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Summatry. The two first sections contain a discussion of the Reynolds stresses in an adia-
batic atmosphere. Triple correlations are cancelled compared with second order correlations, and

t d 11
7, = Q (U [w(e)w(t) ds + U, o o)) ds)

o o
is obtained. Here 7 denotes the Reynolds stress, Q mean density, U mean velocity, ¢ time, w
vertical velocity, v horizontal velocity perpendicular to the mean velocity and subscript z indi-
cates differentiation with respect to z. In section 3 the same way of reasoning is applied to tur-
bulent diffusion, and in section 4 a derivation of a formula for the velocity profile in a stratified
fluid is given. It is found that, approximately,

U,=Cz—1+5e

where C and ¢ are constants, and § = g — with @ denoting potential temperature.

0
e



2 ENOK PALM Vol. XX.

1. Introduction. In a discussion of turbulent motion we will of necessity be inte-
rested only in averaged quantities. Relations between these quantities are obtained
by averaging the equations at our disposal. It turns out, however, that if the equations
are non-linear, the relations connecting these quantities also contain terms which are
the average product of two or more eddy terms. An example of such terms is the
Reynolds terms introduced by averaging the Navier-Stokes equation.

To get a closed system of relations it is obviously necessary to find a way to express
the Reynolds terms by the quantities describing the mean field and empirical func-
tions. The most famous and successful attempts to solve this problem are those of
Prandtl and Taylor. The importance of their results in theoretical as well as in applied
hydrodynamics is well known to all who have been working in this field.

Their mode of procedure is similar in that both assume that the turbulent mixing
is a discontinuous process, and that a conservation law is valid. The main difference is
the choice of this conservation law: Prandtl’s theory is based on the validity of conser-
vation of momentum and Taylor’s on conservation of vorticity. In an incompressible
homogenous fluid with the mean (horizontal) velocity U only depending on the vertical
coordinate z, Prandtl’s approximation leads to

d
(1.1) n=0Q5 (KU).

Here 7 denotes the Reynolds stress, Q the mean density, K the eddy viscosity (an
empiric function which may be expressed by means of the mixing length and U) and
subscript z indicates differentiation with respect to the vertical coordinate. On the
other hand, Taylor obtains

(1.9) 1, =0QKU,

where K is the eddy viscosity, but not defined in the same way as above (throughout
this paper Taylor’s work on two-dimensional vorticity transfer is referred to and not
his work on three-dimensional transfer which seems to be too complex to have found
much application [1]). It is readily seen that only if the eddy viscosity is independent
of z, can the two expressions for 7, be identical. Obscrvations show that this is gene-
rally not the case. The question then arises which of the two theories gives the better
description of the phenomenon. Do we have any decisive facts from observations?

Let us look at two such results. Firstly, it is usually agreed that in the atmosphere
near the ground one may consider 7 as a constant for the purpose of determining the
velocity profile. Equation (1.2) would then lead to U, = constant whereas equation
(1.1) gives K U, = constant. It is well known that, in the case of turbulent motion
and no static stability, U is very well described by a logarithmic increase with height.
This law which may be obtained from equation (1.1) by choosing K ~ 2, is in contra-
diction to equation (1.2). Secondly, in a recent work by Fjeldstad [2] it is proved that

2

equation (1.2) applied to the theory of Ekman’s spiral in the ocean leads to %z{: =0
(R the magnitude of the horizontal velocity), in contradiction to what is often observed.
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These two examples speak clearly in favour of the momentum transfer theory. On
the other hand, it seems hard to understand why a theory based on conservation of
momentum should give a strikingly better result than a theory based on conservation
of vorticity. In Section 2 in this paper an expression for the Reynolds stresses will be
derived, without introducing discontinuous processes, which should be well fitted for
a discussion of the two hypothesis. The result which we end up with is neither equation
(1.1) nor equation (1.2). It will be shown that by assumptions which seem to be of a
much less restrictive nature than those applied by Prandtl and Taylor, 7, is found to

be given by
(1.3) 1,=Q (KU, + G, U).
Here K and G are defined by

(1.4) K = Iw(s)w(t) ds,

[1

(1.5) G :J@@ds

where a bar denotes a space average, w and v the components of the turbulent velocity
in the z and y direction, and ¢ (time) is assumed large. By an additional assumption
this expression is equal to Prandtl’s result.

In Section 3 the same way of reasoning will be applied to turbulent diffusion, and
in Section 4 the etfect of a non-homogenous stratification will be discussed.

2. The Reynolds stress in an adiabatic atmosphere. We introduce a system
of references x, 9, z with the z axis positive upwards. The mean velocity U is assumed
to have no component in the y and z direction and to be only a function of z. It seems
plausible to assume that friction does not play any dominant role in the diffusion
process giving rise to the Reynolds stress. Friction is therefore neglected in the equa-
tions henceforth. The equation of motion may than be written:

(21) (Q+ q) [ut + qu =+ uu, + vy, + wUz =+ wuz] =—p,— Px
(22) (Q+ q) [vt + va + uv, + I)Uy + wvz] = _—py

Here u, v, w are the components of the turbulent velocity, p the pressure fluctuations,
P the mean pressure, Q the mean density, ¢ the density fluctuation and g the accele-
ration of gravity. Subscripts ¢, x, 9, ¢ denote differentiation with respect to ¢ (time),

x, y and 2.
We will assume that the fluid is incompressible. The equation of continuity is then

(2.4) cu, 4+ o, +w, =0
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It will, below, also be assumed that mean quantities are independent of %, y and ¢. The
mean is to be interpreted as a space average, obtained by integration in the %, y plane.
Taking the average of equation (2.1) then gives

(2.5) Q ou, + Quwu, + qu, + Uqu, + quu, + qou, + Ugw + quwu, — — P,

Experience shows that in an atmosphere with adiabatic lapse rate the effect of the
density fluctuations may be neglected. In this section equation (2.5) is therefore
reduced to

(2.6) Qou, + Quu, = —
and we conclude that the Reynolds force 7, is given by
2.7) v = —Qum, — Quu,

According to the assumptions made above, equation (2.7) may also be written in
the form

d —
(2.8) T, = — QZZ uw
or
(2.9) 7, = Qut — Qun

where 5 and { are components of the vorticity and defined by
n=u —uw,

(2.10) (=0, —u,

We will take as a starting point equation (2.9) and try to express wn and v¢ by the
mean velocity field. Eliminating the pressure in equations (2.1) and (2.3) and neg-
lecting terms containing ¢ and Q, leads to

(21 1) N: + U(uxz - wxx) + Uz (ux + wz) + Uzzw + uu, + uu,, + vzuy + vuyz +

wit, + Wi, — W, — uw,, — 1w, — W, — w,w, — ww,, = 0.

The motion will be described below in the system of references where U = 0. Inte-
gration of equation (2.11) from ¢ = 0 to ¢ = ¢, multiplication with w and taking the
average then gives

(2.12) nw—mw+UI () + w())w(t)ds + U f (t)ds + 1 = 0.

Here 7, = (o), and I is an abbreviation for the terms consisting of triple correlations.
It seems reasonable to cancel these terms compared with the other terms in equation
(2.12), and this has in fact been done by Prandtl and Taylor. This simplification is
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adopted also in the present work. Furthermore, ¢ will be chosen so large that the term
n.w is small. Equation (2.12) then reduces to

(2.13) o = — U, [w(s)w(®)d UJ (s) + w,(s))w(t)ds.
By an analogous procedure we obtain from equations (2.1) and (2.2)
o t
(2.14) to = U, [w,(s)v(t)ds.

Introducing these expressions in equation (2.9) and making use of the assumptions
made above, 7, may be written

(2.15) 7, = Q[U, fw (H)ds + U, jw (tyds + U, fv (¢)ds].

Let us stop here for a moment to see what the expression for 7, would look like if
we were to adopt the approximations applied by Taylor and Prandtl. Taylor assumes
that the vorticity is conserved, which is true when the motion is two-dimentional.
With this simplification equation (2.15) reduces to

(2.16) 7,=QU, j s)ew(t)ds

On the other hand, Prandt] assumes that the momentum is conserved, which is true
when the pressure effect can be neglected. Cancelling p, + P, in equation (2.1) and
following the same line of reasoning as above,

(2.17) 7, = Qd—dz (U, [w(s)w(t)ds)

is found. We notice that these two formulas for 7, are in accordance with equations
(1.1) and (1.2), and that K here is defined by a continuous process.

Let us return to equation (2.15). From equations (2.2) and (2.3), neglecting triple
correlations and terms containing ¢, we obtain

(2.18) w,(s)o(t) = w,(0)v(t) — v,(0)u(t) + v,(s)o(?) + U, _fv L(a) da.

Since ¢ is large, the two first terms on the right hand side will be cancelled. Integration
of this equation then gives

(2.19) [w,(s)o(t)ds = [o,(s)o(t)ds + U, [ ds [o(t)v,(a)da.

Correspondingly,
(2.20) w,(10(5) = ,{0)0(s) + 0,()0(s) — 2,0)0(5) + U, [ os)v,(a)da,
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and by integration

(2.21) Jw,(Bp(s5)ds = [w,(0)o(s)ds + [v,()o(s)ds — [ v.(0)o(s)ds
since

fds fv(s)vx(a)da = 0.
Equation (2.21) may also, be means of equation (2.19) and the assumption of statio-
nariness be written

¢ s

(2.22) Jw,(yo(s)ds = [o,(t)o(s)ds + U, [ds [o(t)o,(a)da.

]

Furthermore, changing the order of integration leads to

(2.23) fds f da = fz' (t — s)ds.
Making use of these results, equation (2.15) takes the form
(2.24) 7, = Q[U, _fw ds—f—Uf v,(s)o(t)ds +

13 12

4+ U, [ o(s)v,(t)ds 4+ 2U2 [ o(t)v,(s) (¢ — s)ds].

0
t

This expression may be further simplified by introducing the derivative of _[ o(£)ds

with respect to 2. Since U is function of z, v is referred to a system of references which
moves with a velocity depending on z. Taking account of this,

t

(2.25) dé Jols)o()ds = [ v v,(s)o(2)ds —|—_[ z\t ds U, J v, (s)o(t) (t—s)ds

o

is obtained. Equation (2.24) may then be written

i 4 t

(2.26) v, = Q[U, [ w)w(t)ds + U, ;- f (t)ds + 3Uzj $)o(f) (t—s)ds].

0 0

The integrands in the two first terms on the right hand side in this equation ob-
viously have their largest value in s = ¢, and decrease for increasing ¢ — s values. The
integrand in the third term, however, is zero of at least second order when s—>¢. It is
difficult to draw any conclusions from the equations of motion and the assumptions
adopted here about-the behaviour of p,(sjs(¢) for arbitrary values of ¢ —s. On the
other hand, it seems likely that the coefficient of correlation between v (s) and o(f) is
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very small, and the last term in the equation above will be cancelled. Equation (2.26)
then reduces to
¢

¢

e d
(2.27) v, = Q[U, [w(s)w(t)ds + U, iz [o(s)o(2)ds].

]

* It should be remembered that ¢ is assumed large so that the right hand side is in fact

independent of time.
The formula just obtained for 7, (2.27), should be compared with formulas (1.1)
and (1.2) (or (2.16) and (2.17)). It is noticed that if

L d

d
(2.28) Iz gfv(s)v(t)ds = Iz arw(s)w(t)ds,

the formula derived here is identical with Prandtl’s result. We may at once conclude
that very close to a fixed plane (or the ground) equation (2.28) cannot be fulfilled.
This follows from the fact that approaching the plane, » tends towards zero as 2?
whereas » only as z. On the other hand, observations seem to indicate that a little
above the ground (plane) we have to a fair approximation

(2.29) ?=w? 4
where ¢ is independent of z (for observations in the atmosphere see the tables in [3]

and [4]). If this is correct, we are led to consider equation (2.28) as approximately
true, and we obtain

d
(2.30) w=Q - (KU)
with

(2.31) K = [ w(s)w(t)ds.

0 —

Near the ground ¢ may be considered as a constant, and equation (2.30) gives

C
(2.32) U, = %

where C is a constant. Let the origin (z = 0) be placed just over the ground but still
in the region of full turbulence. We develop K in a Taylor series and retain the two
first terms

(2.33) K=a-t bz

Equation (2.32) then leads to the logarithmic prolile with a (which, usually, may be
neglected) as zero displacement.
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3. Turbulent diffusion. In this section the same way of reasoning as above will
be applied to turbulent diffusion. We neglect molecular diffusion. Let 6 + @ (6§ the
fluctuation, @ the mean) denote a quantity which is conserved. If we assume that @ is
only a function of z and ¢, we then have

(3.1) 0, + 0, + ub, + v0, + wb, 4 w6, =0,

where the motion is referred to a system of references with the mean velocity zero.
Taking the average of the equation gives

(3.2) 0, + uf, + 00, + wh, = 0,

or, by assuming homogenity in the x and y direction and applying the equation of
continuity

0 —
(3.3) 0, + 5, bw=0.

To find an expression for §w equation (3.1) is integrated with respect to ¢, multiplied
by w, and the average is taken. Neglecting triple correlations we obtain

(3.4) 6w = 6,1 — _[@ o(s)w(t)ds,

where 6, = 0(0). The term 6, will be cancelled either by assuming 6, = 0 or ¢ large.
Equation (3.3) then takes the form

a /! —
(3.5) 6, — % | @.(w(s)w(t)ds = 0,

o

which is an integro-differential equation in @ if w(s)w(f) is considered as known.
w(s)w(t) obv1ous1y has its largest value for s = ¢. If it is correct that w(s)w(¢) decays
rapidly for increasing ¢ — s values, whereas the variation of @,(s) is small, equation
(3.5) may approximately be written ‘

J
(3.6) 6, = ;. (K6,).

K is here a diffusion coefficient and is defined by (2.31).

It should be noted that £ is formally analoguous to the diffusion coefficient intro-
duced by Taylor [5] from a statistical approach to the problem and which is also
studied by Sutton [6] and Batchelor [7]. The difference is that in the papers referred
to the diffusion coefficient is defined in Langrangian coordinates whereas it is here
defined in an Eulerian frame of references where the mean velocity is zero.
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4. The velocity profile in a stratified fluid*. A natural extension of the discussion
of the Reynolds stress given in Section 2 is obtained by taking into account the effect
of density stratification. It will soon be clear that a density stratification complicates
the equations considerably, and to obtain expressions which we can handle it will be
necessary to make assumptions in addition to those made above.

'The Reynolds force is according to equation (2.5) given by

(4.1) 7, = — Quou, — Q wu, — qu, — U,qw,

neglecting triple correlations. In this model Q and U are functions of ¢ and we will
get integrals of the type

[Q.(5) w(s)w(t)ds, [ Ul(s) w(s)w(t)ds,

i. e. Q, and U, are parts of the integrands. If w(s)w(t) (or the equivalent) decays
rapidly with increasing ¢ — s values, Q, and U, (or the equivalent) may with a good
approximation be taken outside the integral. This simplification will be adopted
below.

The fluid will be assumed to be incompressible so that

(4.2) u, + v, +w, =0
and
(43) qt + Qt + uqx + vqy + wgz + sz - 0

The first term on the right side of equation (4.1) will now take the same form as
in Section 2 so that

(4.4) — Quu, = QU, [ w,(s)o(t)ds

The second term is in the same way found to be

(4.5) — Quu, = QU, f w(s)w(t)ds + QU. f o(s)w,()ds +
+UQI ds+Quw+gfq,, Jw(t)ds

The two last terms in equation (4.1) may be rewritten by means of the equation of
continuity (4.3). We find

(4.6) —qw = Q, [ w(s)w(t)ds

o

* This section has been changed during the proof reading of the manuscript (September 1957).
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and
1

(4.7) —q—,ut = QZJ: w(s)u,(t)ds = sz wy(Hu(t)ds = — Q uw.

4]

In the last equation it is assumed that the turbulence is stationary.
Introducing the expressidns above, equation (4.1) takes the form

(4.8) v, = QU, _[ dx—i—QUf dx—l— QUI w,($)o(t)ds +

2UQJw ds—i—gqu w(t)ds.

We notice that this equation contains two new terms compared with equation (2.15),
namely ’

2 U0, [ w(s)w(t)ds, g g.(s)w(t)ds.

These terms are due to the kinematical and dynamical effect of the density stratifi-
cation, respectively. The last expression may, by applying the equation of continuity
and the assumptions made above, be written

t ¢ &

(4.9) ¢ a.Lywt)ds = —g Q. [ s w,(a)w(t)da =

—g@f%mmna—ga

The integral on the right side is of the same kind as the integral we cancelled in Section
2 (see the remarks in connection with formula (2.26)), and will also be cancelled here.
With this simplification equation (4.8) may be written

(4.10) 7,=QKU, + QLU +20.KU.~
where K is defined by equation (2.31) and

t 12
(4.11) L = [ o(s)w,(t)ds + [ w,(s)v(t)ds.
Applying equations (2.2) and (2.3), neglecting triple correlations and assuming ¢
large, leads to :

i

(4.12) QI w,(5)o(t Q_[ Yo(t)ds + Q, f —

7]

t s 2

¢[ ds] g (a)o(t)da + QU, [ ds | v,(a)o(t)da.

/] 4]
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The last integral in this equation has been cancelled in Section 2, and will also be
cancelled here. Correspondingly, making use of the fact that v(s)w,(¢) is, due to the
assumption of stationarity, a function only of t —s,

(4.13) Qj Qj o(—0)ds = Q[ v,(— s)o(— 1)ds

+ Qf —tds—g_[ dsf g,(a)o(— t)da.

Introducing the equation of contlnulty, changing the order of integration and applying
the assumption of stationarity then gives

@14 L =QKU.+ (0 fv (Bds + 4 Q.E" + g 0.M) U,
Here
. ¢
(4.15) K’ = % (K + [ o(s)o(t)ds)
and
1+t
—_ 2
(4.16) M= 2_ft T (u) udu
where T(u) is defined by
(4.17) _ T(t — B) = w,(B)o(t).
If the non-adiabatic stratification is not too strong,
(4.18) w,(5)o(t) ~ v,(s)o(t),

and we infer that M is positive.
For the purpose of determining the velocity profile, 7, may in equation (4.14) be
put equal to zero. It will, as in Section 2, be assumed that

(4.19 it )t)d—ilf
.19) Z‘;[zf)(sv( s= &
and that

K’
(4.20) T =

where y is a constant. We then obtain

Q. | o.M

K,
(4.21) Uzz+(f+.4-éy+gQK)Uz=0

i
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By integration, assuming %: independent of height,

Q. Q.
4.22 U=CK lexp(—4—F yz—g ~ N
(4.22) : p(—45 =8N
where C denotes an arbitrary constant and
M
N= If dz.

As in the neutral case we assume that
(4.23) K=a-+ bz

where a (which is a small quantity) and b are positive constants. In order to get some
information about J, we notice that, by making use of (4.18) together with the other
assumptions introduced above,

(4.24) _TtT(u)du ~ b,

i. e. approximately independent of height. Comparing (4.24) with the expression for
M(4.16) we are led to the conclusion that M increases somewhat with height since,
apparently, bigger eddies contribute relatively more to M than to the integral (4.24).
We will, however, as a first approximation let M be independent of z. The variation
with height may then be introduced in the final result.

Furthermore, it turns out that the influence of the kinematical effect of the density
variation on the velocity profile is small. With these simplifications (4.22) may be
written

(4.25) U,=Ca + bz) —1+58
where
Q.
S - - - >
‘e
and ¢ is a positive quantity and defined by
M
(4.26) &=

The velocity profile is only sensibly atfected by the non-adiabatic stratification if this
is strong. In these cases

o0 6.
“—gQNg@

(4.27)

with @ denoting the potential temperature. Equation (4.25) is the final expression
for the velocity profile with S defined by (4.27).
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Final remarks. It should be noted that (4.25) is essentially the same formula as
found by Deacon [8] from an extensive set of observations. In the same paper, Deacon
suggests that & should increase somewhat with height, rather than being a constant,
which is in good agreement with what is pointed out above.

It is believed that the assumptions made above are fairly good if the non-adiabatic
stratification is not too strong. In this case new effects enter which are not taken in
account here.

Acknowledgement. The author wishes to thank Professor E. Howanp for very
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