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Summary. In Chapter I of this paper two-dimensional atmospheric waves behind a moun-
tain ridge are discussed. Section 1 contains a non-mathematical description of the creation of lee
waves. In-Section 2, 3 and 4 models with a velocity and stability distribution which approximate
the observed data, are discussed. It has been possible in two cases to compare the computed
wave lengths with those observed in the Sierra Nevada region and in both cases good agreement
is found. The streamline and pressure field due to the resonance waves have been drawn for one
of these.

Chapter II contains a discussion of three-dimensional waves generated by a mountain top.
The basic velocity is assumed to increase linearly with height in the troposphere and to be con-
stant in the stratosphere. The stability is assumed constant in the troposphere as well as in the
stratosphere. Isolines for the vertical velocity have been computed and drawn in a numer-cal
example.

TWO-DIMENSIONAL MOUNTAIN WAVES

1. Introduction. The aim of Chapter I of this paper is to give theoretical discus-
sion of the waves in the atmosphere set up by a two-dimensional mountain, and to
compare the theoretical results with observations. This problem of two-dimensional
waves produced by a corrugated bottom, is an old one and has already been attacked
by Kelvin [1] and Rayleigh [2]. They studied surface waves on an incompressible,
non-viscous and homogeneous fluid which had a finite depth but an infinite extent in
the horizontal direction. Later, models more similar to the atmosphere have been
studied by several writers. We will, however, begin with a discussion of surface waves,
since, as will be shown, an understanding of these waves will be of great importance
for the understanding of the more complicated lee waves in the atmosphere. Succes-
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sively, more realistic models will be introduced and compared with observations.
Throughout the paper the effect of the rotation of the earth will be neglected, since
typical wave lengths are only of the order of 5—25 km, and the equations will be
linearized.

Surface waves. Before mentioning the mathematical solution we give a short physical
discussion of the creation of lee waves, similar to that given in the theory of ship waves
[3]. Let us assume for the sake of simplicity that the bottom corrugation is a single
isolated obstacle. Further, let the fluid be set into motion at time ¢ equal to zero and
(for simplicity) quickly obtain its constant mean velocity U. Every moment the ob-
stacle produces an impulse on the free surface, vertically above the obstacle consisting
of all possible wave lengths. We divide the entire wave spectrum into an infinite number
of small groups where each group is represented by its mean wave length. The energy
of such a small group of wave lengths is propagated with the group velocity corre-
sponding to the mean wave length. The waves, once created, will behave indepen-
dently of the obstacle and are therefore free waves, i. e. waves fulfilling the two boun-
dary conditions: pressure constant along the free surface and the vertical velocity
zero at the bottom. The effect at a distance x downstream from the obstacle at a time ¢
due to the impulse produced at time v will then be effect of the small group of waves
characterized by the wave number £ defined by ’

do
x:(U—E) (t—1) x << Ult—r1)
(1.1)
do
x= U+ E) (t— 1) x> Ult—r1).
d .
Here o is the frequency of the waves generated and thus 2% is the group velocity. This

wave determined by equation (1.1), will in the vicinity of x be a small fraction of a
sine wave travelling with the corresponding phase velocity.

The total deformation at x at time ¢ is obtained by adding all waves produced at
7-values ranging from v = 0 to 7 = ¢. Most of these waves will neitralize each other,
approximately, having different phases. The main contribution to the deformation is
due to the groups of waves, if any, the phases of which at x are independent of a change
in 7, or, since the deformation due to each wave is a functionof t — 7, of a change in .
These groups of waves are those travelling with a phase velocity equal to -U. Thus we
obtain the following picture of the creation of waves behind an obstacle: The free
waves with a phase velocity equal to -U play a dominant role. These waves are usually
called resonance waves. Before the groups advancing with the group velocities of the
resonance waves have arrived, the deformation consists of waves approximately neutra-
lizing each other. After the first resonance group has passed, the deformation is app-
roximately a (stationary) sine wave with a wave length equal to the wave length of
the resonance wave. When the second resonance group has passed, the deformation
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will approximately be two sine waves, and so on. When no resonance wave exists, the
stationary solution will be a surface elevation which is very small beyond a certain
distance from the seat of disiurbance. Further, if the group velocity is less than the
phase velocity, the corresponding wave will be located downstream. If the group
velocity is greater than the phase velocity, the wave will be located upstream.

For surface waves the group velocity is always less than the corresponding phase
velocity. The maximum phase velocity is |/gh where g is the acceleration of gravity
and £ the depth of the fluid. Thus, if U > Vg/z, no resonance wave will exist and there-
fore no lee wave. On the other hand, if U < Vﬁ we will get just one resonance wave
and therefore one wave in the lee of the obstacle.

Assuming the motion to be stationary, it is easily proved mathematically that it is
precisely the existence or non-existence of a stationary free wave which determines
whether the solution will have the form of a wave, or just decay rapidly with-the
distance from the obstacle. .

Let us assume that the vertical velocity w is

(1.2) w = g(z)e™.

Here x and z are the horizontal and the vertical coordinates, £ the wave number and
g(z) a function which is determined by a second order equation (since we have no
friction) and the boundary conditions. g(z) may therefore be written

(1.3) 8(2) = c181(2) + €282(2)

where g,(z) and g,(z) are independent solutions of the linear differential equation and
¢, and ¢, arbitrary constants. The upper boundary condition will in mountain wave
problems be a homogenous one so that we may write

(1.4) 2(z) = ¢585(2)
where g4(z) is a linear combination of g;(z) and g,(z), and ¢; is an arbitrary constant.
If the corrugation of the bottom is given by

(1.5) ey £ = pe't,
we get
(1.6) w = U jkye™ z=h,

with U, denoting the velocity of the stream at the bottom (z = k,). w is therefore

U, ik ygs (2)
1.7 — e Te R
(-7 W=

To find the motion set up by an arbitrary bottom corrugation we integrace over k.
We notice that we will get two different cases, according to whether g(h,) which is a
function of £, is zero for any k-value or not. If gy(h,) is zero for a certain value of £,
i. e. a stationary free wave exists with that value of £, the integral will have a singu-
larity and the main contribution to the integral will be due to this. In this case we

X
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get a sine wave, ecither upstream or downstrcam. On the other hand, if g5(%;) is not
zero for any value of £, the stationary solution will not be a wave solution.

The arguments and results above are of course not restricted to surface waves,
we investigate below some other models applying the results just obtained.

The model with constant static stability and no wind shear. In this section we discuss the
possibility of getting lee waves in a two-dimensional model with an incompressible
fluid having a constant stability and no wind shear. This model has been studied
mathematically by Lyra [4] and Queney [5] among others.

d
In an incompressible fluid the stability is given b & 49 where g is the acceleration
P y1sg y Q &z

of gravity and Q the density in the undisturbed state. Since the stability is assumed
constant, we have

(1.8) Q=Q. b
where f8 is a (positive) constant. Expression (1.8) for the density will be used as an
approximation also when the fluid is compressible. Introducing

(1.9) w— " w(z)e",
we have
o [(Bg B
(1.10 o+ (w — k2)w 0.

For a free wave w must be equal to zero at the ground (z = 4,). Further, when z- o,
the wave energy must be finite. The general solution of equation (1.10) is

(1.11 a) w = ¢yexp — |/k2 — B2z + coexp VK2 — k22 k>k,
(1.11 b) @ = ¢,C08 sza — k%2 + cp8in Vﬁ——kgz _ k<k,
where
pg B
2 _ Ps P
R = Uz 4

and ¢; and ¢, are arbitrary constants. The solution satisfying the boundary condition
on the ground is

(1.12 a) ® = ¢, sinh |2 — k2, (z — h,) k> k,
(1.12 B) w = cysin /K2, — &% (g — ) k<k,
where ¢, is an arbitrary constant. The solution (1.12 a) does not fulfil the boundary
condition at infinity and must be rejected. The solution (1.12 b) however, fulfils the

condition for every £ less than k,. We therefore obtain the following result: When
k > k, no free waves exist. When % << , a free wave exists for every k. Behind the

——— e =+ e
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mountain we will get the interaction of all possible waves with wave numbers less than

2
k,, and the result will be a non-periodical motion which decays downstream. If (ﬁ]‘% < %

no free waves exist for any k-value. For atmospherical values of the stability this ine-
quality corresponds to U greater than about 200 m sec™™.

On the mathematical solution in the twe models discussed above. — As mentioned earlier
a mathematical discussion of surface waves set up by a bottom corrugation was given
by Kelvin and Rayleigh, and a similar discussion for the other model studied above,
by Lyra and Queney. All of them assume that the motion is stationary, and they
therefore meet with the same difficulty: the solution is not unique if a free wave
exists. In the problem of surface waves the integrand in the Fourier integral will have
a pole on the real axis for the wave number corresponding to the free wave (analogues
to expression (1.7) above); in the Lyra-Queney model the singularity will be a branch
point for k = £,. This difficulty is due to the fact that in the stationary problem all
possible kinds of initidl values are introduced.

Kelvin solved this difficulty by interpreting the Fourier integral as meaning the
principle value of the integral, and adding free waves so that he got only a wave
downstream. Rayleigh avoided the singularity by introducing a small, artificial fric-
tion proportional to the velocity and, in the end result, taking the coefficient of friction
as equal to zero. Lyra and Queney have in their work adopted both methods.

None of these methods is satisfying. It should be a result of the theory that the
waves only exist downstream and not an assumption. And, on the other hand, why
should it be necessary to introduce friction in this problem? It could seem as if friction
were the effect giving lee waves. This is of course not true. The physical reasoning
above gave lee waves (since the group velocity was less than the phase velocity) without
introducing any kind of friction.

The difficulty above is due to the assumption that the motion is stationary. As
pointed out by Hgiland [6] the solution is unique if the problem is attacked as an
initial value problem. When ¢ increases the initial value solution approaches the statio-
nary solution. Heiland proved this for surface waves. Wurtele [7] and Palm [8] inde-
pendently proved that the same was true in the model discussed by Lyra and Queney.
In both works an estimate was given on the time taken before the motion was practi-
cally stationary (without friction). The result was about a couple of hours.

In the Lyra-Queney model we also mee. with the problem of the form of the
boundary condition to be applied at infinity. The boundary condition used is that the
perturbation energy must be finite (for one Fourier component). But is that the correct
one? In the initial value problem this boundary condition is superfluous. The motion
is at all times given uniquely by the initial velocity and acceleration field and the
boundary condition at the ground.

The connection between the initial value solution and the stationary solution may
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be described as follows. We will discuss one Fourier component, i. e. the bottom corru-
gation is of sinusoidal form. As system of reference we choose that in which the mean
flow is zero. At ¢ = 0 the mountain is set in motion in such a fashion that it very
quickly obtains its constant velocity -U, The disturbance, propagating vertically,

reaches after a time ¢ = é (s the velocity of sound) the height z. What will then happen

at that height will depend on whether £ is greater or less than £,. If £ < £, a resonance
wave exists, and only after the resonance group has passed, will the motion approxi-
mately have attained its permanent value. In the system of references where the
mountain is not moving, the solution will then be approximately equal to the statio-
nary solution obtained by Queney, the approximation being ever better when £ incre-
ases. When & > k, no resonance wave exists. In this case it is impossible by pure
reasoning to give a time beyond which the stationary solution may be said to be a
good approximation. The case £ > &, corresponds, tor surface waves, to U > Vgh, and
k < k, corresponds to U < l/;ﬁ

It should also be mentioned that, as shown by Eliassen and Palm, the stationary
solution is made unique by requiring the mountain to be the only energy source [9].

Comparison with observations. — Let us now see how the result obtained in the Lyra—
Queney model fits the observations. The most striking feature in the observations
made behind Sierra Nevada ([10], see also Fig. 4 in the present paper) is that the
maximum wave amplitude is located just above the mountain with the amplitude
decreasing upwards, and that the wave is repeated downstream. These features agree
poorly with the result from the Lyra—Queney model. To get better correspondence
between the theory and the observations, effective alterations must be made in the
model to obtain resonance waves for distinct £ values. As first pointed out by Scorer
[11] such effective alterations are a variation in the stability and in the wind profile
with height.

In the remainder of this paper we discuss resonance waves in models which app-
roximate the conditions in the atmosphere. It will be assumed that the motion is
stationary, and that the waves are located downstream.

2. A model with constant wind shear and stability in the troposphere and
constant wind and stability in the stratosphere. A better approximation to the
atmosphere than the Lyra—Queney model is a model with constant wind shear and
stability below the tropopause and constant wind and stability above the tropopause.
This model has been briefly discussed by Wurtele [12].

Assuming the fluid incompressible, the differential equation valid in both layers,
may be written
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dz Uz
(2.1) 7;‘—; (f]ggﬂxz + ﬁU)w =0
where
(2.2) 2l __.f;j; L3

For an compressible atmosphere equation (2.1) is not more valid. Good approxi-
mation for the equation determining w is, however, as usual obtained by replacing in

equation (2.1) fg with the actual stability §' = g—@d%l)where y, is the dry adiabatic
e Uz .
lapse rate, y the actual lapse rate and T the mean temperature. The term % is for

atmospheric conditions small compared with the stability term and will here be can-
celled in the troposphere as well as in the stratosphere. By introducing this, equation
(2.1) becomes

- d®w S

(2.3) | — 4 (*— ;ﬂ) w = 0.

dz? Uz
According to the discussion above the condition for getting a wave in the lee of the
mountain is the existence of a stationary free wave. The free wave must satisfy the
following boundary conditions: The vertical velocity must vanish on the ground, the
kinetic energy must be finite at infinity and the pressure and the vertical velocity
must be the same on both sides of the tropopause. Since the boundary conditions are
homogeneous we have only three constants at our disposal and we should expect to
obtain an equation in k& which determines whether or not any resonance wave exists.

However, when £ < V SU,~2 __% = k, (U, the velocity in the stratosphere) the solu-

tion of equation (2.3) in the stratosphere is a sine and a cosine function so that both
solutions satisfy the boundary condition at infinity. Thus we see that when k£ < k,, a
resonance wave will exist for all wave numbers, in accordance with our previous result.
All these waves will create a resultant motion which decays quite rapidly downstream.
If discrete resonance waves exist, £ must be greater than £,. The solution of equation
(2.3) in the stratosphere may then be written

(2.4) w =¥
where ;
(2.5) A=V —i,

$ . . . . .
I the factor i %% in equation (2.3) is negative also in the troposphere, the curvature

will have the same sign for all z and @ cannot be zero on the ground. In order to get

2

w . N
a free wave Egmust change sign and therefore 72 must be greater below the tropo-
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pause than above. A possible way of satisfying this requirement is that the stability
is greater in the troposphere than in the stratosphere. However, this is not in agreement
with observations. The other possibility is that U is sufficient small below the tropo-
pause, i. e. increases with height in the troposphere, and this is also what is usually
observed. We arrive at the following conclusion: Since the stability is greater in the
stratosphere than in the troposphere, a positive wind shear is necessary in the tropos-
phere in order to get lee waves. If the stability and wind shear in the troposphere are
small, no lee waves will exist. If these two parameters are large enough, at least one
lee wave will exist with a wave-length less than

(2.6) L = 27” — 97 (SU,~% — »2)—+.

a

We notice that the smaller the wind shear and the stability, the closer will the actual
wave length be to L,.
In order to obtain more quantitative results we will discuss this model mathemati-
cally. Equation (2.3) may in the troposphere be written.
d*w S
o — y®) =
P 4 ( 2w =0,

a2z2

(2.7)

choosing origin at the level where U = 0 and with « denoting the wind shear. In-
troducing

(2.8) o = 2w,
and
; S 1
(2.9) e = &—2 —
we obtain
2 PN 2
(2.10) o | 1 do ”__x2];= 0.
2 zdz 12

Equation (2.10) is a Bessel equation having as solutions Bessel functions of imaginary
order and imaginary argument. The two real solutions may be called F,(xz) and
G, (»z) (discussed and tabulated in [13]), so that in the troposphere

(2.11) o = ¢,28F, (%2) + ¢,2:G,(%2)
with ¢; and ¢, denoting arbitrary constants. In the stratosphere the solution is
(2.12) w = cge~H k> k,

where ¢; is an arbitrary constant and 4 is defined by equation (2.5).
At the tropopause the pressure and the vertical velocity must be the same on both
sides. This leads to the conditions
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Aw =10

(2.13) z=nh
dw

U, ATZ —wa =10
where A denotes the difference between the value just below and just above the..
tropopause, and z = k is the level of the tropopause. These equations together with
the boundary condition at the ground (z = 4,) give the following equation for the
wave number of the resonance wave

G, (xh,) [(lh —%) F, (xh) + kE,’ (xh)] =
(2.14) )
F, (xh,) [(Zﬁ —%) G, (xh) + kG, (xh)].

Here F,’ (xh) and G,’ (xh) are the derivatives of F, (xh) and G, (»h) with respect to the
argument. Equation (2.14) may be solved graphically. This has been done for a selec-
tion of values of the parameters y, U, and Uy, where U, denotes the velocity just above
the mountain top level. It is assumed that the stratosphere is isothermal, that the
distance from the top of the mountain to the tropopause is 7 km and that the top of
the mountain is 1 km above the ground (z = 4,). The foilowing results are then
obtained:

Values of the parameters: Results:

(1) y =0510"2°Cm~1 L,=14.7km
U, = 50 m sec™? L, = 13.3km
Uy =15msec™?

(2) y=0510"2°Cm~! L,=11.8km
U, =40 msec™! L,=11.5km
Uy =15 msec™

(3) y =0.510"2°Cm-! L, = 10.3 km
U, = 35msec™? L, does not exist

U, =15msec?

(4) y=0.7102°Cm~? L, = 14.7km
U, = 50 m sec™! L, = 147 km
U, = 15 msec

(5) y =0.710-2°Cm~! L, = 10.3 km
U, =35 msec™ L, = 10.0 km

U, =10msec™?
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(6) y=107102°Cm—! L =8.8km
Uy= 10 msec? L, = 8.8km.
U= 30 m sec™!

Here L, denotes the wave length of the resonance wave, (the lee wave). These
results are in agreement with the qualitative results obtained above. We notice that
in case 3 no resonance wave exists because the shear is too small. In case 4 and 6,
L, ~ L, indicating that a slight decrease in the stability or the wind shear will result
in no lee wave.

The result may be compared with the observations made behind Sierra Nevada
on (a) December 18 1951 [10] and (b) January 30 1952 (see Fig. 6). In the first case,
(a), the observed wind and stability were the same as those chosen in case (4) above,
and the observed wave length was about 15 km. In the second case, (b), the observed
wind and stability were those chosen in case (6), and the observed wave length was
about 8 km.

In both cases 4 and 6, for which comparison with observations are available, the
agreement is very good — so good that it must be accidental. It should be pointed
out that in both cases a slight decrease in the stability will result in disappearance of
the lee wave. For example, a choice of y = 0,68 10-2°C'm.~! gives no resonance
wave in either. The observations show that when lee waves occur, the stability usually
cannot be considered as constant in the troposphere. The typical situation is charac-
terized by a thin layer of strong stability in the middle, bounded by layers of weak
stability above and below. We therefore are led to consider a model with variations
in the stability below the tropopause. It should perhaps be pointed out, however,
that a layer with strong stability is by no means necessary for lee waves to occur.

3. A model with constant wind shear and layers with constant stability
in the troposphere, and constant wind and stability in the stratosphere. — The
model we are going to discuss in this section has the following features: The wind and
the temperature are constant in the stratosphere, respectively 50 m sec—! and 220° C.
The height of the tropopause above the ground is 8 km. The wind shear is constant
in the troposphere so that U,, = 15 m sec-1. The troposphere is divided into three
layers with constant stability. The lowest layer (1) is assumed to have a depth of 1.5 km
and a lapse rate of y = 0.8 102 °C m L. The second layer (2) has a depth of 0.5 km
and a temperature increase of 0.5 10-2°C'm~1, being an inversion layer. The third
layer (3) has a depth of 6 km and y = 0.78 102 °C m 1. The values of the tempera-
ture gradients give an average of y = 0.7 102 °C'm~L.

In each layer equation (2.10) is valid when » is given the proper value. In the
stratosphere will the solutions have the form (1.11). Applying the boundary condi-
tions at the ground, at the tropopause and at infinity, we end up with the following
equation determining the wave number of the resonance wave:
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220° C. By comparing this result with the result obtained in Section 2, we notice that the
onstant introduction of the stability layers has had the same effect as increasing the stability
to three in the troposphere. As mentioned earlier, the observed wave length corresponding to
f 1.5 km the model under discussion is about 15 km. The difference between the observed and
0.5 1'<m computed wave length is not greater than what should be expected due to the diffe-
e third rence between the actual atmosphere and the model and due to the looseness in the
cmpera- observations. :

In th If in this model U, = 35 msec! and U,, = 15 m sec—%, no lee wave will appear.
. In the
/Hcon.di- ‘. 4. A model with constant wind shear and layers with constant stability in
llowing

the troposphere, and constant wind shears and stability in the statosphere. In
the preceeding we have assumed that the wind is constant in the stratosphere. Obser-
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vations, however, show that often a better approximation can be made by assuming
that the wind decreases linearly above the tropopause and finally becomes easterly.
In this section we will discuss a model having this property. Aside from the wind
gradient in the stratosphere, which is chosen as a¥ = — 2,46 1073 sec™! the model
is the same as that discussed in Section 4. Equation (2.10) will now be the equation
for  in all four layers if z for the stratosphere is interpreted as the vertical coordinate

. .. . U .
with origin at a height 2, = z—z_*T_ — 20 km above the tropopause and U, denotes the wind

at the tropopause. Equation (2.10) will have a singularity at origin, giving «Cats
eyes» at that level. This phenomenon will not be discussed here.*

By applying the boundary conditions we end up with the following equation to
determine the wave number for the resonance wave

(4.1) [5*03 (xhg) + %*F;., (nhz)] [G’z (”hz)‘—'%le ("hz)] =

[02 (2¢hs) -%Fz (xhz)] [6*G’3 (nhy) + %F’a (xhz)].
Here

ha\3 h\e  2xhy Gy (whs) [ o\ ¥ hs\}
® g BT EAGLLON R )
p* = 0.5 Gy (xhy) [3(/14) -+ (124) G, (rhs) (h3) + (h4) xh,G, (%h4)]

and

5*

o G, (”@ (E)lf M
TGy kg Gy (xhy) ¢

hy)
The other quantities are defined in connection with equation (3.1). Equation (4.1) is
solved graphically, and two solutions are found giving (1) £, = 0.47510m ~* and
(2) k, = 0.315 10—3m ~1. The corresponding wave lengths are (1) L, = 13.2 km and
(2) L, = 20 km. We notice that the first wave length is the same as the wave length
found in Section 3. The second wave is due to the shear in the stratosphere.

It would have been of interest to discuss the effect to a change in the wind shear
in the stratosphere. This requires a considerable amount of work and is not done here.
It seems likely that the long wave will have a small amplitude in the lower part of the
atmosphere when the shear in the stratosphere is small and the tropopause is found
rather high up. When the wind shear is great in the stratosphere and the tropopause
low it may be possible that the longest wave is also dominant in the lower part of the
atmosphere.

—~

: Added during the proof reading. Stictly speaking, the solution in layer 4 is a combination of G, and F.
The formulas for the resonance waves and the amplitude in layers 1, 2, 3, are, however, approximately
independent of the form of the solution in layer 4.
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The velocity and pressure field. In the rest of the paper we are concerned with the
velocity and pressure fields behind the mountain in the model under discussion. Since
we want to compare the result obtained by this model with the observations in the
Sierra Nevada region, we have chosen a moutanin profile which is an approximation
of the profile of Sierra Nevada. It is assumed that the mountain profile given by

2
(4.2) {=—12 . arctg % ,

where a is chosen so as to {it the real mountain reasonably, should have approxima-
tely the right effect since, usually, a layer of very stable air exists on the windward side

(see Fig. 1). a is chosen as 1 km which corresponds to { = — 0.9, when x = 6.3 km.
The mountain will give rise to a vertical velocity w, at the mountain, given by
2
£ 1
x

t ] 1 | S | 1 A |
-20 -15 -0 -5 0 5§ 10 15 20
Km.

Fig. 1. Hyperbolic tangent approximation.

7 =
(4.3) R L S L

°dx @ a® + x?

= — ?21 Uug, ‘/—e“k“cos kx dk.

Due to the linearization we have

(4.4) w=uw, at z = h,.
If
(4.5), w, = y cos kx,
the w field will be of the form
& e
(4:6) w= L5t coska [fL(RF(x2) + 8,(KIC (D)1,

A (k)
where index 7 refers to layer #, and A (k) is the same in all layers. A mountain defined
by equation (4.2) will then give

<«

(47)  w= ’“% Uocaejjﬂz Z'sz_(% [fulK)E,(22) + g,(k)G,(xz)] cos kxdk
49 w= Ll [ L LABIP, () + 28) 6] ¢k —

w0

1 & —ka )
Colosbeot | £ LR Fy(2) + 6,0 G, (x0)] ¢k

A (k)
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B! If a resonance wave exists, A (k) must be zero for a real
value of . In the actual case two resonance waves exist
so that A (k) has two zero points on the real axis. As
discussed in the introduction these singularities are
introduced by the assumption of stationary motion. The
solution giving waves on the lee side only is obtained
if in the first integral the singularities are by-passed
along the half circle so that the singular points are on

-- the left hand side, and, in the second integral, along
the half circle having the singular points on the right
hand side (see Fig. 2). To evaluate the integrals we
transform them by means of Cauchy’s theorem. For
x > 0 the first integral in equation (4.8) is equal to the
integral along OB plus the residue terms when R — o0
(R is the radius in the half circle) since the contri-

bution along the arc AB vanishes. For x > 0 the first
¢ integral is equal to the integral along OC when R —~oc.

Fig. 2. Path of integration in the The second integral is for x < 0 equal to the integral

complex k-plane. along OC plus the residue terms and for » < 0 equal

to the integral along OB, again when R - oo.

Writing
(4'9) w=uw, _|_. wp
where w, is the contribution due to the residue terms (resonance waves), we get
- e 4, N o g [ 22 ) & (k)
(4.10) @ = 4U, e " 2 k‘;k,e sin /fx[A, 0 F, (x2) + A (F) G, (%z) ,_

when x > 0, and

(4.11) w, = 0

when x < 0. Here k; and £, denote the wave numbers for the resonance waves. w, is

symmetrical with respect to x and is, after a transformation, for positive x given by
w

200:0 1Bz 1 . . . _kx
U ZzJ NG| [£,GK)F,(x*2) + g,(ik)G,(x*2)] sin ka e=** dk.

Here »* is defined by
¥ = V%—« k2.

To compute in the actual case the effect of the resoniance waves, w,, we have to
find £, (k), g, (k) and A" (k) (k = ky, k). This is done by solving equation (2.10) in the
four layers and applying the proper boundary conditions, It is found that

(4.12) w, =

No. 3, 19¢

(4.13)

where

Further

(4.14)

(4.15)
(4.16)
(4.17)
(4.18)
(4.19)

(4.20)

(4.21)
Here

with

The ot
(k1 ko)

Th
k=0,
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(4.13) A (k) = H'K, — K H,

where i

H, = 6*G, (xhy) %—%;~1§<xha
M
K, = Gy (xhy) N Fy (shs)
. »
H, ==[6*ca'<zha +-7;—ﬁ”3<xha]
M
H=Pw@—wamﬂ.

Furthermore, £, (k) and g, (k) are given by:

(4.14) . f (k) =0
E
(4.15) g (B) = [KF"y (uho) — Fy (whs) K,'] =5
(16) . A® =T
(4.17) Galk) = 0%, ()
(4.18) filb) = — Sra
(4.19) & (k) =g, (B
G, (»h,)
(+.20) AW = e ®
F, (ks G, (h,
(+.21) &m:-f)ﬁm+ﬁ%izm
Here
, G, (xh) ., yF' (nhy) th
E = exh, |G, (%hy) 7, (b, F (xhl)] — _—g-—/lo‘é F, (xh)

with

ho%Iuirl (%ho) .

The other quantities are defined earlier. £ is the wave number of the resonance wave
(k1 &)

The amplitudes of the two resonance waves in question are found by putting
k= 0315103 m ! and k = 0,475 10 3m L. f, (k) and g, (k) are found directly



16 ENOK PALM Vol. XX.

\ , ' 1
.‘10 | S / // ] i ‘. \\ \ \\\ I
] | A \ -
— H 7 e 7 / H oo Y 7 N ~ !
s [ |
1 e Y/ / / ] | | \\ \ RN o {
e . 1! G [N VN N
i/ lo il Ll Vo Vo \\}
! i !
8t— ,’ d 1 o . | \\ /
N 1 \ [ [ U7 ] /
1 | -~ vy - 7 | }
< \ AN N I : o/ | A
: S~ ~ ‘\ * ‘\ b \\ ) ;’ ! \\ ! II / ! 1’ - g !
| o N ‘\ { L [ II L/ ‘o !
6— —_— e A At~ et ——
| N oy y A o [ 777 [ {
. 1 Y (SR UANAN RN Sl i/ I
[ | v oA vy M N [ [ [ }
x | vy P 4 ! (I o [ |
- \ \ 1 i \ [ [ PN 1
t 7 ! | Iy ’
] / \ i [ \ | | P { | / \\ t
7 | ] I P
ty .- Vo \ i i \ 1 [ BT vl
N U N |- \\ I o l\ I' ! — ‘( e \\ (.
| / (R A2 N U B VN 7N / N [ |
11y vyl NV T AL N v N Ly /] v
| ,‘ t /r’“\ W ,’ - \\ \‘ [ \ \I l’ \‘ “ { | I/ s “ T ” ,’_‘\\ \‘ | |'
- bl A v N prity pallo T I EINO T
2 il NIRRT SUERD) A IR ;,l:
IR A N R R R -Za N L Nl bohes S by N XU
(A TN ATTTONGS ) NG TN AT N N8N
[N / (RS R TN & \ &4 /o L g I \ Sy
T ¢\ ~egr’ s ('; N Q0 ot AN 2.7 ¢ N/ 0 N Nl / 9
‘_, \\\2‘,/ ' \‘2,/ ! 3 I \\‘2_, l’ \\\ Z’, !
0— % L = 4 s
L I I { | [ [ | J
0 5 10 15 20 25 30 35 40

Km.

Fig. 3. The vertical velocity field due to resonance waves and the resultant streamline field
(Units of w: m sec™1).

from the formulae above. A" (£,) is taken from the curve for A (k). The tield of
w, together with the streamlines are shown in Fig. 3!

To get the complete field of w we have to add the field of w,. This is not done
here since no simple way of getting this field has been found. However, some infor-
mation of w, may be obtained without any calculation. In the first place, formula (4.12)
shows that w, decreases rapidly with increasing x. Furthermore, since w, is zero when
z = h,, one of the streamlines due to the field of w, will coincide with the profile of the
mountain. The field of 7, will have a discontinuity at x = 0 so that the complete field
shall be continuous. The main effect of the field of w, therefore is to take away the
discontinuity at x = 0 and to give a down-draft region behind the mountain.

The values for the stability and wind distribution introduced in this model are
chosen in agreement with the observations in the Sierra Nevada region December 18
1951. On that day a pronounced lee wave was observed. It was thought that it would
be of interest to ascertain if models like those discussed above would give a wave
solution, and what the velocity and pressure field of this wave would look like. The
observations indicate a wave length of about 15 km in the lower troposphere and also
indicate that the maximum wave amplitude is just above the mountain and that the
amplitude decreases upwards. The observed data are, however, too few to be used in
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6 r—
=
Flight path -------
£
x
24~
0
SIERRA ERRREEE /
7 NEVADA ~
f// OWENS VALLE e
VALLEY / MTNS.
///// //////////
| | | | I |
0 5 10 15 20 25

Fig. 4. Observed streamlines behind Sierra Nevada, January 30 1952. Mountain Wave Project, Depart-
ment of Meteorology, U.C.L.A., Los Angeles.

an objective drawing of the velocity field and a comparison with Fig. 3. Recently, the
observations made on January 30 1952 at Sierra Nevada have been analyzed. As
mentioned earlier, a wave length of about 8 km was observed that day. A number of
data was obtained so that it has been possible to construct 2 reliable streamline field
(Fig. 4). The stability distribution in the troposphere is similar to that observed De-
cember 18 1951. The mean temperature gradient is the same, and the observed stabi-
lity distribution can be approximated by 2 3-layer model. The wind velocity in the
troposphere can be approximated by a linear function of height with U,, = 10 msec ~*
and U, = 30 m sec ~. Comparing Figs. 3 and 4 the calculated wave length should
therefore be replaced by a shorter one (see case 6 Section 2). It should also be remem-
bered that the field of w, should be added to the computed field of w,, giving a down-
dratt behind the mountain in the lower part of the troposphere.

The pressure field is found from the equation of motion. The result is shown in
Fig. 5. It is noticed that the maximum pressure deviation is about 1.2 mb.
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Fig. 5. Pressure field due to resonance waves (in mbs).

Remarks. The results obtained above have been obtained with equations which
have been linearized. It is assumed that this approximation, as is generally believed,
is good in a stationary model, although at some points near the mountain it breaks
down.

Often a cloud is located at the first positive maximum of the vertical displacement.
The cloud is sometimes in the form termed a roll cloud (see [10]). The existence of the
cloud is in agreement with the lee wave theory. The turbulent character of the cloud
may be due to a kind of instability or a non-linear effect.

THREE-DIMENSIONAL MOUNTAIN WAVES

5. The model atmosphere. — In this chapter we are concerned with three-
dimensional mountain waves generated by a mountain peak. Waves created by a
three-dimensional obstacle have been discussed by the author of this paper in the case
of surface waves [14] and recently by Scorer and Wilkinson [15] and Wurtele (unpub-
lished). To bring into account the effect of the stability and wind shear we choose here
a model similar to the one studied in Section 2 of Chapter I.
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It will be assumed that the stability and basic velocity is constant in the stratos-
phere, and that in the troposphere the stability is constant and the basic velocity
increases linearly with height. In the example given later the following values of the
parameters are chosen:

Stratosphere.
y =20
T = 220°K

U, =45 msec?
g(va—y)
8§ == =4510"%sec~?
sec

Troposphere.
y=05102°Cm !
T = 250°K
45—15
@ =g 10—3sec™ = 3.33 103 sec !
(v, —
S = °*‘~?}ETJ*) = 2.0 104 sec—2.

Here the symbols have the same meaning as in Chapter I, i. e. y denotes the actual

lapse rate, T the mean temperature, U, the basic velocity in the stratosphere, a the
wind shear, § the stability and y, the dry adiabatic lapse rate. As in Chapter I the
equations are linearized and assumed to be independent of time. The motion will be
described in a system of references with the z-axis positive upwards and the x-axis in
the direction of the basic velocity.

The mountain profile. For simplicity the mountain is assumed to have rotational
symmetry about the z-axis. The equation which describes the profile is chosen as

. Co
5.1 C= e
N (+7)

where 2 and £, are given constants, and
(5.2) r2 = x2 | 92
Formula (1) may also be written

xX

B +x
(5.3) = —% = al, f e~* %, (kr) dk = 02—52— f e~* dk f gtz cosp + y sin@) dp,
1 + _(1-2‘) ) o o -7
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where 7, (kr) is a Bessel function of order zero. In an example given later £, and ¢ are

1
chosen so that £, = 24 = 0.5 km (r ~ {, gives { ~ 5 o)

6. The differential equation. The density in the undisturbed state, Q, may with
good approximation be assumed to be

(6.1) Q= Qe

where Q, and f are constants. The basic velocity in the troposphere, U, takes by a
suitable choice of origin the form

(6.2) U=oz /

Intending to apply the Fourier method, the vertical velocity, w, is written

(6.3) w— o B (2)ei (x cosp + v sing),

Applying (6.2) and making the same assumptions as we did to derive (2.3), we find
(6.4) i: (3ﬁi§¢—ﬂ%v:&

As mentioned in Chapter I the solution of (6.4) is

(6.5) =4 2F, (%) + Bzt G, (%2).

Here A and B arc arbitrary constants,

(6.6) ' S :

= o2 cos? @ T4
and F, (xz) and G, (xz) Bessel functions of imaginary argument and order.
In the stratosphere the differential equation is
d*w S
—w =
dz? (Us2 cos? @ % ) @ =0.
The solution of this equation will be of exponential or trigonometric character accor-
ding as
S B2
P A Ry A
— Uz2cos?p 4 k2.

(6.7)

As will be soon demonstrated (compare Section 1 in Chapter I) the £ domain corre-
sponding to trigonometric solutions of (6.7) does not make any essential contribution
to the complete Fourier integral and will therefore be cancelled. The solution of (6.7)
is then

(6.8) w = Ce="* 4+ De*
where 1 is rcal and determined by
S
2 __ L2
= U2 cos? ¢’

and € and D are arbitrary constants.
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The solution of the problem. The boundary conditions are:
1. At the ground (z = &):w = U[L,
where
U, = Ulh,)
2. At the tropopause (z = h): The vertical velocity and the pressure are continuous
functions.

3. At the upper boundaiy (2 - oo): The energy due to the wave motion must disap-
pear.

From these three conditions we are able to find 4 and B. They are found to be

nh,—} [(Ah——%) G, (xh) + %hG, (xlz)]

4= ¥y (o) [( W %)Gv (k) + %hG, (xh)] — G, (xho)[(llz — »;»)Fv (2h) 4+ thy'(xh)]
(6.9)

nho—é[(/‘l/z ——;—) F, (xh) + xhF,’ (%h)]_]
oo F, (xho)[(zlz —%) Gy (%h) 4 2h G’ (%h)]~0v (ho) [(M *?lz')F » (k)4 AE k)
where |

ofl 1
n = Uge—"4ik g; cosp e—Plo

A mountain of form (5.1) will then set up a vertical velocity

et 7T
(6.10) w— bt f dk f [A (k) F, (%h) + B (k) G, (#2)]e"* P 7709 4o
ka o7

plus a contribution from £ values less than £,. Here 4 (k) and B (k) are defined by (6.9).
The evalution of the integrals of equation (6.10) will be different according to whether
A (k) and B (k) have poles or not on the path of integration. If the function have poles
on this path, it follows from Cauchys theorem that the most important contribu-
tions to the integral will be due to the poles for moderate values of x cos ¢ + y sin ¢.
It is easily proved that no poles can exist for £ values less than £,. We therefore cancel
the contributions for £ < £,, this approximation being better for increasing values of
x cos ¢ + ysin ¢. Changing the oider of integration we obtain

7T e}
1t

(6.11) w=21eP [dg f [4 () F, (%) + B (k) G, (x2)] "9 *7™P g,
Tk,
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From equation (6.9) it is seen that the £ values corresponding to poles on the path
of integration are the real solutions of the equation

(6.12) F, (xho)[(z/z — é)(;v (h) + %hG,’ (xh)]: G, (xh,) [(z/z — ;) F, (xh) + hF,’ (x/z)]

This equation is solved numerically with the values of the parameters specified above.
It is found that equation (6.12) has for all values of ¢ at least one real solution, and
that the solutions may with good approximation be obtained from

(6.13) G, (%)) = 0,
and
(6.14) k> k,

Equation (6.13) corresponds to a basic velocity which increases linearly with height
throughout the atmosphere.

Strictly speaking, the innermost integral in equation (6.11) does not exist when a
pole occurs on the real axis. Physically, this is due to the fact that the problem has
been treated as a stationary ore without friction. To get a proper integral we can
either discuss the problem as an initial value problem or as a stationary one with
friction. Let us for simplicity introduce here a small Rayleigh friction [16]. (In the
corresponding problem in Chapter I we postulated instead that the waves should be
located downstream). It may then be shown that the poles are complex numbers
approximately given by

(6.15) % =

-

a w
h, ' h,acosp

where——denotes the corresponding pole without friction, and u is here the coefficient

h

0

of viscosity. By now letting u tend to zero and applying Cauchy’s theorem, the integral
will approach a limit which is a proper integral. Thus we conclude, owing to (6.13)
that the integral

f[A (k) F, (x2) + B (k) G, (%2)] e* ¥ +ysin®) g
kﬂ

is to be interpreted as
[14 6 F, (x2) + B (8) Gy ()] e tr0 gy
3

when cosg > 0, and as

[14 () F, (22) + B (k) Gy ()] 75091 g
)

when cosp < 0. Here L and L’ denote the paths of integration consisting of the real
axis from k, to o and semicircles around the poles so that these are on the lcft side
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Fig. 6. § denotes singular point.

or on the right side, respectively (sec Fig. 6). Formula (6.11) is now rewritten in the
form ’

(6.16) =z fd‘i” f[A F, (x2) + B (k) G, (x2)] 0P +vsu®l gk

— L [ap [LA R Fy (x2) + B (8) G (ua)] emeeop=om g,

The innermost integrals in this formula are evaluated by applying Cauchy’s theorem.
For moderate values of xcosp + ysing an approximation is obtained, as mentioned
carlier, by taking into account only the contributions from the poles. With this app-
roximation formula (6.16) is (by means of (6.9) and (6.13) found to be

7 1
5 g—haf cosw[(ﬂl ﬁév)Gy (%h) 4+ #hG,’ (xh)] F, (%z) cos k (x cosp + y sing)

w = X [ S TS A . i . p. d(P
_"7 G’y (nh) [( AR — 2)F,, (xh) + RE,’ (xh)] ;1%
(6.17) )
—ka
Xf k cosg G, (xz) cos k (x;osqa + ysing) dp
%
when
x cosp -+ ysing > O,
and
(6.18) w=20
when
x cosp -+ ysing < 0.
Here
X = Qanz%ho—géoelg (2 o)

and £ is a function of ¢ defined by equation (6.13).



24 ENOK PALM Vol. XX.

15{km

Fig. 7. Isolines for the vertical velocity at a height of 3 km (Units 10— m sec—2).

The integrals in formula (6.17) may for large values of x and » be evaluated by
means of the method of stationary phase. It seems, however, that in the present case
this method is only applicable for values of x and y which are considerable greater
than those interesting us. The integrals have therefore been computed by a straight
forward method, and only for z == 3 km. The result of the calculations are shown in
Fig. 7 where isolines for the vertical velocity are drawn.

By changing the parameters in the model the vertical velocity may be increased
considerably. The vertical velocity is directly proportional to {, and U,, and increases
also with the steepness of the mountain. It should also be noted that a concentration
of the stability acts in the same way.
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