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1. The Perturbation Equation.

Our basic system is a rectilinear flow of an
incompressible and homogeneous fluid bounded by
two parallel rigid surfaces. The basic velocity
U, along the X-axis of our system of references,
depends only upon the perpendicular distance z
from, for instance, the lower rigid surface. Thus

we have
(1, 1)

and the rigid walls are given by

U="U(z),

z=0 and =z =h.

Assuming the perturbations take place in planes
parallel to the XY-plane, are independent of
the direction perpendicular to this plane, and
have a trigonometric dependence on time ¢ and
on x, we obtain for the vertical velocities w in
the perturbed motion the well known equation

w— (et #)u o

- C

(1,2)

Here a prime denotes differentiation with regard
to 2z, ¢ is the velocity of propagation and % the
wave number.

The perturbation equation (1,2) has a sing-
ularity for U-—¢ = 0 except when U’ = 0 at
the same place, i.e. except when an inflection
point appears in the velocity profile and the
velocity of propagation is equal to the mean
velocity at the point of inflection. The physical
nature of this singularity will be discussed in a
later paper.

An inflection point in the velocity profile
is necessary if permanent waves (¢ real) without

singularity in the added vorticities shall be pos-
sible. In the following section we will examine
such solutions of equation (1, 2) more closely.

2. Permanent Waves as Solution of the
Perturbation Equation when the Velocity
Profile has a Point of Inflection.

We assume that U” is equal to zero at one
or more levels of our fluid, i.e. that the vorti-
city in the mean flow has a minimum or a
maximum value at these levels. Now, consider
the case that the velocity profile has only one
point of inflection, and that the vorticity U’
has numerically a minimum value at this point.

"

It is then easily seen that —U-7:»£>Othroughout

the fluid. Then the expression within the paren-
theses in equation (1,2) will be positive for all
values of z, and w can not be zero for two dif-
ferent values of z: z=0 and z = #. In this
case we have therefore no permanent wave so-
lutions.

In the following discussion of permanent
wave solutions we will therefore confine our
consideration to the case that U’ has numeri-
cally a maximum value where we have U” = 0.

We introduce in the equation (1, 2)

(2, 1) V = U —C,
and obtain
(2, 2) w”——(I; -+ kz)w = 0.

V is the mean velocity in a coordinate
system following the mean motion at the level
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where the velocity profile has a point of inflec-
tion. Since we have assumed ¢ real, V is a real
function of z. Now put

L L]
or
(2,3) V' — (flz) — k)Y =0
the equation (2, 2) takes the form
(2, 4) w" — f()w = 0.

For a given f(2) the two last equations deter-
mine the vertical velocity w in the disturbed
motion and the corresponding velocity profile V.
To get permanent wave solutions the function
f(z) must satisfy the requirements introduced
by the kinematic boundary conditions at the
horizontal rigid planes, i.e. that here w must be
equal to zero. As mentioned in the preceding
section f(z) must then in part of the interval
from z =0 to z =k be negative. Considering
the case that f(z) is a constant throughout, this
constant must necessarily be a negative constant,

(2, 5) f(Z) = —%

For this form of f(z) we obtain from equation
(2, 4) the solution

(2, 6) w = b sin zz,

satisfying the boundary conditions at the lower
boundary. b is a constant of integration assumed
to be small. To satisfy the boundary conditions
at the upper boundary we must have

9. 7 . mw

( Ed ) n = h ?

where » is an integer.

The basic velocity corresponding to the solu-
tion (2,6) is found from equation (2, 3) to be
given by

(2, 8) V=U—c=AsinV# + k=
+ BecosV % + k2.

Denoting the wavelength of the perma-
nent wave by A and the “wavelength” of the
velocity profile by L, we find the relation

(2, 9) = %V&z———‘ﬁ.

If n for all values of A is less than 1, we get
no permanent waves. This occurs when L > 2h,
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ie. when half the profile wave length is greater
than the height of the layer. If the maximum
(real) value of n is greater or equal to 1 but
less than 2, we get one wavelength. If for in-
instance L = 2h, i.e. half the profile w%welength
equals the height of the layer, we get one per-
manent wave with an infinitely large wavelength.
In general, if the maximum (real) value of n is
greater or equal to m but smaller than m 41
(m an integer), ie. if

(2, 10) mg%<m—{—1,

we get a discrete set of m permanent waves.
When the equality sign applies, one of the waves
will have an infinite wavelength. From the
equation (2,9) we see that the wavelength of
the permanent waves will always be greater
than the profile wavelength.

It has been shown elsewhere [1] (where re-
ferences to other authors are also given) that
the solutions (2, 6) and (2, 8) are also valid for
a finite value of 4. Choosing for convenience a
coordinate system such that we get stationary
motion, the equation for finite disturbances is
quite generally given by
(2, 11) V2P = — g(P),
expressing simply the fact that in a stationary
motion of a homogeneous and incompressible
fluid the vorticity must be constant along a
streamline (¥ is the stream function for the
total velocity, g(‘F) an arbitrary function of ).
If wee choose
(2,12) g(F) = (n? 4+ kB,
we again obtain our solutions (2, 6) and (2, 8),
now for finite values of 6. In this case the equa-
tion for stationary motion is linear even for
finite disturbances. Other choices of the function
f(2) than that given by equation (2, 5) will cor-
respond to linearization of other forms of g(*F)
than that given by equation (2, 12).

Above we have studied the permanent waves
occurring for a choice of f(z) leading to a har-
monic velocity profile. As a further illustration

we will choose
(2, 13) fz) = —e* + %

Introducing into equations (2, 3) and (2,4) we
obtain
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V4 [ — (o — )]V = 0,

(2, 14)
wll + (ezz — 1’2)?,0 = (),

Choosing y = ¢* as a new independent variable
it is easily seen that we get the solutions

V = BZ(,,e_ka)i_(e”),
w = bZ,(e?),

where Z, and Zs_i} are the cylinder functions
of order » and (»* — k?)} respectively, b an ar-
bitrary constant small of first order, and B an
arbitrary finite constant. For real values of »,
we get periodic bebaviour of w, and therefore hori-
zontal planes where the vertical velocity is zero.
With such horizontal planes as boundaries we
get permanent wave solutions. Again, as in the
case with a harmonic velocity profile, the per-
manent solutions can never consist of more than
a discrete set of waves for discrete values of
the wave number k. Confining our consideration
to the case in which the velocity profile is given
by cylinder functions of real order, we must have

(2, 15)

k2 <12,

which again gives a lower limit for the wave-
length. Also for the height of the layer equal
to about half the ‘“wavelength” of the con-
sidered cylinder function, we get only one per-
manent wave with an infinite wavelength, and
for more narrow layers, we get no permanent
waves. Thus, we obtain results similar to those
obtained for the harmonic profile.

3. Instability Waves for the Harmonic
Velocity Profile.

It has been suggested (see for instance
Fjertoft [2]) that the permanent waves repre-
sent transitions from stability to instability
waves in such a way that for a wave number
smaller than that corresponding to a permanent
wave, the waves’ will be instability waves. Since
it may be shown that disturbances of sufficiently
small wavelength will not release any instability
while it appears possible that sufficiently long
waves may be instability waves, the suggestion
is quite plausible. It leaves, however, one inter-
esting question open, namely: assume that it
applies to the shortest of a set of permanent
waves for a considered velocity profile, what
kind of transition is represented by the other
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permanent wave solutions? It has also one im-
portant consequence which seems to have been
overlooked, namely that profiles giving no per-
manent waves must represent o stable motion.
Thus, for instance, the profile drawn in the dia-
gram Fig. 1, with less than half a wavelength
of a cosine curve, should, according to what has
been deduced in the preceding section, represent
a definitely stable motion.

In order to make an attempt to decide how
the permanent wave solutions shall be inter-
preted, we will discuss in some detail the solu-
tions of our perturbation equation (1, 2) for the
harmonic velocity profile in the case of an in-
finite wavelength (k= 0). For infinite wave-
length the equation can be integrated expli-
citely, giving the well known solution

z

Cd
W == b(U——' C)j(lj—_zc)—é)

21

3, 1)

satisfying the boundary conditions at the lower
rigid surface, which is now, with later use in

mind, given by
z = 2.
If the upper rigid surface is given by
2 =2y, L6 24—2 =0,

we get the frequency equation
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4
2
/—( e =
%4
Since the integrand for real values of ¢ is
definitely positive (z,>2z), the frequency equa-
tion can never be satisfied for real values of c.
The permanent wave solutions with real ¢ will
not satisfy the frequency equation (3, 2), in spite
of the fact that they are solutions of equation
(1,2) and the boundary conditions. As solutions
of equation (3, 2), however, we will obtain com-
plex values of ¢ differing infinitesimally from
the value of ¢ corresponding to the permanent
wave solutions, and introducing these complex
values of ¢ into equation (3,1) we will in the
same approximation obtain the vertical velocity
corresponding to the permanent solutions.
Introducing now into the frequency equation

(3,2)

(3,3) U= Acosyz,
we obtain

. 5 dz

(3, 4) '/(A cos yz—c)2

2

We introduce a new variable y given by

(3, 5) Yy = cot Z;
With this variable we get the frequency

equation
Y2

(y* + L)dy
>0 J = =
where "

A +c\3
(3,7) e=\g1—"¢)"

the real value of a being chosen as positive.
From equation (3, 6) we find by integration

(3, 8) [(az— N2 L g2 1) x
Yo— 0
1 1
D]
{(az—— 1) In y—l—ﬂ +ala® +1) x
L —
1 1
(=i ara)] =0
It must here be remembered that the In-func-
tions are many-valued functions. The difference
between them is, however, uniquely determined
by taking account of the “path” of integration
from g, to y,, or how the angle ¢ given by
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(3, 9) Rein =Y T2
Yy—a
varies from y, to y,.

Consider only cases when gy, = oo and when
y1= 0. When y; = oo, the expression within the
last parantheses in equation (3, 8) may be put
equal to zero, so that the frequency equation
may be written

Yo + @ a(a2+l)< 1 1 )

I
nyz““_l_ a?—1 ?/2+“+y2_“
= 0.

When y; = 0, we obtain instead of this equation
the frequency equation

, a+y, a@+1)/ 1 1 )

(8, 10 1na—?/2+ @ —1 \yz"fa Yy — 0@
= 0.
The expression on the left hand side of
equation (3, 10) and of equation (3, 10’) will for
Yy, = oo and y,= 0, respectively, have the
value zero. This is also true for the correspond-
ing expression (the expression in equation (3, 10)

2
%i) having as derivative

(3, 10)

multiplied by —
the integrand
@ + 1

P — a2
in equation (3, 6). Introducing in this expression

(3, 11)

a = a, + ia,,
where a, and a; are real quantities, it becomes

(y?—a,’+a?)’—4a,a? + [40,0,(y"—a,” + 0.2)]0
[ —a +a?f + da/a)

(14 1)

Since both the real and the pure imaginary part
of the integral (for y = 0 and for y = o) starts
with the value zero for the lower limit, and it
must for the value y =y, again be zero, the
derivative must for both its real and imaginary
part be equal to zero for a value of y between
y=1y, and y =y, From the expression for its
pure imaginary part we then deduce

(3,12) a2 >apf,

or the real part of @ must be numerically greater
than its pure imaginary part.

Further if g, = oo, ie. y2, =0 (or 2n),
we must have

(3,13) Yo2 < a2 — af,
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if a solution shall exist when 0 <Cyz,<u, le.
for less than half a profile wavelength between
the rigid surfaces. In this interval

y>0.
For the next half profile wavelength

y<o0,
and so on.

If we had started with y, =0, le. yz; =

7C 7

5 (or > -+ 2nz:), we must have

(3, 14) Yt >a,’—a?,

if a solution shall exist for a height of the layer
less than half a profile wavelength. For this
starting value of y,
y <0,
for the first half profile wavelength from z,, and
y>0,
for the next half profile wavelength, and so on.
Splitting the terms in equation (3, 10) into
real and pure imaginary parts, we obtain the
two equations ;

2a.
(3, 15) Y2

arc tan M2 Tad —
(y2+a2+ad) (a2 +a)?—1]—4a.2[y,"—(a, +a?)]
(a2 —a2—1)*+4a,2a2][(y,>—a, +a ] + 40,207
(?/2 + (L,,.)Z—]— aiz _
Yo — a,)? + a? -
gy JyitaRvadlla v L cdu g vy o)
Vol(a e 1)t 4020 2]y~ o+ af) P+ dataf]

—2¢:Y2

iln

We see immediately that if a, and a, are
solutions of these equations, a, and — a; will also
be solutions. We may therefore assume

a; > 0.
Above we have chosen also
a, > 0.

Then we have
20y,

arc tan E/;{—?(arz _{_ai?) >0,
both for positive and negative values of y, and
whether we start from y, = oo or y; = 0.
Further we have

(¥ + @, +a2 >0, for y,>0,

(4, — a,)* 4 a* <0, for y, <O0.

Thus, since the denominator on the right hand
side of equations {3,15) is positive, we must
have:

In
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1. For y,> 0:

(. +a,® +ad)[(a? +a?)P—1]
- 4“72 [yzz - (G/,.2 + a’iz)] < O:

B.18) () (a2 4 et + a2 —1)
+ 4ai(y,® +a.® + o) <O0.
Assume:
a. a? + a2>1.

Then from the first of our relations it follows
Yt >a? +ad,

and from the second of our relations
Yt < el + ad

so that the assumption @2 -+ ¢2>1 leads to
contradictory results when y,> 0. From the
last of our relations we also see that a,® + a?
= 1 is impossible in this case.
Assume then:

b. a,? + a2 <l

Then the first of our relations may be satisfied
without any definite further requirements con-
cerning the quantities y,* and @,2+ a2 TFrom
the second relation, however, we get the con-
dition

Y2 >a,® +al

Thus, we must have -

(3,17) a2 +a2<l, a +a2<y,® for y,>0.

Comparing the last of these two relations
with the relation (3,13) which had to be ful-
filled in this case (y,>>0) when the layer had
a height less than half the profile wavelength,
we arrive at contradicting results. Hence we
have proved:

A linear flow of an inviscid fluid bounded by
rigid horizontal surfaces with a welocity profile
given by U = A cos yz (z = 0 the lower rigid sur-
face) is mot exponentially unstable for small per-
turbations of infinite wavelength when the height
of the layer is less than half the profile wave-
length.

2. For y,<0:

(2 + ar® +a?)[(@2 + a2? —1]
— 4020yt — (@} + a2)] >0,

18
B 18) [y (a2 +ad]la? + a2 —1]
+ 4a2(y: + a,% + a?) < 0.
Assume:
a. a,+a?>1.
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The first of our relations may then be fulfilled
without any further definite requirements. From
the second relation it follows as before
¥t <a,®+ el
Assume then:
b. al?4+al<<1.
From the first of our relations it follows
Yo' <a® +a?,
and from the second as before
y22 > a‘rz + azz,
two relations leading to contradictory results.
Thus we are left with the possibilities

(3,19 a2+4a?>1, a2 + a? >y, for y,<0.

Comparing the last of these two relations with
the relation (3, 14) which for y,< 0 had to be
valid when the layer had a height less than
half the profile wavelength, we again arrive at a
contradictory result, leading again to the result
emphasized above.

Since y changes sign when y, is changed from
oo to 0, the above results should have as a con-
sequence that if solutions representing instability
waves exist for a height A, given by
n+41

2
solutions representing instability waves should
also exist for heights %, satisfying the relation

L
?3

L>hy >% L (L is the profile wavelength),

a

excluding the cases when A, is equal to an inte-

gral number of é—/, when we get the permanent

waves.

From equation (3, 7) we find ¢, and ¢, (the
real and imaginary part of ¢ respectively
given by

_ (@2 + apP—1

or= A[l + (@& —a)P + 4a,’a”
4 4a.a; L
T+ (@2 —a2)]? + 4a,%a*

(3, 20)

¢;

Since a, and «; determined from the fre-
quency equation (3, 8), are independent of 4 (the
amplitude of the profile curve), we see that the
velocity of propagation and the amplification
factor (velocity of flight) are proportional to A.
Thus, the larger the variation in the mean ve-
locity with height, the larger the amplification
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of the wave. The layer where ¢, is equal to the
mean velocity will, however, be independent of 4.

Starting with 2z, = 0 at the lower rigid plane,
so that here we have a maximum positive velo-
city in the basic motion, we deduced above that

% +a2>1 when (2n — l)g <h< 2n—§—,

a,® 4+ a;2<<1 when 2n§ <h<(2n - 1)%,
where n is an integer equal to or larger than 1.
From the first of equations (3, 20) we then de-

duce

¢,>0 when (2n— 1)—5—<h < Qné,
(3,21)

¢, <<0 when 2n£2;—<h<(2n —}—1)%-

Thus, for » = 1 in the first relation we must
have a ¢, as shown in the diagram Fig. 2 (the

.
v
v
v
]
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h
t
'
t
'
T
'
i

Il

'
Il
§
1]
]
)

Fig. 2.

mean velocity is zero at the inflection points of
the profile curve). The same is the case for all
heights satisfying the first relation. For n = 1
in the second relation, we must have a ¢, as
shown in the diagram Fig. 3. The same is the
case for all heights satisfying the second relation.

Our above statements are true only if solu-
tions really exist. To prove the existence of
solutions we have solved the equation (3, 15) for
some positive and negative values of y,. The
results with a, and «; as functions of the height
of the layer with half the profile wavelength as
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a unit are given in the diagrams Fig. 4. The
points marked with a cross are the computed
points. The corresponding diagrams for ¢, and

Fig. 3.

¢; with A as unit are given in Fig.”5. We have
only given the results for layers of heights be-

tween 1-and 3 half profile wavelengths. From
a, &
77 11 .
0 10
9 ast
8 o8
7 ar
6 a6 +
5 o5 /
4 04 +
o +/
+
2 02 / ar
+ _______—+——"/
17 07 +
JT 13n 1291 8 7T 1877

2n
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the numerical computation it appeared, however,
that solutions existed for all higher layers.

Thus, excepting the cases when the height
of the layer is an integer in the units applied,
we obtain instability waves of infinite wave-
length for heights larger than half a profile
wavelength. For heights between 1 and 2 we
get a maximum instability with ¢, equal to
about 0.26 A for a height equal to about 1.4,
and for heights between 2 and 3 we get a max-
imum instability with ¢, equal to about 0.22 4
for a height equal to about 2.45.

Comparing what we have deduced above
with what we found about the existence of per-
manent solutions, excepting again the cases when
the height of the layer is aninteger, we see that
as soon as permanent solutions exist for a finite
value of the wavelength, the system will be
unstable for perturbations of infinite wavelength.
A reasonable conclusion should then be: the
permanent solution with the shortest wavelength
corresponds to a transition from stability (for
smaller wavelengths) to instability (for larger
wavelengths), whereas all other permanent solu-
tions do not correspond to such a transition,
giving instability waves for larger as well as for
smaller wavelengths. If no permanent solutions
exist, the flow is stable for all perturbations of
an inviscid fluid. Thus, a flow of an inviscid
fluid with o harmonic velocity profile and bounded
by parallel rigid walls less than half a profile
wavelength aport should be stable for all perturba-
ttons. This result should be valid also for hori-

a
Q17
a6
Q15

aw%f
0.13}
012}t
011}
10 0.70 jemwmsrma 4.
09 009} +
ar
08 o8} \
07 007} g \

0.6
05
04
03
02
o1

0.06
205 |
004
a03
0.02
0.a1 ¢

+

Nk

N

271w 287 3,

27 2137 2291 2sn

Fig. 4.
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23 006} + y.q,
az 004 \/ /+
or opeay, +.
;_—/ \
S 113 729/ 1398 15 171 187 4 213x 229x 2 257 a7 287 3o
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zontal motion of an inviscid rotating (homoge-
neous and incompressible) fluid, since we have
then permanent solutions for the same heights
and wavenumbers.

From the above discussion of a special case
it should be permissible to conclude: The existence
of an inflection point corresponding to a maximum
(numerically) value of the worticity in the velocity
profile, ts not a sufficient although it is a neces-

sary criterion for instability of a linear flow of

an inviscid fluid.

4. Some General Stability Theorems.

If we put ¢ =¢, 4 ic; and w = w, + ww,; in
equation (1, 2) and divide in real and imaginary
parts we obtain the two equations

2
QU—m2+cz+k)m
U”ci

4, 1) to—op =
, (U —a) )
oo~ (et b
U'c, _o.

EUES e

Multiplying the first of these equations by w,,
the second by w,, and subtracting, we obtain
an equation which may be written

Ullci

Ty re d Fun =0 ¢

(w'w; — ww,')" +

Integrating from 2z = 2, to z=2z, we obtain,
since w, and w; at these levels must disappear

DT”
(4:, 2) Cz/([]—_—_‘c—)z-——‘_,_62 (7,0172 + sz)dz = 0.

To have a c,; different from zero, i.e. instability
waves, we see that U” must change sign be-
tween the two rigid surfaces. Thus, if the velo-
city profile has no points of inflection, we get
no instability waves. This result is given by
Rayleigh [3].

Now, multiplying the first of equations (4, 1)
by w,, the second by w;, adding, and integrat-
ing from z =z, to 2 = z,, we obtain

2z

” " Y U”( U—CT)
' ﬁwrw,, + waw,")dz — / (mz Py + kz)

2 21

X (w,? + wdz = 0.

By partial integration, again utilizing the bound-
ary conditions, we get the relation

UNU —e¢,) + (U
* 3)/ (U—c¢,)?+¢c?

J— C'r)z + ]C2C 2

“(w2+w2)dz

(31
Za

= —/(wr’z—l— w;%)dz < 0.

Z1

Applying equation (4, 2) and removing on the
left-hand side only positive quantities, we obtain

(4, 4) /(U U’ ( w,? 4 w)dz < 0.

This relation must be valid for every inertia
system and therefore also for the system having

- U
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a velocity equal to the velocity at the level
where the velocity profile has a point of inflec-
tion. In this system of references

Uv >0,

when the vorticity is a minimum (numerically)
at the inflection point. We thus refind the result
that this flow is not exponentially unstable. If the
vorticity is a maximum (humerically) at one level

U'U <0,

in a reference system having a velocity equal
to the mean velocity at the level both at a
region below and above this level. The inequality
(4, 4) may be satisfied.

Corresponding results can be deduced for
horizontal perturbation of a rotating homoge-
neous and incompressible fluid. Disregarding the
kinematic effect of the curvature, we obtain the
equation (1, 2) for the meridional velocity com-
ponent with U” — @ substituted for U”. g is
the “variation of the Coriolis’ parameter”. In
this case we find that U"-—f§ must have a
maximum to obtain instability waves. This re-
sult has been deduced by Fjertoft [2]. Also the
case when the density varies (no external force)
is easily discussed by the above method.

From (4, 3) together with (4,2) we also
deduce

e 272 __ 9]2
]UU + kU chU(w,2+wi2)dz<O.

(U—c¢)? +c

Assuming a harmonic velocity profile
U =—2U,

this inequality may further by use of (4, 2) be
written

Z‘R kz a2 UZ
(4, 5) /(7(]?6)/2—;;}—2 (w2 +w2)dz < 0.

2

Thus we can have no instability waves for

(4, 6) k>y,

i.e. no instability waves with wavelengths shorter
than the wavelength of the wvelocity profile.

When the induced vorticity or the effect of
the variation of the Coriolis’ parameter is taken
into account we obtain exactly the same result
by now introducing the velocity profile U =
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A cos ~/z+7/%, U" = — y24 cos yz, i.e. again using
a system of references so that the velocity is
equal to zero where the maximum value of the
absolute vorticity occurs, i.e. where U" — 8 = 0.
It is interesting to note that y also gives the
upper limit for the wave numbers of permanent
stability waves.

If we multiply equation (1, 2) with (U —¢)
and divide it into real and imaginary parts, we
obtain

(U —e)(w,” — Fw,) + c)(w;" — Fw,)

(4,7) — U'w, =0,
(U —e)(w" — FPw,) —cw,” — kw,)
— U"w,; = 0.

Adding these equations after having multiplied
the first of them by w;, the second by — w,,
and integrating from z; to z, utilizing the bound-
ary conditions, we obtain

'/I{U,(wr,wi - wrwi’) + ci[wTIZ _l_ wilz
@ + 12w, +w2)]jdz = 0.

This equation may also be written

& U’ 12 r2 _[ﬂ_ 2 2 2)
/[<%~—Ci>(wr Tw; )+< 5 kci)(wr Wy )—sz

2
4
I

U

— | gt e 4 o —qwyiae,
2

where ¢ is an arbitrary function of z. If we

choose ¢ numerically equal to %, but everywhere

having the same sign as U’, i.e.

UI

(4, 8) 9=]‘(7,‘|

k,

the right-hand side of our equation will be posi-
tive, and we obtain

(4, 9)'/ {(L[,‘Zj—llcl — ci> [w, 2+ w2+ kX (w,+ wiz)]} dz> 0.

(21
Thus we must have

kci = 0; < ij’
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giving an absolute upper limit for ¢ the fre-
quency of flight”’ or the amplification factor o,.
In our case with the harmonic profile of
wavenumber y and amplitude 4, we obtain
vA

g; << 5

(4, 11)

Geof. Publ.

The upper limit increases with the wave number
of the profile, or decreases with increasing pro-
file wavelength.

The author wishes to express his thanks to
Mr. E. Riis and to Mr. E. Palm for valuable
suggestions.
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