61.0           | 4.6  | 20.0        | -160.2 | 271 | 106 |                           | _    |
|    | $^{10}$ |              |      | _            | h   | -57.8           | 4.6  | 27.5        | -159.3 | 279 | 155 | ~                         |      |
| 7  | 1       | 20.29.31     | N-Lø | RB           | h   | <b>46.</b> 0    | 3.7  | 11.2        | 177.2  | 555 | 136 | Sunlit                    | 23-  |
|    | 2       | ` -          |      | -            | m   | -46.1           | 3.6  | 9.7         | 177.0  | 518 | 111 | _                         | -    |
|    | 3       | _            | -    | -            | h   | -60.9           | 3.4  | 11.2        | 161.8  | 385 | 90  | Not sunlit                | : -  |
|    | 4       | _            | -    |              | 1   | -60.7           | 3.1  | 13.3        | -161.1 | 419 | 114 |                           |      |
| 8  | 1       | 20.29.52     | N-Lø | RB           | l'  | -39.3           | 5.6  | 11.3        | 173.2  | 372 | 87  | Not sunlit, 1-2 one R     | 23-  |
|    | 2       |              | -    | -            | h   | -38.9           | 5.7  | 14.3        | 173.0  | 361 | 104 |                           | <br> |
|    | 3       | _            | -    |              | l   | -61.2           | 4.0  | 12.3        | -161.8 | 322 | 80  | Not sunlit, 3–4 another R |      |
|    | 4       | _            |      |              | h   | -60.2           | 4.0  | 15.7        | -161.4 | 327 | 102 | ~                         |      |
| 9  | 10      | 20.31.57     | N-Lø | R            | ] 1 | 42.6            | 6.1  | 26.9        | 81.4   | 291 | 157 | Sunlit                    | 26-  |
|    | 11      | _            | -    |              | m   | 39.9            | 5.8  | 35.1        | 77.9   | 290 | 217 |                           | -    |
|    | 12      |              |      | -            | h   |                 |      | 43.9        | 73.0   | 286 | 294 | ,                         |      |
| 0  | 2       | 20.32.27     | N-Lø | $\mathbf{R}$ | m   | 41.4            | 4.3  | 34.0        | 79.2   | 383 | 281 | Sunlit ray                | 25-  |
|    | 3       | -            | -    | -            | m   | 43.4            | 4.3  | 28.6        | 81.5   | 397 | 236 | 2, 3, 4 one ray           | -    |
|    | 4       | -            |      | -            | 1'  | 44.7            | 4.2  | 23.3        | 83.5   | 418 | 199 |                           |      |
|    | 6       | -            | -    | -            | h   | 45.2            | 3.0  | 23.0        | 84.6   | 574 | 281 | 6, 7, 8 another           |      |
|    | 7       | -            | -    |              | m   | 45.7            | 3.2  | 17.8        | 83.3   | 558 | 209 |                           | -    |
|    | 8       | _            | -    | _            | 1   | 45.5            | 3.4  | 13.0        | 87.7   | 544 | 152 |                           | -    |
|    | 9       | _            | -    | _            | h   | 52.8            | 3.1  | 29.4        | 67.1   | 451 | 281 | 9, 10, 11 another again   | -    |
|    | 10      | -            |      |              | m   | 56.5            | 3.1  | 22.6        | 69.7   | 441 | 205 |                           |      |
|    | 11      | -            |      | _            | l   | 58.8            | 3.0  | 16.1        | 72.4   | 449 | 148 | 210                       | -    |
| 1  | 1       | 20.33.33     | N-Lø | R            | h   | 50.5            | 3.1  | 35.7        | 58.6   | 440 | 344 | Diffuse sunlit ray        | 28-  |
| 3  | l       | 20.39.25     | N    | RB           | 1   |                 | i    | 11.8        | 162.0  | 445 |     | H  supposed = 110  km     | 22-  |
|    | 2       |              | -    | _            | 1   | !               |      | 11.5        | 174.0  | 453 |     | <del></del> -             | !    |
|    | 3       | -            | -    | -            | 1   |                 |      | 10.4        | -176.0 | 490 |     | _                         | -    |
|    | 4       |              | -    |              | 1   |                 |      | 9.0         | 169.0  | 540 |     | -                         |      |
| 3  | 1       | 20.29.25     | N    | RB           | 1   |                 |      | 11.8        | 162.0  | 374 |     | H supposed = 90 km        | 23-  |
|    | 2       | -            | -    | -            | 1   |                 |      | 11.5        | 174.0  | 387 |     |                           | -    |
|    | 3       | . –          | -    | _            | 1   |                 |      | 10.4        | -176.0 | 413 |     |                           | -    |
|    | 4       | -            | _    |              | 1   |                 |      | 9.0         | -169.0 | 460 |     | 1100                      |      |
| 5  | 1       | 20.44.28     | N-Lø |              | h   | 20.5            | 9.6  | 68.9        | 167.6  | 95  | 254 | Very diffuse sunlit ray   | 25-  |
|    | 2       | _            |      | -            | m   | 26.0            | 12.5 | 62.3        | 168.9  | 89  | 174 |                           |      |
| 6  | 1       | 20.45.15     | N-Lø |              | h   | 19.7            | 7.4  | 63.0        | 49.2   | 153 | 316 | 1, 2, 3 one ray           | 26-  |
|    | 2       | ween.        | -    | _            | m   | 23.8            | 7.5  | 58.5        | 56.2   | 169 | 290 | 4, 5, 6 another           |      |
|    | 3       | -            | -    | _            |     | 27.8            | 7.6  | 53.5        | 61.7   | 184 | 260 | Both sunlit               |      |
|    | 4       | _            | -    | _            | h   | 29.6            | 5.6  | <b>54.0</b> | 61.6   | 241 | 252 |                           |      |
|    | 5       | _            | -    |              | m   | 34.3            | 6.0  | 47.0        | 67.4   | 250 | 283 |                           |      |
|    | 6       |              | _    | -            | m   | 38.4            | 6.5  | 40.0        | 72.0   | 298 | 219 |                           | -    |
|    | 7       | -            | N    |              | 1   |                 |      | _           |        |     | 187 |                           |      |
| 9  | 1       | 20.49.37     | N    | HA           | 1   |                 |      | 11.4        | 162.0  | 457 |     | H supposed = 110 km       | 22-  |
|    | 2       | -            | -    |              | 1   |                 |      | 11.4        | 172.0  | 457 |     |                           |      |
|    | 3       |              | -    | -            | 1   |                 |      | 10.5        | -176.0 | 486 |     |                           |      |
|    | 4       |              |      |              | 1   |                 |      | 9.4         | 163.0  | 524 |     |                           | -    |
|    | 1       |              |      |              | 1   |                 |      | 11.4        | 162.0  | 384 |     | H supposed = 90 km        | 23-  |
|    | 2       |              |      |              | 1   |                 |      | 11.4        | 172.0  | 384 |     |                           | İ    |

Table 2 (continued).

| ЙO | Pt     | MET      | St   | F            | s          | $\epsilon_2$ | p    | h    | a      | D   | Н   | Remarks                        | 0    |
|----|--------|----------|------|--------------|------------|--------------|------|------|--------|-----|-----|--------------------------------|------|
|    | 3      | 20.49.37 | N    | НА           | 1          |              |      | 10.5 | -176.0 | 410 |     |                                | 23-2 |
|    | 4      | -        | _    | _            | 1          |              |      | 9.4  | -166.0 | 444 |     |                                |      |
| 22 | 1      | 20.55.24 | N-Lø | R            | h'         | - 1.5        | 7.8  | 47.6 | 129.2  | 231 | 266 | 9, 1, 2, 3, 10, 4, 5 belong to | 24-2 |
|    | 2      |          | -    | _            | m          | - 3.0        | 8.6  | 41.1 | 131.1  | 236 | 216 | the ray forming the left       | _    |
|    | 3      | -        | -    |              | m          | - 4.9        | 9.5  | 33.3 | 132.9  | 238 | 164 | border of the curtain.         |      |
|    | 4      | -        | -    | _            | m          | 6.4          | 10.1 | 25.3 | 134.4  | 243 | 121 | Over point 10, sunlit. The     |      |
| l  | 5      |          |      | -            | 1          | - 7.2        | 10.4 | 20.8 | 135.1  | 245 | 98  | ray goes out of the photo-     |      |
| l  | 6      |          | -    | RB           | 1          | -12.8        | 11.3 | 23.3 | 140.2  | 218 | 98  | graphic field                  |      |
|    | 7      |          |      |              | 1          | -17.1        | 12.0 | 24.7 | 144.3  | 199 | 95  | •                              |      |
| l  | 8      | -        |      | week         | 1          | 22.0         | 11.8 | 25.7 | 150.2  | 195 | 98  |                                |      |
| ĺ  | 10     |          |      | R            | m          | 5.1          | 9.6  | 32.2 | 133.2  | 238 | 158 |                                | _    |
| 23 | 1      | 20,55.56 | N-Lø | RB           | h          | 12.2         | 10.1 | 26.0 | 141.0  | 239 | 122 | The most luminous part         | 24-  |
|    | 2      |          | -    |              | 1          | -12.6        | 10.1 | 21.6 | 141.5  | 246 | 103 | of the same curtain            | _    |
| 26 | 1      | 20.57.52 | N-Lø | RB           | 1'         | -37.1        | 7.5  | 16.1 | 169.9  | 280 | 88  |                                | 24   |
| İ  | 2      |          | _    |              | h          | -37.9        | 7.5  | 18.1 | 169.8  | 274 | 96  |                                |      |
|    | 6      | _        |      |              | 1          |              |      |      |        |     | 86  | Lowest under pt. 1             |      |
| 8  | 1      | 20.59.31 | N-Lø | R            | h          | 33.2         | 7.7  | 52.0 | 75.6   | 179 | 240 | Sunlit summits of rays         | 26-  |
|    | 2      |          |      | _            | h          | 36.0         | 5.1  | 47.8 | 771    | 333 | 277 | •                              |      |
| 99 | 1      | 21.00.16 | N-Lø | $\mathbf{R}$ | h          | 36.7         | 6.3  | 42.8 | 71.0   | 250 | 245 | Summits of rays, sunlit        | 27   |
|    | 2      | _        | -    | _            | h          | 41.4         | 4.9  | 37.5 | 73.0   | 319 | 271 | • *                            | _    |
|    | 3      |          |      |              | h          | 46.4         | 3.2  | 31.8 | 75.1   | 482 | 333 |                                | _    |
| 30 | 4      | 21.01.19 | N–Lø | $\mathbf{R}$ | h          | 41.4         | 4.8  | 39.7 | 68.9   | 319 | 284 | Upper part of sunlit ray       | 26-  |
|    | 5      | -        | _    | -            | m          | 45.0         | 4.7  | 33.6 | 72.2   | 335 | 240 |                                |      |
| 8  | 1      | 21.14.09 | N-Lø | $\mathbf{R}$ | 1'         | 2.9          | 6.7  | 17.3 | 128.6  | 387 | 136 | Diffuse ray                    | 23-  |
|    | 2      |          | _    | _            | m          | 4.4          | 6.2  | 26.9 | 126.9  | 386 | 215 | Points 2, 5, 3, 6 in sun-      |      |
|    | 3      |          |      | -            | h <b>′</b> | 5.7          | 5.4  | 36.6 | 124.8  | 392 | 318 | light, 1, 4 in shadow          | _    |
|    | 4      | _        |      |              | l'         | 1.4          | 6.3  | 17.4 | 130.6  | 411 | 146 |                                |      |
|    | 5      |          | _    | -            | m          | 2.9          | 5.8  | 27.1 | 129.0  | 411 | 231 |                                |      |
|    | 6      |          |      | _            | h'         | 4.3          | 5.1  | 36.9 | 127.1  | 412 | 340 |                                | _    |
| 9  | 3      | 21,15.17 | N-Lø | R            | h          | 12.0         | 4.7  | 24.3 | 120.3  | 526 | 258 | In sunlight                    | 22-  |
|    | 4      |          |      | _            | m          | 11.4         | 4.7  | 18.6 | 121.7  | 541 | 208 |                                |      |
|    | 5      |          |      | _            | m          | 10.7         | 4.6  | 13.0 | 122.9  | 564 | 159 |                                | _    |
|    | 6      |          |      | _            | 1          | 10.2         | 4.5  | 9.1  | 123.8  | 588 | 124 |                                |      |
| 1  | 1      | 21.17.22 | N-Lø | R            | 1'         | 21.3         | 4.6  | 9.8  | 112.3  | 543 | 119 |                                | 23-  |
|    | 2      |          |      |              | h          | 22.2         | 4.8  | 19.3 | 109.8  | 490 | 196 |                                |      |
|    | 3      |          |      | _            | 1          | 10.0         | 5.8  | 11.2 | 122.4  | 455 | 108 |                                |      |
|    | 4      |          |      |              | h          | 11.3         | 5.9  | 22.2 | 119.9  | 415 | 189 | ·                              |      |
|    | 5      |          | _    | _            | ı          | 8.8          | 5.8  | 11.5 | 123.6  | 457 | 111 |                                |      |
|    | 6      | quella   |      |              | h          | 10.2         | 5.9  | 22.3 | 121.1  | 416 | 190 |                                |      |
|    | 7      | _        | _    |              | 1          | 7.6          | 6.0  | 11.7 | 124.6  | 442 | 109 |                                |      |
|    | 8      |          |      | _            | h          | 8.5          | 6.0  | 17.2 | 123.3  | 428 | 150 |                                |      |
|    | 10     |          | _    | RB           | h          | 12.9         | 5.2  | 9.8  | 120.2  | 505 | 109 |                                |      |
|    | 11     |          | _    | _            | 1          | 5.9          | 5.7  | 9.4  | 126.8  | 471 | 97  |                                |      |
|    | 12     |          | _    |              | 1          | 5.5          | 5.8  | 10.3 | 127.1  | 461 | 102 |                                | _    |
|    | 13     |          |      | _            | 1          | 2.0          | 6.7  | 11.9 | 129.7  | 399 | 98  |                                | _    |
| 2  | 1      | 21.17.46 | N-Lø | $_{ m R}$    | h          | 18.9         | 4.6  | 24.9 | 112.4  | 497 | 259 | 1, 2, 3, 4 ray, 1, 2 in        | 22-  |
|    | 2      | _        |      | _            | m          | 18.4         | 4.6  | 17.7 | 114.4  | 528 | 196 | sunshine                       |      |
|    | 3      |          |      | _            | m          | 17.4         | 4.7  | 10.6 | 116.3  | 543 | 127 |                                |      |
|    | 4      | -        | _    | -            | l'         | 16.8         | 4.9  | 9.2  | 116.8  | 525 | 108 |                                |      |
|    | 6      | _        | _    | _            | h          | 10.7         | 5.1  | 26.3 | 121.4  | 460 | 254 | 6, 7, 8 another ray, 6, 7      |      |
|    | 7      | _        | _    |              | m          | 9.2          | 5.1  | 16.7 | 123.7  | 500 | 174 | in sunshine                    |      |
|    | 8      | _        | _    | _            | 1          | 7.8          | 5.1  | 7.5  | 125.6  | 526 | 92  | m sumanning                    | -    |
|    | 9      | _        |      | RB           | h          | -0.4         | 5.5  | 10.6 | 133.4  | 487 | 111 |                                | -    |
|    | 10     |          |      | i            |            | -0.4         | 5.7  | 1    |        | 1   | 1   |                                |      |
|    | i iU i |          | ı —  | -            | 1          | _ U.8        | 0.1  | 9.1  | 133.6  | 473 | 94  |                                | -    |

Table 2 (continued).

| Vо | Pt | MET      | St   | F            | S  | $\epsilon_2$ | p   | h    | a      | D   | Н           | Remarks                      | 0   |
|----|----|----------|------|--------------|----|--------------|-----|------|--------|-----|-------------|------------------------------|-----|
|    | 12 | 21.17.46 | N    | RB           | 1  |              |     | 5.3  | 121.5  | 639 |             | 12, 13, 14 same border as    |     |
|    | 13 | ***      | _    | _            | ŀ  |              |     | 8.7  | 129.4  | 483 |             | no 10                        | -   |
|    | 14 | -        |      |              | ì  |              | İ   | 9.7  | 137.3  | 447 |             |                              | -   |
|    | 15 | -        | -    | _            | 1  |              |     | 8.0  | 117.8  | 535 |             | Near point 11                |     |
| 7  | 1  | 21.20.57 | N-Lø | $\mathbf{R}$ | h  | 38.0         | 3.2 | 22.8 | 93.2   | 601 | 294         | Sunlit rays                  | 23- |
|    | 2  | -        |      |              | m  | 38.1         | 3.2 | 17.7 | 95.2   | 625 | 239         | 1-2-3-4 one ray              | -   |
|    | 3  | -        | -    | -            | m  | 37.7         | 3.3 | 12.7 | 96.8   | 632 | 178         |                              |     |
|    | 4  | -        |      | -            | 1  | 36.0         | 3.8 | 8.7  | 98.2   | 637 | 132         |                              | -   |
|    | 6  |          | -    | _            | h  | 36.0         | 4.1 | 22.7 | 94.9   | 523 | <b>24</b> 9 | 6-7-8 another                | -   |
|    | 7  | _        | - 1  | _            | 1  |              |     | 16.1 | 97.2   | 511 | 172         |                              |     |
|    | 8  |          | Lø   | -            | h  |              |     |      |        |     | 296         |                              |     |
| 8  | 1  | 21.21.25 | N-Lø | R            | h' | 38.9         | 3.1 | 26.8 | 90.2   | 590 | 342         | Sunlit                       | 24  |
|    | 2  | -        | -    | -            | m  | 39.8         | 3.3 | 19.8 | 92.4   | 584 | 246         |                              |     |
|    | 3  |          | -    |              | m  | 39.8         | 3.6 | 13.3 | 94.2   | 562 | 161         |                              |     |
|    | 4  | _        | N    | -            | l  |              |     |      | 95.3   | 578 | 114         |                              |     |
|    | 5  | -        | -    | -            | h  |              |     |      |        |     | 360         |                              |     |
| 9  | 1  | 21.22.18 | N-Lø | $\mathbf{R}$ | m  | 41.5         | 3.4 | 24.7 | 86.3   | 531 | 277         | Partly sunlit                | 24  |
|    | 2  | _        |      |              | m  | 42.7         | 3.4 | 18.0 | 88.6   | 552 | 209         | (Not so good)                |     |
|    | 3  | -        |      |              | m  | 43.1         | 3.3 | 9.9  | 91.0   | 590 | 132         |                              |     |
|    | 6  | -        | N    | -            | h  |              |     |      |        |     | 321         |                              |     |
|    | 7  | _        | -    | -            | 1  |              |     |      |        |     | 102         |                              |     |
| 0  | 1  | 21.22.53 | N-Lø | R            | h  | 34.9         | 4.5 | 31.9 | 90.1   | 411 | 279         | Partly sunlit                | 24  |
|    | 2  | _        | -    |              | m  | 35.8         | 4.7 | 26.3 | 92.5   | 416 | 225         |                              |     |
|    | 3  |          |      |              | 1  | 36.2         | 4.8 | 19.8 | 95.0   | 427 | 172         |                              | 1   |
| 3  | 1  | 21.25.08 | N-Lø | R            | h' | 38.0         | 3.2 | 44.2 | 71.0   | 454 | 492         | Sunlit                       | 26  |
|    | 2  |          |      |              | m  | 40.9         | 3.5 | 38.6 | 74.8   | 440 | 388         |                              |     |
|    | 3  |          |      | _            | m  | 44.0         | 3.7 | 31.8 | 78.3   | 437 | 299         |                              |     |
|    | 4  | _        | -    | -            | h  |              |     | 45.8 | 69.7   | 449 | 516         |                              |     |
| 5  | 1  | 21.28.47 | N-Lø | $\mathbf{R}$ | h  | 28.2         | 2.8 | 23.2 | 104.8  | 753 | 391         | Sunlit                       | 22  |
|    | 2  | _        |      | -            | m  | 27.2         | 3.1 | 11.7 | 107.8  | 755 | 208         |                              | i   |
|    | 3  | -        |      | -            | 1  |              |     |      | 109.1  | 757 | 137         |                              |     |
| 6  | 1  | 21.32.58 | N    | HA           | 1  |              |     | 9.7  | 127.0  | 434 |             | H supposed $= 90 \text{ km}$ |     |
|    | 2  | _        | _    |              | l  |              |     | 11.2 | 136.0  | 390 |             |                              |     |
|    | 3  | -        | -    |              | 1  |              |     | 12.4 | 145.0  | 360 |             |                              |     |
|    | 4  |          | _    | -            | 1  |              |     | 13.3 | 153.0  | 338 |             |                              |     |
|    | 1  | -        | -    | -            | 1  |              |     | 9.7  | 127.0  | 473 |             | H supposed = 100 km          |     |
|    | 2  | _        | -    | _            | 1  |              |     | 11.2 | 136.0  | 425 |             |                              |     |
|    | 3  | -        | -    | -            | 1  |              |     | 12.4 | 145.0  | 392 |             |                              |     |
|    | 4  |          | -    | -            | 1  |              |     | 13.3 | 153.0  | 368 |             |                              | 1   |
|    | 1  | _        | -    |              |    |              |     | 9.7  | 127.0  | 513 |             | H  supposed = 110  km        |     |
|    | 2  |          | -    |              |    | 1            |     | 11.2 | 136.0  | 463 |             |                              |     |
|    | 3  |          | -    | -            |    |              |     | 12.4 | 145.0  | 427 |             |                              |     |
|    | 4  | -        | -    |              |    |              |     | 13.3 | 153.0  | 403 |             |                              |     |
| 7  | 1  | 21.33.47 | N-Lo | HA           | 1  | 0.0          | 6.1 | 10.6 | 132.8  | 440 | 98          |                              | 23  |
|    | 1  |          | N    | _            | l  |              |     | 10.6 | 132.8  | 445 |             | For 1, 2 and 3 H is here     | 22  |
|    | 2  | _        | +    |              | l  |              |     | 8.9  | 123.2  | 504 |             | supposed to be 100 km        | ì   |
|    | 3  | -        | -    | _            | 1  |              |     | 7.2  | 114.0  | 576 |             |                              |     |
| 8  | 1  | 21.38.50 | N    | HA.          | 1  |              |     | 14.0 | 172.0  | 353 |             | H upposed = $100 \text{ km}$ |     |
|    | 2  | -        | -    | -            | l  |              |     | 12.9 | 180.0  | 379 |             |                              |     |
|    | 3  | -        | -    | -            | l  |              |     | 11.1 | -172.0 | 427 |             |                              |     |
|    | 4  |          | _    | -            | l  |              |     | 9.1  | -167.0 | 494 |             |                              |     |
| 9  | 1  | 21.39.51 | N    | HA           | l  |              |     | 10.0 | 124.0  | 465 |             | H supposed = 100 km          |     |
|    | 2  | -        | _    | -            | 1  |              |     | 11.9 | 134.0  | 408 |             |                              |     |
|    | 3  |          |      | -            | l  |              |     | 13.0 | 142.0  | 379 |             |                              | -   |
|    | 4  |          |      |              | 1  | i            |     | 14.2 | 154.0  | 351 | 1           |                              |     |

Table 2 (continued).

| No         | Pt            | MET               | St    | F     | s   | $arepsilon_2$ | þ                 | h           | a               | D          | н   | Remarks                    | 0             |
|------------|---------------|-------------------|-------|-------|-----|---------------|-------------------|-------------|-----------------|------------|-----|----------------------------|---------------|
| 60         | 1             | 21.39.51          | N     | HA    | I   |               |                   | 11.1        | 126.4           | 430        |     | H supposed = 100 km        | 22-24         |
|            | 2             |                   |       | ~     | l   |               |                   | 8.9         | 118.9           | 504        |     |                            | _             |
|            | 3             |                   |       |       | l   |               |                   | 8.0         | 114.9           | 540        |     |                            |               |
|            | 4             |                   | _     |       | l   |               |                   | 13.9        | 138.0           | 359        |     |                            |               |
| 63         | 1             | 21.43.51          | N     | HA    | l   |               |                   | 9.4         | 129.1           | 444        |     | H  supposed = 90  km       | 22-24         |
|            | 2             | -                 |       | -     | 1   |               |                   | 11.5        | 139.7           | 381        |     |                            |               |
|            | 3 4           |                   | _     |       | 1   |               |                   | 12.3        | 146.0           | 362        |     |                            | 1.45          |
|            | 1             | e const           |       |       | 1 1 |               |                   | 12.6<br>9.4 | 152.0<br>129.1  | 355<br>524 |     | Transport 110 lan          | -             |
|            | 2             |                   |       |       | .1  |               |                   | 11.5        | 139.7           | 453        |     | H supposed = 110 km        |               |
|            | 3             |                   |       | _     | 1   |               |                   | 12.3        | 146.0           | 430        |     |                            |               |
|            | 4             |                   | _     | _     | 1   |               |                   | 12.6        | 152.0           | 423        |     |                            |               |
| 64         | i             | 21.44.41          | N     | HA    | i   |               |                   | 9.2         | 129.0           | 450        |     | H supposed = 90 km         | 23-24         |
|            | 2             | _                 | _     |       | i   |               |                   | 10.9        | 136.0           | 400        |     | 11 supposed — 60 km        |               |
|            | 3             | _                 | _     | _     | 1   |               |                   | 12.0        | 144.0           | 368        |     |                            | _             |
|            | 4             |                   | _     | _     | 1   |               |                   | 12.5        | 151.0           | 356        |     | ·                          |               |
|            | 1             |                   | -     |       | 1   |               |                   | 9.2         | 129.0           | 530        |     | H supposed = 110 km        | 22-23         |
|            | 2             |                   |       | _     | 1   |               |                   | 10.9        | 136.0           | 473        |     |                            |               |
|            | 3             | •                 | -     |       | 1   |               |                   | 12.0        | 144.0           | 440        |     |                            | _             |
|            | 4             | -                 | -     |       | 1   |               |                   | 12.5        | 151.0           | 424        |     |                            | _             |
| 65         | 1             | 21.45.13          | N-Lø  | RB    | l   | - 2.2         | 5.5               | 9.5         | 135.5           | 490        | 102 |                            | 22-23         |
|            | 2             |                   | -     | -     | 1   | - 0.8         | 5.1               | 8.7         | 134.3           | 528        | 104 |                            | -             |
|            | 3             |                   | _     | _     | 1   | - 0.5         | 4.8               | 7.5         | 134.5           | 563        | 100 |                            | -             |
|            | 4             | • -               | N     | HA    | l I |               |                   | 8.0         | 126.0           | 547        |     | H  supposed = 102  km      | 22-24         |
|            | 5             |                   |       | -     | 1   |               |                   | 9.9         | 132.0           | 476        |     |                            | -             |
|            | 6             | ***               |       |       |     |               |                   | 11.2        | 138.9           | 435        |     |                            |               |
|            | 7             |                   | -     | -     | 1   |               |                   | 10.9        | 142.0           | 445        |     |                            |               |
|            | 8 9           | barriell'         |       |       |     |               |                   | 11.5        | 148.0           | 425<br>425 |     |                            | -             |
|            | 10            |                   | _     |       | 1   |               |                   | 11.5<br>7.1 | 154.0<br>135.2  | 589        |     |                            | 91 99         |
| 66         | 10            | 21.45.47          | N-Lø  | RB    | l   | _ 1.0         | 5.2               | 9.0         | 134.4           | 518        | 104 |                            | 21-22 $21-23$ |
| 00         | 2             | 41.49.41          | 120   | - TOD | 1'  | 2.5           | $\frac{3.2}{4.6}$ | 7.5         | 131.6           | 587        | 104 |                            | 21-23         |
|            | 3             |                   | N     | _     | 1   | 2.0           | 4.0               | 10.0        | 131.0           | 480        | 100 | H supposed = 104 km        | 22-24         |
|            | 4             |                   |       | _     |     |               |                   | 10.7        | 144.0           | 458        |     | 11 supposed = 104 km       |               |
|            | 5             |                   |       |       |     |               |                   | 10.9        | 150.0           | 450        |     |                            |               |
|            | 6             | _                 | -     | _     |     |               |                   | 11.4        | 154.0           | 436        |     |                            | _             |
| 69         | 1             | 21.51.31          | N-Lø  | RB    | h   | - 7.8         | 4.8               | 13.0        | 141.9           | 545        | 152 |                            | 21-22         |
|            | 2             | _                 | -     | _     | m   | - 7.2         | 4.7               | 9.6         | 141.4           | 566        | 123 |                            | j             |
|            | 3             |                   | _     | -     | 1   | - 6.7         | 4.6               | 8.9         | 141.0           | 581        | 119 |                            |               |
| 70         | 1             | 21.56.32          | N-Lø  | R     | h'  | 1.3           | 4.1               | 21.2        | 132.9           | 604        | 273 | Points I and 4 in sunlight | 21-22         |
|            | 2             | _                 | -     | _     | m   | 0.3           | 4.1               | 15.4        | 134.0           | 631        | 212 |                            | -             |
|            | 3             | and .             | -     | -     | 1'  | - 0.5         | 4.2               | 9.5         | 135.0           | 638        | 142 |                            |               |
|            | 4             |                   | N     |       | h   |               |                   | 22.6        | 132.6           | 596        | 288 |                            | -             |
|            | 5             | -                 | -     | -     | 1   |               |                   | 21.9        |                 |            | 141 |                            |               |
| 71         | 1             | 21.57.16          | N-Lø  |       | h   | 3.3           | 3.7               | 21.1        | 131.3           | 666        | 305 | Point 1 in sunlight        | 21-22         |
|            | 2             |                   | -     |       | m   | 2.2           | 3.9               | 14.3        | 132.3           | 668        | 212 |                            |               |
| <b>=</b> ^ | 3             |                   | <br>N |       | 1'  | 1.3           | 4.1               | 7.5         | 133.5           | 659        | 123 | 77 7 00 1                  | 20.2          |
| 72         | 1             | 22.05.29          | N     | HA    | !   |               |                   | 9.4         | 180.0           | 444        |     | H  supposed = 90  km       | 23-24         |
|            | 2             |                   | _     |       |     |               |                   | 8.3         | -172.0          | 484        |     |                            | _             |
|            | 3             | _                 | -     | -     | 1   |               |                   | 7.3         | 165.0           | 525        |     | H garaged 110 by           | 00.00         |
|            | $\frac{1}{2}$ | mana              | _     | _     | 1   |               |                   | 9.4<br>8.3  | 180.0<br>172.0  | 524<br>569 |     | H  supposed = 110  km      | 22-23         |
|            | $\frac{z}{3}$ | _                 | _     | _     | 1   |               |                   | 7.3         | -172.0 $-165.0$ | 613        |     |                            | _             |
| 73         | 1             | 22.27.45          | N     | HA    | l   |               |                   | 8.9         | 136.0           | 492        |     | H supposed = 90 km         | 22-24         |
| 1.5        |               | ل ۲۰۰۲ و ایند سند | 1.1   | 1111  | 1 4 | 1             |                   | 0.0         | 100.0           | T04        |     | LI OUDDOOGG - JU KIII      | 1 22 24       |

Vol. XV III. No. 7. RESULTS OF THE OBSERVATIONS AND PHOTOGRAPHIC MEASUREMENTS OF AURORA 97

Table 2 (continued).

| Vo       | Pt                                                     | MET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | St   | $\mathbf{F}$ | s      | $arepsilon_2$ | p   | h          | a                | D            | н        | Remarks                      | θ    |
|----------|--------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--------------|--------|---------------|-----|------------|------------------|--------------|----------|------------------------------|------|
|          | 3                                                      | 22.27.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | N    | НА           | 1 1    |               |     | 10.1       | 156.0            | 421          | <u> </u> |                              | 22-2 |
|          | 4                                                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ,    | _            | 1      |               |     | 10.3       | 166.0            | 416          |          |                              | _    |
|          | 1                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -    |              | 1      |               |     | 8.9        | 136.0            | 577          |          | H  supposed = 110  km        | 21-2 |
|          | 2                                                      | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | _    | _            | 1      |               |     | 9.7        | 146.0            | 513          |          | **                           | _    |
|          | 3                                                      | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | _    |              | 1      |               | İ   | 10.1       | 156.0            | 499          |          |                              |      |
|          | 4                                                      | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | _    |              | 1      |               |     | 10.3       | 166.0            | 493          |          |                              | _    |
| 4        | 1                                                      | 22.28.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | N    | HA           | 1      |               |     | 9.8        | 178.0            | 430          |          | H  supposed = 90  km         | 23-  |
|          | 2                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -    |              | 1      |               |     | 8.5        | -174.0           | 476          |          | 11                           |      |
|          | 3                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | _    | -            | 1      |               |     | 7.0        | -166.0           | 540          |          |                              |      |
|          | 4                                                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | _    | _            | 1      |               |     | 5.4        | 159.0            | 620          |          |                              | _    |
|          | 1                                                      | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |              | 1      |               |     | 9.8        | 178.0            | 508          |          | H  supposed = 110  km        | 22-  |
|          | 2                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |              | 1      |               |     | 8.5        | -174.0           | 560          |          | supposes 220 mm              |      |
|          | 3                                                      | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | _    | _            | 1      |               |     | 7.0        | -166.0           | 628          |          |                              | _    |
|          | 4                                                      | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | _    | _            | 1      |               |     | 5.4        | 159.0            | 712          |          |                              | _    |
| 5        | 1                                                      | 22.29.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | N    | HA           | 1      |               |     | 10.1       | 138.0            | 431          |          | H  supposed = 90  km         | 22-  |
| <u> </u> | 2                                                      | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      | _            | î      |               |     | 10.6       | 148.0            | 408          |          | 1-4 upper arc, 5-7 lower     |      |
|          | 3                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      | _            | 1      |               |     | 10.7       | 158.0            | 404          |          | 1 1 appor are, o . lewer     |      |
|          | 4                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | _    |              | 1      |               |     | 10.7       | 166.0            | 404          |          |                              | _    |
|          | 5                                                      | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | _    | _            | l      |               |     | 7.3        | 136.0            | 525          |          |                              | _    |
|          | 6                                                      | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | _    |              | 1      |               |     | 7.8        | 148.0            | 502          |          |                              | _    |
|          | 7                                                      | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | _    |              | 1      |               |     | 8.2        | 159.0            | 487          |          |                              |      |
|          | 1                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |              | 1      |               | :   | 10.1       | 138.0            | 499          |          | H supposed = 110 km          |      |
|          | $\begin{vmatrix} 1 \\ 2 \end{vmatrix}$                 | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | _    |              | 1      |               |     | 10.6       | 148.0            | 483          |          | 1-4 upper arc, 5-7 lower     |      |
|          | $\begin{bmatrix} 2 \\ 3 \end{bmatrix}$                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      | _            | 1      |               |     | 10.7       | 158.0            | 480          |          | 1-4 upper are, 5-7 lower     |      |
|          | 4                                                      | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      | _            | l      |               |     | 10.7       | 166.0            | 480          |          |                              |      |
|          | 5                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      | _            | 1      |               |     | 7.3        | 136.0            | 613          |          |                              |      |
|          | 6                                                      | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | _    | _            | 1      |               | Ì   | 7.8        | 148.0            | 589          |          |                              |      |
|          | 7                                                      | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | _    | _            | 1      |               |     | 8.2        | 159.0            | 573          |          |                              |      |
| 6        | 1                                                      | 22.30.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | N    | HA           | I      |               |     | 10.0       | 180.0            | 425          |          | H supposed = 90 km           | _    |
| ,        | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$ | .22.00.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 14   |              | 1      |               |     | 8.6        | —170.0           | 473          |          | II supposed = 30 km          |      |
|          | 3                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |              |        |               |     | 6.7        | -170.0 $-160.0$  | 554          |          |                              |      |
|          | 4                                                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | _    |              |        |               |     | 4.8        | -150.0           | 652          |          |                              |      |
|          | 1                                                      | <b>L</b> aboration of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of th |      | _            | i '    |               |     | 10.0       | 180.0            | 503          |          | H supposed = 110 km          |      |
|          | 2                                                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -    |              |        |               |     | i .        |                  |              |          | n supposed = 110 km          |      |
|          | $\begin{bmatrix} \frac{2}{3} \end{bmatrix}$            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | _    | -            |        |               |     | 8.6        | 170.0<br>160.0   | 556          |          |                              |      |
|          | 4                                                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | _    | -            |        |               |     | 6.7<br>4.8 | -150.0 $-152.0$  | $644 \\ 744$ |          |                              |      |
| 7        | 1                                                      | $\frac{-}{22.31.47}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | N    | <br>НА       | , T    |               |     | 9.0        |                  | 459          |          | Hauppaged 00 km              | 22-  |
| 7        | 2                                                      | 22.31.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7/   | пА           | I      |               |     | 10.0       | $130.0 \\ 138.0$ | 425          |          | H supposed = 90 km           | 22   |
|          | $\begin{bmatrix} 2 \\ 3 \end{bmatrix}$                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | _    | _            | 1<br>I |               |     |            |                  |              |          | 1-4 upper arc, 5-8 lower     | _    |
|          |                                                        | . –                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      | _            |        |               |     | 10.9       | 150.0            | 399          |          |                              | -    |
|          | 4                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | _    | -            | I      |               | ļ   | 11.6       | 162.0            | 379          |          |                              | -    |
|          | $\begin{bmatrix} 5 \\ 6 \end{bmatrix}$                 | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | _    | _            | 1      |               |     | 7.0        | 133.0            | 537          |          |                              | -    |
|          |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | _    | _            | 1      |               |     | 7.8        | 142.0            | 503          |          |                              | -    |
|          | 7                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -    | -            | 1      |               |     | 8.6        | 152.0            | 474          |          |                              | _    |
|          | 8                                                      | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | _    | -            | 1      |               | ĺ   | 9.3        | 160.0            | 447          |          | TT 1 110.1                   | -    |
|          | 1                                                      | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -    |              | 1      |               |     | 9.0        | 130.0            | 538          |          | H upposed = $110 \text{ km}$ | -    |
|          | 2                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      | _            | 1      |               |     | 10.0       | 138.0            | 503          |          | 1–4 upper arc, 5–8 lower     | -    |
|          | 3                                                      | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -    | -            | 1      |               |     | 10.9       | 150.0            | 472          |          |                              | -    |
|          | 4                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |              | 1      |               |     | 11.6       | 162.0            | 450          |          |                              | 0.7  |
|          | 5                                                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      | _            | 1      |               |     | 7.0        | 133.0            | 625          |          |                              | 21-  |
|          | 6                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      | -            | 1      |               |     | 7.8        | 142.0            | 589          |          |                              | -    |
|          | 7                                                      | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -    |              | 1      |               |     | 8.6        | 152.0            | 550          |          |                              | -    |
|          | 8                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      | ***          | l I    |               |     | 9.3        | 160.0            | 527          |          |                              |      |
| 8        | 1                                                      | 22.32.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | N-Lø | RB           | h      | - 3.4         |     | 11.6       | 136.8            | 503          | 124      | Upper arc transformed        | 22-  |
|          | 2                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      | _            | m      | - 3.4         | 5.3 | 9.7        | 136.8            | 507          | 108      | to RB                        | 1    |

Table 2 (continued).

| No | Pt                                          | MET         | St         | F         | s   | $\epsilon_2$ | p   | h    | a      | D   | $\mathbf{H}$ | Remarks               | θ    |
|----|---------------------------------------------|-------------|------------|-----------|-----|--------------|-----|------|--------|-----|--------------|-----------------------|------|
|    | 4                                           | 22.32.43    | N          | RB        | 1   |              |     | 7.2  | 136.0  |     |              | H supposed = 100 km   |      |
|    | 5                                           | _           | _          | _         | 1   |              |     | 7.7  | 144.0  |     |              | (Lower arc)           |      |
|    | 6                                           | _ '         | _          | _         | I   |              |     | 8.2  | 152.0  |     |              | V I                   |      |
|    | 7                                           | _           | _          |           | I   |              |     | 7.6  | 160.0  |     |              |                       |      |
| 31 | 1                                           | 22.34.10    | N–Lø       | RB        | h   | - 4.3        | 4.3 | 7.8  | 138.5  | 628 | 119          |                       | 21-2 |
| ^_ | 2                                           |             | _          | _         | 1   | - 4.6        | 4.2 | 6.2  | 138.9  | 644 | 104          |                       |      |
|    | 3                                           | <del></del> | N          |           | 1   |              |     | 5.5  | 136.0  |     |              | H  supposed = 90  km  | 20-2 |
|    | 4                                           | -           | -          | _         | 1   |              | :   | 6.4  | 144.0  |     |              | 11                    | _    |
|    | 5                                           | _           | _          | _         | 1   |              |     | 7.1  | 152.0  | ĺ   |              |                       | _    |
|    | 6                                           |             | _          | _         | 1   |              |     | 7.4  | 160.0  |     |              |                       |      |
|    | 3                                           | _           | _          | _         | 1   |              |     | 5.5  | 136.0  |     |              | H  supposed = 110  km | _    |
|    | 4                                           | _           | _          |           | 1   |              |     | 6.4  | 144.0  |     |              |                       | _    |
|    | 5                                           |             | _          | _         | l   |              |     | 7.1  | 152.0  | -   |              |                       | _    |
|    | 6                                           |             | _          | _         | î   |              |     | 7.4  | 160.0  |     |              |                       | _    |
| 3  | 1                                           | 22.39.30    | N–Lø       | $_{ m R}$ | 1   | -59.5        | 2.9 | 11.7 | -162.9 | 466 | 115          | 1-2 one ray           | 23-2 |
| •, | 2                                           | 22.35.50    |            | _         | h   | -57.2        | 2.8 | 18.7 | -162.1 | 494 | 191          | 1 2 one lay           |      |
|    | 3                                           | _           |            | _         | 1   | -56.7        | 3.0 | 10.4 | -166.2 | 491 | 110          | 3-4 another           | _    |
|    | 4                                           |             |            | _         | h   | -56.3        | 3.0 | 12.7 | -166.0 | 490 | 131          |                       | _    |
| 4  | 1                                           | 22.47.04    | N-Lø       |           | h   | -58.9        | 2.1 | 19.4 | -158.7 | 619 | 258          |                       | 23-2 |
| 4  | 2                                           | 22.41.04    |            |           | m   | -61.1        | 2.2 | 13.8 | -159.5 | 576 | 171          |                       |      |
|    | 3                                           | _           |            | _         | l'  | -62.2        | 2.3 | 9.4  | -160.2 | 545 | 115          |                       | _    |
| 9  | 1                                           | 0.39.14     | N          | HA        | 1 1 | -02.2        | 4.0 | 3.7  | 135.0  | 724 | 110          | H supposed = 90 km    | 20-2 |
| Ð  | $\begin{bmatrix} 1\\2 \end{bmatrix}$        | 0.09.14     | 1 <b>\</b> | 11A       | l   |              |     | 4.3  | 142.0  | 683 |              | ii supposed — vo km   |      |
|    | $\begin{vmatrix} \frac{2}{3} \end{vmatrix}$ | _           |            | _         | 1   | '            |     | 4.8  | 150.0  | 652 |              |                       | _    |
|    | 4                                           | _           | _          | _         | 1   |              |     | 5.5  | 158.0  | 614 |              |                       |      |
|    | 1                                           | -           |            | _         | 1   |              |     | 3.7  | 135.0  | 823 |              | H supposed = 110 km   |      |
|    |                                             |             | _          | _         | 1   |              |     | 4.3  | 142.0  | 781 |              | 11 supposed = 110 km  |      |
|    | $\begin{vmatrix} 2 \\ 3 \end{vmatrix}$      | _           | _          | _         | l   |              |     | 4.8  | 150.0  | 749 |              |                       |      |
|    |                                             |             |            |           | 1   |              |     | 5.5  | 150.0  | 708 |              |                       |      |
| Δ. | 4                                           | 0.40.44     | NT.        | TT A      | -   | .            |     | 5.3  | 158.0  | 626 |              | H supposed = 90 km    | 20-2 |
| () | 1                                           | 0.40.44     | N          | HA        | l   |              |     |      |        | 603 |              | if supposed = 50 km   | 20-2 |
|    | 2                                           | _           | -          | _         | 1   |              |     | 5.7  | 166.0  | 587 |              |                       |      |
|    | 3                                           | -           | _          | _         | l   |              |     | 6.0  | 176.0  | !   |              |                       | _    |
|    | 4                                           | _           | -          | _         | 1   |              |     | 6.0  | -176.0 | 587 |              | Wannagad — 110 km     | _    |
|    | I                                           | -           |            |           | 1   |              |     | 5.3  | 158.0  | 720 |              | H supposed = 110 km   |      |
|    | 2                                           |             | _          |           | 1   |              |     | 5.7  | 166.0  | 696 |              |                       | _    |
|    | 3                                           |             |            | -         | 1   |              |     | 6.0  | 176.0  | 679 |              |                       | _    |
|    | 4                                           |             | -          |           | 1 . |              |     | 6.0  | -176.0 | 679 |              | 11 1 00 l             | 91   |
| l  | I !                                         | 0.42.25     | N          | HA        | I   |              |     | 7.3  | 178.0  | 526 |              | H  supposed = 90  km  | 21-  |
|    | 2                                           |             |            |           | !   |              |     | 5.8  | -174.0 | 599 |              |                       | -    |
|    | 3                                           |             | -          |           | 1   |              |     | 4.0  | -164.3 | 705 |              |                       |      |
|    | 1                                           |             |            |           | 1   |              |     | 7.3  | 178.0  | 613 |              | H supposed = 110 km   |      |
|    | 2                                           |             |            |           | 1   |              |     | 5.8  | 174.0  | 691 |              |                       | -    |
|    | 3                                           |             |            | _         | [   |              |     | 4.0  | 164.3  | 803 |              |                       |      |
| 2  | l                                           | 0.43.46     | N          | HA        | 1   |              |     | 5.7  | 155.0  | 603 |              | H supposed = 90 km    | 21-  |
|    | 2                                           | _           |            | -         |     |              |     | 6.4  | 164.0  | 568 |              |                       | -    |
|    | 3                                           | ***         |            | -         | 1   |              |     | 6.8  | 174.0  | 548 |              |                       | -    |
|    | 4                                           |             |            |           | 1   |              |     | 6.4  | -175.0 | 567 | 1            |                       |      |
|    | 1                                           |             |            |           | 1   |              |     | 5.7  | 155.0  | 697 |              | H supposed = 110 km   | 20-  |
|    | 2                                           | -           |            | -         | 1   |              |     | 6.4  | 164.0  | 658 |              |                       | -    |
|    | 3                                           | _           | <u> </u>   |           | 1   |              |     | 6.8  | 174.0  | 639 |              |                       | -    |
|    | 4                                           |             | _          |           | 1   |              |     | 6.4  | -175.0 | 658 |              |                       | -    |
| 8  | 1                                           | 1.07.33     | N          | HA        | 1   |              |     | 8.9  | 144.0  | 463 |              | H supposed = 90 km    | 22-  |
|    | 2                                           | ***         | _          | -         | I   |              |     | 8.9  | 156.0  | 463 |              |                       | -    |
|    | 3                                           |             |            |           | I   |              |     | 8.9  | 168.0  | 463 |              | İ                     | -    |
|    |                                             |             | 1          | 1         | 1 . | 1 1          |     | 8.9  | 154.0  | 544 |              | H supposed = 110 km   | 21-2 |

Table 2 (continued).

| No   | Pt                                     | MET          | St            | $\mathbf{F}$ | S   | $\epsilon_2$ | p  | h          | a               | D          | Н | Remarks                | θ   |
|------|----------------------------------------|--------------|---------------|--------------|-----|--------------|----|------------|-----------------|------------|---|------------------------|-----|
|      | 2                                      | 1.07.33      | N             | НА           | 1   |              |    | 8.9        | 156.0           | 544        |   |                        | 21- |
|      | 3                                      | _            |               | _            | 1   |              |    | 8.9        | 168.0           | 544        |   |                        | _   |
|      | 4                                      | -            | N-Lø          | R            | 1   |              |    |            |                 |            |   |                        |     |
|      | 5                                      | _            |               | _            | 1   |              | ļ  |            |                 |            |   |                        |     |
| 9    | 1                                      | 1.12.25      | N             | HA           | I   |              |    | 8.7        | 166.0           | 470        |   | H  supposed = 90  km   | 22- |
|      | 2                                      | _            | _             |              | l   |              |    | 7.8        | 176.0           | 505        |   |                        | -   |
|      | 3                                      | _            | _             | _            | 1   |              |    | • 6.8      | -174.0          | 549        |   |                        | -   |
|      | 4                                      | A10.00       | _             | -            | 1   |              |    | 5.7        | -166.0          | 603<br>551 |   | II amounted 110 km     | 21- |
|      | 1                                      | _            | _             | _            | 1   |              |    | 8.7<br>7.8 | 166.0<br>176.0  | 591        |   | H  supposed = 110  km  | 21- |
|      | 2                                      |              | _             |              | 1   |              |    | 6.8        | -174.0          | 639        |   |                        |     |
|      | 3 4                                    | -            | _             | _            | 1   |              |    | 5.7        | -174.0 $-166.0$ | 696        | İ |                        |     |
| Λ    | 1 1                                    | -<br>1.13.10 | N             | HA           | 1   |              |    | 5.8        | 120.0           | 598        |   | H supposed = 90 km     | 21  |
| 0    | $\begin{vmatrix} 1 \\ 2 \end{vmatrix}$ | 1.13.10      |               | пА           | l l |              | į. | 7.5        | 132.0           | 510        |   | II supposed — 30 km    | 21  |
|      | $\begin{vmatrix} 2 \\ 3 \end{vmatrix}$ | -            | _             | _            | 1   |              |    | 9.2        | 142.0           | 451        |   |                        |     |
|      | 1                                      | -            | _             | _            | 1   |              |    | 5.8        | 120.0           | 690        |   | H supposed = 110 km    |     |
|      | $\begin{vmatrix} 1 \\ 2 \end{vmatrix}$ | _            | _             | _            | I   |              |    | 7.5        | 1.320           | 602        |   | ii supposed — iio kiii |     |
|      | $\begin{bmatrix} 2 \\ 3 \end{bmatrix}$ | _            | _             | _            | 1   |              |    | 9.2        | •142.0          | 530        | Ì |                        |     |
| l    | 1                                      | 1.13.10      | $ $ $_{ m N}$ | HA           | l   |              |    | 8.8        | 142.0           | 466        |   | H supposed = 90 km     | 21  |
| 1    | $\begin{vmatrix} 1 \\ 2 \end{vmatrix}$ | 1.15.10      |               | _            | 1   |              |    | 9.0        | 150.0           | 460        |   | II supposed — to im    |     |
|      | 3                                      |              |               |              | 1   |              |    | 9.1        | 162.0           | 455        |   |                        | 1   |
|      | 4                                      |              | _             |              | 1   | Ì            |    | 9.0        | 174.0           | 460        |   |                        |     |
|      | 1                                      | _            | _             |              | I   |              |    | 8.8        | 142.0           | 547        |   | H supposed = 110 km    |     |
|      | 2                                      | _            | _             | _            | l   |              |    | 9.0        | 150.0           | 540        |   | ii supposed = 110 iiii |     |
|      | 3                                      | _            | 1 _           | _            | 1   |              |    | 9.1        | 162.0           | 535        |   |                        |     |
|      | 4                                      |              | _             | _            | 1   |              |    | 9.0        | 174.0           | 540        |   |                        |     |
| $^2$ | 1                                      | 1.13.57      | N             | HA           | 1   |              |    | 9.3        | 168.0           | 447        |   | H supposed = 90 km     | 22  |
| _    | $\begin{vmatrix} 1 \\ 2 \end{vmatrix}$ | -            |               | _            | 1   |              |    | 8.2        | 180.0           | 487        |   |                        |     |
|      | 3                                      | _            | -             |              | I   |              |    | 7.2        | -170.0          | 530        |   |                        |     |
|      | 4                                      | _            | _             |              | 1   |              |    | 6.2        | -161.0          | 578        |   |                        |     |
|      | 1                                      | _            |               |              | 1   |              |    | 9.3        | 168.0           | 527        |   | H  supposed = 110  km  | 22  |
|      | 2                                      |              | _             | _            | 1   |              |    | 8.2        | 180.0           | 572        |   |                        |     |
|      | $\frac{1}{3}$                          |              | _             | -            | I   |              |    | 7.2        | -170.0          | 618        |   |                        |     |
|      | 4                                      |              | _             |              | 1   |              |    | 6.2        | 161.0           | 668        |   |                        |     |
| 3    | I                                      | 1.28.57      | N             | HA           | 1   |              |    | 6.5        | 118.0           | 563        | ĺ | H  supposed = 90  km   | 22  |
|      | 2                                      |              | -             | _            | 1   |              |    | 7.7        | 126.0           | 508        |   |                        |     |
|      | 3                                      | -            | _             |              | 1   |              |    | 8.9        | 136.0           | 461        |   |                        |     |
|      | 4                                      | -            | _             | -            | 1   |              |    | 10.0       | 144.0           | 426        |   |                        |     |
|      | 1                                      | -            | -             | _            | 1   |              |    | 6.5        | 118.0           | 653        |   | H  supposed = 110  km  | 22  |
|      | 2                                      |              |               |              | 1   |              |    | 7.7        | 126.0           | 593        |   |                        |     |
|      | 3                                      | -            | _             | -            | 1   |              |    | 8.9        | 136.0           | 542        |   |                        |     |
|      | 4                                      |              | _             | _            | 1   |              |    | 10.0       | 144.0           | 502        |   |                        |     |
| 4    | 1                                      | 1.29.44      | N             | HA           | 1   |              |    | 9.6        | 174.0           | 439        |   | H  supposed = 90  km   | 23  |
| ٠    | 2                                      | -            |               | -            | 1   |              |    | 9.0        | -176.0          | 460        |   |                        |     |
|      | 3                                      | -            | _             | -            | 1   |              |    | 8.5        | -168.0          | 478        |   | •                      |     |
|      | 4                                      | -            | _             | -            | 1   |              |    | 8.0        | 162.0           | 495        |   |                        |     |
|      | 1                                      |              |               | -            | 1   |              |    | 9.6        | 174.0           | 517        |   | H  supposed = 110  km  | 22  |
|      | 2                                      |              | -             | -            | 1   |              |    | 9.0        | 176.0           | 540        |   |                        |     |
|      | 3                                      |              | -             | -            | 1   |              |    | 8.5        | 168.0           | 560        |   |                        |     |
|      | 4                                      | -            | -             | -            | 1   |              |    | 8.0        | -162.0          | 580        |   |                        |     |
| 5    | 1                                      | 1.31.05      | N             | HA           | 1   |              | 1  | 9.1        | 168.0           | 455        |   | H supposed = 90 km     | 23  |
|      | 2                                      |              |               | -            | 1   |              |    | 7.1        | 158.0           | 535        |   |                        |     |
|      | 3                                      |              | -             | -            | 1   |              |    | 5.2        | 150.0           | 628        |   |                        |     |
|      | 4                                      | _            | -             | -            | 1   |              |    | 4.2        | 144.0           | 688        |   |                        | 1   |
| 6    | 1                                      | 1.31.59      | N             | HA           | 1   | 1            | 1  | 6.0        | 120.0           | 588        | i | H  supposed = 90  km   | 2   |

Table 2 (continued).

| No  | Pt                                   | MET     | St   | F       | s      | $arepsilon_2$ | p   | h              | a                | D                 | н   | Remarks                | θ           |
|-----|--------------------------------------|---------|------|---------|--------|---------------|-----|----------------|------------------|-------------------|-----|------------------------|-------------|
|     | 2                                    | 1.39.59 | N    | на      | I      |               |     | 7.3            | 126.0            | 527               |     |                        | 22-24       |
|     | 3                                    | -       | -    | -       | 1      |               |     | 8.8            | 134.0            | 466               | ĺ   |                        | _           |
|     | 4                                    | -       | _    | -       | 1      |               |     | 10.4           | 142.0            | 415               |     |                        |             |
|     | 1                                    | -       | -    | -       | 1      |               |     | 6.0            | 120.0            | 679               | ]   | H  supposed = 110  km  | 21-23       |
|     | 2                                    | -       | -    | -       | 1      |               |     | 7.3            | 126.0            | 614               |     |                        | -           |
|     | 3                                    | _       | -    |         | 1      |               |     | 8.8            | 134.0            | 547               |     |                        | -           |
|     | 4                                    |         | -    | -       | 1      |               |     | 10.4           | 142.0            | 491               |     |                        |             |
| 107 | $\begin{bmatrix} 1\\2 \end{bmatrix}$ | 1.32.45 | Lø   | HA      | 1      |               |     | 16.5           | 146.0            | 410               |     | H  supposed = 90  km   | 23-24       |
|     | $\frac{z}{3}$                        | Autor   |      | -       | I<br>1 |               |     | 10.7           | 155.0            | 406               |     |                        | -           |
|     | 4                                    | _       |      | _       | 1<br>1 |               |     | 10.4           | 168.0            | 415               |     |                        | -           |
|     | 5                                    | _       | _    | _       | 1      |               |     | 10.3<br>16.5   | 177.0<br>146.0   | 418<br>487        |     | H ammand 110 l         |             |
|     | 6                                    |         |      |         | 1      |               |     | 10.5           | 155.0            | 480               |     | H supposed = 110 km    | 22-23       |
|     | 7                                    | MEN     |      | _       | i      |               |     | 10.4           | 168.0            | 491               |     |                        | _           |
|     | 8                                    |         | _    |         | i      | Ì             |     | 10.3           | 177.0            | 494               |     |                        |             |
| 108 | 1                                    | 1.36.36 | Lø   | HA      | i      |               |     | 11.8           | 145.0            | 375               |     | H supposed = 90 km     | 23-24       |
| İ   | 2                                    |         | _    |         | ì      |               |     | 11.9           | 156.0            | 372               |     | 11 supposed = 50 km    | 2.7-24      |
|     | 3                                    | *       |      |         | 1      |               |     | 11.5           | 168.0            | 383               |     |                        |             |
| ļ   | 1                                    |         |      |         | l      |               |     | 11.8           | <b>14</b> 5.0    | 445               |     | H supposed = 110 km    | $ _{22-23}$ |
|     | 2                                    | Fate in |      |         | ]      | j             |     | 11.9           | 156.0            | 442               |     |                        |             |
|     | 3                                    |         |      |         | ļ      | l i           |     | 11.5           | 168.0            | 453               |     |                        | _           |
| 09  | 1                                    | 1.39.56 | Lø   | HA      | !      |               |     | 7.2            | 126.6            | 530               |     | H supposed = 90 km     | 22-24       |
|     | 2                                    |         |      | _       | 1      |               |     | 8.1            | 128.0            | 491               |     | A small ray appears in | _           |
|     | 3                                    | -       | -    | -       | 1      |               |     | 8.8            | 130.0            | 464               |     | the western end        | _           |
|     | 4                                    | at the  |      | -       | l      |               |     | 9.8            | 136.0            | 431               |     |                        | -           |
|     | 5                                    | -       | -    | -       | l      |               |     | 11.1           | 146.0            | 394               |     |                        |             |
|     | 1                                    |         | -    | -       | 1      |               |     | 7.2            | 126.6            | 619               |     | H  supposed = 110  km  | _           |
|     | 2                                    |         |      | -       | I      |               |     | 8.1            | 128.0            | 570               |     | _                      | -           |
|     | 3                                    |         | _    | -       | l      |               |     | 8.8            | 130.0            | <b>54</b> 6       |     | _                      |             |
|     | 4                                    |         |      | -       | l      |               |     | 9.8            | 136.0            | 509               |     | _                      | _           |
|     | 5                                    |         | _    |         | 1      |               |     | 11.1           | 146.0            | 466               |     | _                      | -           |
| 10  | 1                                    | 1.40.32 | N    | HA      | 1      | l i           |     | 12.3           | 148.0            | 362               |     | H  supposed = 90  km   | 23-24       |
|     | 2                                    |         | -    | (trans- | 1      | İ             |     | 12.5           | 156.0            | 357               |     |                        | -           |
|     | 3                                    |         | -    | formed  | 1      |               |     | 12.7           | 166.0            | 352               |     | _                      | -           |
|     |                                      |         |      | in      | ,      |               |     | 1.00           | 1== 0            |                   |     |                        |             |
|     | 4                                    |         | _    | RA)     | l      |               |     | 12.2           | 177.0            | 365               |     | - I 1101               | -           |
|     | $\frac{1}{2}$                        |         |      | -       | 1<br>1 |               |     | 12.3           | 148.0            | 431               |     | H  supposed = 110  km  | 22-24       |
|     | 3                                    |         | _    | -       | l<br>l |               |     | 12.5           | 156.0            | 424               |     |                        | -           |
|     | 4                                    |         |      |         | 1      |               |     | $12.7 \\ 12.2$ | 166.0            | 420               |     | _                      | _           |
| 11  | 1                                    | 1.41.01 | N    | RA      | 1      |               |     | 12.2           | $177.0 \\ 170.0$ | $\frac{433}{354}$ |     | H supposed = 90 km     | 99.04       |
|     | 2                                    | 1.71.01 |      | IVA     | l      |               |     | 11.5           | 180.0            | 382               |     | H supposed = 90 km     | 23–24       |
| İ   | 3                                    |         | _    |         | 1      |               |     | 10.4           | -172.0           | 412               |     | _                      | _           |
|     | 4                                    |         |      | _       | 1      |               |     | 9.2            | -172.0 $-165.0$  | 451               |     |                        | _           |
| ļ   | 1                                    |         |      | _       | 1      |               |     | 12.6           | 170.0            | 423               |     | H  supposed = 110  km  | 23-24       |
| İ   | 2                                    |         | _    | _       | ì      |               |     | 11.5           | 180.0            | 453               |     | ii supposed = 110 km   | 20-24       |
|     | 3                                    |         |      |         | ī      |               |     | 10.4           | -172.0           | 488               |     | <u> </u>               |             |
| ļ   | 4                                    |         | _    |         | 1      |               |     | 9.2            | -165.0           | 531               |     |                        | _           |
| 16  | 1                                    | 1.52.16 | N–Lø |         | h′     | 19.6          | 8.7 | 18.2           | 150.4            | 282               | 100 |                        | 24-25       |
| ]   | 2                                    |         |      | _       | l'     | 19.9          | 8.8 | 15.5           | 150.5            | 284               | 86  |                        |             |
|     | 3                                    |         | _    | _       | h      |               |     |                |                  |                   | 103 |                        |             |
|     | 4                                    |         |      | _       | 1      |               |     |                |                  |                   | 82  |                        |             |
| .20 | 1                                    | 2.58.13 | N-Lø | PS      | h      | -32.7         | 8.0 | 19.1           | 165.1            | 273               | 100 |                        | 24-25       |
|     | 2                                    |         | _    | _       | 1      | -33.5         | 8.0 | 15.2           | 165.5            | 277               | 81  |                        |             |
| 125 | 1                                    | 3.10.38 | N    | HA      | 1      | 1             |     | 5.2            | 132.0            | 634               |     | H  supposed = 90  km   |             |

Vol.~XVIII.~No.~7.~RESULTS~OF~THE~OBSERVATIONS~AND~PHOTOGRAPHIC~MEASUREMENTS~OF~AURORA-101

Table 2 (continued).

| No | Pt       | MET     | St   | F           | S   | $arepsilon_2$ | p    | h    | a      | D   | н   | Remarks                   | 0   |
|----|----------|---------|------|-------------|-----|---------------|------|------|--------|-----|-----|---------------------------|-----|
|    | 2        | 3.10.38 | N    | HA          | 1   |               |      | 5.5  | 140.0  | 617 |     | H supposed = 90 km        |     |
|    | 3        |         |      | _           | 1   |               |      | 5.6  | 148.0  | 611 |     | _                         |     |
|    | 4        |         |      | -           | l   |               | j    | 5.8  | 156.0  | 600 |     |                           |     |
|    | 1        |         |      | -           | ı   |               |      | 5.2  | 132.0  | 732 | !   | H  supposed = 110  km     |     |
|    | 2        |         | _    |             | 1   |               | İ    | 5,5  | 140.0  | 713 |     | _                         |     |
|    | 3        |         | _    | -           | 1   |               |      | 5.6  | 148.0  | 706 |     | _                         |     |
|    | 4        |         | -    | _           | 1   |               | İ    | 5.8  | 156.0  | 694 |     |                           |     |
| 26 | 1        | 3.11.47 | N-Lø | DS          | h   | -49.2         | 5.3  | 15.6 | 175.0  | 325 | 100 |                           | 24  |
|    | 2        |         | -    | _           | Į'  | -49.8         | 5.3  | 12.9 | -175.1 | 325 | 84  |                           |     |
|    | 3        |         | -    | -           | 1   |               | İ    |      |        |     | 80  |                           |     |
| 27 | I        | 3.13.51 | N    | HA          | 1   |               |      | 6.3  | 139.0  | 573 |     | H  supposed = 90  km      |     |
|    | 2        |         | -    | _           | 1   | İ             |      | 6.4  | 146.0  | 568 |     | _                         |     |
| i  | 3        |         | -    | -           | 1   |               |      | 6.5  | 152.0  | 563 |     |                           |     |
|    | 4        |         |      |             | l I |               |      | 6.6  | 159.0  | 558 |     |                           |     |
|    | 1        |         | -    | -           | 1   |               |      | 6.3  | 139.0  | 668 |     | H  supposed = 110  km     | 1   |
|    | 2        |         |      |             | 1   |               |      | 6.4  | 146.0  | 662 |     | -                         |     |
|    | 3        |         |      | -           | l   |               |      | 6.5  | 152.0  | 656 |     |                           |     |
| 1  | 4        |         | -    |             | 1   |               |      | 6.6  | 159.0  | 650 |     | _                         |     |
| 28 | 1        | 3.15.08 | N    | HA          | 1   |               |      | 5.8  | 124.0  | 600 |     | H  supposed = 90  km      |     |
|    | 2        |         | _    |             | 1   |               |      | 6.3  | 129.0  | 563 |     |                           |     |
|    | 3        |         |      |             | 1   |               |      | 7.0  | 134.0  | 539 |     | ******                    |     |
|    | 4        |         |      | -           | 1   |               |      | 7.6  | 139.0  | 511 |     |                           |     |
|    | 1        |         | -    | -           | 1   |               |      | 5.8  | 124.0  | 694 |     | H  supposed = 110  km     | Ì   |
|    | 2        |         | -    | _           | 1   |               | •    | 6.3  | 129.0  | 668 |     | _                         |     |
| İ  | 3        |         | -    |             | I   | 1             |      | 7.0  | 134.0  | 630 |     | _                         |     |
|    | 4        |         | -    |             | 1   | ]             |      | 7.6  | 139.0  | 599 |     |                           |     |
| 29 | 1        | 3.21.30 | N    | HA          | I   |               |      | 7.9  | 138.0  | 499 |     | H supposed = 90 km        |     |
|    | 2        |         |      |             | 1   |               |      | 8.0  | 146.0  | 495 |     | _                         |     |
|    | 3        |         | _    |             | 1   |               |      | 8.0  | 154.0  | 495 |     | _                         |     |
|    | 4        |         | -    | _           | 1   |               |      | 7.8  | 164.0  | 503 |     | _                         |     |
|    | 1        |         | -    |             | 1   |               |      | 7.9  | 138.0  | 585 |     | H  supposed = 110  km     |     |
|    | 2        |         |      | -           | 1   | 1             |      | 8.0  | 146.0  | 581 |     |                           |     |
| -  | 3        |         | -    | _           | 1   |               |      | 8.0  | 154.0  | 581 |     | _                         |     |
|    | 4        |         | -    | _           | 1   |               |      | 7.8  | 164.0  | 590 |     | _                         |     |
| 30 | 1        | 3.25.24 | N    | HA          | 1   |               |      | 6.4  | 122.0  | 568 |     | H  supposed = 90  km      | 21- |
|    | 2        | -       | -    | _           | 1   |               |      | 7.1  | 128.0  | 534 |     | _                         | _   |
|    | 3        |         | -    | _           | 1   |               |      | 7.7  | 134.0  | 507 |     |                           | _   |
|    | 4        |         | -    | -           | 1   |               |      | 8.4  | 140.0  | 478 |     | <b>→</b>                  | _   |
|    | 1        | ,       |      | _           | 1   |               |      | 6.4  | 122.0  | 662 |     | H  supposed = 110  km     | _   |
|    | 2        |         | _    |             | 1   |               |      | 7.1  | 128.0  | 624 |     | _                         | _   |
|    | 3        |         | -    | _           | 1   |               |      | 7.7  | 134.0  | 594 |     | -                         | _   |
|    | 4        |         |      | _           | 1   |               |      | 8.4  | 140.0  | 565 |     |                           | -   |
| 1  | 1        | 3.29.00 | N    | $_{\rm HA}$ | 1   |               |      | 7.4  | 144.0  | 520 |     | H  supposed = 90  km      | 22- |
|    | 2        |         |      | _           | 1   | İ             |      | 7.7  | 152.0  | 507 |     |                           | _   |
|    | 3        |         | _    | _           | I   |               |      | 7.5  | 160.0  | 515 |     | _                         | -   |
|    | 4        |         |      |             | 1   |               |      | 7.5  | 168.0  | 515 |     |                           | _   |
|    | 1        |         | _    | _           | 1   |               |      | 7.4  | 144.0  | 610 |     | H  supposed = 110  km     | 21- |
|    | 2        |         | _    | _           | 1   |               |      | 7.7  | 152.0  | 594 |     | _                         | _   |
|    | 3        |         | _    |             | 1   |               |      | 7.5  | 160.0  | 604 |     | _                         | _   |
|    | 4        |         | _    |             | 1   |               |      | 7.5  | 168.0  | 604 |     | -                         | _   |
| 5  | 1        | 3.34.16 | N-Lø | DS          | h'  | 1.1           | 10.3 | 20.0 | 126.9  | 250 | 97  | Points 1, 2, 5, 6 belong  | 24- |
|    | <b>2</b> |         | _    | _           | I'  | 0.5           | 10.2 | 17.7 | 127.7  | 257 | 87  | to one patch and 3, 4, 7, |     |
|    | 3        |         |      | _           | h′  | 5.3           | 9.4  | 18.5 | 123.2  | 275 | 99  | 8 to another              | _   |
|    | 4        |         | _    |             | l'  | 4.5           | 9.4  | 15.2 | 124.3  | 281 | 83  | wilder                    | _   |
|    | 5        |         | N    |             | h h | 0             |      |      |        | 201 | 100 |                           | -   |

Table 2 (continued).

| No    | Pt                                                   | MET             | St     | F                      | s       | $arepsilon_2$ | p   | h    | a      | D   | н         | Remarks                   | 0     |
|-------|------------------------------------------------------|-----------------|--------|------------------------|---------|---------------|-----|------|--------|-----|-----------|---------------------------|-------|
|       | 6                                                    |                 | N      | DS                     | 1       |               |     |      |        |     | 84        |                           |       |
|       | 7                                                    |                 | _      | -                      | h       |               |     |      |        |     | 104       |                           |       |
|       | 8                                                    |                 | -      | _                      | 1       |               |     |      |        |     | 80        |                           |       |
| 136   | 1                                                    | 3.35.18         | N–Lø   | DS                     | h′      | 24.8          | 5.5 | 13.0 | 107.6  | 428 | 114       | Points 1, 2, 11 belong to | 23-25 |
|       | 2                                                    |                 |        | _                      | ľ       | 24.4          | 5.6 | 10.8 | 108.3  | 437 | 99        | one patch; 3,4, 7, 8 to   | -     |
|       | 3                                                    |                 | _      | _                      | h'      | 19.1          | 5.4 | 10.5 | 114.0  | 469 | 105       | another and 5, 6, 9, 10   | -     |
|       | 4                                                    |                 | -      | -                      | 1'      | 18.8          | 5.4 | 9.0  | 114.5  | 473 | 93        | to a third one            | -     |
|       | 5                                                    |                 |        | -                      | h′      | 20.4          | 5.4 | 10.4 | 112.7  | 466 | 104       |                           | _     |
|       | 6                                                    |                 | _      |                        | 1'      | 20.0          | 5.4 | 9.1  | 113.1  | 469 | 93        |                           | -     |
|       | 7                                                    |                 | N      | _                      | h       |               |     |      |        | _   | 110       |                           |       |
|       | 8                                                    |                 | -      | -                      | 1 .     |               |     |      |        |     | 88        |                           |       |
|       | 9                                                    |                 | -      | -                      | h       |               |     |      |        |     | 110<br>88 |                           |       |
|       | 10                                                   |                 | _      |                        | l       |               |     |      |        |     | 123       |                           |       |
| 7 917 | 11                                                   | 3.36.26         | N–Lø   | DS                     | h<br>h' | 17.5          | 5.6 | 11.6 | 115.2  | 455 | 111       | Points 1, 2, 5, 6 belong  | 23-24 |
| 137   | $egin{array}{c c} 1 \\ 2 \end{array}$                | <b>3.30.</b> ∠0 |        | _ DS                   | l'      | 17.5          | 5.6 | 9.2  | 115.2  | 461 | 93        | to one patch, 3, 4, 7 to  |       |
|       | $\begin{vmatrix} 2 \\ 3 \end{vmatrix}$               |                 | _      | _                      | h       | 19.5          | 5.6 | 11.0 | 113.2  | 452 | 105       | another                   | _     |
|       | 4                                                    |                 |        | _                      | l'      | 18.4          | 5.6 | 9.0  | 114.5  | 458 | 90        | unoviier                  | _     |
|       | 5                                                    |                 | N      |                        | h       | 10.1          | 0.0 | 0.0  | 111.0  | 100 | 116       |                           |       |
|       | 6                                                    |                 |        | _                      | 1       |               |     |      |        |     | 89        |                           |       |
|       | 7                                                    |                 | _      | _                      | 1       |               |     |      |        |     | 87        |                           |       |
| 138   | ı                                                    | 3.37.39         | NLø    | $_{ m DS}$             | h       | 21.5          | 6.1 | 13.1 | 110.4  | 405 | 110       |                           | 24-25 |
| 100   | 2                                                    | 0.01.00         | _      |                        | 1       | 20.6          | 6.8 | 11.6 | 110.7  | 370 | 89        |                           | -     |
| 141   | 1                                                    | 3.41.28         | N-Lø   | $_{\mathrm{DS}}$       | 1'      | 12.3          | 6.3 | 10.5 | 120.0  | 417 | 92        | 1, 2, 5, 6 belong to one  | 23-25 |
|       | 2                                                    |                 | _      | _                      | h′      | 12.5          | 6.5 | 14.0 | 119.0  | 396 | 113       | patch, 3, 4 to another    | -     |
|       | 3                                                    |                 | _      |                        | m       | 14.8          | 6.5 | 11.6 | 117.0  | 396 | 95        |                           | -     |
|       | 4                                                    |                 | -      |                        | h'      | 14.9          | 6.8 | 13.7 | 116.3  | 378 | 105       |                           | ÷     |
|       | 5                                                    |                 | N      |                        | 1       |               |     |      |        |     | 83        |                           |       |
|       | 6                                                    |                 | -      |                        | h       | 1             |     |      | *      |     | 120       |                           |       |
| 142   | 1                                                    | 3.42.19         | N-Lø   | $\mathbf{D}\mathbf{S}$ | 1'      | 10.0          | 6.5 | 9.8  | 122.0  | 410 | 85        | 1, 2 and 3 belong to the  | 23-24 |
|       | 2                                                    |                 | -      |                        | h'      | 10.7          | 6.6 | 13.4 | 120.8  | 395 | 108       | same patch                | -     |
|       | 3                                                    |                 | -      |                        | h       |               |     |      |        |     | 115       |                           | 20.24 |
| 143   | 1                                                    | 3.43.14         | N–Lø   |                        | 1       | 8.8           | 6.5 | 8.8  | 123.3  | 413 | 78        | 1, 2 and 5 belong to one  | 23-24 |
|       | 2                                                    |                 | _      |                        | h'      | 9.3           | 6.5 | 12.8 | 122.4  | 404 | 106       | patch, 3 and 4 to another | _     |
|       | 3                                                    |                 | -      | -                      | 1       | 11.9          | 6.5 | 11.0 | 119.9  | 405 | 93        |                           | _     |
|       | 4                                                    |                 |        | -                      | m       | 12.2          | 6.4 | 12.8 | 119.6  | 405 | 106<br>70 | Perhaps doubtful?         |       |
|       | 5<br>6                                               |                 | N      | _                      | l<br>h  |               |     |      |        |     | 120       | remaps doubtin:           |       |
| 145   |                                                      | 2 45 56         | N-Lø   | DS                     | h'      | 2.7           | 6.6 | 13.5 | 129.0  | 401 | 110       |                           | 23-24 |
| 145   | $\left  \begin{array}{c} 1 \\ 2 \end{array} \right $ | 3.45.56         | 11-110 | מע                     | 1'      | 2.4           | 6.5 | 11.0 | 129.5  | 413 | 94        |                           |       |
| 147   | $\begin{bmatrix} 2\\1 \end{bmatrix}$                 | 3.52.22         | N      | HA                     | 1       | 2.1           | 0.0 | 7.7  | 148.0  | 553 |           | H supposed = 100 km       |       |
| 171   | $\begin{vmatrix} 1 \\ 2 \end{vmatrix}$               | 0.02.22         |        |                        | 1       |               |     | 8.0  | 154.0  | 539 |           |                           |       |
|       | 3                                                    |                 | _      |                        | l       |               |     | 8.1  | 160.0  | 535 |           |                           |       |
|       | 4                                                    |                 |        |                        | î       |               |     | 8.2  | 168.0  | 531 |           |                           | İ     |
| 148   | 1                                                    | 3.53.04         | N      | HA                     | 1       |               |     | 9.1  | 169.0  | 496 |           | H supposed = 100 km       |       |
|       | 2                                                    |                 | -      | _                      | 1       |               |     | 8.0  | 178.0  | 539 |           |                           |       |
|       | 3                                                    |                 | _      |                        | 1       |               |     | 7.2  | -174.0 | 576 |           |                           |       |
|       | 4                                                    |                 | _      | -                      | 1       |               |     | 6.1  | 167.0  | 631 |           |                           |       |
| 149   | 1                                                    | 3.57.13         | N      | HA                     | 1       |               |     | 7.9  | 158.0  | 543 |           | H supposed = 100 km       |       |
|       | 2                                                    |                 | _      | -                      | 1       |               |     | 7.9  | 166.0  | 543 |           |                           |       |
|       | 3                                                    |                 | _      |                        | l       |               |     | 7.7  | 172.0  | 553 |           |                           |       |
|       | 4                                                    |                 | _      | _                      | 1       |               |     | 7.6  | 178.0  | 558 |           |                           |       |
| 151   | 1                                                    | 4.04.04         | N-Lø   | DS                     | h′      | 3.9           | 9.5 | 18.2 | 132.8  | 273 | 97        | 1, 2, 7, 8 patch I        | 24-25 |
|       | 2                                                    |                 | -      | _                      | 1'      | - 5.1         | 9.5 | 13.3 | 134.2  | 281 | 73        | 3, 4, 9, 10 patch II      | -     |
|       | 3                                                    |                 | -      |                        | h′      | 2.3           | 8.5 | 16.0 | 127.4  | 308 | 97        | 5, 6, 11, 12 patch III    | _     |

Table 2 (continued).

| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | No  | Pt  | MET     | St   | F  | s   | $arepsilon_2$ | $\mathbf{p}$ | h    | а     | D   | Н   | Remarks                    | 0            |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|---------|------|----|-----|---------------|--------------|------|-------|-----|-----|----------------------------|--------------|
| 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     | 4   | 4.04.04 | N–Lø | DS | l'  | 1.5           | 8.3          | 12.3 | 128.6 | 322 | 78  |                            | 242          |
| 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     | 5   |         |      |    | h′  | 7.8           | 7.8          | 15.2 | 122.5 | 334 | 100 |                            |              |
| S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     | 6   |         |      | _  | ľ   | 7.2           | 7.9          | 12.9 | 123.1 | 335 |     |                            | -            |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     | 7   |         | N    |    | h   |               |              |      |       | ļ   |     | Along 1–2                  |              |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     | 8   |         | -    |    | 1   |               |              |      |       |     |     | _                          |              |
| 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     | 9   |         | -    | -  | i   |               |              |      |       |     |     | Along 3–4                  |              |
| 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |     |         | - 1  |    |     |               |              | 1    |       |     |     |                            |              |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |     |         |      | -  | 1   |               |              |      |       |     |     | Along 5-6                  |              |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |     |         |      | -  |     |               |              | 30.4 | 100.0 | 070 |     | TAT                        | 04.0         |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |     | 4.04.04 |      |    |     | 1             | i            |      |       |     |     |                            | 24-2         |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |     |         |      |    | 1   | 1 1           |              |      |       |     |     |                            |              |
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |     |         |      |    |     | I             |              |      |       |     |     |                            |              |
| 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |     |         |      |    |     |               |              |      |       |     |     |                            |              |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |     |         |      |    |     | 1             |              |      |       |     |     |                            | _            |
| 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |     |         |      | _  |     | 1.4           | 7.0          | 10.1 | 120.0 | 991 |     |                            |              |
| 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |     |         |      |    |     |               |              |      |       |     |     |                            |              |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     | 1   |         |      |    |     |               |              |      |       |     |     | Along 3-4                  | i            |
| 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |     |         |      |    | Į.  |               |              |      |       |     |     |                            |              |
| 152                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |     |         | _    |    |     |               |              | ļ    |       |     | 105 | Along 5–6                  |              |
| 152                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |     |         | _    |    | i   |               |              |      |       |     | 87  | _                          |              |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 52  |     | 4.04.53 | N–Lø | DS | 1   | 9.3           | 5.7          | 7.9  | 123.6 | 470 | 83  | 1-2, 3-4, 5-6 and 7-8 four | 23-2         |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     | 2   |         | _    | _  | h   | 9.3           | 5.7          | 10.2 | 123.5 | 465 | 102 | edges of the patches.      | _            |
| 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     | 3   |         | -    | _  | 1'  | 4.7           | ·5.8         | 8.6  | 128.0 | 464 | 87  |                            | _            |
| 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     | 4   |         |      | -  | h   | 5.0           | 5.9          | 10.6 |       | 455 | 103 |                            | -            |
| 153                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     | 5   |         |      | _  | 1   | 6.4           | 8.1          | 13.1 |       |     |     |                            | _            |
| 153                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     | 6   |         | _    | -  | h   |               |              |      |       |     | i   |                            | -            |
| 153                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | !   |     |         |      | _  |     | 1             |              |      |       |     |     |                            |              |
| 154   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |     |         | _    |    | l l | 1 1           |              |      |       |     | l . |                            |              |
| 154                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 153 | 1 1 | 4.05.50 | N-Lø |    |     |               |              | 1    |       |     |     | 1–2 along an edge          | 24-2         |
| 154                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |     |         | _    |    | 1   | 20.5          | 6.7          | 11.9 | 110.8 | 375 |     | 1                          |              |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     | }   | 1.00.10 |      | 1  |     | 10.0          | = 0          | 15.4 | 110.0 | 949 | 1   |                            | <b>24</b> –2 |
| 155   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 154 | 1 1 | 4.06.46 |      | i  |     |               |              |      |       |     | ì   |                            | 24-2         |
| 155   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     | 1   |         |      | 1  | 1   | 19.1          | 7.0          | 12.0 | 112.0 | 501 | !   |                            | _            |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 122 | 1 1 | 4.07.59 |      |    |     | 4.9           | 7 2          | 15.7 | 196 5 | 358 |     |                            | 232          |
| 156                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | LĐĐ | l   | 4,07,00 | i    | i  | 1   | 1 1           |              |      |       |     | 1   |                            |              |
| 156   4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |     |         |      |    | 1 - | 3.4           | 7.9          | 12.0 | 127,1 | 500 |     |                            |              |
| 156   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     | l i |         |      |    | 1   |               |              |      |       |     |     | _                          |              |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 156 | 1 1 | 4 08 51 |      | DS | 1   | 16.5          | 7.4          | 15.6 | 113.9 | 342 |     | 1-2, 3-4, 5-6              | 242          |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 100 | 1 1 | 1.00.01 | l    |    | 1   | : 1           |              |      |       | 1   |     | I .                        |              |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     | 1   |         |      | 1  |     |               |              | i    |       | 1   | ł   |                            | _            |
| 5     m   23.3   6.9   15.3   107.3   350   107                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |     |         |      |    | 1   | )             |              | 1    |       | 344 | 83  |                            | _            |
| 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |     |         | _    | -  | m   |               |              | 15.3 |       | 350 | 107 |                            |              |
| 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |     |         | _    | _  | ,   |               |              |      |       | 341 | 86  |                            |              |
| 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     | 7   |         | N    | _  | h   |               |              |      |       |     | 117 | Along 1-2                  |              |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     | 8   |         | -    |    | 1   |               |              |      |       |     | 78  | _                          |              |
| 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     | 9   |         | -    |    | h   |               |              |      |       |     | J . | Along 2–3                  |              |
| 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     | 10  |         | -    |    | 1   |               |              |      |       |     | Į   | p-mi                       |              |
| 157 1 4.10.43 N-Lø R m 19.3 7.0 50.7 94.9 227 292 Sunlit 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     | 11  |         | -    |    | h   |               |              |      |       |     |     |                            |              |
| $157 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     | 12  |         | -    |    | ]   |               |              |      |       |     | 78  | I .                        |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |     |         |      |    |     |               |              | 1    |       |     |     | I .                        |              |
| 2     -   -       197   8.3   41.5   100.3   228   212   -   .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 157 |     | 4.10.43 | N-Lø | R  | 1   | 1 1           |              | 1    |       | ļ.  | l   |                            | 25-2         |
| 3   10.7   3.8   41.8   100.8   220   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212   212 |     | 2   |         | -    | -  | l'  | 19.7          | 8.3          | 41.5 | 100.3 | 228 | 212 | <b>-</b> .                 | -            |

Table 2 (continued).

| No  | Pt                                             | MET          | St        | F        | S      | $\epsilon_2$  | p                 | h              | a               | D                  | H   | Remarks               | 0     |
|-----|------------------------------------------------|--------------|-----------|----------|--------|---------------|-------------------|----------------|-----------------|--------------------|-----|-----------------------|-------|
| 158 | 1                                              | 4.12.00      | N–Lø      |          | h′     | 17.6          | 5.55              | 53.9           | 97.3            | 265                | 389 | Sunlit                | 25-2  |
|     | 2                                              |              |           |          | m      | 18.1          | 6.2               | 48.8           | 100.6           | 267                | 324 | _                     | _     |
|     | 3                                              |              |           | ,        | l'     | 18.4          | 6.8               | 43.4           | 103.3           | 271                | 271 | _                     | _     |
|     | 4                                              |              | Lø        |          | 1      |               |                   |                |                 |                    | 256 |                       |       |
|     | 5                                              |              | N         |          | h      |               | i                 | 55.4           | 96.0            | 263                | 410 | _                     |       |
| 10  |                                                | 1 15–16, 193 |           | LTTA     |        | , ,           | ,                 | 146            |                 |                    |     |                       | 24.2  |
| 13  | $\left \begin{array}{c}1\\2\end{array}\right $ | 22.58.45     | Li        | HA       |        |               |                   | 14.3           | 135.1           | 338                |     | H supposed = 96 km    | 26-2  |
|     | 3                                              |              |           | _        | I      |               |                   | $13.8 \\ 13.2$ | 131.4           | $\frac{349}{362}$  |     | See next picture      | -     |
|     | 4                                              |              |           | _        | l      |               |                   | $13.2 \\ 12.5$ | 127.1 $121.9$   | 379                |     |                       |       |
|     | 5                                              |              | _         | _        | l      |               |                   | 11.5           | 116.3           | 406                |     |                       | _     |
|     | 6                                              |              | _         |          | ī      |               |                   | 15.3           | 142.4           | 320                |     |                       | _     |
| 14  | 1                                              | 22.59.53     | Li–C      | HA       | h      | -63.1         | 11.7              | 18.1           | 139.6           | 278                | 98  | I, 2, 3, 4, 7 along   | 25-2  |
|     | 2                                              |              | _         | _        | h      | -65.9         | 11.6              | 18.6           | 144.3           | 251                | 90  | upper border          | _     |
|     | 3                                              |              |           |          | h      | -68.4         | 9.8               | 18.9           | 148.5           | 268                | 98  | 5, 6 along lower      | -     |
|     | 4                                              |              | -         | -        | h      | -70.2         | 8.9               | 19.0           | 152.2           | 271                | 100 | Diffuse pictures      | -     |
|     | 7                                              |              | -         | -        | h      | -66.4         | 12.4              | 17.4           | 135.5           | 288                | 97  | No 2 doubtful         |       |
|     | 5                                              |              |           | _        | 1      | -57.5         | 11.0              | 13.3           | 132.7           | 360                | 96  |                       | -     |
|     | 6                                              |              |           |          | 1      | -60.0         | 10.7              | 14.0           | 135.8           | 343                | 96  |                       | _     |
| 15  |                                                | 23.01.19     | C         | HA       | h      |               |                   | 11.1           | 171.2           | 424                |     | Upper border          | 26-2  |
|     | 2                                              |              |           | _        | h      |               |                   | 10.5           | -166.0          | 442                |     | H  supposed = 98  km  | _     |
|     | $\begin{bmatrix} 3 \\ 4 \end{bmatrix}$         |              | _         | -        | h      |               |                   | 9.8            | -162.0          | 465                |     |                       | _     |
| 12* | 1                                              | 23.08.56     | _<br>C–K₄ | -<br>  R | h<br>h | -55.3         | 2.9               | $8.2 \\ 19.6$  | -156.0 $-146.6$ | 52 <b>4</b><br>666 | 282 | Feeble ray            | 26-2  |
| 12  | $\begin{bmatrix} 1\\2 \end{bmatrix}$           | 20.00.00     |           |          | m      | —56.5         | $\frac{2.3}{2.8}$ | 15.3           | -140.0 $-147.1$ | 690                | 234 | reepie tay            | 20-20 |
|     | $\begin{bmatrix} 2\\3 \end{bmatrix}$           |              |           | _        | 1      | _57.3         | 2.7               | 10.3           | -147.7          | 721                | 176 |                       | _     |
| 19  | 1                                              | 23.14.16     | Li-C      | RA       | 1      | 66.3          | 6.8               | 12.6           | -156.9          | 433                | 112 |                       | 26-2  |
|     | 2                                              |              | -         | _        | 1      | -62.1         | 7.7               | 11.7           | -151,2          | 448                | 111 |                       |       |
|     | 3                                              |              |           | _        | 1      | -57.3         | 8.0               | 10.4           | -145.6          | 500                | 113 |                       | _     |
|     | 4                                              |              |           | _        | 1      | -51.8         | 7.5               | 8.6            | -140.2          | 610                | 123 |                       | _     |
| 13* | 1                                              | 23.14.49     | C*        | RA       | 1      |               |                   | 7.4            | -154.0          | 520                |     | H  supposed = 90  km  | 26-2  |
|     | 2                                              |              |           | _        | 1      |               |                   | 6.7            | -150.0          | 553                |     |                       | -     |
|     | 3                                              |              | -         | -        | 1      |               |                   | 6.1            | 148.0           | 583                |     |                       | _     |
|     | 4                                              |              | - 1       | -        | 1      |               |                   | 5.3            | -146.0          | 628                |     |                       | -     |
|     | 1                                              |              | -         | -        | 1      |               |                   | 7.4            | 154.0           | 610                |     | H  supposed = 110  km |       |
|     | $\begin{bmatrix} 2 \\ 3 \end{bmatrix}$         |              |           | _        | 1      |               |                   | 6.7            | 150.0           | 645                |     |                       | -     |
|     | 4                                              |              | _         | _        |        |               |                   | $6.1 \\ 5.3$   | -148.0 $-146.0$ | 678                |     |                       | _     |
| 20  | 1                                              | 23.15.08     | Li-C      | RA       | 1      | 71.0          | 7.6               | 15.5           | -140.0 $-162.9$ | $726 \\ 312$       | 95  |                       | 26-2  |
| 20  | $\begin{bmatrix} 1\\2 \end{bmatrix}$           | 20.10.00     | _         |          | 1      | -67.8         | 8.15              |                | 158.2           | 338                | 99  |                       | 20-2  |
|     | 3                                              |              |           | _        | 1      | <b>-64.</b> 0 | 9.1               | 13.5           | -152.4          | 354                | 96  |                       |       |
|     | 6                                              |              | _         | _        | î      | -65.8         | 8.7               | 14.0           | 155.0           | 345                | 97  |                       | _     |
|     | 4                                              |              | _         | ***      | 1      | 00.0          | 0                 | 16.9           | -173.0          | 295                | 0.  | H  supposed = 97  km  | _     |
|     | 5                                              |              | _         | _        | 1      |               |                   | 12.9           | 150.1           | 373                |     |                       | -     |
| 21  | 1                                              | 23.15.48     | C         | RA       | 1      |               |                   | 9.2            | 166.2           | 482                |     | H  supposed = 97  km  | 25-2' |
|     | 2                                              |              | _         | _        | 1      |               |                   | 9.9            | 174.2           | 458                |     | _                     | _     |
|     | 3                                              |              | -         | _        | 1      |               |                   | 9.9            | -177.8          | <b>4</b> 58        |     | -                     | -     |
|     | 4                                              |              | _         | -        | 1      |               |                   | 9.4            | 167.9           | 477                |     | _                     | -     |
| 14* |                                                | 23.16.00     | C*        | RA       | 1      |               |                   | 9.3            | 170.0           | 446                |     | H  supposed = 90  km  | 26-28 |
|     | 2                                              |              |           |          | 1      |               |                   | 8.5            | 162.0           | 474                |     | _                     | -     |
|     | 3                                              |              |           | _        | 1      |               |                   | 7.3            |                 | 525                |     | -                     | _     |
|     | 4                                              |              | _         |          | 1      |               |                   | 6.1            |                 | 583                |     | - 1 3301              | _     |
|     | 1                                              |              |           | -        | 1      |               |                   | 9.3            |                 | 527                |     | H  supposed = 110  km | _     |
|     | $2^{-1}$                                       |              |           | -        | 1      | , !           |                   | 8.5            | 162.0           | 560                |     | _                     | _     |

Table 2 (continued).

| No  | Pt                                          | MET      | St     | F        | s                                      | $\epsilon_2$ | p            | h            | a               | D          | н                 | Remarks               | 0     |
|-----|---------------------------------------------|----------|--------|----------|----------------------------------------|--------------|--------------|--------------|-----------------|------------|-------------------|-----------------------|-------|
|     | 3                                           | 23.16.00 | C*     | RA       | 1                                      |              | <u>.</u>     | 7.3          | -154.0          | 615        |                   | H supposed = 110 km   | 26-28 |
|     | 4                                           |          | -      | -        | 1                                      |              |              | 6.1          | -148.0          | 678        |                   | _                     | _     |
| 15* | i I                                         | 23.16.49 | C      | HA       | 1                                      |              |              | 9.3          | 174.0           | 446        |                   | H  supposed = 90  km  | 26-28 |
|     | 2                                           |          | _      | -        | 1                                      |              |              | 9.5          | 178.0           | 439        |                   |                       | -     |
|     | 3                                           |          | _      | -        | 1                                      |              |              | 9.4          | 170.0           | 443        |                   | _                     |       |
|     | 4                                           |          | _      |          | 1                                      |              |              | 8.9          | 162.0           | 460        |                   |                       | ***   |
|     | 5                                           |          | -      | -        | 1                                      |              |              | 8.2          | -156.0          | 486        |                   | _                     | -     |
|     | 1                                           |          | _      | _        | 1                                      |              |              | 9.3          | 174.0           | 527        |                   | H  supposed = 110  km | 25-27 |
|     | 2                                           |          | _      | -        | 1                                      |              |              | 9.5          | -178.0          | 519        |                   |                       | -     |
|     | 3                                           |          | _      | -        | 1                                      |              |              | 9.4          | -170.0          | 523        |                   |                       |       |
|     | 4<br>5                                      |          | -      | -        | 1                                      |              |              | 8.9          | -162.0          | 542        |                   |                       |       |
| 25  | 1<br>1                                      | 23,20,05 | Li-C   | HA       | $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ | 66.9         | 4.9          | $8.2 \\ 9.3$ | -156.0          | 573        | 100               | Diffi. 14 4           | 0, 0, |
| 20  | $\frac{1}{2}$                               | 25.20,05 | 111-() | na<br>–  | 1                                      | -65.0        | 4.9<br>5.45  | 9.3          | -158.8 $-156.1$ | 592        | $\frac{126}{119}$ | Difficult to measure  | 2527  |
| İ   | $\begin{bmatrix} \frac{2}{3} \end{bmatrix}$ |          | _      | _        | 1                                      | -63.1        | 5.45<br>5.95 | 8.7          | -150.1 $-153.4$ | 574<br>565 | 119               |                       |       |
|     | 4                                           |          | _      | _        | 1                                      | 61.7         | 6.3          | 8.3          | -153.4 $-151.5$ | 549        | 107               |                       |       |
| 26  | 1                                           | 23.20.50 | Li-C   | HA       | 1                                      | <b>—77.6</b> | 5.0          | 15.4         | -176.2          | 293        | 88                | Upper are             | 26-27 |
| 20  | $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$      | 20.20.00 |        |          | l                                      | <b>-76.3</b> | 5.2          | 15.3         | -170.2 $-173.1$ | 330        | 100               | - Opper are           | 20-21 |
|     | 3                                           |          | _      | _        | ì                                      |              | 5.7          | 14.9         | -169.6          | 336        | 99                | _                     |       |
|     | 4                                           |          | _      | _        | i                                      | -72.4        | 3.8          | 10.2         | -166.0          | 584        | 134               | Lower arc             | 24-26 |
|     | 5                                           |          | _      |          | l                                      | 68.7         | 4.3          | 9.7          | 160.8           | 622        | 139               | _                     |       |
|     | 6                                           |          | _      | _        | 1                                      | -65.0        | 5.0          | 9.1          | -156.3          | 625        | 133               | -                     |       |
|     | 7                                           |          |        |          | 1                                      | -60.4        | 5.7          | 8.1          | -150.6          | 643        | 126               | 1                     | _     |
| 22* | 1                                           | 23.26.31 | ()*    | HA       | 1                                      |              | +            | 8.1          | 172.0           | 490        |                   | H  supposed = 90  km  | 25-27 |
|     | 2                                           |          | _      | -        | 1                                      |              |              | 7.9          | 180.0           | 499        |                   | _                     | _     |
|     | 3                                           |          | -      |          | 1                                      |              |              | 7.2          | -174.0          | 530        |                   | _                     | -     |
|     | 4                                           |          | _      | -        | 1                                      |              |              | 6.6          | -168.0          | 558        |                   |                       |       |
|     | 5                                           |          | _      | -        | 1                                      |              |              | 6.1          | -162.0          | 583        |                   | _                     | _     |
|     | 1                                           |          | _      | -        | 1                                      |              |              | 8.1          | 172.0           | 577        |                   | H  supposed = 110  km | _     |
|     | 2                                           |          | -      |          | 1                                      |              |              | 7.9          | 180.0           | 585        |                   | -                     |       |
|     | 3                                           |          | _      | -        | 1                                      |              |              | 7.2          | 174.0           | 620        |                   | _                     | _     |
|     | 4                                           |          |        | -        | 1                                      |              |              | 6.6          | -168.0          | 650        |                   | -                     | -     |
|     | 5                                           |          | -      | -        | 1                                      |              |              | 6.1          | 162.0           | 678        |                   | -                     | -     |
| 32  | 1                                           | 23.29.18 | Li     | HA       | 1                                      |              |              | 9.0          | 126.0           | 456        |                   | H  supposed = 90  km  | 24-26 |
|     | 2                                           |          | -      | l –      | 1                                      |              |              | 9.9          | 130.0           | 426        |                   | _                     | _     |
|     | 3                                           |          |        |          | 1                                      |              | 1            | 10.5         | 136.0           | 409        |                   | _                     | -     |
|     | 4                                           |          | _      | -        | 1                                      |              |              | 10.7         | 144.0           | 403        |                   | - 1 110 l             |       |
|     | 1                                           |          |        | _        | 1                                      |              |              | 9.0          | 126.0           | 538        |                   | H  supposed = 110  km | _     |
|     | $\begin{bmatrix} 2 \\ 3 \end{bmatrix}$      | •        | _      |          | l                                      |              |              | 9.9          | 130.0           | 505        |                   | <b>⊢</b>              | _     |
|     | $\begin{bmatrix} 3 \\ 4 \end{bmatrix}$      |          | _      | -        | 1 1                                    |              |              | 10.5<br>10.7 | 136.0           | 484<br>477 |                   | -                     |       |
| 33  | 1                                           | 23.30.02 | Li     | HA       | 1                                      |              |              | 10.7         | 144.0<br>140.0  | 400        |                   | H supposed = 90 km    | 24-26 |
| 99  | $\begin{vmatrix} 1\\2 \end{vmatrix}$        | 20.00.02 |        | - IIA    | I                                      |              |              | 11.4         | 148.0           | 382        |                   | n supposed = 90 km    | 24-20 |
|     | 3                                           |          |        |          | l                                      |              |              | 12.1         | 156.0           | 363        |                   | _                     |       |
|     | 1                                           |          |        | _        | l                                      |              |              | 10.8         | 140.0           | 474        |                   | H supposed = 110 km   |       |
|     | 2                                           |          | _      |          | 1                                      |              |              | 11.4         | 148.0           | 456        |                   | - 110 km              | _     |
|     | 3                                           |          | _      |          | 1                                      |              |              | 12.1         | 156.0           | 435        |                   | _                     | _     |
| 34  | ī                                           | 23.32.14 | Li     | HA       | 1                                      |              |              | 11.3         | 162.0           | 385        |                   | H  supposed = 90  km  | 24-26 |
|     | 2                                           |          | _      | -        | 1                                      |              |              | 11.1         | 170.0           | 391        |                   |                       |       |
|     | 3                                           |          | _      | <b>.</b> | 1                                      |              |              | 10.8         | 178.0           | 400        |                   | _                     | _     |
|     | 4                                           |          | _      |          | 1                                      |              |              | 10.2         | 174.0           | 417        |                   | _                     |       |
|     | 5.                                          |          | _      | _        | 1                                      |              |              | 9.8          | 168.0           | 429        |                   | p.or                  | _     |
| Ì   | 1                                           |          | _      | -        | 1                                      |              |              | 11.3         | 162.0           | 459        |                   | H  supposed = 110  km | _     |
|     | 2                                           |          |        | -        | 1                                      |              | -            | 11.1         | 170.0           | 464        |                   | _                     |       |
|     | 3                                           |          | _      | _        | 1                                      |              | İ            | 10.8         | 178.0           | 474        |                   | _                     | _     |

Table 2 (continued).

106

| No         | Pt   | MET      | St                                | F            | s   | $\varepsilon_2$ | p    | h    | a              | D   | н   | Remarks                                | 0     |
|------------|------|----------|-----------------------------------|--------------|-----|-----------------|------|------|----------------|-----|-----|----------------------------------------|-------|
|            | 4    | 23.32.14 | Li                                | НА           | 1   |                 |      | 10.2 | <b>—174.</b> 0 | 496 |     | $H 	ext{ supposed} = 110 	ext{ km}$    | 24-26 |
|            | 5    |          |                                   |              | 1   |                 |      | 9.8  | 168.0          | 509 |     | -                                      | -     |
| 35         | 1    | 23.33.15 | Li                                | HA           | 1   |                 |      | 7.9  | -156.3         | 567 |     | H  supposed = 105  km                  | 25-26 |
|            | 2    |          | Li-C                              | _            | 1   | -68.7           | 5.2  | 8.9  | -160.0         | 519 | 103 |                                        | -     |
|            | 3    |          | _                                 |              | 1   | -72.0           | 4.6  | 10.0 | -164.6         | 496 | 107 |                                        | -     |
|            | 4    |          |                                   | -            | 1   | 75.3            | 4.0  | 10.7 | -168.5         | 469 | 106 |                                        | -     |
|            | 5    |          | $\mathbf{Li}$                     | -            | 1   |                 |      | 11.2 | 176.0          | 447 |     | H  supposed = 105  km                  |       |
|            | 6    |          |                                   | _            | 1   |                 |      | 11.4 | 178.0          | 441 |     | -                                      |       |
| 27*        | 1    | 23.37.19 | $C-K_4$                           | $_{ m R}$    | h   | 0.1             | 4.2  | 20.3 | 151.6          | 795 | 363 | 1,2,7,3 one ray                        | 24-26 |
|            | 2    |          | _ •                               | _            | m   | 0.0             | 4.2  | 16.0 | 151.8          | 822 | 303 | 4, 5, 6 another                        | -     |
|            | 3    |          | _                                 |              | 1   |                 | }    | 10.8 | 152.0          | 856 | 228 | Both sunlit                            | -     |
|            | 7    |          |                                   |              | m   | 0.1             | 4.2  | 13.3 | 151.9          | 839 | 364 |                                        | -     |
|            | 4    |          |                                   | _            | h   | - 4.8           | 4.4  | 24.7 | 155.8          | 730 | 400 |                                        | _     |
|            | 5    |          |                                   |              | m   | _ 5.1           | 4.8  | 20.1 | 155.9          | 699 | 308 |                                        |       |
|            | 6    |          |                                   | _            | 1   | - 5.3           | 5.1  | 16.6 | 156.0          | 668 | 247 |                                        | _     |
| 7_         | 0    |          | -                                 | _            | 1   | 0.5             | 9.1  | 10.0 | 150.0          | 000 | 211 |                                        |       |
| 34*        | 1    | 23.56.15 | Li-O                              | HA           | 1   | -64.5           | 11.3 | 12.9 | 142.9          | 337 | 87  | Li 37 and O 34*                        | 25-26 |
|            | 2    |          | _                                 | -            | 1   | -66.5           | 10.4 | 13.2 | 146.1          | 337 | 89  |                                        | -     |
|            | 3    |          | _                                 | _            | 1   | 69.8            | 9.4  | 13.7 | 151.0          | 323 | 88  |                                        |       |
|            | 4    |          |                                   |              | 1   | -72.1           | 8.2  | 13.9 | 155.1          | 328 | 90  |                                        | -     |
|            | 5    |          | 0                                 |              | 1   | 1-12            |      | 8.5  | 170.0          | 477 |     | H  supposed = 89  km                   | 25-27 |
|            | 6    |          | _                                 | _            | 1   |                 |      | 8.2  | 176.3          | 480 |     | —————————————————————————————————————— | _     |
|            | 7    |          | _                                 | _            | 1   |                 |      | 8.1  | 148.0          | 491 |     | _                                      |       |
|            | 8    |          | -                                 |              | 1   |                 |      | 7.5  | 142.0          | 516 |     | _                                      | _     |
| İ          | 9    |          |                                   |              | 1   |                 |      | 7.1  | 138.0          | 532 |     | _                                      | 1 -   |
|            |      | 00 54 00 | Li-C                              | HA           | 1   | 70.0            | 3.2  | 13.1 | -179.6         | 450 | 106 |                                        | 26-2  |
| 38         | 2    | 23.57.23 | 111-0                             |              | 1   | -79.9           |      | 13.7 |                | 343 | 94  |                                        | 20-2  |
| ŀ          | 3    |          | _                                 | _            | 1   | 80.5            | 3.5  |      | 174.5          | 1   | 1   |                                        |       |
| İ          | 4    |          | -                                 | _            | 1   | 79.8            | 4.1  | 14.0 | 169.5          | 316 | 87  | II 1 OF 1                              | 05 00 |
|            | 5    |          | Li                                | -            | 1   |                 |      | 14.3 | 164.0          | 334 |     | H  supposed = 95  km                   | 25-26 |
|            | 6    |          |                                   | -            | 1   |                 |      | 14.3 | 158.1          | 334 |     | -                                      | _     |
|            | 7    |          | -                                 | -            | 1   |                 |      | 13.9 | 152.8          | 342 |     | -                                      | -     |
|            | 1    |          |                                   | -            | 1   |                 |      | 12.5 | -176.3         | 375 |     | _                                      |       |
| <b>4</b> 0 | 1    | 0.00.59  | $_{_{\mathrm{c}}}\mathrm{Li-\!C}$ | RA           | 1   | 70.3            | 5.9  | 10.5 | 162.0          | 423 | 93  | Point 1 doubtful                       | 25-2  |
|            | 2    |          | -                                 | _            | 1   | 73.9            | 4.7  | 11.2 | 167.4          | 435 | 102 |                                        | -     |
|            | 3    |          | _                                 | -            | 1   | 76.3            | 4.15 | 11.8 | -171.5         | 419 | 102 |                                        | -     |
|            | 4    | ,        |                                   | _            | 1   | 78.0            | 3.7  | 12.6 | -175.1         | 412 | 106 |                                        | _     |
| İ          | 5    |          | -+                                |              | 1   | -79.3           | 3.6  | 13.7 | -179.5         | 376 | 104 |                                        | -     |
|            | 6    |          |                                   | _            | 1   | 80.0            | 3.6  | 14.6 | 175.1          | 351 | 102 |                                        | -     |
|            | 7    |          | Li                                |              | 1   |                 |      | 15.3 | 168.6          | 336 |     | H  supposed = 102  km                  | -     |
| 11         | 1    | 0.02.24  | Li-C                              | RA           | 1   | -65.0           | 5.45 | 7.9  | -155.5         | 576 | 107 |                                        | 25-2  |
|            | 2    |          |                                   | _            | 1   | -68.3           | 5.2  | 8.7  | -159.6         | 528 | 104 |                                        | _     |
| 12         | I    | 0.03.34  | Li                                | RA           | 1   |                 | j    | 8.7  | 126.0          | 467 |     | H supposed = 90 km                     | 24-2  |
| _          | 2    |          |                                   |              | 1   |                 |      | 10.0 | 132.0          | 423 |     | * 1                                    | -     |
| İ          | 3    |          | _                                 | _            | 1   |                 |      | 11.0 | 138.0          | 394 |     |                                        | _     |
|            | 4    |          | _                                 |              | 1   |                 |      | 11.9 | 146.0          | 368 |     | ·                                      | _     |
| ŀ          | 1    |          | -                                 |              | 1   |                 |      | 8.7  | 126.0          | 551 |     | H supposed = 110 km                    | _     |
|            | 2    |          | _                                 | _            | l   |                 |      | 10.0 | 132.0          | 502 |     | 11 pubbong — 110 nm                    | _     |
|            | i    |          |                                   |              | Į.  |                 |      | 11.0 | 132.0          | 468 |     |                                        |       |
|            | 3    |          |                                   | _            | l 1 |                 |      |      | l .            | l.  |     |                                        |       |
|            | 4.   | 0.07.45  |                                   |              | 1   | [               |      | 11.9 | 146.0          | 440 | 909 |                                        | 99 9  |
| 15         | 1    | 2.07.45  | Li–C                              | R            | h   | -50.4           | 7.3  | 14.9 | 129.3          | 624 | 203 |                                        | 23-2  |
|            | $^2$ |          | -                                 | -            | m   | 51.8            | 7.2  | 11.1 | 130.1          | 630 | 158 |                                        | _     |
|            | 3    |          | _                                 |              | 1   | 52.8            | 7.1  | 8.0  | 130.7          | 632 | 122 | ~                                      | -     |
| 37*        | 1    | 2.11.52  | $O-K_4$                           | $\mathbf{R}$ | h   | 3.9             | 3.3  | 16.4 | 172.6          | 852 | 325 | Sunlit                                 | 22-23 |
|            |      |          |                                   | 1            | m   | 4.0             | 3.3  | 13.6 | 172.5          | 869 | 282 | 1                                      |       |

Table 2 (continued).

| No   | Pt                                      | MET          | St                | $\mathbf{F}$ | s ·     | $\epsilon_2$                                 | р                 | h              | a               | D          | H                 | Remarks                          | θ          |
|------|-----------------------------------------|--------------|-------------------|--------------|---------|----------------------------------------------|-------------------|----------------|-----------------|------------|-------------------|----------------------------------|------------|
|      | 3                                       | 2.11.52      | O-K <sub>4</sub>  | R            | m       | 4.1                                          | 3.4               | 10.7           | 172.4           | 862        | . 228             |                                  | 22-2       |
|      | 4                                       |              | - `               | -            | 1       | 4.2                                          | 3.2               | 7.7            | 172.4           | 977        | 199               |                                  | _          |
|      | 5                                       |              | -                 | _            | h       | 8.0                                          | 3.7               | 16.3           | 175.3           | 760        | 280               |                                  | 23-2       |
| İ    | 6                                       | :            | -                 | _            | m       | — 7.7                                        | 3.75              | 11.7           | -175.7          | 772        | 214               |                                  | -          |
|      | 7                                       |              | _                 | _            | 1       | 7.3                                          | 3.6               | 7.8            | -176.1          | 822        | 170               |                                  | -          |
| 38*  | 1                                       | 2.13.18      | O-K <sub>4</sub>  | $\mathbf{R}$ | h       | 15.4                                         | 3.2               | 15.5           | -166.9          | 857        | 309               | Sunlit                           | $ ^{23-2}$ |
|      | 2                                       |              | _                 |              | m       | -15.4                                        | 3.3               | 11.4           | -167.3          | 852        | 237               | 1-2-3 one ray                    | -          |
|      | 3                                       |              |                   |              | 1'      | -15.5                                        | 3.5               | 7.6            | 167.7           | 822        | 167               | F 0 F 11                         | _          |
|      | 5                                       |              |                   | _            | h       | - 4.3                                        | 3.2               | 16.7           | -178.5          | 877        | 341<br>284        | 5-6-7 another                    | _          |
|      | $\begin{array}{c c} 6 \\ 7 \end{array}$ |              | -                 | _            | m<br>l' | $\begin{bmatrix} -4.2 \\ -4.1 \end{bmatrix}$ | $\frac{3.3}{3.5}$ | $13.7 \\ 9.8$  | -178.8 $-179.1$ | 869<br>841 | 284               |                                  | _          |
| 49   | 2                                       | 2.14.42      | Lø-Li             | i            | h'      | -56.1                                        | 11.2              | 9.8<br>18.4    | -148.4          | 621        | $\frac{208}{245}$ | Sunlit                           | 24-2       |
| to   | 3                                       | 2.14.42      |                   |              | m       | —57.7                                        | 11.2              | 14.7           | -149.2          | 612        | 195               | Sumit                            | 24-2       |
|      | 4                                       |              | _                 | _            | m       | -58.9                                        | 10.9              | 10.9           | -149.9          | 620        | 153               |                                  | _          |
|      | 5                                       |              | Lø                |              | 1       | 00.0                                         | 10.0              | 7.1            | 150.6           | 631        | 112               |                                  | 23-2       |
| 50 İ | 1                                       | 2,15.43      | Li-C              | <sub>R</sub> | h       | 61.5                                         | 4.3               | 17.8           | -156.9          | 767        | 307               | Sunlit                           | 24-2       |
|      | 2                                       |              | _                 | -            | m       | -63.2                                        | 4.1               | 14.2           | -157.2          | 783        | 256               |                                  | _          |
|      | 3                                       |              | _                 |              | m       | -64.6                                        | 3.8               | 10.5           | -157.5          | 820        | 212               |                                  | _          |
|      | 4                                       |              | _                 | _            | ľ       | 65.2                                         | 3.7               | 8.7            | -157.7          | 831        | 187               |                                  | -          |
| 50   | 3                                       | 2.15.43      | Lø–Li             | R            | h′      | -55.5                                        | 12.0              | 16.5           | -146.4          | 599        | 212               | Sunlit                           | 24-2       |
|      | 4                                       |              | _                 | -            | m       | 56.2                                         | 11.7              | 14.1           | -146.9          | 612        | 189               |                                  | -          |
|      | 5                                       |              | -                 | <u> </u>     | m       | -56.7                                        | 11.4              | 11.9           | -147.3          | 627        | 167               |                                  | -          |
|      | 6                                       |              | Lø                | -            | l'      |                                              | ,                 | 7.3            | -148.2          | 632        | 114               |                                  | -          |
| 51   | 1                                       | 2.16.50      | Li–C              | $\mid$ R     | h       |                                              | •                 | 18.6           | -154.7          | 836        | 355               | Sunlit                           | 24-2       |
|      | 2                                       |              | _                 | -            | m       | -61.0                                        | 4.0               | 15.2           | -155.2          | 852        | 302               |                                  | -          |
|      | 3                                       |              | -                 | _            | m       | 62.2                                         | 3.9               | 12.4           | 155.6           | 857        | 256               |                                  | -          |
|      | 4                                       |              | -                 | _            | m       | 63.1                                         | 3.7               | 9.9            | -155.9          | 889        | 225               |                                  | -          |
|      | 5                                       | 2 7 2 7 2    |                   |              | 1'      | -63.9                                        | 3.6               | 7.3            | 156.3           | 900        | 184               | G 711                            |            |
| 51   | 2                                       | 2.16.50      | Lø-Li             |              | m       | -51.7                                        | 11.7              | 20.4           | -143.5          | 649        | 287               | Sunlit                           | 24-2       |
|      | 3                                       |              | _                 | _            | m       | -53.1                                        | 11.7              | 17.1           | 144.1           | 646        | 240<br>203        |                                  | _          |
|      | 4                                       |              | _                 | -            | m       | 54.1                                         | 11.5<br>11.3      | $14.0 \\ 10.9$ | -144.7 $-145.2$ | 655<br>663 | 166               |                                  | -          |
|      | $\frac{5}{6}$                           |              | Lø                | -            | m<br>l' | -55.0                                        | 11.3              | 8.6            | -145.2 $-145.6$ | 668        | 139               |                                  | _          |
| 39*  | 1                                       | 2.18.03      | O-K <sub>4</sub>  | R            | h       | _23.1                                        | 2.9               | 16.9           | -145.6 $-158.6$ | 889        | 352               | Sunlit                           | 23-2       |
| 38   | $\frac{1}{2}$                           | 2.10.00      | U-1X <sub>4</sub> | 10           | m       | -23.1 $-23.0$                                | 2.8               | 12.8           | —158.9          | 949        | 299               | 1-2-3-4 one ray                  | 20-2       |
|      | $\begin{bmatrix} 2 \\ 3 \end{bmatrix}$  |              | _                 |              | m       | 22.9                                         | 2.7               | 8.2            | -159.2          | 1010       | 233               | 5-6-7-8 another                  | _          |
|      | 5                                       |              | _                 | _            | h       | -17.0                                        | 3.1               | 16.0           | -165.4          | 873        | 326               |                                  | _          |
|      | 6                                       |              | _                 | _            | m       | -16.9                                        | 3.1               | 11.3           | 165.7           | 900        | 254               |                                  |            |
|      | 7                                       |              | _                 | _            | m       | 16.8                                         | 3.0               | 7.5            | -165.9          | 950        | 202               |                                  | _          |
|      | 8                                       |              | О                 | -            | 1       |                                              |                   | 5.4            | -166.0          | 959        | 167               |                                  | -          |
| 52   | 1                                       | 2.18.07      | Li–C              | R            | h       | 58.0                                         | 4.6               | 18.9           | -152.8          | 789        | 336               | Sunlit                           | 24-2       |
| -    | . 2                                     |              | _                 |              | m       | -60.05                                       | 4.35              | 14.4           | 153.4           | 814        | 272               |                                  | _          |
| -    | 3                                       |              |                   | -            | m       | -61.2                                        | 4.3               | 11.6           | 153.8           | 808        | 225               |                                  | _          |
|      | 4                                       |              | -                 | -            | 1       | 62.5                                         | 4.0               | 7.6            | -154.5          | 850        | 175               |                                  |            |
|      |                                         |              |                   |              |         |                                              |                   |                |                 |            |                   |                                  |            |
|      | •                                       | l 18–19, 19. |                   | :            |         |                                              |                   |                |                 |            |                   |                                  |            |
| a    | 1                                       | 23.35.15     | Lø                | H.A          | 1       | 1                                            |                   | 12.5           | 172.0           | 391        |                   | For all pictures                 | 22-2       |
| ļ    | 2                                       |              |                   |              | l       |                                              |                   | 11.4           | -167.0          | 421        |                   | H is supposed = $100 \text{ km}$ | _          |
|      | 3                                       |              |                   |              | l       |                                              |                   | 9.4            | -162.0          | 485        |                   | 1, 2, 3 upper,                   | -          |
|      | 4                                       |              |                   |              | 1       |                                              |                   | 8.7            | 172.0           | 512        |                   | 4, 5, 6 lower arc                | -          |
|      | 5                                       |              |                   |              | l<br>T  |                                              |                   | 8.2            | -169.4          | 531        |                   |                                  |            |
| , l  | 6                                       | 99 90 1#     | T ~               | TT A         | l       |                                              |                   | 7.3            | -167.0          | 572        |                   |                                  | 99 0       |
| b    | 1                                       | 23.38.15     | Lø                | HA           | 1       |                                              |                   | 10.9           | 163.0           | 437        |                   |                                  | 22–2       |
| i    | 2                                       |              | ļ.                |              | 1       |                                              |                   | 10.3           | 169.0           | 456        | 1                 | 1                                | _          |

Table 2 (continued).

| No  | Pt   | MET          | St               | F            | s  | $arepsilon_2$ | p    | h    | a      | D    | н   | Remarks                               | θ    |
|-----|------|--------------|------------------|--------------|----|---------------|------|------|--------|------|-----|---------------------------------------|------|
|     | 4    | 23.38.15     | Lø               | HA           | 1  |               |      | 8.8  | -174.0 | 508  |     | H supposed = 100 km                   | 222  |
|     | 5    |              |                  |              | 1  |               |      | 7.7  | 165.0  | 553  |     |                                       |      |
| e   | 1    | 23.40.15     | Lø               | HA           | 1  |               |      | 10.5 | 140.0  | 449  |     |                                       | -    |
|     | 2    |              |                  |              | 1  |               |      | 10.7 | 148.0  | 443  |     |                                       |      |
|     | 3    |              |                  |              | 1  |               |      | 10.6 | 156.0  | 445  |     |                                       |      |
|     | 4    |              |                  |              | 1  |               |      | 10.5 | 164.0  | 449  |     | <br>                                  | . ,  |
|     | 5    |              |                  | İ            | 1  |               |      | 10.2 | 172.0  | 458  |     |                                       |      |
| d   | 1    | 23.42.15     | Lø               | HA           | 1  |               |      | 8.6  | 127.1  | 515  |     |                                       |      |
|     | 2    |              |                  |              | 1  |               |      | 10.0 | 132.3  | 465  |     |                                       |      |
|     | 3    |              |                  |              | 1  |               |      | 11.0 | 138.0  | 434  |     |                                       |      |
|     | 4    |              |                  |              | 1  |               |      | 11.4 | 142.0  | 422  |     |                                       |      |
| o   | 1    | 0.40.10      | Lø               | HA           | I  |               |      | 14.7 | 162.0  | 340  |     |                                       | 23-2 |
|     | 2    |              |                  |              | 1  |               |      | 14.3 | 170.0  | 350  |     |                                       | _    |
|     | 3    |              |                  | 1            | 1  |               |      | 13.3 | 180.0  | 373  |     |                                       |      |
|     | 4    |              |                  |              | 1  |               |      | 11.6 | 170.0  | 417  |     |                                       |      |
|     | 5    |              |                  |              | 1  |               |      | 10.2 | 162.1  | 457  |     |                                       | _    |
| p   | 6    | 0.42.10      | Lø               | HA           | 1  |               |      | 9.2  | 124.0  | 493  |     |                                       | 23-  |
|     | 7    |              |                  |              | 1  |               |      | 10.7 | 131.0  | 443  |     |                                       |      |
|     | 8    |              |                  |              | 1  |               |      | 12.0 | 140.0  | 406  |     |                                       |      |
|     | 9    |              |                  | ļ            | 1  |               |      | 12.8 | 148.0  | 385  |     |                                       |      |
|     | 10   |              |                  |              | 1  |               |      | 12.9 | 154.8  | 382  |     |                                       |      |
| Z.  | 1    | 2.25.15      | Lø               | HA           | 1  |               | :    | 6.0  | 130.0  | 634  |     |                                       | 21-  |
|     | 2    |              |                  |              | I  |               |      | 6.9  | 138.0  | 589  |     |                                       | -    |
|     | 3    |              |                  |              | 1  |               |      | 7.2  | 146.0  | 577  |     |                                       | -    |
|     | 4.   |              |                  |              | 1  |               |      | 7.3  | 156.0  | 572  |     |                                       |      |
|     | 5    |              |                  |              | 1  |               |      | 7.0  | 164.0  | 584  |     |                                       |      |
|     | 6    |              |                  |              | I  |               | İ    | 6.7  | 170.0  | 600  |     |                                       | _    |
|     | Apri | l 21–22, 19. | 33.              |              |    |               |      |      |        |      |     |                                       |      |
| 1   | 1 1  | 0.41.55      | C-K <sub>4</sub> | $\mathbf{R}$ | h  | 17.6          | 2.7  | 14.5 | 171.7  | 1206 | 454 | All sunlit                            | 19-2 |
|     | 2    |              |                  |              | m  | 17.7          | 2.8  | 11.7 | 171.6  | 1187 | 376 |                                       | _    |
|     | 3    |              | İ                |              | m  | 17.7          | 2.75 | 8.8  | 171.5  | 1231 | 323 |                                       | _    |
|     | 4    |              |                  |              | 1′ | _17.7         | 2.7  | 6.3  | 171.5  | 1271 | 276 |                                       | _    |
| 2   | 1    | 0.44.47      | C-K4             | R            | h  | -17.9         | 3.35 | 16.3 | 171.5  | 970  | 378 |                                       | 21-2 |
|     | 2    |              | _                |              | m  | 17.9          | 3.35 | 13.8 | 171.3  | 989  | 332 |                                       | _    |
|     | 3    |              |                  |              | m  | -17.8         | 3.4  | 10.5 | 171.1  | 995  | 272 |                                       | _    |
| 2   | 1    | 0.44.47      | T-K4             | $\mathbf{R}$ | h  | -34.5         | 4.55 | 17.4 | 170.7  | 982  | 406 | The points 1, 2, 3 are the            | 21-2 |
|     | 2    |              | -                |              | m  | -34.7         | 4.6  | 14.7 | 170.3  | 909  | 354 | same as for baseline C-K <sub>4</sub> | _    |
|     | 3    |              |                  |              | m  | -35.0         | 4.75 | 11.2 | 170.0  | 979  | 280 | *                                     | _    |
|     | 4    |              |                  |              | 1  | -36.2         | 4.8  | 9.3  | 169.9  | 957  | 236 |                                       | _    |
| 3   | 1    | 1.03.57      | C-K4             | $\mathbf{R}$ | h  | -20.4         | 3.8  | 17.4 | 173.8  | 842  | 339 | 1-2-3-4 one ray                       | 21-5 |
|     | 2    |              | -                |              | m  | -20.6         | 3.6  | 12.6 | 173.7  | 916  | 285 | 5-6-7 another                         |      |
|     | 3    |              |                  |              | m  | -20.7         | 3.5  | 8.5  | 173.6  | 966  | 224 |                                       | _    |
|     | 4    |              | i                |              | 1  | -20.8         | 3.5  | 6.0  | 173.5  | 962  | 179 |                                       | -    |
|     | 5    |              |                  |              | h  | -19.0         | 3.4  | 13.3 | 172.4  | 971  | 317 |                                       | _    |
|     | 6    |              |                  |              | m  | -19.2         | 3.4  | 9.5  | 172.3  | 993  | 252 |                                       |      |
|     | 7    |              |                  |              | 1  | -19.3         | 3.4  | 6.6  | 172.2  | 1008 | 201 |                                       | _    |
|     | 1    | 1.03.57      | $T-K_4$          | R            | h  | -37.0         | 4.8  | 17.1 | 172.8  | 906  | 366 | The same. Points                      | 21-2 |
| ĺ   | 2    |              | *                |              | m  | -37.5         | 4.8  | 13.4 | 172.7  | 929  | 301 | 2, 3 and 6 common                     |      |
|     | 3    |              |                  |              | m  | -38.0         | 4.8  | 9.1  | 172.7  | 943  | 228 | ,                                     | _    |
|     | 4    |              |                  |              | 1  | -38.3         | 4.9  | 5.7  | 172.6  | 938  | 169 |                                       |      |
|     | 5    |              |                  |              | h  | -35.9         | 4.8  | 14.7 | 171.2  | 938  | 330 |                                       | _    |
|     | 6    |              |                  |              | m  | -36.4         | 4.8  | 10.2 | 171.2  | 960  | 354 |                                       |      |
| - 1 |      | i            | i                |              |    |               |      |      |        | i    |     |                                       | 1    |
|     | 7    | j            | }                |              | 1  | -36.7         | 4.9  | 6.3  | 171.2  | 957  | 182 |                                       | _    |

Table 2 (continued).

| No | Pt                                     | MET                  | St                | F            | s  | $\epsilon_2$  | p        | h    | a             | D                 | н                 | Remarks                     | θ      |
|----|----------------------------------------|----------------------|-------------------|--------------|----|---------------|----------|------|---------------|-------------------|-------------------|-----------------------------|--------|
|    | 2                                      | 1.15.25              | T-K4              | R            | m  | 32.8          | 4.4      | 11.0 | 167.8         | 1083              | 316               |                             | 19–2   |
|    | 3                                      |                      | *                 |              | 1  | -33.4         | 4.5      | 5.6  | 167.8         | 1083              | 203               |                             | _      |
|    | 4                                      |                      |                   | -            | h  | 20.1          | 6.1      | 18.6 | 153.8         | 833               | 356               |                             | _      |
|    | 5                                      |                      |                   | ł            | m  | -20.6         | 6.1      | 15.2 | 154.0         | 853               | 305               |                             | _      |
|    | 6                                      |                      |                   |              | m  | -21.1         | 6.2      | 12.3 | 154.2         | 855               | 254               |                             | _      |
|    | 7                                      |                      |                   | į ·          | I  | -21.6         | 6.3      | 9.5  | 154.4         | 851               | 208               |                             | -      |
|    | May                                    | 1–2, 1933.           |                   |              |    |               |          |      |               |                   |                   |                             |        |
| 7  | 1                                      | 22.21.40             | O-K <sub>4</sub>  | $\mathbf{R}$ | m  | 31.0          | 6.6      | 40.2 | 53.7          | 295               | 265               | Sunlit                      | 30-3   |
|    | 2                                      |                      | _                 | _            | m  | 25.2          | 5.6      | 46.6 | 49.0          | 324               | 370               |                             | -      |
|    | 3                                      |                      |                   |              | h  | 20.0          | 5.0      | 52.0 | 44.0          | 334               | 466               |                             | _      |
| 8  | 1                                      | 22.22.48             | O-K4              |              | 1' | 29.7          | 7.9      | 42.4 | 56.7          | 243               | 234               | 1-2-3 one ray               | 30-3   |
|    | 2                                      |                      |                   |              | m  | 23.4          | 7.3      | 48.8 | 51.8          | 245               | 297               | 4-5-6 another               | _      |
|    | 3                                      |                      |                   |              | m  | 18.7          | 5.6      | 54.5 | 45.6          | 285               | 432               | 7 a third one               | _      |
|    | 4                                      |                      |                   |              | 1' | 25.3          | 8.1      | 43.0 | 49.6          | 244               | 239               |                             | _      |
|    | 5                                      |                      |                   |              | m  | 21.3          | 7.0      | 47.5 | 45.6          | 265               | 308               |                             | _      |
|    | 6                                      |                      |                   |              | h  | 17.6          | 5.6      | 52.1 | 40.5          | 304               | 422               |                             |        |
|    | 7                                      |                      |                   |              | m  | 7.1           | 7.9      | 61.0 | 32.8          | 179               | 342               |                             |        |
| 9  | 1                                      | 22,23,57             | C                 | $\mathbf{c}$ |    |               |          | 70.5 | -10.0         |                   | 7.4               | Point 1 is the point of     |        |
|    | 1                                      |                      | K <sub>4</sub>    |              |    |               |          | 70.5 | — 11.5        |                   |                   | radiation                   |        |
| 0  | 1                                      | 22.24.27             | c*                | $\mathbf{c}$ |    |               |          | 70.5 | 14.0          |                   |                   | The same                    |        |
|    | 1                                      |                      | K <sub>4</sub>    | _            |    |               |          | 69.0 | - 9.0         |                   |                   | _                           |        |
| 1  | 1                                      | 22.24.57             | C C               | $\mathbf{c}$ |    |               | <u>.</u> | 70.0 | <b>— 14.0</b> | i                 |                   | – good                      |        |
| _  | 1                                      |                      | K <sub>4</sub>    | _            |    |               |          | 69.5 | 12.0          |                   |                   |                             |        |
| 2  | 1                                      | 22.25.49             | K <sub>4</sub> -O | RB           | h′ | -55.5         | 7.8      | 34.7 | 115.7         | 181               | 130               | The points 1, 2, 3, 4, ,5   | 27-2   |
| _  | 2                                      |                      | 114               | D            | m  | -56.9         | 7.7      | 32.0 | 116.7         | 175               | 113               | 6, 7, 8, 9, 10, 11, 12, 16, |        |
|    | 3                                      |                      |                   | ~            | 1  | -57.6         | 7.4      | 28.5 | 118.8         | 177               | 109               | 17 and 18 belong to RB,     |        |
|    | 4                                      |                      |                   |              | h  | -53.2         | 7.3      | 35.1 | 118.4         | 204               | 148               | the points 13, 14, 15 to a  | _      |
|    | 5                                      | •                    |                   |              | m  | -55.1         | 7.2      | 31.0 | 120.0         | 208               | 130               | ray to the right of it. All |        |
|    | 6                                      |                      |                   |              | m  | <b>49.7</b>   | 6.3      | 35.9 | 121.7         | 250               | 191               | sunlit                      |        |
|    | 7                                      |                      |                   | i            | m  | -51.1         | 6.4      | 33.0 | 122.8         | 246               | 168               | Sumit                       |        |
|    | 8                                      |                      |                   |              | m  | -52.3         | 6.6      | 30.2 | 133.7         | 213               | 148               |                             |        |
|    | 9                                      |                      |                   |              | m  | -53.6         | 6.5      | 26.0 | 125.0         | 250               | 128               |                             |        |
|    | 10                                     |                      |                   |              | l' | -54.7         | 6.4      | 22.0 | 125.8         | 255               | 109               | ,                           | -      |
|    | 11                                     |                      |                   |              | 1  | <b>—55.7</b>  | 6.0      | 19.6 | 125.3         | 269               | 103               |                             | _      |
|    | 12                                     |                      |                   |              | l  | _57.1         | 5.5      | 17.7 | 124.0         | 286               | 99                |                             | _      |
|    | 13                                     |                      |                   | $\mathbf{R}$ | m  | -41.0         | 7.0      | 27.9 | 140.6         | 288               | 162               | 13, 14, 15 doubtful         | 26-2   |
|    | 14                                     |                      |                   | _            | m  | <b>41.5</b>   | 6.3      | 24.2 | 140.8         | 327               | 159               | 13, 14, 13 doubtiut         | 20-2   |
|    | 15                                     |                      |                   |              | m  | <b>41.8</b>   | 5.7      | 20.7 | 140.9         | 370               | 153               |                             |        |
|    | 16                                     |                      |                   | RB           | h  | <b>47.1</b>   | 6.2      | 40.6 | 119.9         | $\frac{370}{250}$ | $\frac{133}{225}$ |                             | - OU 0 |
|    | 17                                     |                      |                   |              | 1  | -56.8         | 7.3      | 26.5 | 121.5         | 206               | 106               |                             | 28-2   |
|    | 18                                     |                      |                   | _            | h  | -50.8 $-54.5$ | 7.5      | 36.0 | 115.2         | 189               | 143               |                             | _      |
| 3  | 10                                     | 22.27.44             | C-O               | $_{ m R}^-$  | h' |               |          |      | '             |                   |                   | Sunlit                      |        |
| Э  | $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$ | 44.41. <del>44</del> | 0-0               | IV.          | 1  | 26.6          | 2.8      | 54.3 | 46.7          | 275               | 410               | Suniit                      | 30-3   |
|    |                                        |                      |                   |              | m  | 27.4          | 3.3      | 49.8 | 51.3          | 259               | 326               |                             | _      |
|    | 3                                      |                      |                   |              | m  | 28.0          | 4.6      | 36.1 | 60.9          | 232               | 181               |                             | -      |
| ,  | 4                                      | 90 00 00             |                   | T            | 1′ | 27.9          | 4.8      | 33.7 | 62.2          | 234               | 164               | 1.0                         | 00.0   |
| 4  | 1                                      | 22.28.32             | C-O               | $\mathbf{R}$ | m  | 20.5          | 4.3      | 56.8 | 52.3          | 180               | 288               | 1–2 one ray                 | 29-3   |
|    | $\frac{2}{2}$                          |                      |                   |              | I  | 20.0          | 5.7      | 52.8 | 56.7          | 148               | 202               | 3-4-5 another               | _      |
|    | 3                                      |                      |                   |              | m  | 19.3          | 4.3      | 54.1 | 59.5          | 193               | 282               | 6–7–8 a third one           | -      |
|    | 4                                      |                      |                   |              | m  | 18.7          | 5.1      | 49.5 | 64.2          | 183               | 224               | 1, 2, 3, 4, 5 sunlit        | _      |
|    | 5                                      |                      |                   |              | I  | 17.8          | 5.9      | 43.3 | 69.3          | 179               | 175               | 6, 7, 8 in shadow           | -      |
|    | 6                                      |                      |                   |              | l' | 30.5          | 6.0      | 36.9 | 54.6          | 177               | 137               |                             | -      |
|    | 7                                      |                      |                   |              | 1  | 30.6          | 6.4      | 34.0 | 56.4          | 173               | 120               |                             | -      |
|    | 8                                      |                      |                   |              | 1  | 29.5          | 6.5      | 30.1 | 60.0          | 179               | 108               |                             | 1      |

Table 2 (continued).

| No   | Pt                                     | MET      | St               | $\mathbf{F}$ | s       | $arepsilon_2$ | p            | h              | a              | D          | Н            | Remarks                   | θ        |
|------|----------------------------------------|----------|------------------|--------------|---------|---------------|--------------|----------------|----------------|------------|--------------|---------------------------|----------|
| 15   | 1                                      | 22,29.49 | С                | С            |         |               |              | 70.0           | 12.5           |            |              | h and a for the point of  | <u> </u> |
| 10   | 1                                      | 22,20.10 | ő                | $\ddot{c}$   | [       |               |              | 69.5           | 13.0           |            |              | radiation of the corona   |          |
|      | 1                                      |          | $K_4$            | C            |         | ,             |              | 69.5           | <b>— 13.</b> 0 |            |              |                           |          |
| 15   | 1                                      | 22.29.49 | $\mathbf{c}$     | C            |         |               |              | 70.5           | — 11.0         |            |              | New measurements          |          |
|      | 1                                      |          | 0                | C            |         |               |              | 70.0           | 15.0           |            |              |                           |          |
|      | 1                                      |          | $K_4$            | C            |         |               |              | 69.5           | <u></u> 13.0   |            |              |                           |          |
| 16   | 1                                      | 22.30.30 | C                | C            |         |               |              | 70.5           | <b>—</b> 7.0   |            |              | Point of radiation a from | 1        |
|      | 1                                      |          | О                | C            |         |               |              | 70.5           | <b>— 14.</b> 0 |            |              | C doubtful                |          |
| 17   | 1                                      | 22.31.42 | O-K <sub>4</sub> | RB           | 1′      | -41.6         | 9.9          | 25.8           | 144.2          | 209        | 105          | In shadow                 | 28-29    |
|      | 2                                      |          |                  |              | l'      | 41.0          | 9.8          | 29.2           | 143.7          | 205        | 120          | Sunlit                    | -        |
|      | 3                                      |          |                  |              | l'      | 37.3          | 10.5         | 28.8           | 149.0          | 203        | 116          |                           | -        |
|      | 4                                      | 22.02.00 | 0                | -            | 1       |               |              |                |                |            | 103          | ~ 111                     | 00.00    |
| 18   | 1                                      | 22.32.09 | O-K <sub>4</sub> | RB           | 1'      | 38.4          | 5.2          | 11.7           | 135.1          | 449        | 110          | Sunlit                    | 26–28    |
|      | 2                                      |          |                  |              | m       | 38.2          | 5.5          | 15.6           | 134.0          | 417        | 132          |                           | _        |
|      | 3                                      |          | О                |              | m       | 36.6          | 6.0          | $20.8 \\ 27.6$ | 133.4          | 378<br>420 | $158 \\ 241$ |                           | -        |
|      | 4<br>  5                               |          | O-K <sub>4</sub> | 1            | h<br>l' | 29.2          | 6.4          | 12.6           | 132.4<br>143.5 | 407        | 105          |                           | _        |
|      | $\begin{bmatrix} 3 \\ 6 \end{bmatrix}$ |          | 0-14             |              | m       | 28.9          | 6.5          | 14.9           | 143.3          | 395        | 119          |                           | _        |
|      | 7                                      |          |                  |              | m       | 28.2          | 7.1          | 18.9           | 142.3          | 355        | 134          |                           |          |
|      | 8                                      |          | 0                |              | h       | 20.2          | ,            | 25.3           | 142.1          | 386        | 200          |                           | _        |
|      | 9                                      |          | 0-K <sub>4</sub> |              | 1'      | 34.0          | 5.7          | 11.8           | 139.2          | 433        | 106          |                           |          |
|      | 10                                     |          | O III            |              | 1       | 02.0          | •••          | 10.9           | 100.2          | 100        | 104          | Near point 1              |          |
| 23   | 1                                      | 22.37.42 | O-K <sub>4</sub> | R            | 1       | 5.3           | 6.6          | 10.3           | 168.2          | 442        | 99           | Sunlit point 1            | _        |
|      | 2                                      |          |                  |              | m       | 5.1           | 6.5          | 18.1           | 167.9          | 440        | 163          |                           | _        |
|      | 3                                      |          |                  |              | h       | 4.9           | 6.3          | 25.9           | 167.6          | 425        | 228          |                           | -        |
|      | 4                                      |          |                  | RB           | I       | 9.5           | 5.9          | 10.4           | 170.6          | 500        | 113          |                           |          |
|      | 5                                      |          |                  |              | 1       | 11.6          | 5.3          | 9.5            | 168.4          | 554        | 118          |                           | -        |
|      | 6                                      |          |                  |              | 1       | 13.3          | 5.5          | 8.4            | 166.8          | 532        | 102          |                           |          |
| 29   | 2                                      | 22.43.28 | O-K <sub>4</sub> | R            | m       | 37.0          | 4.6          | 28.5           | 131.3          | 451        | 271          | 2, 3, 4, 5 one ray        | 25-27    |
|      | 3                                      |          |                  |              | m       | 39.7          | 4.3          | 12.7           | 134.8          | 528        | 143          | 6, 7, 8 another           |          |
|      | 4                                      |          |                  |              | 1'      | 34.6          | 4.0          | 9.8            | 135.7          | 575        | 127          | 9, 10, 11 a third one     | -        |
|      | 5                                      |          |                  |              | m       | 41.1          | 4.1          | 12.5           | 133.7          | 541        | 145          |                           | _        |
|      | 6                                      |          |                  |              | h       | 41.6          | 4.4          | 34.7           | 118.9          | 412        | 312          | 12, 13, 14 a fourth one.  | 26–28    |
|      | 7                                      |          |                  |              | m       | 46.7          | 4.1          | 23.7           | 122.4          | 458        | 223          | Sunlit                    | -        |
|      | 8                                      |          |                  |              | 1       | 49.1          | 3.7          | 13.1           | 125.3          | 521        | 145          | -                         |          |
|      | 9                                      |          |                  |              | m       | 28.8          |              | 41.0           | 124.1          | 205        | 185          |                           | 28-29    |
|      | 10                                     |          |                  |              | m       | 31.5          |              | 34.5           | 126.2          | 209        | 149          | _                         | _        |
|      | 11                                     |          |                  |              | m       | 34.0          |              | 26.2<br>40.1   | 128.6<br>123.0 | 212<br>212 | 109<br>187   |                           | _        |
|      | 12                                     |          |                  |              | m       | 30.4          | $9.4 \\ 9.7$ | 33.8           | 125.0          | 212        | 152          | -                         |          |
|      | 13<br>14                               |          |                  |              | m       | 35.7          | 10.0         | 26.1           | 125.2          | 223        | 115          |                           | -        |
| 32   | 1                                      | 22.45.48 | C-O              | R            | m<br>l' | -27.5         |              | 18.4           | 128.0          | 341        | 124          | Sunlit                    | 27-28    |
| •,,_ | 2                                      | 22.10.10 | 0.0              | 10           | m       | -20.0         |              | 36.7           | 124.0          | 334        | 267          | _                         | 2.20     |
|      | 3                                      |          |                  | İ            | h'      | -13.7         | 3.0          | 49.4           | 119.4          | 312        | 392          |                           | _        |
| 33   | 1                                      | 22.46.49 | C-O              | R            | h'      | 13.9          |              | 67.2           | - 26.6         | 160        | 402          | Sunlit                    | 31-32    |
|      | 2                                      |          |                  |              | m       | 11.5          | i            | 65.8           | - 35.5         | 143        | 335          | _                         |          |
|      | 3                                      |          |                  |              | m       | 9.5           |              | 64.4           | 42.1           | 134        | 291          |                           |          |
|      | 4                                      |          | C                | C            |         |               |              | 71.5           | — 11.0         |            |              | Point of radiation        |          |
|      | 5                                      |          | О                | C            |         |               |              | 71.0           | 10.5           |            |              | _                         |          |
| 35   | 1                                      | 22.48.31 | 0-K <sub>4</sub> | 1            | 1       | 50.6          | 3.4          | 12.4           | 124.4          | 551        | 148          | Sunlit                    | 26-27    |
|      | 2                                      |          |                  |              | m       | 47.8          | 3.5          | 24.6           | 121.3          | 518        | 268          |                           | -        |
|      | 3                                      |          |                  |              | h       | 42.3          | 3.4          | 36.0           | 118.5          | 511        | 416          |                           | -        |
| 37   | 1                                      | 22,50,58 | C-O              | R            | h'      | 10.2          |              | 75.1           | 18.5           | 85         | 331          | 1-2 one ray               | 30-31    |
|      | 2                                      |          |                  |              | m       | 6.5           |              | 74.9           | 42.3           | 62         | 236          | 3-4 another               |          |
|      | 3                                      |          | 1                |              | m       | 19.1          | 5.5          | 64.5           | 24.4           | 112        | 244          | ļ                         |          |

Table 2 (continued.)

| Ю | Pt  | MET      | St               | $\mathbf{F}$ | s       | $\epsilon_2$ | p                 | h            | a              | D                                           | Н          | Remarks                                           | θ           |
|---|-----|----------|------------------|--------------|---------|--------------|-------------------|--------------|----------------|---------------------------------------------|------------|---------------------------------------------------|-------------|
|   | 4   | 22.20.58 | C-O              | R            | h'      | 18.9         | 4.2               | 66.7         | 16.2           | 133                                         | 325        |                                                   | <b>3</b> 0- |
|   | 5   |          | $\mathbf{C}$     | C            |         |              |                   | 71.0         | 9.5            |                                             |            | Point of radiation                                |             |
|   | 6   |          | O                | C            |         |              |                   | 71.0         | 10.0           |                                             |            |                                                   |             |
|   | 7   |          | $K_4$            | C            |         |              |                   | 71.0         | <b>— 16.0</b>  |                                             |            |                                                   |             |
| I | 1   | 22.54.40 | $O-K_4$          | RB           | 1       | 21.4         | 4.6               | 7.7          | 154.0          | 609                                         | 113        | Sunlit                                            | 24-         |
|   | 2   | ĺ        |                  |              | m       | 20.9         | 4.7               | 19.4         | 152.7          | 560                                         | 229        | _                                                 |             |
|   | 3   |          |                  |              | h′      | 19.5         | 4.9               | 30.1         | 151.4          | 491                                         | 317        | _                                                 | -           |
|   | 4   |          |                  |              | 1′      | 18.4         | 4.7               | 7.8          | 157.0          | 607                                         | 114        | _                                                 | -           |
|   | 5   |          |                  |              | · m     | 17.8         | 4.7               | 18.0         | 156.4          | 577                                         | 220        | _                                                 | i -         |
|   | 6   |          |                  |              | h′      | 16.9         | 4.6               | 27.2         | 155.7          | 545                                         | 317        |                                                   |             |
|   | 7   |          | O                |              | h       | 1            |                   | 31.0         | 155.4          | 528                                         | 358        | _                                                 | -           |
|   | 8   |          | $O-K_4$          |              | 1       | 16.7         | 5.3               | 8.5          | 158.2          | 544                                         | 106        | -                                                 | -           |
|   | 1   | 22.55.03 | C-O              | RB           | h       | -45.5        | 1.9               | 26.9         | -127.5         | 495                                         | 281        | Points 1 and 2 sunlit,                            | 28-         |
|   | 2   |          |                  |              | m       | 50.9         | 1.8               | 18.8         | 130.0          | 504                                         | 197        | 3 and 5 in shadow                                 |             |
|   | 3   |          |                  |              | l'      | 55.7         | 1.7               | 10.3         | 132.3          | 504                                         | 113        | (doubtful)                                        |             |
|   | 5   |          |                  |              | 1′      | -57.1        | 1.7               | 9.4          | 133.5          | 488                                         | 101        |                                                   |             |
|   | 1   | 22.55.48 | $O-K_4$          | D            | m       | 25.0         | 4.7               | 27.2         | 146.3          | 507                                         | 292        | The whole D sunlit. 1, 2,                         | 25          |
|   | 2   |          |                  |              | m       | 25.7         | 4.8               | 20.3         | 147.3          | 525                                         | 222        | 3, 4 one ray of the drapery                       |             |
|   | 3   |          |                  |              | m       | 26.2         | 5.0               | 11.8         | 1 <b>4</b> 8.0 | 532                                         | 135        | 5, 6, 7 another 8, 11 a third                     |             |
|   | 4   |          |                  |              | 1       | 25.5         | 5.0               | 7.4          | 149.1          | 546                                         | 95         | ray                                               |             |
|   | 5   |          |                  |              | m       | 21.3         | 5.6               | 27.9         | 149.4          | 437                                         | 225        | •                                                 | 26          |
|   | 6   |          |                  |              | m       | 22.0         | 6.2               | 13.9         | 150.8          | 441                                         | 121        |                                                   |             |
|   | 7   |          |                  |              | 1       | 21.7         | 6.2               | 10.9         | 151.5          | 448                                         | 103        |                                                   |             |
|   | 8   |          |                  |              | 1       | 18.5         | 6.1               | 12.3         | 154.8          | 462                                         | 119        |                                                   | Ì           |
|   | 9   |          |                  |              | 1       | 14.6         | 7.4               | 14.5         | 157.1          | 386                                         | 112        |                                                   |             |
|   | 10  |          |                  |              | 1       | 10.2         | 8.2               | 16.6         | 160.7          | 350                                         | 116        |                                                   |             |
|   | 11  |          |                  |              | m       | 18.0         | 5.6               | 28.6         | 153.0          | 443                                         | 267        | , , , , , , , , , , , , , , , , , , ,             | 1 ~~        |
|   | 1   | 22.56.04 | $C-K_4$          | D            | h'      | 3.1          | 7.0               | 40.3         | 143.1          | 388                                         | 359        | Sunlit                                            | 25          |
|   | 2   |          |                  |              | m       | 2.7          | 7.6               | 29.5         | 144.6          | 416                                         | 256        | _                                                 | ļ           |
|   | 3   |          |                  |              | l'      | 1.2          | 8.1               | 12.1         | 146.6          | 448                                         | 112        | -                                                 |             |
|   | 4   |          |                  | _            | 1       | 0.0          | 8.0               | 9.9          | 148.1          | 458                                         | 96         | -                                                 | 95          |
|   | 1   |          | O-K <sub>4</sub> | D            | m       | 22.8         | 5.6               | 29.0         | 147.0          | 428                                         | 260        | 1, 2, 3 left edge, sunlit                         | 25          |
|   | 2   |          |                  |              | m       | 23.8         | 5.7               | 22.0         | 148.0          | 446                                         | 201        | 4 13 6 6 5 1                                      |             |
|   | . 3 |          |                  |              | m       | 24.4         | 5.7               | 12.4         | 149.1          | 474                                         | 123        | 4 sunlit, 5, 6 in shadow                          |             |
|   | 4   |          |                  |              | 1       | 23.7         | 5.8               | 9.1          | 150.2          | 476                                         | 94         | 7 1 6 mat as maliable                             |             |
|   | 5   |          |                  |              | l       | 17.0         | 9.1               | 13.9         | 153.2          | 312                                         | 85         | 5 and 6 not so reliable                           |             |
|   | 6   |          |                  |              | 1       | 11.3         | 8.8               | 16.2         | 159.1          | 258                                         | 81         | I 9 9 left odge                                   | 26          |
|   | 1   | 22.56.18 | C-K <sub>4</sub> | D            | h′      | 1.6          | 8.4               | 41.4         | 142.8          | 321                                         | 304        | 1, 2, 3 left edge<br>1, 2, 3, 4 in sunlight; 5, 6 | 20          |
|   | 2   | ,        |                  |              | m       | 1.0          | 8.9               | 29.5         | 144.9          | 357                                         | 219<br>126 | in shadow                                         |             |
|   | 3   |          |                  |              | m       | 0.0          | 9.1               | 16.0         | 146.7          | 391<br>395                                  | 101        | In snadow                                         |             |
|   | 4   |          |                  | }            | 1       | -1.1         | 9.2               | 12.6         | 147.9          | 349                                         | 101        |                                                   |             |
|   | 5   |          |                  |              | 1       | - 6.3        | 10.2              | 16.0         | 152.1<br>154.8 | 300                                         | 101        |                                                   |             |
|   | 6   | 00 50 04 | 0.17             | -n           | 1       | -10.3        |                   | 18.0         | 153.0          | 333                                         | 129        |                                                   | 27          |
| ; | 2   | 22.56.34 | O-K <sub>4</sub> | D            | m       | 17.6         | $8.2 \\ 7.9$      | 19.3<br>24.5 | 153.0          | 334                                         | 166        |                                                   | 2'          |
|   | 3   |          |                  |              | m       | 17.3         |                   |              | 160.0          | 650                                         | 94         |                                                   | 24          |
|   | 4   |          |                  |              | 1 1     | 16.0         | $4.3 \\ 4.6$      | 4.8<br>5.6   | 158.3          | 630                                         | 94         |                                                   | "4          |
|   | 5   |          |                  |              |         | 17.4         | $\frac{4.0}{4.5}$ | 7.7          | 158.0          | 639                                         | 120        |                                                   |             |
|   | 6   |          |                  |              | m<br>1/ | 17.7         |                   | h            | 159.9          | 598                                         | 92         | <br>                                              |             |
|   | 8   |          |                  |              | 1'      | 15.5         | 4.9               | 6.0          | 160.7          | 623                                         | 103        | 2, 3 one ray                                      |             |
|   | 9   |          |                  |              | 1'      | 14.9         | 4.7               | 6.6          | l.             | 394                                         | 95         | 4-9 lower part                                    | 26          |
|   | 11  |          |                  |              | 1       | 10.5         | 7.5               | 11.7         | 162.1          | 259                                         | 100        | 10-11 another                                     | 27          |
|   | 12  |          |                  |              | l 1     | 5.7          |                   | 19.7         | 162.5          | 259                                         | 103        | lower part,                                       | -1          |
|   | 13  |          |                  |              | 1'      | 6.5          |                   | 20.4         | 161.6          | $\begin{array}{c c} 257 \\ 250 \end{array}$ | 120        | 12-16 another ray                                 |             |
|   | 14  |          |                  |              | m       | 6.2          |                   | 24.2         | 161.4          | 255                                         | 103        | 12-10 another ray                                 |             |
|   | 15  |          |                  |              | 1'      | 4.7          | 11.2<br>11.2      | 20.6         | 163.5<br>163.3 | 255                                         | 119        | 1                                                 | 1           |

Table 2 (continued.)

| No | Pt                                      | MET      | St               | F  | s      | $arepsilon_2$                                | p          | h            | a             | D                                         | н                 | Remarks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | θ     |
|----|-----------------------------------------|----------|------------------|----|--------|----------------------------------------------|------------|--------------|---------------|-------------------------------------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
|    | 1                                       | 22.56.34 | C-K4             | D  | 1      | _ 5.5                                        | 10.6       | 16.0         | 150.3         | 336                                       | 108               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 26-28 |
|    | 2                                       |          |                  | i  | m      | _ 4.6                                        | 10.6       | 26.0         | 149.7         | 312                                       | 165               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -     |
|    | 3                                       |          |                  |    | m      | - 3.7                                        | 10.3       | 33.8         | 148.5         | 295                                       | 211               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -     |
| 17 | 1                                       | 22.56.58 | $O-K_4$          | D  | m      | 21.8                                         | 5.5        | 25.1         | 150.0         | 456                                       | 237               | Sunlit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 25-2  |
|    | 2                                       |          |                  |    | m      | 22.4                                         | 5.6        | 18.3         | 150.5         | 472                                       | 177               | 1, 2, 3, 4 along the left                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -     |
| 1  | 3                                       |          |                  |    | m      | 22.7                                         | 5.6        | 11.9         | 151.3         | <b>49</b> 0                               | 123               | edge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |
|    | 4                                       |          |                  |    | l'     | 22.4                                         | 5.6        | 9.1          | 151.8         | 497                                       | 100               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -     |
|    | 6                                       |          |                  |    | 1      | 21.2                                         | 5.7        | 9.5          | 152.9         | 491                                       | 102               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
|    | 7                                       |          |                  |    | m      | 6.6                                          | 8.2        | 16.9         | 164.9         | 352                                       | 118               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -     |
|    | 8                                       |          |                  |    | , 1    | 7.4                                          | 7.7        | 14.0         | 164.9         | 381                                       | 107               | T 4: 3 4 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -     |
|    | 1                                       |          | $C-K_4$          | D  | l      | - 2.4                                        | 8.2        | 9.7          | 150.5         | 448                                       | 94                | Left edge of D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 25-2  |
|    | 2                                       |          |                  |    | m      | - 1.0                                        | 7.9        | 12.1         | 149.4         | <b>46</b> 0                               | 117               | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -     |
|    | 3                                       |          |                  |    | m      | - 0.3                                        | 7.6        | 17.9         | 148.7         | 460                                       | 170               | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _     |
|    | 4                                       |          |                  |    | m      | 0.1                                          | 7.4        | 21.9         | 148.2         | 461                                       | 208               | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |
|    | 5                                       |          |                  |    | m      | -2.1                                         | 8.1        | 12.1         | 150.2         | 449                                       | 114<br>168        | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _     |
|    | 6                                       |          |                  | İ  | m      | - 1.3<br>- 0.9                               | 7.7        | 17.9         | 149.7         | 455                                       | $\frac{108}{204}$ | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _     |
| O. | 7                                       | 00 55 91 | O IZ             | 10 | m      | ""                                           | 7.5        | 21.9         | 149.1         | 453                                       | $\frac{204}{124}$ | 1 9 9 one way                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 26-2  |
| 8  | 1                                       | 22.57.31 | O-K <sub>4</sub> | D  | 1      | 21.0                                         | 6.5 $6.5$  | 14.2<br>19.1 | 151.9 $151.3$ | $\begin{array}{c} 424 \\ 412 \end{array}$ | 160               | 1, 2, 3 one ray<br>4, 5, 6 another                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 20-2  |
|    | $\begin{bmatrix} 2 \\ 3 \end{bmatrix}$  |          |                  |    | m      | $\begin{vmatrix} 20.8 \\ 20.5 \end{vmatrix}$ | 6.6        | 22.5         | 150.8         | 396                                       | 181               | 4, 5, 6 another                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _     |
|    |                                         |          |                  |    | m      | 6.2                                          | 10.0       | 16.9         | 163.4         | 290                                       | 97                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
|    | 4.<br>5                                 |          |                  |    | m<br>m | 6.1                                          | 9.8        | 18.8         | 163.4 $163.5$ | 287                                       | 106               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
|    | 6                                       |          |                  |    | 1      | 0.1                                          | 9.0        | 15.3         | 163.4         | 292                                       | 90                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
| Į9 | $\begin{bmatrix} 0 \\ 2 \end{bmatrix}$  | 22.58.13 | O-K4             | D  | m      | 17.3                                         | 5.2        | 29.7         | 153.2         | 471                                       | 298               | All points except                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 25-2  |
| Ü  | 3                                       | 22.00.10 | 0-114            |    | m      | 18.3                                         | 5.5        | 19.8         | 154.7         | 488                                       | 200               | No. 14 in sunlight                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |
|    | 4                                       |          |                  |    | 1      | 18.5                                         | 5.8        | 9.1          | 155.8         | 492                                       | 99                | 5 rays:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | _     |
|    | 6                                       |          |                  |    | m      | 13.3                                         | 7.0        | 31.1         | 156.1         | 361                                       | 225               | 2-3-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 26-2  |
|    | $\begin{bmatrix} & 7 & 1 \end{bmatrix}$ |          |                  |    | m      | 13.9                                         | 7.6        | 23.1         | 156.8         | 355                                       | 165               | 6-7-8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |
|    | 8                                       |          |                  |    | 1      | 14.2                                         | 7.8        | 15.2         | 157.5         | 366                                       | 111               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _     |
|    | 9                                       |          |                  |    | m      | 12.5                                         | 7.2        | 29.5         | 157.2         | 353                                       | 215               | 9–10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |
|    | 10                                      |          |                  |    | 1′     | 13.3                                         | 7.6        | 17.0         | 158.3         | 372                                       | 126               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -     |
|    | 12                                      |          |                  |    | m      | 3.7                                          | 10.5       | 29.5         | 164.1         | 251                                       | 149               | 12-13-14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 27-2  |
|    | 13                                      |          |                  |    | m      | 3.8                                          | 10.8       | 25.2         | 164.3         | 255                                       | 126               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _     |
|    | 14                                      |          |                  |    | 1      | 3.9                                          | 11.0       | 20.0         | 164.5         | 260                                       | 101               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _     |
|    | 15                                      |          |                  |    | m      | 17.6                                         | 5.7        | 10.7         | 156.7         | 499                                       | 115               | 15–16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 25-5  |
|    | 16                                      |          |                  |    | 1'     | 17.3                                         | 5.4        | 8.6          | 157.6         | 532                                       | 104               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -     |
| 9  | 1                                       | 22.58.13 | C-K <sub>4</sub> | D  | m      | 4.5                                          | 7.8        | 13.8         | 152.8         | 459                                       | 132               | 1, 2, 3, 9 one ray                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 25-   |
|    | 2                                       |          |                  |    | m      | - 3.7                                        | 7.8        | 23.7         | 151.7         | 429                                       | 210               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
|    | 3                                       |          |                  |    | h      | - 3.0                                        | 7.7        | 31.6         | 150.8         | 401                                       | 270               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -     |
|    | 4                                       |          |                  |    | m      | - 9.6                                        | 10.2       | 19.8         | 155.7         | 338                                       | 134               | 4, 5, 6 another                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 26-2  |
|    | 5                                       |          |                  |    | m      | - 9.1                                        | 10.1       | 25.8         | 155.2         | 325                                       | 171               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -     |
|    | 6                                       |          |                  |    | m      | - 8.7                                        | 10.0       | 29.7         | 154.9         | 316                                       | 194               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -     |
|    | 9                                       |          |                  |    | 1      |                                              |            |              |               |                                           | 95                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 25-2  |
| 50 | 1                                       | 22.58.38 | C-K <sub>4</sub> | D  | m      | 4.5                                          | 7.6        | 35.2         | 152.3         | 386                                       | 296               | All points except                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 25-2  |
|    | 2                                       |          |                  |    | m      | - 5.7                                        | 8.0        | 24.1         | 153.7         | 416                                       | 205               | No. 7 and 8 sunlit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -     |
|    | 3                                       |          |                  |    | m      | - 6.6                                        | 8.1        | 14.1         | 154.8         | 441                                       | 127               | 1-2-3-4 one ray at the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -     |
|    | 4                                       |          |                  |    | 1      | - 6.1                                        | 7.7        | 10.8         | 154.8         | 466                                       | 108               | left border                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -     |
|    | 5                                       |          |                  |    | 1'     | 10.7                                         | 9.6        | 16.8         | 157.5         | 364                                       | 122               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -     |
|    | 6                                       |          |                  |    | Ι.     |                                              | 9.3        | 15.2         | 158.7         | 378                                       | 115               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
|    | 7                                       |          |                  |    | 1      | -20.5                                        | 14.3       | 26.1         | 163.1         | 220                                       | 112               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -     |
|    | 8                                       | 00 50 00 | 0.77             |    | l 1    | -18.0                                        | 12.5       | 22.0         | 162.1         | 263                                       | 113               | 1 0 1-14 - 1-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 05    |
| 50 | 1                                       | 22.58.38 | O-K <sub>4</sub> | D  | 1      | 17.6                                         | 5.6        | 9.3          | 156.6         | 513                                       | 106               | 1–8 left edge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 25-5  |
|    | $\frac{2}{3}$                           |          | İ                |    | m      | 17.8<br>17.6                                 | 5.7<br>5.0 | 12.4         | 156.5         | 541<br>537                                | $145 \\ 223$      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -     |
|    |                                         |          |                  | 1  | m      | 17.6                                         | 5.11       | 19.8         | 156.0         | 537                                       | 2.23              | T. Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Con |       |

Table 2 (continued.)

| No   | Pt            | MET      | St               | $\mathbf{F}$ | s  | $\varepsilon_2$ | p    | h            | a      | D   | Н   | Remarks                | $\theta$ |
|------|---------------|----------|------------------|--------------|----|-----------------|------|--------------|--------|-----|-----|------------------------|----------|
| ļ    | 5             | 22.58.38 | O-K <sub>5</sub> | D            | m  | 16.8            | 7.4  | 14.1         | 155.2  | 383 | 110 |                        | 25–2     |
|      | 6             |          | , v              |              | m  | 16.7            | 7.1  | 19.6         | 154.7  | 385 | 152 |                        | _        |
|      | 7             |          |                  |              | m  | 16.2            | 6.8  | 27.1         | 154.1  | 377 | 211 |                        |          |
|      | 8             |          |                  |              | m  | 17.0            | 6.9  | 12.4         | 155.7  | 414 | 107 |                        | -        |
| İ    | 9             |          |                  |              | 1  | 14.0            | 7.5  | 13.0         | 158.1  | 385 | 103 | 9–12 lower border      |          |
| - 1  | 10            |          |                  |              | 1  | 12.3            | 7.5  | 13.9         | 159.7  | 386 | 110 |                        | _        |
|      | 11            |          |                  |              | 1  | 10.7            | 7.3  | 13.3         | 161.6  | 401 | 110 |                        | _        |
|      | 12            |          |                  |              | l  | 8.7             | 7.3  | 12.5         | 163.8  | 404 | 104 |                        |          |
| ı    | 1             | 22.59.00 | C-K <sub>4</sub> | D            | h' | - 5.8           | 7.7  | 35.1         | 153.9  | 381 | 291 | 1–2–3 left border      | 26-2     |
| ·    | $\frac{1}{2}$ | 22.59.00 | C-K <sub>4</sub> | D            | 1  | -3.8 $-7.0$     | 8.2  | 22.1         | 153.9  | 412 | 184 | All sunlit except per- | 20-2     |
| -    |               |          |                  |              | m  | , ,             |      | 11.1         | 155.6  | 436 | 101 |                        | _        |
|      | 3             |          |                  |              | 1  | -7.7            | 8.3  |              |        |     | 100 | haps point 3           | _        |
|      | 4             | į        |                  |              | 1  | -10.9           | 10.0 | 14.2         | 157.1  | 354 |     |                        | _        |
|      | 5             |          |                  |              | l  | -15.6           | 9.6  | 15.0         | 162.3  | 360 | 108 | ,                      |          |
| 2    | 1             | 22.59.33 | C-O              | D            | m  | 34.9            | 2.3  | 33.5         | -117.0 | 444 | 324 | Sunlit                 | 29–3     |
|      | 2             |          |                  |              | m  | 39.8            | 2.5  | 27.2         | —119.7 | 415 | 234 |                        | -        |
| İ    | 4             |          |                  |              | m  | 33.7            | 2.4  | 28.3         | 112.8  | 458 | 273 |                        | -        |
|      | 5             |          |                  |              | m  | 37.5            | 2.3  | 22.3         | -115.2 | 485 | 223 |                        |          |
|      | 6             |          |                  |              | m  | 40.5            | 2.0  | 16.5         | -117.4 | 556 | 194 |                        |          |
| - {  | 7             |          | C                |              | h' |                 |      | 36.0         | -109.3 | 436 | 349 |                        |          |
|      | 8             |          | 0                |              | 1  |                 |      | 10.7         | 121.3  | 584 | 138 |                        | -        |
| 5    | 1             | 23.01.16 | С-О              | $\mathbf{R}$ | m  | 1               |      | 54.0         | 133.5  | 219 | 317 | Sunlit                 | 27-2     |
|      | 2             |          |                  |              | m  | 26.6            | 3.8  | 45.5         | 136.6  | 249 | 267 |                        | _        |
|      | 3             |          |                  |              | m  | 33.1            | 3.8  | 34.6         | 139.4  | 276 | 201 |                        | _        |
|      | 4             |          |                  |              | 1  | 39.4            | 3.4  | 21.3         | 141.9  | 325 | 137 |                        | _        |
| 6    | 1             | 23.01.52 | C                | $_{ m R}$    | h' |                 |      | 54.0         | 133.9  | 282 | 418 | Sunlit                 | 26-2     |
|      | 2             |          | C-0              |              | m  | -27.9           | 3.0  | 43.0         | 137.9  | 323 | 384 |                        |          |
|      | 3             |          |                  |              | m  | -35.4           | 3.1  | 30.4         | 141.1  | 345 | 218 |                        | _        |
| ł    | 4             |          |                  |              | l  | 41.2            | 2.8  | 17.6         | 143.5  | 393 | 139 |                        |          |
| 9    | 1             | 23.03.29 | O-K <sub>4</sub> | R            | m  | 62.3            | 3.55 | 20.2         | 103.9  | 371 | 150 | In shadow              | 28-2     |
| 9    | 2             | 25.05.29 | U-IX4            | 1            |    | 64.7            | 3.3  | 16.6         | 105.1  | 375 | 125 | 1-2-3 one ray          | 20-2     |
| i    |               |          | İ                |              | m  |                 |      | 13.1         | 106.2  | 370 | 98  | 4-5 another            | _        |
|      | 3             |          |                  |              |    | 66.5            | 3.2  |              |        | 1   |     | 4-5 another            |          |
| ļ    | 4             |          |                  |              | m  | 70.9            |      | 12.8         | 101.5  | 421 | 111 |                        |          |
| i    | 5             |          |                  |              | 1  | 72.1            | 2.1  | 10.2         | 102.6  | 438 | 94  | a                      |          |
| 1    | 1             | 23.05.07 | ()K <sub>4</sub> | D            | h' |                 |      | 39.2         | -186.7 |     | 321 | Sunlit                 | 26-2     |
|      | 2             |          |                  |              | m  | - 0.8           | 6.7  | 29.1         | 186.6  | 389 | 236 | 3 rays:                | -        |
| - 1  | 3             |          |                  |              | m  | - 0.5           | 6.8  | 21.2         | 186.4  | 414 | 177 | 1-2-3-4,               | _        |
|      | 4             |          |                  |              | 1  | - 0.2           |      | 11.7         | 186.0  | 432 | 105 |                        | -        |
|      | 5             |          |                  |              | h′ | - 2.9           | 6.7  | 27.3         |        | 396 | 223 | 5–6 and                |          |
|      | 6             | •        |                  |              | 1  | _ 2.7           | 6.8  | 14.8         | -183.7 | 431 | 130 |                        |          |
|      | 7             |          | ļ                |              | h′ |                 |      | 41.8         | 175.0  |     | 333 | 7-8-9-10               |          |
|      | 8             |          |                  |              | m  | -10.5           | 6.6  | 35.4         | -175.3 | 361 | 277 |                        |          |
| ĺ    | 9             |          |                  |              | m  | 10.6            | 6.9  | 25.5         | -175.8 | 387 | 201 |                        |          |
| Ì    | 10            |          |                  |              | 1  | 10.6            | 7.1  | 14.6         | -176.0 | 407 | 120 |                        | -        |
| $_2$ | 1             | 23.05.38 | C                | R            | h' |                 |      | <b>54.</b> 0 | 144.0  | 222 | 323 | 1, 2 in sunlight       | 28       |
|      | $_2$          |          | C-K <sub>4</sub> |              | m  | 46.4            | 7.7  | 40.5         | -148.6 | 249 | 223 | 4, 5 in shadow         | _        |
|      | 3             |          | -                |              | m  | 50.3            | 7.5  | 32.0         | -150.5 | 265 | 175 |                        |          |
|      | 4             |          |                  |              | m  | -53.4           | 7.3  | 23.0         | -152.2 | 278 | 125 |                        |          |
|      | 5             |          |                  |              | 1  | -53.6           | 7.3  | 18.3         | -154.0 | 286 | 102 |                        | _        |
| 3    |               | 23.05.56 | C                | R            | h' | 00.0            | 1.0  | 54.0         | -146.3 | 235 | 343 | 1, 2 sunlit            | 27-      |
| 0    | 1             | ∡ə.∪ə.ə0 | C-K4             |              |    | 441             | 7.0  |              | 1      | 1   |     | 4, 5, 6 in shadow      | "        |
| İ    | 2             |          | C-K4             |              | m  | <b>-44.</b> 1   | 7.2  | 41.7         | 150.5  | 270 | 255 | 4, 0, 0 in shadow      | -        |
|      | 3             |          |                  |              | m  | 48.9            | i    | 30.0         | -153.3 | 302 | 186 |                        |          |
| j    | 4             |          |                  |              | m  | -51.9           | 1    | 18.0         | -155.3 | 329 | 117 |                        | -        |
|      | 5             |          |                  |              | 1' | 51.9            |      | 16.5         | 155.6  | 342 | 112 |                        | _        |
|      | 6             |          |                  |              | 1  | 51.6            | 6.6  | 15.1         | -156.6 | 338 | 101 |                        | _        |
| 4    | 1             | 23.06.15 | C                | $\mathbf{R}$ | h' | l               | I    | 54.1         | -145.2 | 294 | 436 | 1-2-3-4 one ray        | 27 -     |

Table 2 (continued.)

| No | Pt   | MET      | St                         | F            | s       | $\epsilon_2$  | p    | h            | a               | D   | Н   | Remarks                  | 0   |
|----|------|----------|----------------------------|--------------|---------|---------------|------|--------------|-----------------|-----|-----|--------------------------|-----|
|    | 2    | 23.06.15 | C-K <sub>4</sub>           |              | m       | -42.7         | 6.2  | 43.2         | -149.5          | 311 | 313 | 5–6 another              | 27- |
|    | 3    |          | -<br>                      |              | m       | -46.8         | 6.2  | 34.5         | -151.9          | 330 | 244 | The summits in sunlight  |     |
|    | 4    |          |                            |              | 1       | 50.4          | 6.4  | 23.8         | -154.2          | 334 | 159 |                          |     |
|    | 5    |          |                            |              | m       | -49.6         | 6.2  | 22.8         | 155.4           | 355 | 162 |                          |     |
|    | 6    |          |                            |              | l'      | -50.7         | 6.4  | 17.2         | -156.5          | 350 | 120 |                          | _   |
| 55 | 1    | 23.06.39 | C                          | R            | h′      |               |      | 50.0         | -150.7          | 290 | 371 | 3 rays:                  | 27- |
|    | 2    |          | C-K <sub>4</sub>           |              | m       | -43.1         | 6.6  | 39.5         | 153.8           | 309 | 272 | 1-2-3-4                  |     |
|    | 3    |          | ,                          |              | m       | -47.4         | 6.7  | 27.9         | -156.2          | 327 | 186 |                          | ļ . |
|    | 4    |          |                            |              | 1′      | -49.5         | 6.8  | 19.0         | -157.8          | 334 | 125 |                          |     |
|    | 5    |          | C                          |              | h′      |               |      | 56.1         | -141.2          | 299 | 484 | 5-6-7-8 and              |     |
|    | 6    |          | C-K                        |              | m       | -43.5         | 5.8  | 43.5         | -146.7          | 324 | 332 | 0010000                  |     |
|    | 7    |          | 0 114                      |              | m       | <b>—47.2</b>  | 5.9  | 36.5         | -148.8          | 336 | 267 |                          |     |
|    | 8    |          | i                          |              | l'      | -50.5         | 5.9  | 28.6         | -150.7          | 345 | 203 |                          |     |
|    | 10   |          | C                          |              | h'      | -50.5         | 5.9  | ∠8.0<br>50.7 |                 | 266 | 1   | 10 11 10 19              |     |
|    |      |          | C-K <sub>4</sub>           |              | ļ.      | 47.0          | e =  |              | -140.8          |     | 347 | 10-11-12-13              |     |
|    | 11   |          | U-K4                       |              | m       | 47.9          | 6.5  | 39.4         | -145.1          | 290 | 253 | All in sunlight          |     |
|    | 12   |          | i –                        |              | m       | 51.5          | 6.3  | 31.9         | -147.2          | 306 | 203 |                          |     |
| _  | 13   | 20.00.00 |                            | -            | 1       | 54.7          | 6.1  | 23.4         | -149.0          | 320 | 149 |                          |     |
| 5  | 2    | 23.06.39 | O-K <sub>4</sub>           | R            | m       | -26.3         | 6.7  | 36.7         | -156.2          | 320 | 255 | 2, 3, 4, 5 the same ray  | 26  |
|    | 3    |          | ļ                          |              | m       | -27.1         | 6.8  | 25.7         | -157.3          | 355 | 185 | _                        | 1   |
|    | 4    |          |                            |              | m       | -27.0         | 6.8  | 14.9         | -159.1          | 386 | 116 | 11, 12, 13 another ray   |     |
|    | 5    |          |                            |              | 1       | 26.0          | 6.3  | 12.3         | 159.9           | 424 | 107 |                          | ļ   |
|    | 6    |          |                            | RB           | 1       | -24.8         | 6.3  | 12.0         | -161.1          | 430 | 107 | 2, 3 in sunlight         |     |
|    | 7    |          |                            |              | 1       | -22.4         | 5.7  | 11.5         | 162.8           | 482 | 118 | 4, 5, 6 in shadow        |     |
|    | 8    |          |                            |              | 1       | 21.1          | 5.2  | 10.8         | 163.7           | 535 | 126 |                          |     |
|    | 11   |          |                            | R            | · m     | -32.3         | 6.4  | 36.7         | -147.0          | 317 | 250 |                          |     |
|    | 12   |          |                            |              | m       | 33.3          | 6.5  | 29.4         | -148.7          | 336 | 204 |                          |     |
|    | 13   |          |                            |              | 1       | -33.9         | 6.5  | 21.4         | -150.3          | 360 | 154 |                          |     |
| *_ | 1    | 23.06.39 | Li-K4                      | RB           | 1       | -76.1         | 7.0  | 17.9         | -150.8          | 306 | 108 | In shadow                | 26  |
| 65 | $^2$ |          |                            |              | 1       | -77.5         | 6.1  | 17.2         | 153.9           | 316 | 108 |                          |     |
|    | 3    |          |                            |              | 1       | -78.6         | 4.9  | 16.1         | 157.3           | 363 | 117 |                          |     |
| *_ | 1    | 23.06.39 | Li-O                       | $\mathbb{R}$ | m       | -54.0         | 18.0 | 39.0         | -140.3          | 229 | 194 |                          | 27  |
| 65 | 2    |          |                            |              | m       | 62.3          | 15.6 | 23.8         | 144.4           | 247 | 115 |                          |     |
| 6  | 1    | 23.07.03 | C-K <sub>4</sub>           | $\mathbf{R}$ | m       | -43.5         | 6.1  | 38.5         | -153.2          | 336 | 288 | 1-2-3 one ray            | 27  |
|    | 2    |          | •                          |              | m       | <b>47.8</b>   | 6.3  | 27.7         | -155.2          | 344 | 195 | ,                        |     |
|    | 3    |          |                            |              | 1       | -50.6         | 6.4  | 14.5         | -157.2          | 357 | 103 | 1 in sunlight            |     |
| 7  | 1    | 23.08.12 | C                          | R            | h       |               |      | 53.9         | -149.8          | 304 | 453 | 1-2-3-4-5 one ray        | 27  |
|    | 2    | 20100112 | C-K <sub>4</sub>           |              | m       | -41.5         | 6.0  | 40.1         | -154.5          | 342 | 311 | 1 2 0 1 0 010 14,        | -   |
|    | 3    |          | 4                          |              | m       | 44.8          | 6.1  | 31.7         | -156.5          | 360 | 240 | 6-7-8-9 another          | İ   |
|    | 4    |          |                            |              | m       | <b>47.4</b>   | 6.1  | 22.4         | -158.3          | 377 | 170 | 10-11-12 a third         |     |
|    | 5    |          | C                          |              | h       | 71.1          | 0.1  | 52.2         | -142.4          | 342 | 484 | All sunlit               |     |
|    | 6    |          | $C-K_4$                    |              |         | <b>—4</b> 5.2 | 5.2  | 39.5         | -142.4 $-147.2$ | 374 | 335 | All Sumit                | ;   |
|    | 7    |          | ()-1 <b>X</b> <sub>4</sub> |              | m       | <del></del>   | 5.2  |              |                 | 393 | 231 |                          |     |
|    |      |          |                            |              | m       | -50.5 $-52.7$ |      | 28.4         | -150.3          | 1   |     |                          |     |
|    | 8    |          | TZ.                        |              | m<br>1- | -32.1         | 5.1  | 19.9         | -152.2          | 410 | 165 |                          | ļ   |
|    | 9    |          | K <sub>4</sub>             |              | h       | 40.0          |      | 48.0         | -140.3          | 304 | 363 |                          |     |
|    | 10   |          | C-K <sub>4</sub>           |              | m       | 46.0          | 5.7  | 42.4         | -142.5          | 322 | 317 |                          |     |
|    | 11   |          |                            |              | m       | -50.9         | 5.8  | 34.0         | -145.3          | 327 | 237 |                          |     |
| _  | 12   | 00.00.55 |                            | ,,,          | 1       | 55.3          | 5.6  | 23.1         | -147.9          | 344 | 159 |                          |     |
| 7  | 2    | 23.08.12 | O-K <sub>4</sub>           | R            | m       | 24.8          | 5.8  | 37.5         | 155.8           | 367 | 305 | 1, 2, 3, 4, 5, 6 one ray | 27  |
|    | 3    |          |                            |              | m       | -25.5         | 5.9  | 29.4         | -157.3          | 396 | 244 |                          |     |
|    | 4    |          | l                          |              | m       | 25.7          | 6.0  | 20.7         | -158.7          | 423 | 177 | 7, 8, 9 another          |     |
|    | 5    |          |                            | 1            | m       | -24.7         | 5.3  | 16.9         | -159.5          | 494 | 173 | All except point         |     |
|    | 6    |          |                            | 1            | 1       | 24.0          | 5.6  | 13.1         | -160.7          | 481 | 132 | 9 in sunlight            |     |
|    | 7    |          |                            | 1            | m       | -30.7         | 5.4  | 26.5         | 151.3           | 424 | 233 |                          | }   |
|    | 8    |          | İ                          |              | m       | -30.9         | 5.5  | 18.8         | -152.8          | 446 | 170 |                          |     |
|    | 9    |          |                            | 1            | 1 1     | -30.3         | 5.6  | 11.3         | -154.5          | 461 | 110 |                          |     |

Table 2 (continued.)

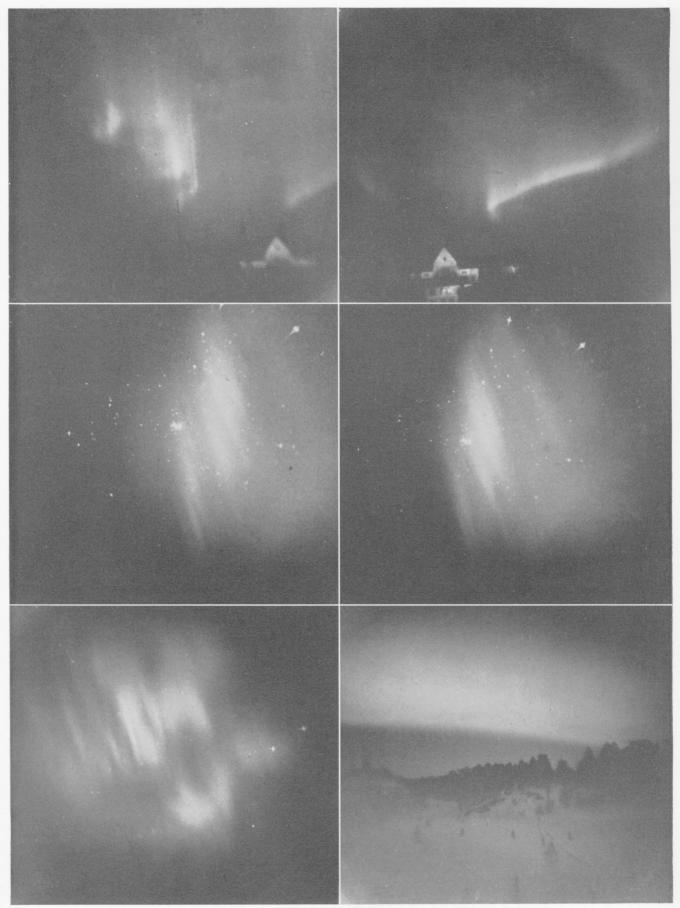

| No  | Pt                                      | MET      | St               | F         | s            | $\varepsilon_2$ | p                                         | h                   | а               | D          | н          | Remarks                   | 0      |
|-----|-----------------------------------------|----------|------------------|-----------|--------------|-----------------|-------------------------------------------|---------------------|-----------------|------------|------------|---------------------------|--------|
| 68  | 1                                       | 23.08.36 | C-K4             | R         | h'           |                 |                                           | 41.6                | _153.7          | 351        | 338        | 1, 2, 3, 4, 5, 6 one ay   | 27-29  |
|     | 2                                       |          |                  |           | m            | <b>—43.</b> 5   | 5.8                                       | 36.5                | -154.8          | 362        | 290        |                           | _      |
|     | 3                                       |          |                  |           | m            | <b>46.</b> 0    | 5.95                                      | 29.8                | -156.0          | 370        | 229        | 8, 9, 10 another          | -      |
|     | 4                                       |          |                  |           | m            | <b>—48.0</b>    | 5.9                                       | 22.0                | 157.2           | 386        | 171        | 7 lowest point of D       | -      |
|     | 5                                       |          |                  |           | m            | <b>—48.7</b>    | 6.4                                       | 17.7                | 158.4           | 364        | 128        |                           | -      |
|     | 6                                       |          |                  |           | 1′           | -48.4           | 6.3                                       | 16.3                | 159.1           | 374        | 123        | All, except no 7 in       | -      |
|     | 7                                       |          |                  | D         | 1            | -46.8           | 6.5                                       | 13.9                | -161.5          | 380        | 106        | sunlight                  | -      |
|     | 8                                       |          |                  | R         | m            | <b>-45.3</b>    | 6.2                                       | 36.9                | -152.1          | 328        | 264        |                           |        |
|     | 9                                       |          |                  |           | m            | -48.5           | 6.3                                       | 28.9                | -153.7          | 336        | 200        |                           | -      |
| 30  | 10                                      | 92 00 26 | OV               | 10        | 1            | -50.6           | 6.4                                       | 21.3                | -155.1          | 341        | 144        |                           |        |
| 68  | $\begin{array}{c c} 1 \\ 2 \end{array}$ | 23.08.36 | O-K <sub>4</sub> | R         | m<br>l'      | -18.7           | 6.7                                       | 16.6                | -166.2          | 412        | 138        | 1, 2 one ray              | 27-2   |
|     | 3                                       |          |                  |           |              | -18.8           | 7.3                                       | 13.5                | -166.7          | 385        | 105        | 3, 4, 6 another           |        |
|     | 4                                       |          |                  |           | m            | -26.3           | 6.4                                       | 28.4                | -157.2          | 369        | 216        | 7 the same point as on    |        |
|     | 6                                       |          |                  |           | m<br>  1'    | -26.4           | 6.5                                       | 21.1                | -158.0          | 388        | 165        | C-K <sub>4</sub> 68       |        |
|     | 7                                       |          |                  | D         | 1            | -25.6           | $\begin{array}{c} 7.1 \\ 6.7 \end{array}$ | 15.7                | -159.5          | 372        | 117        |                           |        |
| 39  | 1                                       | 23.08.58 | O=K4             | D         | 1            | -23.6 $-14.1$   |                                           | 12.5                | -161.1          | 407        | 104        |                           | 05.0   |
| 0.0 | 2                                       | 20.00.00 | 0-14             | 17        | 1            | —14.1<br>—17.5  | $\frac{10.8}{9.5}$                        | $20.2 \\ 19.4$      | -176.0 $-171.0$ | 258<br>289 | 101        | 1, 2, 3 lower border.     | 272    |
|     | 3                                       |          |                  |           | 1            | -22.6           | 9.5                                       | 17.6                | -171.0 $-165.7$ | 1          | 109<br>97  | 1, 2, 3, 4, 5 in shadow   | _      |
|     | 4                                       |          |                  |           | m            | -25.3           | 8.0                                       | 17.0 $17.4$         | -161.4          | 284<br>329 | 113        | 4 5 minute - don-         |        |
|     | 5                                       |          |                  |           | ]′           | -25.2           | 8.1                                       | 17.4 $15.4$         | -161.4 $-161.7$ | 329        | 100        | 4, 5 right edge           |        |
|     | 6                                       |          |                  | R         | m            | -25.2 $-10.1$   | 6.0                                       | 17.4                | -161.7 $-175.2$ | 470        |            | 6 7 :!:                   | 00.0   |
|     | 7                                       |          |                  | 10        | 1'           | -9.8            | 5.9                                       | 14.9                | -175.2 $-175.3$ | 488        | 173<br>151 | 6, 7 ray in sunlight      | 26-2   |
| 0   | 1                                       | 23.09.21 | O-K <sub>4</sub> | D         | l            | 17.2            | 11.1                                      | $\frac{14.5}{21.7}$ | -173.3 $-173.0$ | 245        | 103        | 1 9 9 4 in abadam         | 90.0   |
|     | $\frac{1}{2}$                           | 20.00.21 | 0-114            | D         | 1            | -20.5           | 10.4                                      | 19.7                | -173.0 $-169.0$ | 260        | 99         | 1, 2, 3, 4 in shadow      | 28-2   |
|     | 3                                       |          |                  |           | ı<br>J       | -24.6           | 9.7                                       | 17.3                | -164.1          | 274        | 92         |                           | _      |
|     | 4                                       |          |                  |           | i            | -27.2           | 9.2                                       | 16.1                | -161.1          | 285        | 89         |                           |        |
|     | 5                                       |          |                  | R         | m            | -18.7           | 5.7                                       | 17.5                | 166.0           | 478        | 173        | 5, 6, 7 in sunlight       | 96 9   |
|     | 6                                       |          |                  | 10        | m            | -18.5           | 5.8                                       | 13.5                | -166.6          | 482        | 136        | o, o, t in sunight        | 26-2   |
|     | 7                                       |          |                  |           | l            | 18.0            | 5.7                                       | 12.3                | -167.2          | 494        | 129        |                           | _      |
| 72  | 1                                       | 23.10.13 | C-O              | $_{ m R}$ | m            | -34.6           | 3.1                                       | 19.1                | 136.5           | 386        | 148        | 1, 2 in sunlight the rest | 26-2   |
|     | 2                                       |          |                  |           | 1            | -35.6           | 3.0                                       | 15.6                | 137.1           | 403        | 127        | in shadow                 | 20-2   |
|     | 3                                       |          |                  | D         | l            | 37.7            | 4.2                                       | 15.5                | 137.9           | 282        | 85         | III SHOOW                 | 27 - 2 |
|     | 4                                       |          |                  |           | l l          | -44.2           | 4.1                                       | 18.6                | 145.9           | 257        | 92         |                           | 2, 2   |
|     | 5                                       |          |                  |           | 1            | -49.6           | 4.4                                       | 21.2                | 152.6           | 213        | 86         |                           |        |
|     | 6                                       |          |                  |           | 1            | -40.9           | 3.8                                       | 17.1                | 142.1           | 293        | 97         |                           |        |
|     | 7                                       |          |                  |           | 1            | -47.1           | 4.4                                       | 20.0                | 149.2           | 234        | 90         |                           | _      |
|     | 8                                       |          |                  |           | 1            | 52.0            | 4.6                                       | 22.1                | 155.7           | 232        | 99         | •                         | _      |
| 3   | 1                                       | 23.11.41 | O-K <sub>4</sub> | D         | h′           | -41.5           | 3.6                                       | 35.8                | -130.5          | 491        | 395        | 1, 2, 3, 4 edge of D      | 28-3   |
|     | 2                                       |          |                  | ĺ         | m            | -43.5           | 3.9                                       | 29.5                | 132.5           | 478        | 301        |                           | _      |
|     | 3                                       |          |                  |           | m            | <b>—45.0</b>    | 4.2                                       | 22.0                | 134.8           | 466        | 211        |                           | -      |
|     | 4                                       |          |                  |           | 1            | -45.5           | 4.4                                       | 14.6                | 136.8           | 465        | 140        |                           |        |
|     | 5                                       |          |                  | R         | h′           | 31.9            | 4.6                                       | 37.7                | -144.1          | 445        | 380        | 5, 6, 7 ray               | 27-2   |
|     | 6                                       |          |                  |           | m            | -33.7           | 4.8                                       | 27.4                | -146.8          | 457        | 263        | All sunlit                | İ –    |
|     | 7                                       |          |                  |           | 1            | -34.2           | 4.9                                       | 18.3                | -148.7          | 482        | 182        |                           |        |
| *_  | 1                                       | 23.11.42 | Li-C             | D         | 1            | 56.8            | 21.6                                      | 31.4                | -137.4          | 165        | 106        | Lower border              | 28-2   |
|     | 2                                       |          |                  |           | 1            | -53.9           | 19.1                                      | 25.4                | -134.2          | 213        | 107        |                           | -      |
|     | 3                                       |          |                  | -         | 1            | 50.3            | 18.7                                      | 21.5                | -129.2          | 242        | 102        |                           |        |
|     | 4                                       |          |                  |           | 1            | <b>-47.3</b>    | 17.7                                      | 18.5                | -126.3          | 276        | 101        |                           | -      |
| 4   | 1                                       | 23.12.11 | $O-K_4$          | D         | h′           | -42.1           | 3.0                                       | 34.3                | 130.6           | 588        | 459        | 1, 2, 3, 4 edge of D.     | 28-2   |
|     | 2                                       |          |                  |           | m            | -44.2           | 3.4                                       | 26.7                | 132.8           | 555        | 318        | Point 1 in sunlight       |        |
|     | 3                                       |          |                  | ĺ         | m            | <b>—45.4</b>    | 3.7                                       | 19.4                | -134.7          | 534        | 217        | Ų.                        | -      |
|     | 4                                       |          |                  |           | 1            | -45.6           | 4.1                                       | 9.6                 | 137.0           | 512        | 108        | Point 4 in shadow         |        |
| 6   | 1                                       | 23.20.42 | O-K <sub>4</sub> | R         | h′           | 40.7            | 4.75                                      | 33.7                | 122.3           | 393        | 285        | Sunlit                    | 27-28  |
|     | 2                                       |          | -                |           | $\mathbf{m}$ | 42.3            | 4.75                                      | 29.9                | 123.5           | 400        | 251        |                           | -      |

Table 2 (continued.)

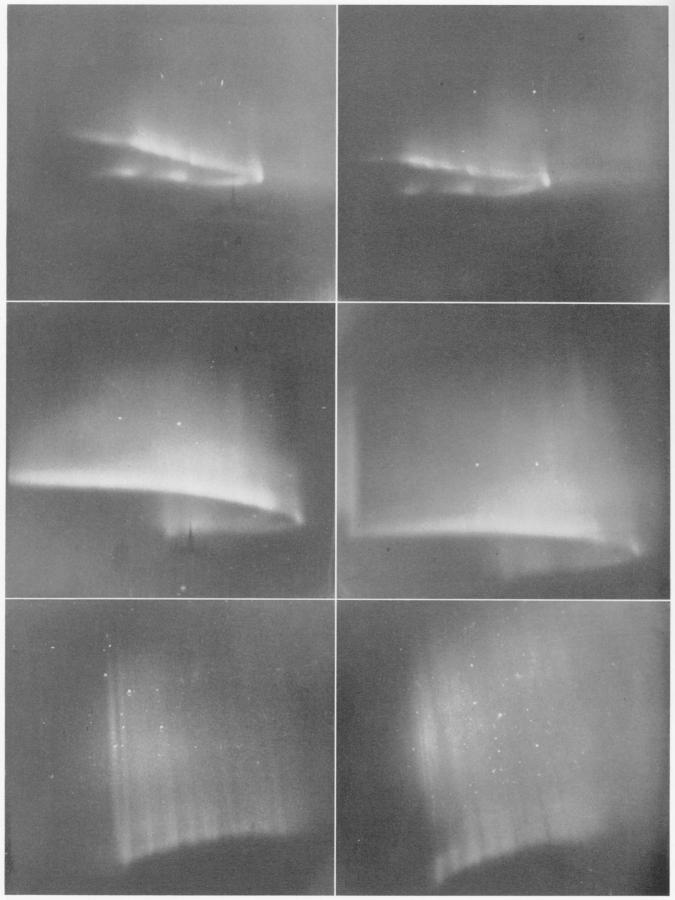

| - 1  |                                             | MET      | $\operatorname{St}$ | F            | S      | $\epsilon_2$     | p             | h                   | a                | D                 | $\mathbf{H}$ | Remarks                        | 0    |
|------|---------------------------------------------|----------|---------------------|--------------|--------|------------------|---------------|---------------------|------------------|-------------------|--------------|--------------------------------|------|
|      | 3                                           | 23.20.42 | O-K <sub>4</sub>    | R            | m      | 43.4             | 4.8           | 26.4                | 124.5            | 405               | 220          |                                | 27-2 |
|      | 4                                           |          |                     |              | m      | 44.5             | 4.8           | 22.3                | 125.4            | 412               | 187          |                                |      |
|      | 5                                           | •        |                     |              | 1      | 45.3             | 4.9           | 18.4                | 126.4            | 413               | 163          |                                | -    |
| 77   | 2                                           | 23.21.24 | $C-K_4$             | R            | m      | 20.7             | 5.05          | 38.2                | 136.1            | 513               | 453          | Feeble, sunlit                 | 24-2 |
|      | 3                                           |          |                     |              | m      | 20.9             | 5.0           | 26.7                | 138.3            | 597               | 345          |                                | -    |
|      | 4                                           |          |                     |              | 1′     | 20.6             | 5.1           | 15.4                | 140.0            | 645               | 217          |                                | -    |
| 81   | 1                                           | 23.24.56 | O-K <sub>4</sub>    | D            | h′     | 19.9             | 6.0           | 29.5                | 149.9            | 407               | 251          | 1, 2, 3 left edge, sunlit      | 25-2 |
| ĺ    | $^2$                                        |          |                     |              | m      | 21.3             | 5.85          | 22.5                | 150.6            | 441               | 203          |                                |      |
|      | 3                                           |          |                     | ,            | 1      | 22.7             | 5.5           | 14.5                | 151.5            | 491               | 149          |                                | -    |
| 91   | 1                                           | 23.38.59 | O-K <sub>4</sub>    | R            | h′     | 17.3             | 4.65          | 34.0                | 164.0            | 497               | 374          | 1-2-3-4 one ray                | 25-2 |
|      | 2                                           |          |                     |              | m      | -17.6            | 4.7           | 24.9                | 165.3            | 545               | 287          |                                | -    |
| ĺ    | 3                                           |          |                     |              | l'     | -17.7            | 4.8           | 16.5                | -166.3           | 570               | 200          |                                | -    |
|      | 4                                           |          |                     |              | 1      |                  | ~ 0           | 13.5                | 166.7            | 578               | 169          | 5 C 7 O                        | -    |
|      | 5                                           |          |                     |              | h      | 3.1              | 5.6           | 32.2                | 177.4            | 445               | 309          | 5-6-7-8 another<br>Both sunlit | -    |
|      | 6                                           |          |                     |              | m      | 3.0              | 5.7           | 25.5                | 177.2            | 471<br>497        | 250<br>183   | both sunnt                     | _    |
|      | $\begin{bmatrix} 7 \\ 8 \end{bmatrix}$      |          |                     |              | m<br>1 | 2.8<br>2.9       | $5.75 \\ 5.3$ | $17.8 \\ 13.0$      | $177.0 \\ 177.7$ | 555               | 155          |                                |      |
| 92   | $\begin{array}{c c} \circ \\ 1 \end{array}$ | 23.40.39 | O-K <sub>4</sub>    | R            | h'     | -20.4            | 4.6           | 32.1                | -161.0           | 506               | 355          | 1-2-3 one ray                  | 26-2 |
| 92   | $\frac{1}{2}$                               | 20.40.00 | O-K4                | 10           | m      | -20.4<br>-20.9   | 5.0           | $\frac{32.1}{27.2}$ | -161.8           | <b>49</b> 3       | 283          | 1-2-5 One Tay                  | 20-2 |
|      | $\frac{2}{3}$                               |          |                     |              | 1'     | $-20.3 \\ -21.2$ | 5.2           | $27.2 \\ 23.9$      | -162.1           | 494               | 235          |                                | _    |
| ĺ    | 4                                           |          |                     |              | h′     | -20.1            | 4.7           | 22.7                | -162.9           | 547               | 262          | 4–5–6 another                  | _    |
|      | 5                                           |          |                     |              | m      | -20.1            | 4.7           | 18.9                | -163.3           | 564               | 225          | Both sunlit                    | _    |
|      | 6                                           |          |                     |              | l'     | _20.1            | 4.8           | 15.1                | -163.6           | 567               | 183          |                                | -    |
| 93   | 1                                           | 23.41.55 | O-K4                | $\mathbf{R}$ | h'     |                  |               | 31.1                | 157.7            | 493               | 330          | Sunlit                         | 26-2 |
|      | 2                                           |          | •                   |              | m      | -23.55           | 4.8           | 25.2                | 158.8            | 512               | 271          |                                | _    |
|      | 3                                           |          |                     |              | m      | -23.5            | 4.9           | 20.5                | -159.6           | 524               | 224          |                                | _    |
|      | 4                                           |          |                     |              | m      | 23.2             | 4.8           | 15.8                | 160.4            | 554               | 185          |                                |      |
|      | 5                                           |          |                     |              | 1      | -22.4            | 4.5           | 12.3                | -161.1           | 633               | 173          |                                |      |
| 98   | 1                                           | 23.49.20 | O-K <sub>4</sub>    | $\mathbf{R}$ | h′     |                  |               | 23.5                | 169.2            | 618               | 312          | 1-2-3-4-5 right edge           | 25-2 |
|      | 2                                           |          |                     |              | m      | -13.8            | 4.3           | 20.4                | -169.5           | 627               | 275          | of the ray                     | -    |
|      | 3                                           |          |                     |              | m      | -13.6            | 4.45          | 15.5                | -170.2           | 631               | 213          | 6, 7 middle of it              | -    |
| - 1  | 4                                           |          |                     |              | m      | -13.1            | 4.5           | 9.6                 | 171.0            | 645               | 145          | Sunlit                         | -    |
|      | 5                                           |          |                     |              | 1      | -12.4            | 4.8           | 7.6                 | -172.1           | 608               | 113          |                                | _    |
|      | 6                                           |          |                     |              | m      | 12.5             | 4.45          | 15.5                | -171.3           | 634               | 214          |                                | -    |
|      | 7                                           |          |                     |              | m      | -12.4            | 4.6           | 11.6                | -171.7           | 627               | 163          |                                | -    |
| )2   | 1                                           | 0.14.17  | O-K <sub>4</sub>    | RB           | h      | 48.3             | 4.9           | 19.8                | 120.6            | 385               | 154          | 1, 3 right; 2, 4 left edge     | 27-2 |
|      | 2                                           |          |                     |              | h      | 51.9             | 5.2           | 18.3                | 117.8            | 342               | 125          | of first short ray             | _    |
|      | 3                                           |          |                     |              | l      | 51.2             | 4.6           | 13.6                | 122.0            | 403               | 111          | 6, 7 right; 5, 8 left edge     | -    |
|      | 4                                           |          |                     |              | 1      | 53.7             | 4.7           | $10.7 \\ 17.1$      | 120.0            | 387               | 83<br>88     | of second short ray            |      |
|      | 5                                           |          | j                   |              | 1<br>1 | $39.9 \\ 38.2$   | 8.4<br>8.1    | 17.1                | $129.0 \\ 130.9$ | $\frac{266}{282}$ | 97           | or second short ray            | _    |
|      | $\frac{6}{7}$                               |          |                     |              | h      | 37.2             | 8.4           | 21.8                | 130.9 $129.7$    | 268               | 114          | Both in shadow                 | _    |
| İ    | 8                                           |          |                     |              | h      | 38.9             | 8.7           | $\frac{21.8}{21.3}$ | 125.7 $127.6$    | 255               | 106          | Dom in snadow                  | _    |
| 1    | 1                                           | 0.21.35  | C-K <sub>4</sub>    | R            | h'     | 27.3             | 8.0           | 41.2                | 106.3            | 302               | 282          | 1, 2, 3 left edge              | 28-2 |
| .    | 2                                           | V.21.00  | 0 114               | 10           | m      | 29.0             | 8.7           | 33.1                | 109.2            | 306               | 214          | 4, 5, 6 right edge             |      |
|      | 3                                           |          |                     |              | 1      | 29.9             | 9.4           | 25.5                | 111.5            | 308               | 157          | Partly sunlit                  | _    |
|      | 4                                           |          |                     |              | m      | 32.6             | 7.6           | 33.1                | 105.6            | 337               | 237          | <b>v</b>                       | _    |
|      | 5                                           |          | j                   |              | h'     | 31.0             | 6.9           | 39.6                | 103.4            | 345               | 309          |                                |      |
|      | 6                                           |          | $\mathbf{c}$        |              | 1      |                  |               | 21.7                | 108.8            | 352               | 153          |                                | -    |
| 21.  | 2                                           | 0.55.31  | C-O                 | R            | m      | -39.5            | 2.9           | 38.4                | 152.3            | 315               | 267          | Sunlit                         | 27-2 |
|      | 3                                           |          |                     |              | m      | -36.5            | 3.0           | 42.8                | 151.7            | 295               | 292          |                                | -    |
|      | 4                                           |          | j                   |              | m      | -30.7            | 3.1           | 51.1                | 150.4            | 260               | 344          |                                | _    |
| 32   | 1                                           | 1.11.02  | C-K <sub>4</sub>    | $\mathbf{R}$ | m      | 14.9             | 7.1           | 14.0                | 164.4            | 486               | 142          | 1, 2, 3 along right edge       | 25-2 |
| اندو |                                             |          |                     |              | 1      | -13.5            | 6.8           | 26.0                | 163.7            | 466               | 253          |                                | 1    |

Table 2 (continued.)

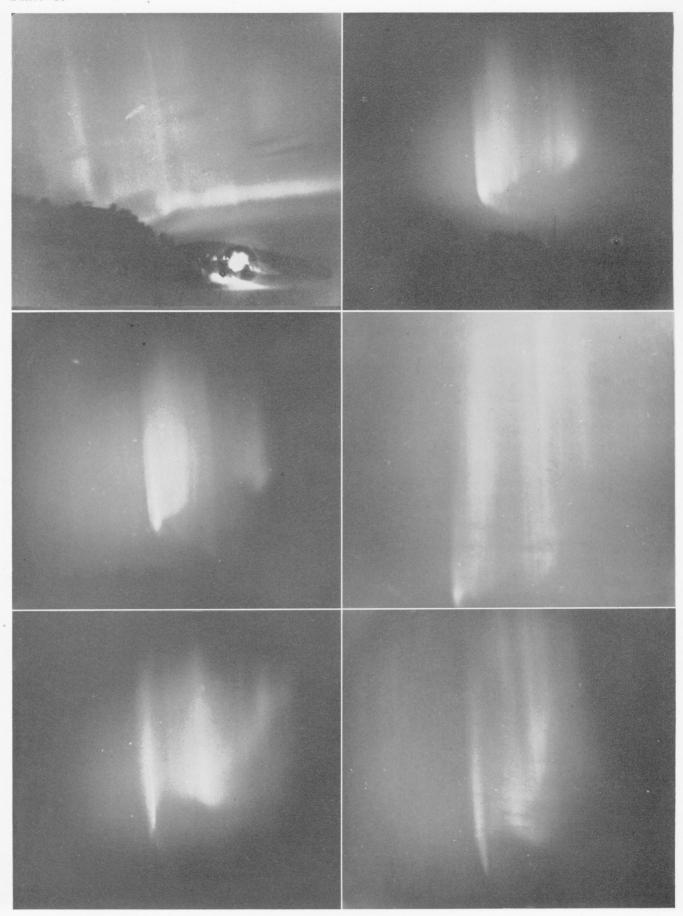
| No  | Pt | MET     | St               | F            | s   | $arepsilon_2$ | p   | h            | a      | D           | Н   | Remarks                 | 0     |
|-----|----|---------|------------------|--------------|-----|---------------|-----|--------------|--------|-------------|-----|-------------------------|-------|
|     | 4  | 1.11.02 | C-K <sub>4</sub> | R            | m m | _13.3         | 7.3 | 14.0         | 162.5  | 477         | 139 | 6, 7, 7, 9 along middle | 25-27 |
|     | 5  |         |                  |              | m   | -12.1         | 7.2 | 26.0         | 161.7  | 443         | 240 | line                    |       |
|     | 6  |         | <b> </b><br>     | i<br>I       | m   | 14.0          | 7.1 | 14.0         | 163.5  | 489         | 143 | Sunlit                  |       |
|     | 7  |         |                  |              | m   | -12.7         | 6.9 | 26.0         | 162.5  | 461         | 250 |                         |       |
|     | 8  |         |                  |              | h   | 10.2          | 6.2 | 41.0         | 161.5  | 423         | 406 |                         |       |
|     | 9  |         | $K_4$            |              | ī   |               |     | 9.6          | 170.3  | 499         | 105 |                         |       |
| 133 | 1  | 1.12.12 | C-K <sub>4</sub> | R            | m   | 50.9          | 4.0 | 42.8         | 118.4  | 408         | 416 | 1, 2, 3, 6, 7 one ray   | 29-30 |
|     | 2  |         |                  | į            | m   | -57.6         | 3.3 | 34.8         | -122.1 | <b>4</b> 75 | 366 | 4, 5 another            |       |
|     | 3  |         |                  |              | m   | 64.1          | 2.7 | 26.4         | -125.3 | 521         | 292 | Sunlit                  |       |
|     | 4  |         |                  |              | m   | -39.2         | 6.9 | <b>57.</b> 0 | -123.7 | 218         | 358 |                         |       |
|     | 5  |         |                  |              | 1   | 50.6          | 6.2 | 42.9         | -130.8 | 270         | 267 |                         |       |
|     | 6  |         | K <sub>4</sub>   | ]            | h   |               |     | 45.4         | 115.3  | 456         | 517 |                         | 30-31 |
|     | 7  |         | $K_4$            |              | 1'  |               |     | 14.9         | -126.7 | 495         | 154 |                         | 29-30 |
| 134 | 1  | 1.13.01 | $C-K_4$          | $\mathbf{R}$ | h′  | 55.4          | 3.8 | 38.2         | -118.3 | 418         | 361 | 1, 2, 3 one ray         | 29-31 |
|     | 2  |         |                  |              | m   | 59.5          | 3.6 | 33.7         | -120.4 | 421         | 308 | 4 another               | -     |
|     | 3  |         |                  |              | m   | -65.0         | 2.8 | 26.3         | -123.0 | 488         | 270 | 5,6 a third one         | _     |
|     | 4  |         |                  |              | h′  | -41.7         | 4.6 | 53.0         | 110.6  | 340         | 496 | All sunlit              |       |
|     | 5  |         |                  |              | m   | <b>—43.1</b>  | 9.7 | 53.6         | -136.2 | 163         | 230 |                         |       |
|     | 6  |         |                  |              | m   | -37.5         | 8.9 | 60.2         | -130.9 | 161         | 294 |                         | -     |
| 135 | 1  | 1.13.47 | $C-K_4$          | R            | m   | 20.0          | 9.5 | 27.5         | 168.1  | 323         | 180 | Partly sunlit           | 26-28 |
|     | 2  |         |                  | 1            | m   | 20.7          | 9.4 | 21.5         | 168.3  | 343         | 147 |                         | -     |
|     | 3  |         | ì                |              | m   | -20.9         | 9.4 | 18.8         | 168.4  | 348         | 131 |                         | _     |
|     | 4  |         |                  |              | 1′  | -21.1         | 9.5 | 16.8         | 168.4  | 349         | 117 |                         | -     |
|     | 5  |         | C                |              | h′  |               |     | 32.6         | 168.0  | 325         | 222 |                         | _     |



Upper left: Photograph 18—19 March 1933, N 64, 0<sup>h</sup> 23<sup>m</sup> 47<sup>s</sup> showing distant curtains in the north. Upper right: Photograph the same date, N 65, 0<sup>h</sup> 24<sup>m</sup> 30<sup>s</sup> showing band to the right of picture N 64. Middle left: Photograph 19—20 March 1933, Lö 4, 21<sup>h</sup> 08<sup>m</sup> 55<sup>s</sup> showing sunlit invisible rays. Middle right: Photograph 19—20 March 1933, N 4, 21<sup>h</sup> 08<sup>m</sup> 55<sup>s</sup> showing the same rays from the other station. Lower left: Photograph 18—19 March 1933, N 111, 2<sup>h</sup> 27<sup>m</sup> 16<sup>s</sup>, showing aurora going down under 80 km altitude. Lower right: Photograph 23—24 March 1933, Lö 61, 1<sup>h</sup> 35<sup>m</sup> 38<sup>s</sup>, showing eastern part of a fine arc.



Upper left: Photograph 23—24 March 1933, Lö 119, 4h 05m 51s, showing horseshoeformed curtain.


Upper right: Photograph 23—24 March 1933, N 119, 4<sup>h</sup> 05<sup>m</sup> 51<sup>s</sup>, showing the same curtain from the other station.

Middle left: Photograph 23—24 March 1933, Lö 122, 4h 07m 59s, showing bent arc.

Middle right: Photograph 23—24 March 1933, N 122,  $4^{\rm h}$   $07^{\rm m}$   $59^{\rm s}$ , showing the same arc from the other station.

Lower left: Photograph 24—25 March 1933, Lö 22, 20<sup>h</sup> 55<sup>m</sup> 24<sup>s</sup>, showing drapery. Lower part in darkness, upper in sunshine, weakened intensity between.

Lower right: Photograph 24—25 March 1933, N 22, 20h 55m 24s, showing the same drapery from the other station.



Upper left: Photograph 24—25 March 1933, Lö 42,  $21^{\rm h}\,17^{\rm m}\,46^{\rm s},$  showing arcs and rays.

Upper right: Photograph 1—2 May 1933, O 47, 22h 56m 58s, showing lower part of sunlit drapery.

Middle left: Photograph 1—2 May 1933, K 47, 22<sup>h</sup> 56<sup>m</sup> 58<sup>s</sup>, showing lower part of the same drapery from the second station. Middle right: Photograph 1—2 May 1933, C 47, 22<sup>h</sup> 56<sup>m</sup> 58<sup>s</sup>, showing upper part of the same drapery from the third station.

Lower left: Photograph 1—2 May 1933, K 50, 22<sup>h</sup> 58<sup>m</sup> 38<sup>s</sup> showing the same drapery.

Lower right: Photograph 1—2 May 1933, C 50, 22<sup>h</sup> 58<sup>m</sup> 38<sup>s</sup>, showing the same drapery from the other station.