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Summary. 4. Mountain waves at high altitudes are studied in two models in order
to examine the effect of these waves on the formation of mother of pearl clouds. It is found that
with a mountain of height 700 m the maximum displacement at 20 —30 km is about 400 m
in both models and that the maximum vertical velocity in this region is 1 m sec—! in one model
and 3.5 m sec—* in the other model.

6. The influence of wind and stability ir the stratosphere on the wave motion in the lower
troposphere is discussed. It is shown that if f(z) (defined in the list of symbols) has a value at the
ground which is at least 2.5 times as large as the minimum value of f(z) (located at about 7—10
km above the ground), the wave motion in the lower troposphere is only depending on wind and
stability beneath the level of minimum f(z). This condition is usually satisfied when mountain
waves occur.

¢. For distributions of f{z) fulfilling the requirement above, the motion near the ground
may be obtained from a simple one-layer model. Such a model based on observed wind and
stability is studied in section 5. A diagram is given from which the wave lengths are found
directly without any computation. The drag on the mountain is computed in two cases. Non-
linear effects are discussed, and the streamline field is found for three different mountains (Figs.
12, 14, 15) leading to motions with and without rotors depending on the height of the mountain.
With the applied distribution of wind and stability, it is found that rotors occur when the mountain
is higher than 600 m.

1. Introduction. It is a well known phenomenon that air passing over a moun-
tain ridge will be set into oscillations if the air is sufficiently stable. These forced oscilla-
tions, usually denoted as lee waves or mountain waves, will in cases of large relative
humidity be revealed in the form of lenticular clouds. If the amplitude of the mountain
waves is large enough, a rotor cloud may be formed. In particular, lenticular clouds
are frequently observed in mountainous countries.

Short review of earlier works. The contributions to the theory of two-dimensional
mountain waves reviewed below are all based on linearized differential equations and
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boundary conditions. These simplifications which obviously restrict the results obtained,
will be discussed later in the present paper.

The theory of mountain waves may be traced back to works of RavrLeicu (1883)
and Kerviv (1886). They admittedly did not investigate waves in the atmosphere,
but surface waves in a channel generated by a corrugation at the bottom. These pro-
blems are, however, in principle similar. The result obtained was that the disturbance
of the free surface mainly consisted of one single harmonic wave.

The corresponding problem in the atmosphere, the mountain wave problem, was
first investigated by Lyra (1943) and Queney (1947). In this case (see appendix 2 A)
the motion depends on, besides the mountain profile, the variation with height of f(z),
defined in the list of symbols p. 29.

Lyra and QueENEY made the simplest possible assumption, considering f(z) inde-
pendent of height. The problem thereby was tractable from a mathematical point of
view. With this assumption they found that the wave motion set up by a mountain did
not consist of one single harmonic wave as in the case of a free surface, but of an integral
of harmonic waves. The various waves interact and therefore cancel each other some
distance from the mountain.

The streamline pattern found by Lyra and QUENEY obviously has many features
consistent with observations. There is, however, also considerable deviations. Firstly,
observations indicate a wave motion in the troposphere mainly composed of one (or a
couple) harmonic wave, and not of a continuous spectrum of harmonic waves. Secondly,
the LYRA-QUENEY model leads to too small amplitudes in the lower part of the tropo-
sphere.

It is readily seen from the soundings that the assumption of a constant value of f(z)
is a rather poor one. The variation of f(z) with height was {irst taken into account
by Scorer (1949) who considered a two-layer model with f(z) constant in each layer.
It turned out that if f(z) was largest in the lowest layer, as usually observed when
mountain waves occur, the motion in the model consisted principally of one har-
monic wave component. Moreover, the amplitude in the troposphere was considerably
larger than in the corresponding Lyra-QUENEY model.

Though this model is an improvement compared with the LYrRa-QUENEY model,
it 1s still a quite rough approximation to the atmosphere. Models consisting of more
than two layers and with f(z) varying within the layers consistent with observations
have therefore been examined (WurTeLE (1953), PaLm (1958)). In the last-mentioned
paper the results obtained by theory are compared with observations. The wave lengths
were computed for two different distributions of f(z), based on soundings obtained
on days when the streamline pattern was observed. A good agreement was ob-
tained.

In all the investigations mentioned above it is assumed that the motion is indepen-
dent of time. This assumption simplifies the mathematical treatment considerably,
but a logical difficulty is thereby introduced. It turns out, namely, that the motion in
the stationary case is not uniquely determined by the boundary conditions at disposal.
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Thus, from a mathematical point of view, it is impossible to decide whether the waves
are located on the windward side or on the lee side of the mountain.

This ambiguity disappears, however, if the problem is solved as an initial value
problem. This was shown by HemLanp (1952) for waves on a free surface and by
WurTELE (1933) and Parm (1953) for the Lyra-QuENEY model.

It is found that, when time increases, the initial value solution approaches the
stationary solution corresponding to waves on the lee side only. This result is easily
generalized to comprise all cases where the group velocity is less than the phase
velocity. This is the case in the present work and waves on the windward side are there-
fore excluded.

It should also be mentioned that the ambiguity discussed above may be removed
in the Lyra-QUENEY model by introduction of a radiation condition (Er1asseN and
Parum (1954) or Handbuch der Physik, article on dynamic meteorology (1957)). This
condition expresses the fact that in a frame of references where the mountain is moving
the energy flux is directed away from the mountain.

Scope of the present work. The topic of this paper is divided into three parts which are
more or less related:

a. Investigation of the motion at great heights (above 10 km, say).

b. Investigation of the influence of the distribution of wind and stability at great
heights on the wave motion near the ground.

e. To demonstrate that the motion near the ground with a good approximation may be

obtained from a one-layer model, to discuss non-linear effects and to examine the
occurrence of rotor motion.

2. The differential equation and boundary conditions. Below, for simplicity,
is only considered a motion independent of time. The flow takes place in a x-z plane
with x-axis horizontal and z-axis positive upwards. z = o corresponds to the ground.
The equations and boundary conditions are for the present linearized. As to the boun-
dary conditions, however, this assumption will be removed in section 5.

The density in the basic flow is assumed to be exponential in type!

(2.1) o=t f>o0

which is a close approximation to the variation of density in the atmosphere. The
equation governing the motion is then found to be (see appendix 2 A)

(2.2) Vio+f()o=0

where » and the other quantities are defined in the list of symbols.

Eq. (2.2) is most easily solved by applying Fourier’s theorem. Therefore, we first
find the solution corresponding to a mountain profile

(2.3) { = acoskx atz=o0
! For explanation see list of symbols on p. 29.
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with a denoting a constant. Introducing that e is a harmonic function of x, Eq. (2.2)
takes the form

(2.4) o, +(f(z) —F) o =0
The boundary conditions are
(2.5) w=U(),=—alUo)ksinkx at z=o0
w =0 at 2 — oo

At the internal boundaries pressure and vertical velocity are required to be continuous.

3. On the wave motion at high altitudes. It is generally believed that the
appearance of mother of pearl clouds is a manifestation of the existence of mountain
waves at very great heights. Observations of these clouds ceem to indicate a wave
motion at about 20—30 km above tea-level with an apparent wave length of about
40 km (HesstveEDpT (1959), see also GEorcir(1956)). It ought to be pointed out that
wave length in this connection is defined as the distance between consecutive clouds.
To the authors’ knowledge there are no observations which suggest the existence of a
wave motion mainly consisting of one single harmonic wave.

In most models examined earlier f(z) is assumed constant in the uppermost layer.
This is an incorrect assumption in the pre-

o ’/ | sent problem where emphasis is laid on the
A wave motion at high altitudes and thereby
T on relatively long waves. It may thus be
/ demonstrated that by this assumption waves

/ 1 {or which £* < f* (f* the constant value
/ of f(z)) are lost. As an example, if the layer
/ is isothermal and the wind velocity 30 m
/ sec™, the longest wave length attainable in
/ 71 the model is about 10 km. It should also
/ be mentioned that with constant f(z) in the
/ uppermost layer, the amplitude of the wave

/  Mean zonal wind at

ol J 6in winter | mc?tion tends towards infinity at great
/ heights.

It should be expected that the wave
motion depends on the distribution of wind
{4  and stability from the ground and up to a
height somewhat above the level in question.
This complicates the present problem since

Wind speed (m sec” )———» simultaneous observations of wind and sta-
. e bility are not available up to these heights.
Figure 1. Observed wind, mean zonal wind at We have therefore in this paper based the
60°N in winter and extrapolated wind profile. computations on the actual wind and sta-
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Figure 3. f(z) computed from the observed
and extrapolated wind and temperature given
in Figs. 1 and 2, together with the simplified
f(z)-curve applied in this section. Units: m—2.

Above this level the distribution of wind and

stability is chosen consistent with the mean curves for the season. These curves are

known to heights above 50 km.

Since we in this section will be particularly concerned with mountain waves at
high altitudes, it would have been desirable to use a distribution of f(z) obtained from
soundings when mother of pearl clouds were observed. This is, however, not done here
because, so far as we know, the scundings obtained in these situations only reached
relatively moderate heights. The computations are based on observations at Leuchars
15.4.54 1400 GMT, a day on which the soundings reached a height of about 20 km.
The observed wind, the mean wind distribution given by MurcaTROYD (1957) and
the extrapolated wind profile are displayed in Fig. 1. The corresponding curves for
temperature are shown in Fig. 2. The resulting variation of f(z) based on the observa-
tions and the extrapolated data are shown in Fig. 3 together with the simplified f(z)-
curve applied here. By this simplification the model is divided into three layers with

the following properties:

1. The first layer extends from the ground to 4, = 12 km.

f@) = f; = 1.6 107 m=,
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2. The second layer extends from 12 km to 4, = 22 km.

f&) = fu = 105 m=2,

3. The third layer extends from 22 km to infinity.

f(2) is given by
Fl@) = e

where f; = 2.8 10-5m~2% and ¢; = 6.0 10-3 m~L.

The form of the exponent is chosen for later convenience.
The solution of Eq. (2.4) in the three layers are

w; = Asin |[ff — B 2+ Beos |Ify — Rk 2
(3.1) wy = Csin |[f, — k z+ D cos 1 —#z
Wg = E]vs (Z3)

with the boundary condition at infinity implied. 4, B, C, D and E are arbitrary con-
stants determined by the boundary conditions, 7,({) denotes a Bessel function of the
first kind and
n=t z-zp=thee
3 3

The formula for » corresponding to a symmetrical 1nountain is derived in the
appendix (3 A). w is adequately divided into two parts, here denoted by w, and w,,.
w, consists of a sum of harmonic lee waves and constitutes the real wave motion. It is
seen that w, is zero for z = 0 and discontinuous for x = o. Therefore, o, satisfies the
boundary condition at z = o, and has the same kind of singularity as o, for x =0
in order to make the complete solution analytic. It is thus clear that w,, is important
near the mountain whereas it is readily shown that the importance of the term rapidly
decreases for increasing distances from the mountain. In this and the next section this
term is omitted, and the solution is therefore not valid near the mountain. In section
5, however, this term will be taken into account.

As shown in the appendix the harmonic waves composing o, have wave numbers
which are the solutions of

(3.2) (Fru(a) cos az+ By J',,(0) sin ay) cosay
— By (Fy(as) sinay — By F',,(a5) cos ap) sin a; = o,

oG = ]/J—q—:“FkW2 by cy = VE——W (hy — b)), ay = Z(hz) ,

(3.3) by ay co(hy—hy)ay
P = (hy— hy) 0, and f = ay

Height (km)——

Figure 48
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Figure 4. The field of vertical velocity due to a mountain of height 1 000 m applying linearized boundary
conditions. Units: m sec—L.
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This equation yields 18 different wave numbers. The corresponding wave lengths are
(in km):

37.0, 22.4, 19.0, 15.0, 10.4, 8.8, 7.0, 5.8, 4.9, 3.6, plus 8 solutions between 3.0 and
2.0 km.

'The amplitudes of the wave components have been computed in the case of the
symmetrical mountain profile

Hp?

(3.4) ¢

T x? —i—"b—2

where H, the height of the mountain, is 1 km and b, the half width, 2 km.

It is found that only the three longest waves have appreciable amplitude. The wave
motion thus consists of three harmonic waves with wave lengths 37.0 km, 22.4 km and
19.0 km. All the waves omitted have wave numbers for which £2 > f;. It may be
demonstrated that this is not a mere accident.

The vertical velocity field due to a mountain of form (3.4) is displayed in Fig. 4.
The corresponding displacements of the streamlines at z = 10 km, 15 km, ... 30 km
are shown in Fig. 5. As seen in Fig. 4 the maximum vertical velocity in the troposphere
1s only about 1 m sec™®. This is due to the choice of constant f(z) in the troposphere.
If the observed variation of f(z) is taken into account, as done in section 5, the vertical
velocity will be considerably larger.

It is seen that the two shortest waves dominate near the ground whereas all three
wave components are important aloft. Here the three waves interact, reinforcing and
cancelling each other. Thus at an altitude of 20 km these three waves lead to a wave
motion with an apparent wave length of about 40 km which is the wave length indi-
cated by observations of mother of pearl clouds. The maximum displacement at this
level is about 350 m, leading to a cooling of the ascending air of 3.5°C. By more suitable
distributions of wind and stability than that discussed here, the cooling of the air may
be considerably larger. It therefore seems reasonable that mountain waves may be of
importance for the formation of mother of pearl clouds.

It is noted that from 12 km to 22 km the vertical velocity is zero on lines spaced at
about 1 km in the vertical direction. This is due to the small wind velocity and large
stability at these heights, leading to a large f(z). Above this layer the maximum vertical
velocity increases with height being about 1 m sec—! at 30 km.

It seems difficult to decide at which height the result obtained ceases to be valid.
Evidently friction and three-dimensional effects play a dominant role at very great
heights.

An inspection of Eq. (3.2) reveals that all three waves, and therefore also the wave
motion near the ground, are considerably dependent on wind and stability at high
levels. In the next section, however, the variation of f(z) with height in the tropo-
sphere is taken into account. It is then shown that for variations of f(z) as usually ob-
served when mountain waves occur, the wave motion in the lower troposphere is
independent of wind and stability aloft.
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Figure 7. Observed temperature, mean tem-

perature at 60°N in winter and extrapolated
temperature.

Figure 6. Observed wind, mean zonal wind at
60°N in winter and extrapolated wind profile.

4. On the connection between the motion near the ground and the wind
and stability aloft. An examination of f{z)-curves based on soundings on days
when mountain waves were observed reveals a characteristic variation with height.
In the lower troposphere f(z) decreases up to an altitude corresponding approximately
to maximum wind velocity. Here the function is relatively small in a 2—3 km thick
layer, and then it starts to increase rapidly. Often this characteristic distribution of
f(z) is camouflaged by abrupt, concentrated changes of the function mainly due to
thin inversion layers.

The purpose of this section is to demonstrate that for variations of f(z) as sketched
above, the distribution of wind and stability above the level of minimum f(z) does not
sensibly influence the motion beneath this level. The model to be studied in this section
might have been based on the observations displayed in the previous section. We have,
however, here preferred to found the model on a sounding launched on February 16,
1952 in the Sierra Nevada region (HoLmBoE and KviierorTH (1957)). The wind profile
was only obtained to a height of about 11 km, but, on the other hand, on that day the
streamline field was carefully observed by a glider. Besides that, a rotor motion occurred.

This will be of interest in the next section where the complete streamline field will be
computed and special emphasis laid on the rotor phenomenon.
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The observed values of wind and tem-
perature are displayed in Figs. 6 and 7,
respectively. On the same figures are also
shown the mean distributions of wind and
temperature above 11 km at 60°N in win-
ter as given by MurcaTrROYD (1957). The
resulting variation of f(z) based on the
observations and mean data are shown in
Fig. 8 together with the simplified vari-
ation of f(z) applied in this section.

It is seen from Tig. 8 that the actual
model is divided into three layers with
the following properties:

1. The first layer extends from the ground
to A, = 7 km.

f(z) is given by

J(&) = fre™

where f; = 1.3 10-®* m~2 and
¢ = 2310~ m1,

2. The second layer extends from 7 km
to iy = 11 km.

fz) = fo = 5.8 10-%m2.

40 |
Mean values of f(z)
at 60°Nin winter-

Height (km)

30

20 -

Extrapolaled

2 3 45678910° 2 3 4 5678510° 2 3 45678910°

Figure 8. f(z) computed from the observed,

extrapolated and mean values of wind and

temperature given in Figs. 6 and 7, together

with the simplified f(z)-curve applied in this
section. Units: m—2,

3. The third layer extends from 11 km to infinity.

f(z) is given by
S(z) = fye™

where f3 = 2.0 10-%n—2 and ¢; = 3.4 10-°m~".

The solutions of (24) in the three layers are

Wy — A]v,(zl) +B‘Nv,(Z1)

(4.1) wy = Csin |[fy — B z+ Dcos ||f, — k2 2

Wy == Ejv,(Z:a)

where the boundary condition at infinity is implied. Here Jyand N, are Bessel functions
of the first and second kind, respectively, and
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w=t =i =l
(+2) )
w=l Z= A = Vf

A, B, C, D and E are arbitrary constants determined by the boundary conditions.

The formula for w corresponding to a symmetrical mountain is derived in the appen-
dix (4 A). The wave numbers of the harmonic waves composing o, are found to be
solutions of

p (= T (R} sin 2o+ po F, (B) €05 Ag) ( F(A0) Ny (A)) — (M) Ny, (%) )

(4.3)
— (FulRa) cos Ay 4 1 7'y, (Ra) sin Ag) Ty, () N, (A1) — Fi(A) Ny, (A4)) = 0.
Here
Ao =21(0), Ay =Xy (b)), Ay = ]y{f:__? (hy — hy) ,
(4.4) A cglhy — Iy) Ag

Ay = K5 (ha) » puy = ¢r(hy “‘2/11)11 and p, = 2,

Eq. (4.3) is solved graphically and yields 9 different wave numbers. The corresponding
wave lengths are (in km)

(4.5) 45.5, 29.4, 21.7, 16.6, 14.4, 13.6, 11.2, 9.3, 7.7.

For the two longest waves £2 <C f, whereas for the other waves £2 > f,.

Most of these waves have very small amplitudes in the lowest layer. It is shown in
the appendix (4 B) that, retaining only waves of appreciable amplitudes, the compli-
cated Eq. (4.3) reduces for £ > f, and f; > 2.5 f, to

(4.6) T, (%) = 0.

In the actual case f; = 25f, and, therefore, for £2 > f, (here corresponding to wave
lengths less than 25 km) the motion near the ground is independent of the parameters
in the upper layer. Eq. (4.6) has few solutions compared with (4.3), in the actual case
only one corresponding to the wave length 14.4 km.

It does not seem possible to reduce Eq. (4.3) for £? < f,. Examples indicate, however,
that generally the amplitudes of these waves are small below the level of minimum
f(z). This is true in the present case, as seen from Fig. 9. The vertical velocity field
displayed in this figure is due to a mountain of form (3.4) and is computed from the
complete set of equations. The figure reveals clearly that only the wave of wave length
14.4 km is important in the lowest layer.

It is seen that the maximum vertical velocity is about 6 m sec—! and is located below
5 km. This value is considerably larger than that found in the previous section. This
is due to the decrease of f(z) with height in the lowest troposphere incorporated in this
model. Also at higher altitudes the vertical velocity in the present model is larger than
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Figure 9. The field of vertical velocity due to a mountain of height 1 000 m applying linearized boundary
conditions, or, according to section 5, due to a mountain of height 700 m applying the correct boundary
conditions. Units: m sec™, *
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Figure 10. Streamlines due to a mountain of height 1 000 m applying linearized boundary conditions,
or, according to section 5, due to a mountain of height 700 m applying the correct boundary conditions.




No. 6, 1959.  CONTRIBUTION TO THE THEORY OF TWO-DIMENSIONAL MOUNTAIN WAVES 15

in the previous one. For example, at 30 km the vertical velocity in the actual case is
found to be about 3.5 m sec~!. The field of vertical velocity between 12 km and 22 km
has a different pattern in Figs. 4 and 9 due to widely differing values of f(z) in this region.

The displacement of the streamlines at 2 = 10 km, 15 km, . . . 30 km are shown
in Fig. 10. It is seen that the displacement at 30 km is about 400 m.

Eq. (4.6) is identical with the equation found in a one-layer model with f(z) de-
creasing exponentially with height. Consequently, the wave motion in the lower
troposphere may be obtained from a simple one-layer model. This model is tractable
from a mathematical point of view and will be discussed in the next section.

5. The motion near the ground. Neglecting subscripts f(z) is now in the entire
i atmosphere given by

(5.1) J(z) = flo)e=*
or, for later convenience,
(5.2) Inf(z) = Inflo) — 2cz.

It follows from the appendix (4 A) that in the case of a mountain of form (3.4) with
H and b arbitrary,

! - i ]iv (Z) ]
=HbU(o) I | ke —>% o~F gk
®,, (0) f ¢ 7. (2) e I
(5.3) 0 i x>0
, v (<)
* w, = — 2uHb Ulo) 2 ke™ -22 cos kx
d O R g g
an
‘l w,, = — HbU(o) If/ce—”‘b Jin (<) e**dk ]
(54) r ]iv(;to) [ X <0
w, =0,
where I denotes the imaginary part. Here
. : k ——
(5.5) v = 2 =2(z) = Vl e~
¢

The waves composing the sum in (5.3) are the solutions of

(5.6) Iy () =0 .
' ‘ The solutions of (5.6) are easily obtained from the diagram in Fig. 11 derived from
0 tables of Bessel functions. In this figure f(o) and ¢ are the coordinates. The solid lines
R iions and dashed lines are isolines of constant wave length. Thus for large ¢-values and small

¥ ditions. Jf(o)-values no solution exists. For smaller ¢-values or larger f(o)-values one solution




ENOK PALM AND ARNE FOLDVIK

oo one wave exists, and to the right of L, = oo, two waves exist. The numbers

oo and L,
attached to the lines denote the wave length in km.

2x10°7"
Figure 11. The wave lengths corresponding to observed /(o) and ¢ are found directly from the diagram. If the point ( f(0), ¢) lies to the

left of L, = oo no wave exists, between L,

given
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(wave) exists. For still smaller ¢-values or larger f(o)-values two solutions exist. More
than the two sets of curves shown on the diagram could have been drawn, leading to
the possibility of three or more solutions of (5.6). This is not done here because these
sets of curves correspond to unrealistic values of wind and stability. When applying this
diagram, it should be kept in mind that only waves for which f; > 2.5 J2and &2 > f,
should be taken into account. f, denotes as above the observed minimum value of fz)
corresponding approximately to maximum wind velocity.

The possible wave lengths are therefore found by the following procedure. in Sz
is plotted from 1 km, say, (to avoid the friction layer) and up to the level where F(2)
has its minimum value, f;. The straight line is drawn which fits the plotted points best.
Thereby, from (5.2) f{0) and ¢ are found. The corresponding wave lengths are obtained
from the diagram in Fig. 11. Only wave numbers for which k2 > £, should be taken
into account.

The drag on the mountain. The total drag of the air on the mountain is obtained by
integrating the momentum transport along the x-axis. For a symmetrical mountain

(5.7) Drag:—/ éuwdx:—éfurwmdx forz =0
—-Aoo 0

where subscripts 7 and m are used in the corresponding meaning as above. Introduction
of the expressions for u, and w,, leads in the case of a mountain of form (3.4) to

=¢]

(5.8) Drag — — 6 4 f (b—”x_?)—z sin kx dx
1]
where
T v(%)
5.9 A= 4dn H2 0 U20) e Ay 4 o o
(59) R i

A prime denotes differentiation with respect to the argument. Evaluation of the integral
(5.8) leads to
kxn

- _kb
(5.10) . Drag = -QA4—be
Introducing U(o) = 10 m sec™, H = 1 km, & = 2 km and f(0) = f;, ¢ = ¢ (fiand ¢,
given in section 4) the drag is 8.8 107 dyne cm~. If H = 0.5 km and b — 2 km the
drag is found to be 2.2 10?’dyne cm2.
For comparison, SAwvyER (1959) applying the Lyra-Queney model with U(o) =20m
sec™!, H = 0.3 km and & = 2 km, found that the drag was 7.6 106 dyne cm1.

The non-linear effects. The results obtained above are based on boundary conditions
and differential equations which are linearized. This, of course, restricts the validity
of the solution. For the motion near the ground especially the linearization of the
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boundary conditions may lead to fallacious results. This approximation is avoided by
considering the linearized solution as the motion generated by a mountain profile
coinciding with one of the streamlines. In order to obtain a mountain profile consisting
of one single ridge, it is usually necessary (but not sufficient) to choose the streamline
approaching the ground far upstream. Various mountain profiles are obtained by
varying the linearized boundary conditions. This method, introdued by Long (1955)
in this kind of problem, will be applied below.

The non-linear equation governing the motion in the case of an incompressible
fluid may be written (Lone 1953)

1 d R aly  S(z)
(511) Vi + 5 d—Zo In (Uz(zo) ) (ZQ)) ((V 0242 az) = — UZ(ZU) 5
Here R :
_ . 8de
S(ze) = é PP

{ the vertical displacement of a streamline and g, the z-coordinate far upstream. If
compressibility is taken into account, the equation corresponding to (5.11) will be
considerably complicated. For the present purpose, however, it is sufficient to consider
the influence of compressibility on the stability term only, which is the most important
effect. The equation for finite amplitude then takes the form (5.11) with

g(ya—y)
(512) S(Zo) = —? ;
implied that y is the lapse rate far upstream.
The linearized equation corresponding to (5.11) is
o0 S()

d ,
(5.13) v+ (00 60) 51 = ey ¢

5

‘ 0& .
Eq. (5.13) is a good approximation to (5.11) if (v £)2 ({2 7z and if z; may be replaced
3
by z. The relative magnitude of (7 {)2 and 2 Ii depends on the height of the mountain.

The streamline pattern due to a mountain of height 700 m is shown in Fig. 12. It is

s

d 3
seen that (V)2 ({2 gg, except for z << 1 km where 2 sz is between two and three

times as large as (7 £)2 It should therefore be expected that the main features of the
flow are retained by cancelling the quadratic term.

. S e .

The soundings show that usually f ~ ViE, and that §, the stability, is approximately
constant in the troposphere. Now, since fis exponential in type in the lower troposphere,
U is approximately an exponential function in this region. It has been mentioned
above that also ¢ varies as an exponential function. Consequently the coefficient of the

second term in (5.11) and (5.13) is approximately constant.
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The term on the right in (5.11) and (5.13) is different mainly due to the difference
between U(z,) and U(z). Since U increases with height, U(z) is greater than Ulz,)
at the crests and less at the throughs. Therefore, the term on the right in (5.13) is
too small at the crests and too large at the troughs. This implies, which may be seen
by expressing /%0 by the vorticity, that the magnitude of the vorticity obtained by
the linearized equation is too small at the crests and too large at the troughs. Conse-
quently, the correct solution is sharper near the crests and flatter in the troughs than
obtained by the linearized equation. It seems reasonable that this is the chief effect of re-
placing the non linear term on theright of (5.11) with thelinear term on theright of (5.13).

The streamline pattern and rotor motion. The linearized solution for  in the case of a
mountain of form (3.4) is given by (5.3) and (5.4). The w-field, and hence the streamline
field, generated by the combined effect of 2 mountain peak with H = 1 km, b = 2 km
and a valley centred at x = 14.7 km (corresponding to a wave length) and with H =
— 0.1 km and b = 2 km has been computed. Thus it is attained that the streamline

2 ¢ E o
1000"s 1) i | 1 ° 5;0 s "]" e 90 100 e 120 X' 1000 111
35—

~»

— 400

- 500

Figure 13. Streamline pattern deduced from observations of rotor flow in the Owens Valley on February
16, 1952, Sierra Wave Project.
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Figure 15. Streamlines due to a mountain of height 950 m. The distribution of wind and stability as in Fig. 12. Units: m?2ec™*.
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approaching the ground far upstream has the required form, i.e. a smooth profile con-
sisting of one single ridge. As mentioned above the motion may be considered as gene-
rated by a mountain profile coinciding with this streamline, and is therefore not sub-
mitted to the restrictions implied in the linearization of the boundary conditions.

In the integrands (5.3) and (5.4) 7, (<) appears. This function is, so far as we know,
not tabulated, and we have therefore applied the asymptotic expressions for Bessels
functions of large order as well as large argument.

The streamline field obtained when f(0) = f;, ¢ = ¢; (f; and ¢, given in section 4)
is shown in Fig. 12. It is noted that the height of the mountain is about 700 m. With
the present distribution of wind and stability this mountain causes closed streamlines.
Since the potential temperature is constant along a streamline, a closed streamline
implies static instability and turbulence. It seems therefore very likely (Long 1955)
that these closed circulations correspond to the rotor motion observed for example in
the Sierra Nevada region'. The streamline pattern observed in this region on February
16, 1957, the same day as the sounding applied here was observed, is displayed in TFig.
13. It should be mentioned that the sounding on which the model is based, was taken
upstream in a valley between the coast mountains and Sierra Nevada. Therefore
we have not taken into account the observed wind and stability below 1 km, i.e. f{0)
in the model corresponds to the observed f(z) at 1 km. It turns out that choosing 1.7 km
instead of 1 km gives complete agreement between observed and computed wave length.

The streamlines due to mountains of heights 400 m and 950 m are shown in Fig. 14
and Fig. 15, respectively. It is seen that no closed streamlines occur in the first cace.
In the second case, however, at least two sets of closed streamhnes exist. With the present
distribution of wind and stability the critical height for formation of closed streamlines
is found to be 600 m.

Acknowledgement. The authors are indebted to Professor HorLaxp, University
of Oslo, for valuable discussions. This investigation has been sponsored by Norwegian
Research Council for Science and the Humanities, and has in part been distributed as
Report No. 4, 1958, Institute for Weather and Climate Research, Oslo.

APPENDIX

2A. Derivation of the differential equation. The equations of motion, the
equation of continuity and the adiabatic equation may be written

(2A.1) é(Uuw + Uw) = —p,
(2A.2) pUw, = —p, — g0

A D A
(2A.3) o (U, +w,) = — (o +0)

! Recently rotor motion in the atmosphere was also found by Scorer and KvrierortH (1959)
applying a three-layer model.
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D(ete) o .
2A4 Np LT =" Or g = — —0)C .
(2A.4) D(Ptp) g% e telf—9
The equations are linearized and the various symbols are defined in the list of symbols

1
P- 29.;7 =% (s the velocity of sound) may below with good approximation be con-

sidered as a constant. Introducing
~ l A l
y— (@ﬂ) o — (9@)2 o
(24.5) e@) T e@)

(i)

and eliminating g, the three first equations take the form

|-

.p*

(2A.6) Uu*+ U0 = — p*,
axr ot 555 =gt (s
(2A.8) u*, + o, + (% g — 6) w== — S Up*,.

2
compared with unity leads to

1

U
Elimination of p* and w* and cancelling(
S U U,
(2A.9) v 2w —]—(72— U+\ﬂ—26)ﬁ—~(/3—26)2)w:0.

N

4

U,
Here (B — 26) T/t —3 (8 — 26)* are small compared to the other terms. Eq. (2A.9)

may therefore be written

(2A.10) Vi 4+ f(2)o =0
where

S U
(2A.11) f@&=1:—1

S . L o .
Usually s the dominating term in this expression.

3A. Derivation of o for section 3. The solution of Eq. (2.4) for the three
layers in section 3 may be written

Wy = ASianl — K2z + Bcos Vi —# 2
(3A.1) wy = Csinl/f, —F2z + Dcos]lfy, —F 2
wg = EJ, (Zy)




:,symbols

% be con-

. (2A9)

Jie three

No. 6, 1959. CONTRIBUTION TO THE THEORY OF TWO-DIMENSIONAL MOUNTAIN WAVES 25

with the boundary condition at infinity implied. 4, B, C, D and E are arbitrary con-
stants to be determined by the boundary conditions. The other quantities are defined

either in section 3 or in the list of symbols p. 29. According to section 2 the linearized
boundary conditions are

0y, = — a U (o) ksin kx at z =0
W, — Wy =10
3A.2 d at z =h
( ) d—z(wl_wz):o !
Wy — wg =0 '
d atz =4, .
gg(wz_w3>:0

It is here tacitly assumed that U, is continuous at the interfaces. These equations deter-
mine the arbitrary constants, and the solution obtained for w in layer z (n = 1,2,3) is

An(2,K) .
(3A.3) o ow,=—alU(o)k A sinkx .
Here .
N(E) = (],,3((13) cos ay + fs F',,(ag) sin a2> cos a,
~and — b (Jv,(aB) sin ay — B J',,(a3) cos a2> sin a,
A\ 7 . hl —X
Ay (2 k) = (:ﬁ,(%) cos (ay) + B2 J',,(a3) sin a2> Cos 71— a
(3A.4) b
— B (jvg(as) sina, — fi ],v,<a3) cos az) sin thl a
hy—2z , . hy—2
Ns (2, k) = F,,(a3) cos h oy - 1827 v (@g) sin ﬁj/h a

N3 (2k) = F,, (Zs)
The following abbreviations are introduced
BAD) = [ by oy = U () oy = Rolhy) =

3
by ay (hy — hy) czag
= -———"— and = =

g (hy — Iy) a4 o ay

In the case of an arbitrary symmetrical mountain

oo

(3A.6) ¢ = [ a(k)coskxdk atz =o

o, may be written

(3A.7) w, = — U(0)1 f a(k)k A—g(% ¢ gk
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where I indicates the imaginary part. If A(%k) = o for any
positive value of £, the integral does not exist. This diffi-
culty is avoided, however, as pointed out in the intro-
duction, by solving the problem as an initial value pro-
blem. It is then found that the improper integral (3A.7) is
to be interpreted as an integral along the path of inte-
gration L shown in Fig. 16, corresponding to waves on the
lee side only. In this figure P denotes one of the zeros of
A (k).

A more appropriate form of (3A.7) is obtained by
applying CaucnY’s theorem on the closed curves ABCA for
x > o0 and ABC’A for x < 0. The dashed semi-circle indi-
cates that the radius tends to infinity. It is then found that?

(3A.8) 0=, +o,

where * . 1
_ An(22k) .
W,y = U(o)If a(ik) k A (R dk |
(3A.9) 0 x>0
- An (2, F)
w, = —2aU(o 2 a(k)k 5 cos kx
(0) = a(k) NG )
F o Anlzik)
U(o) If a(z/c)k—A (iF) e dk £ <o

The waves composing the sum in (3A.9) are the solutions of

(3A.11) AK) = o .

4A. Derivation of w for section 4. The solutions of Eq. (2.4) for the three
layers in section 4 may be written

0)1 —_
(4A.1) 0y =
g =

1 It is here and in (4A.8)

4 7,(Z1) + BN, (Z)
Csinlf, — Bz + Dcos|lf, — Rz
Ejv,(‘%:z)

assumed that /\ (k) has no complex zeros. The existence of such

zeros corresponds to damped waves. In section 5 where the complete streamline field is required,

these waves must be taken into

account if they occur. It follows, however, irom the theorem that

Bessel functions of complex order and real argument have no zeros, that no such waves occur in

the case studied in that section.
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with the boundary condition at infinity implied. 4, B, C, D and E are arbitrary con-
stants and the other quantities are defined either in section 4 or in the list of symbols.
The boundary conditions are the same as in 3A, and the solution obtained for @ in
layer n (n = 1,2,3) is

Dn (z, k) .

(4A.2) w, = alU(o) k A(kr sin kx
Here
AR = o (— Fy(3a) 510 2y A+ o 'y, (s) €08 D) (T, (20) N (A) — T () Moy ()

(BA3)  — (F,(20) cos g+ o J'y, (28) sin ) (T, (B) W'y, (B) — F'(A) Mo, ()
and
A (@) = o (— F(2a)sin dg + e F'y,(2a) €08 o) (F,,(20) My, () — Ty () N, (R0)
(AD) —(F,,(ha) cos dy +po Fy, (Ra)sinds) (o (R0) Ny, () — T, (A) M (R0)) »

paleh) = = (Tt cos (20 Pty sin 2 )

2
A3 (2.k) = — Tll]”’ (L) -

The following abbreviations are introduced

Ay = Z4(0) = chq sy =2 () = A, Dy = ]/JT—i?é (hy — By)

£ k k
(44,9 b= Rl = 2

g 451 3

- 2 . (hy—hy) ¢34
= (hy — hy) €14 and gy = Ao .
In the case of an arbitrary symmetrical mountain
(4A.6) ¢ = [ a(k) cos kxdk at z=o0
¢
w, may be written \
d (2R

(4A.7) w, — — Ulo) I f a(k) k AA(‘(%L ¢

0

where I indicates the imaginary part. By an analogous procedure as that applied in
3 A, it is found that ‘

(4A.8) ®w =0, +o,




28 ENOK PALM AND ARNE FOLDVIK Vol. XXI.

where ~ .
n (2, k
o, = Ulo) I f a(ik) & ég(;/%)) o gk
(4A.9) 0 x>0
- An (2, k)
w, = —2n U(O)%‘a(k)k ‘dﬁA (k) ©os kx
and dk

o8]

w, = — Ulo) I f a(ik) kLol )

& dk x <o

(4A.10) A ()

=o0 .
The waves composing the sum in (4A.9) are the solutions of

(4A.11) A (k) =o.

4B. The amplitudes in the lowest layer. Eq. (4A.3) may be simplified consider-
ably for a wide range of k-values. v (A1) and W, (4;) are oscillating functions of », being
of the same order of magnitude when », is somewhat smaller than A;. If, on the other
side, »; > 4,, N, (4,) increases exponentially whereas J», (4) decreases exponentially.
Therefore, when », is somewhat larger than 1, , Jy, (A1) may be cancelled compared
with N, (). I, in addition, 4, is somewhat larger than 2, , we obtain that T (A1) N, (4)
may be cancelled compared with ¥, (), »,(41),and, correspondingly, I 0 (A) N, (%) may
be cancelled compared with 7, (4,) N "5.(%1)- As a rough rule the terms may be neglected
(see for example JAuNkE and EmpE (1945)) if

v > A4
(48.1) Ay > 1.54,.

The approximation introduced by neglecting these terms is not good if », is very close

to ;. The goodness of the approximation increases rapidly, however, when v, increases
relatively to 4,.

(4B.1) may also be written

k2> f,
(4B.2) J1> 152, ~ 251, .

In the actual case 2y = 54, (f; = 25;), and Eq. (4A.11) reduces for £2 > f, (i.e.
for wave lengths less than 25 km) to

(4B.3) G () J, (1) = o

where
G (k) = iy Ny, (20) (= J(B) sin 2y + o 7', () cos 4y)

(4B.4)
— N, () (F(s) €08 By + w1y 7', (Ba) sin By)
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Correspondingly, for »; > 4, and {; > 1.54; (i.e. z << 5 km in the actual case) A,(z,k)
simplifies to

k> 0 | (4B.5) N (k) = G (k) 7, (Z0),

approximately. Therefore, as to the wave motion near the ground (i.e. in the actual
case below 3 km) G (k) drops out. The part of the wave motion near the ground com-
posed of waves for which 2 > f, may thus be obtained from a one-layer model with
f(2) varying as an exponential function.

LIST OF SYMBOLS

a, a(k) Fourier cosine transform of the mountain profile.

b defined by Eq. (3.4)

¢ defined by Eq. (5.1). (¢; and ¢4 are defined in sections 3 and 4).
S 44

Q=i

g acceleration of gravity

H defined by Eq. (3.4)

J,(Z) Bessel function of first kind

k wave number

N, (K) Bessel function of second kind

p pressure in the undisturbed motion
b perturbation pressure

S

=g(f—98) = glya—) , stability

T
s velocity of sound
T temperature
U basic velocity
U +u  total horizontal velocity
w vertical velocity
X,z Cartesian coordinates, z vertical. Subscripts x,z denote differentiation
2y height of a streamline in the undisturbed motion

~ 2 = O

™

positive constant defined in connection with g
actual lapse rate
Va dry adiabatic lapse rate

g .
= » defined by Eq. (2A.4)

=

vertical displacement of a streamline

0 = (o)

o Y O
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k
v = —
¢
0 perturbation density
0 = 6(2) = @(0)e~", density in the undisturbed motion
p
-3 z
a) = we
w, the part of w being harmonic waves
®,, =w— o,
2 02
2 -2 .9
v 0 x2 + 022
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