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Summary. A stationary.current in heterogeneous water is accompanied by a definite

. i density distribution in such a manner that the pressure gradient is balanced by the deflecting
ith those ‘ , )
force of the Earth’s rotation.
‘ If this geostrophical equilibrium is not present initially, the current will generate internal
‘ oscillations, which will be propagated away from the area where the initial current is present.
The waves will be damped and at last the whole system will tend to a stationary state.
In the present paper we have chosen a special density distribution based on observations
SEARCH 1 and we have considered a few different current systems.
E, under ! In the first case we consider a rectilinear current system of finite width which decreases with
‘ depth and is zero at the bottom. The surfaces of equal density are initially horizontal.
The transition from the non stationary to the stationary state has been studied and the re-
l sults are given in diagrams. (Fig. 2, 3, 4 and 5).

In the second case we have considered a non balanced vortex, the initial state and the
resulting stationary vortex are given in diagrams. (Fig. 6 and 7).

At last we have considered a rectilinear current system in a sea which is bounded on both
sides. In this case there will be no stationary state, because the waves are reflected from the sides
of the canal.

l The oscillations will at first be similar to those, found in the first case, but later the reflected

Research

waves will cause deviations.

1. Introduction and basic equations. The adjustment of a non balanced velocity
field towards geostrophic equilibrium in a stratified fluid has been treated by B. Bolin. [1]

However, he has restricted himself to the treatment of a special case, when the
density is a linear function of depth and, moreover, the limiting process from the non
stationary solution to the corresponding stationary system is only an approximate one,
and therefore it might be of interest to give the problem a treatment which in some
respect is more general.

We assume that the equations of motion may be linearized and that the vertical
acceleration may be neglected, and consequently the pressure may be regarded as
static.
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The Coriolis parameter is also regarded as constant.
The equations of motion are then:

E’i—varl@_o,
ot o 9x
dv I ap
— Au -+~ -+ =0,
(1,1) 8t+ +gay
19
g+——p=0v
e 9z

We assume that the {luid may be treated as incompressible, and the equation of
continuity is then:

ou , dv . Jdw
T = 0.
ox T ay T 0z

The condition of incompressibility is expressed by the equation:

de do do de de
g _ce ce ., ,o8 %2 _o.
TR PR M

To simplify the equations, we put:
@ = Qo (Z) + 01 (x:})’zat)
A
p=1po+ & [edz+p
where g, and p, are assumed to be small quantities. The condition of incompressibility
may then be simplified, and takes the form:

do, dge
w0 =0.
at + 0z

Furthermore we put:

d

t

oy

|

w =

o~
o~

¢ is then the elevation of a water particle from its equilibrium position. Intro-
ducing this in the equation above, it may be integrated with respect to ¢, giving:

d
et o2 =0.
dz

We put the arbitrary constant equal to zero, which means that the density variation
is due to vertical displacements of the water particles only.
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Wit these simplifications, the basic equations take the form:

5,5_“+i%:0,
o¢ gp 0%

%+1u_|_i§£l_—_0, {
at 0o 9V

0
(1,2) g91+ﬂ= 0,
0z
o2t

9z0t

b

du av
ox Ty T
d
o+ =0
dz

Let w (2) be a solution of the differential equation:
d dw g dp
1,3 —lop—)— 2w —=2=0,
(1,3) dz(eodz) Ll

with the boundary conditions:

1,4 dw
(1,4) 2— —gw=0;z=nr.
dz
The differential equation has an infinite number of solutions corresponding to an
infinite set of eigenvalues ¢, ¢;, ¢, - .

: dw . . : :
It may be of interest to note that —— satisfies an integral equation of the form:

dz

. z ]
dw g dw " dw
1,5 — =2 —dz —dzl
( ) Qo0 dz 2 [QO_[dz +/00 iz ]

This integral equation may also be used when g, (z) is a discontinuous function of

depth.

The integral equation may easily be transformed to an equation with a symmetric
kernel.
In fact if we put:

/—dw . . o
=1V > the integral equation may be written in the form:
L 2.

9 (k) = lf K (z,5)9(s)ds,

o
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where:
i
c?’
K (z,5) = 20(2) , $ <z
20 (5)

:]/M s>z
Qo(z)’ =

The bilinear formula for the kernel is:

Koo = > 22E)el Rl

n=20

or introducing again:

Pu (z):‘/?(z)d_;vfaln: g 5

2,
we find:
QO(Z) _ 2 % dw,
g VQO (J‘) - Z.C” ‘/QO(Z) QO(S) dz dS
or ’
dw, dw
= s) > ¢2, nTTn <
g = gs) & ¢ iz ds s=z
dw, dw
= go(2) X ¢t — —* s =z
2o ) dz ds

If we put s = z and integrate between o and %, we get:
(1,6) gh=23 c2,.

In the application of the theory to a special case which will be given below we choose
a density distribution which was observed at one of the “Snellius” anchor stations
135 a, because the necessary calculation of the eigenfunctions and eigenvalues had
already been performed.

The density distribution (o,) and the first order eigenfunctions w, (z) and

d
u (2) = cl% are represented in Fig. 1.

The velocity of propagation of this internal wave was found to be 205,4 cm/sec,
while the ordinary or zero order wave has a velocity of propagation of 106,2 m/sec
or about 50 times that of the internal wave.
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Fig. 1: Density distribution with depth and first order solution of internal wave
equation and as functions of depth.

We assume that u, v, {, p, and ¢, may be expanded in series of eigenfunctions
w, (z) and #, ()
u=2 U, (x,0,t) us (2),
v =23 Vyu, (2),
b1 = 2 K 6 tin (),
C = 2 Z" Wy (5),

— =% 32w,

ve choose . o
r stations Introducing these series in the basic equations (1,1), we get the following differen-
Jues had tial equations for U,, V, and Z,:
aU dzn _

., (1,7) e 4.+ na—‘@ 0,
4 cm/sec, ‘ 3 v
6,2 m/sec ﬁ%—cn _”+3V” —0.

ot ox ay
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At the same time the boundary conditions:
{=0;z=0,

P=0h ;2= ha
are satisfied.
We now formulate Cauchy’s problem for this system of equations.
We want a set of solutions which for ¢ = o gives:

u= Uo (x:.y: Z)
v = VO (x,)’,l)
= ZO (x,_)’,Z)

We assume that it is possible to expand these functions in series of eigenfunctions
un(’z) a‘nd wn(z)'

The coefficients of these series may be determined in the Fourier manner, since the
eigenfunctions have orthogonal properties:

B
Igou” () um(z) d2 =0,n#m

h
(00 Wn Win —-f%w,.wmdz =0,n#m
V4

The eigenfunctions may be normalised by the condition:

[outdz — 1.

or a similar condition.
We consequently assume that:

Uo (x,)’: z) =3 Un:O (x,y)un (z)

and similarly for the other initial values. The coefficient U,,, is determined by the for-
mula:

h
[ U (%,3,2) 0o tin (2) d2 = Uny¢ (2,))-

In this manner the problem is reduced to the following one. Determine the solution
of the system of partial differential equations (1,7), which for ¢ = o gives:

Un = Un,o 3 Vn - Vn:o 3 Zn :zmo-
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2. Solution for an infinite sea. To simplify the writing we drop the indices which
may be replaced in the final solution.
Let ¢ be a solution of the partial differential equation:

g Pp | Pp
2,1 Ak T | P L AL A 4 I
1) a2 T o (8x2 + 8}2)

which satisfies the conditions of Cauchy:
3
(P:O,B%:@(x,}’) when ¢ = 0.

Furthermore we put:
y =] pa:.

 is then a solution of the non homogeneous partial differential equation:
2y

2,2
(2,2) I

%y Py
My —e (X LTV
Ry (T ajz)

satisfying the initial conditions:

3 o2
”’—0,5‘;1qu when ¢ = 0.

> ot

We may then write down a number of solutions of the system of equations (1,7).

B
ot? 9y
atpb 2y
2,3 V)= —21-—"F 4 ¢ ——
(2:3) ! at T d9x0y

2
zlzlfﬂ.a—w—'—(:i—’(e‘
a2y dxadt

This set of solutions satisfied the initial conditions:
U=®(xy), V=0,L=0;t=0.

II. If we interchange y and y and replace 4 by — 4 we get the following set of
solutions:

oy Py
Ug= 4 = 4 ¢2
2 ¥ +

3x3y’
a2y 2y
Vo= —L—¢% %
(2:4) SPY ox?
2
z2:'—c"{al—'c 81/) )

ox dyat
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satistying the initial conditions:

U2:03V2:¢(x3.y)3'€:0;t=0-

III.
2,
Uy =20 2 2%
dx ot ay
2
g =—°¢C Py —}—claJB,
dyat ax
%y
= — 4+ i%p.
< Py ¥

Here the initial conditions are:
Uy=0,V;=0,2,=® (x,9);t=0.

By partial differentiations and combinations of these solutions we get others
which also may be of interest.

If we take:
b U 30, 13U,
ox oy ¢ ot
b W lehy
ox oy ¢ ot
_3 8k _ 133
<= ox T dy ¢ ot
we find:
IVv.
- %o ;%
o oxadt 3y’
P Ig
2,6 =
(2,6) T ayat dx
__ 1 [&e 2
e = . (81,‘2 + (P):
satisfying the initial conditions:
0,=2 7,=%% z,=0;t=0
ox ay

If the initial disturbance @ is restricted to a finite region, the whole solution will
tend to zero when ¢ - oo.
Other vanishing solutions may also be found.

No. 7, 195
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V. At last we shall consider the solution given by:
oU, U, 3%y

Us = 22— ) + D — )2
5T 8y ox axot ay( ¥
2
27) p=th el 00 gy,
ay 9x dyot  Ox
954 3/32 o2y
= 2 fAe 2y —&).
<s ay ox (8t2 T
This set of solutions satisfies the initial conditions:
y_2
a9y
y__92
ox
L=0;t=0.

and may be used to investigate the development of a non balanced vortex.
The solution of the partial differential equation (2,1) satisfying Cauchy’s conditions
is known and may be written in the {orm: '

COS A l/ 2t2 2
1 crer—e
2.8) p= — f f (o, ) —" dadp
c ]/Cztz____92

where:
= (x—a)’ + (y—p)*
and the domain C is the area bounded by the circle:

o] = ¢t
If the initial function @ satisfies the condition:

”@(x,y) dxdy < oo

@ will tend to zero with increasing value of time, .
On the other hand:

i
= f(p dt
will tend to a limit when £ —> oo,
4+ 4o
2,9) 2&&2 f fd) a0, B) K ( )a’adﬁ
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Here K, is the modified Bessel function of zero order and second kind:

* cosx1de cotj’o(xt) dt
KO(x):fVm Zf 1+t2

o

yE—1

If @ is a function of r = }/x2{ y? only, one of the integrations may be performed
and we find:

@10 v L) [ 00 (Dote 14 [2) [ 000 5 (22ose

If @ is a function of y only we have the integral:

t

(2,11 —;- [cp yFen) + B—e1)] i AV e—n)dv,

and:

(2,12) wwzé%f[¢(y+cr)+¢(y—cr>] e dr.
The limiting value of the solution is then:

(2,13) U=00)— 3 f[@(y+n)+¢<cr)] e

V=20

and:

=2 [lov+en—ob—cg]e Tan,

For the calculation of the non stationary values it is more convenient to start with

a Fourier integral:
ff J’—ﬂ Slntl/lz—[—(leu dudp.
1 i + Ay

—0 —O

-
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This is an integral of the equation:

o2 g 82<p
- =0.
ar? e ay’

which satisfies the conditions of Cauchy:

g
=0,-"=0(y;t=0.
@ Py ()

In this form the integration with respect to ¢ can easily be performed, giving:

f y ﬂ 1—COSt‘/lz+62‘u d dﬂ
lz+€2

—— —®

If the integral:

—iuf
fe () dp = G (1)
can be calculated, we have:
+o o
v = | Gl l—costl/lz—{—cz,uzd
2 22 % pu?

—0

which can be computed by a numerical process.
In the following we have chosen:

®(r) =
giving:
_o®
Gl = /%o #
(w) ‘/k
and:
—T—w_'u_z 2 2,,2
(2,15) v = _1: ¢ cos y 1~cost]/l +c2u du
QI/kn A2+ ctu?

—0

3. Current in an infinite ocean. In the following numerical application we as-
sume that the initial current is given by:

U == e_ky‘(l-——aul(z)),vzo,C:O
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where u; is the eigenfunction corresponding to the internal wave of the first order
represented in Fig. 1. The corresponding solution is given by the formulae:

u=Us(3,8) —aUs(3,8)u, ()

v =Vo(2t)—aVi(3t)u(2)

§ = Zo(:t) wo(2) —aly( ;1) wy(2)
The functions U, U; etc. are expressed by:

200 2
U= Qfﬁ_czg_w =@ty

ar 3y*
v=—%¥
at
,Z:c)ﬁE
Cl

where y is defined by (2,15).
It will be convenient to introduce non-dimensional variables by:
C/":/gzakz’{b_2>y:b"7’ﬂ=ﬁ'
¢

The integral (2,15) may then be written in the form:

> 6222
A%p:l/‘g_ fe 4% cos Bz 1 —cos MVI_FZE dz.
LA :

142

o

For the zero order wave we have ¢y = } gh = 106.2 m/sec. While the internal wave
of the first order give:
¢, = 2.054 m/sec.
If we then take 2 = 10* and 4 = 40 km we get:
B, = 0.038 and g; = 2.0.
When ¢ tends to infinity the stationary value of the integral is:

_p2
Ay :—/3; e cos fzn dz.
Vxn 14 z2

An equivalent form of the integral is:

o«

— 2 —_ —n)2 -
gf[e ekt | e ]e by,

4
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Fig. 2: Rectilinear current system. Assumed initial current distribution.

and this may be expressed by the error function:

Erf(x):%/e_xldx.
T

The non stationary values of the integral A%p may be calculated by numerical inte-
gration.

In Fig. 2 we give a representation of the initial current. The coefficient a is chosen
such that the velocity is zero at the bottom.

The resulting stationary current is given by the formulae:

U=0—ly,—4,2(D— Ay;)u, (),

v=20,
1 9 1 9
= (22 —4.2-— (22 .
¢ Bo 1 (A290) wo(2) 2/31 an (A2 wy(2)

A graphical representation of the current and the corresponding deformation
of the density surfaces are given in Fig. 3.
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Fig. 3:

Rectilinear current system. Final current distribution and density surfaces.
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Fig. 4: Central vector diagrams of oscillating current.
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Fig. 5: Oscillations of density surfaces.

The velocity field in the stationary state is similar to that found by Bolin. In the
upper layers the current system is more narrow and the velocities are smaller than the
velocities of the initial current. In the deeper layers the velocities have increased and
the current system is also much broader than at the surface. On both sides of the initial
current system we have a weak counter current. The formation of the counter current
is a consequence of the deformation of the density field. Since the ocean is regarded as
infinite, the density surfaces must flatten out at a distance from the initial current field
and approach the original position asymptotically.

A current going in one direction only, would demand that the density surfaces
would be sloping from left to right and consequently the density surfaces would be
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higher on the left side. In an infinite sea this is impossible and we find that the density
surfaces when going from left to right must rise from its initial level and then sink
below the initial level and finally rise again. This is seen on Fig. 3, where a repre-
entation of { for different levels is given.

We have also made some calculations relating to the non stationary state of the
current. The zero order wave will rapidly tend to the stationary state because the
velocity of propagation is very large, and this wave will have no influence on the
density field, and we have therefore only considered the first order internal wave.
In Fig. 4 we give a number of central vector diagrams, showing the variation of the
current during the first 12 pendulum hours for

n =0,0.4,0.8,1.2, 1.6, 2.0 and 2.4.
The points marked on the curves represent the endpoint of the current vector for
At = 0°, 45° 90° . .. 360°. The dashed curves give the initial and final distribution
of the current as a function of ), the distance from the center of the current system.

The current vector oscillates in magnitude and direction. Near the center of the
current system the oscillations have some resemblance with inertia oscillations, but it
is to be remarked that the initial direction is attained in less than 12 pendulum hours.

At some distance from the center of the current system the current is initially zero
and it takes some time before the oscillations start.

In Fig. 5 we give the corresponding graph of ¢ as a function of time. The initial
value is everywhere zero, and we see that the density surfaces at first rise above the
stationary value and perform decaying oscillations about the stationary state which
is reached asymptotically.

4. Unbalanced Vortex. Consider an initial vortex given by:

o9 oD

Uy = — , Vg = — ——,
° ay 0 dx

— ka4 :
@ =Ce ((1—4.24(2))
Co: 0

The solution is here represented by the formulae:

Ue—3 2% L 9 ooy

dxdt  dy
Ve B 0 ey
dydt dx
A [Py
=2 4 y—o
< c(at2 v )

hll

y——
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and in the stationary state we get:

U=l (i),

J
V=2 (o),

dx

5 }v
g=—2 (0—2v).

In this case it will be convenient to introduce circular coordinates by:

x =rcosl,

y=rsin 0,

u = rcosf—rGsinf,

v = rsin 9 + rfco

. . .
If we put r = - =uy, and 70 = o0y, 4; and v

dt
oy 1 9
U=—1 + = (D—2A%y),
! ordt  y 30 ( )
2y 0
‘ Vi=— 12 —— (D— 22y),
' : ra0a: ar TV
A [y
== [ 4 2yp— D).
< . ( o TRV )
‘ If the initial system is independent of 6, the stationary vortex is given by the for-
mulae:
[]1 =0,
0
Vi=— < (0—2ty),
or
| A
Z=—= (@—Py),

and p is a solution of the equation:
Py 1 oy
12 — = + —
v (872 r or
O (r) =be M.

s@.

, are represented by the formulae:

)=¢,



18 JONAS EKMAN FJELDSTAD Vol. XX.
T T T 1 T I T T T T T T T T T T T T 1 T T 7 I 1 1 1 1 1 1 1 T 1 I T
F 40 5 0 5 40 1
T T T T
R i
B i I '\‘ VN o & 60/ 45, -
- IO AN NN LN 20/ jg -
B N NN N SRR / i
A) ™ = = ;00. /
I R ;i 1
3 - 440,
\ S A ]
- “\‘ ~ :" :‘ —
Nl 600 A
3 :' ]
- \\‘ ’I’ _
\ 890 —

1|II|11|1|||1|||I|,11‘1]l|lltllll

Fig. 6: Vortex. Initial current distribution.

The stationary value is given by the formula

1. (A z 1, (in [ %
y=—K, (-’)fa><e>lo (—9)ng+ —210( ’)f@(e)lfo( ")ede,
¢ ¢ ¢ ¢ ¢ ¢

which can be computed by numerical integration. We shall give only the initial and the
final state of the velocities and the vertical deformations of the density surfaces.
Fig. 6 represents a section of the initial vortex represented by the formulae:

u1=7’=0

0, = r—8 26_4(%> (1—4'-21‘1('5))

Il
)

¢
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Fig. 7: Vortex. Final current distribution.

Fig. 7 gives the resulting stationary current and the corresponding deformation
of the density surfaces. We also here find some of the characteristics which we had in
the solution relating to the rectilinear current.

At the surface the vortex has shrinked and the velocities have diminished, while in
the deeper layers the velocities have increased and spred out to a larger area. Around
the vortex we find a circulation in the opposite direction. This is again a result of the
deformation of the density field, which is also represented in Fig. 7.

5. Solutions when the sea is bounded. If the ocean is bounded in one or more
directions the solution may be expressed by similar formulae, but the integral ¢ has
to satisfy boundary conditions besides the initial conditions.

In the first place we may take the case where we have an initial current outside
a straight coast given by the line y =

p is then a solution of the same partial diferential equation subject to the initial
conditions:

v=0,2%_0, %Y _p(y. ;t=0,
at o

and y = o when y =
To get the corresponding solution we put:

flnyjA (w,t)dp
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giving: ! The s
a4 ' |
sinpy| = -+ (2 +cp?) A | du=D(y)
or:
— / 2 2
Azgfsinya@(a)l COSt}A—{—C’uZda, i
14 12 + 6‘2”2
. . ’ where |
giving:
2 ] . 1—cos tl/}ﬁ—f—czm
zp_y—tffsm,uysm,ua@(a) P “dpda.
o 0 but now
The limiting value of this solution when ¢ —> oo is:
2 a0 0 Sin Sin . The lnlti
py==" [ &(a) i e i duda.
4 A2t cp?
Here the integration with respect to x4 may be performed, giving: If we ass
© 2 , ‘ J " ' sI(J)lution
inuysi T lp—ae| T |yta :
fsm,u)mnya du = Z |, ! ., et
A2 cut 4cl
and: Th
© en:
1 e
o = —— Do)t e —e da.
i 2¢2 @)
We shall not go any further with the discussion of this solution, but instead treat where
the case when the sea is bounded by two straight coasts:
y=-4b.
To g
In this case it will be nescessary to express the solution by means of Fourier series limited
instead of Fourier integrals.
Initial current in a straight canal. If the current system is started in a sea bounded by and get

straight coasts the current will not tend to any definite limit as long as no frictional

resistance is present.

Suppose that the sea is bounded by the straight coast lines: y = £ &
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OCEAN CURRENT AS AN INITIAL PROBLEM

The solution is again given by the formulae:

U=¢o— 12y
y=—21%
ot
zzclaip
3y

where v is a solution of the equation:

3y

but now subject to the conditions:

The initial conditions are again:

If we assume that the initial current system is symmetrical about the line y = o, the

%y
L Qg — L =D(3),
o T YT =20
p=0; y=456.
oy 3y
:‘0’—-:0’—-——-=® ;t=0.
ot ar )

solution may be expressed by a Fourier series.

Let:

Then:

where

To get a solution which can be compared with the solution in the case of an un-
limited sea we take:

\ and get:

D (y) =2, cos(2n+1) 2

25

my 1 —cos t]//l2—}—62/.;3:2

= 2 cqcos(2n+ 1
¥ () encos(2n 1) 0%

13n = (Qn‘l_ 1)

44

2b

12 + czﬂnz

Bn?

_ s i .
¢()’)— ;l/k 23 Cosﬂn_i’,

— COS ﬂ/& 2 ﬂ,,_z )

— —E :
Y :%‘/%Ze +k cosﬁ,,y1

12—|—€Z/3”2
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Fig. 8: Current in a straight canal.
Central vector diagrams of oscillating eurrent.

When: b —> oo the limit is:

1 - 1 V2 Fepe
er * cos fy —cost || A2+ c¥p iB,
At pe :

which is the solution in the case of the unlimited sea.
The initial function @ () is a Jacobian d-function, and we have the formula:

2
Bu n —4ntkb?

1 ,/7; . 4k . —ky? -
) I/ TS Teos e (1 roX(—1)e cosh4nkby),

and for large values of kb2, the series on the right side will practically reduce to the
first term.
The solution is then given by the formulae:

No. 7, 1958

Thes
creasing
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Fig. 9: Current in a straight canal. Oscillations of a density
surfaces across the canal.
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U:—l— /128 Y Cosﬂnycﬂ,,—{—lcostl/}. +c2p ’
) oY k A2 f,2
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k "
rmula: ) V=—- // - 2 e " cosp,y —
b k ]/ A2 2B,2
? — Bt I
i ,zz,._l /1 T Sinlgn}lcﬁn(l—cost]/lz—{—czﬂnz)_
5) b k 224 e2p,2
> to the v : )
? These functions will be quasi periodic and do not tend to limiting values for in-
; q p g

‘ creasing values of time ¢.
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We have calculated a numerical example using the values:

k=16 % 4,

¢

The zero order wave will perform rapid oscillations, but will have practically no
influence on the density field, and we have therefore only considered the first order
internal wave.

In Fig. 8 we have given central vector diagrams for the velocities at the points
n = 0, 0.2, 0.4, 0.6 and 0.8. The endpoint of the current vector has been indicated
for the first 26 pendulum hours. A comparison of this diagram with the corresponding
diagram for the unlimited sea shows some resemblance for the first 12 pendulum hours,
but then the effect of the reflection from the sides of the canal will be more marked.

In Fig. 9 is represented a section of a density surface across the canal. The devi-
ation of this surface from its equilibrium position is given for

t =0, 4, 8,12, 16 and 20 pendulum hours.
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