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Summary. A method based on the graphical method proposed by FjorTorT is described.
A 24 and a 48 hour prognosis are compared with similar prognosis made by a more conventional
procedure.

L. Introduction. The graphic procedure proposed by FjerTorT (1952) for inte-
grating the barotropic equation has proved to give results comparable with those
obtained by other methods. The aim of the experiment which will be described in
this paper, has been to find out if this method also is suited for high speed computers
if properly arranged. The method may be characterized as a Lagrangian one in the
sense that the movement of the individual particles is focused, whereas the Eularian
method is concerned only with local changes. It is, however, not strictly Lagrangian,
since no special substantial coordinates are introduced.

Numerically, the Lagrangian method differs widely from the Eulerian one. There-
fore, a comparison between integrations carried out by both methods most likely
will throw light upon the numerical errors. This problem has been touched upon in a
previous investigation (@kLAND 1958), and will be studied more closely later. In this

paper we shall restrict ourselves to present a comparison in a single case without any
detailed discussion.

2. The differential equation. We use the barotropic equation in the following
form:

1 (%+v-v)(vzw+f)=ﬂf2%f,

where y is a stream function, initially derived from the height of the 500 mb surface,
J is the Coriolis parameter, » is a constant, V is the horizontal nabla operator, and

(2) v="kxXVy.




2 HANS OKLAND Vol. XXII.

The right hand side of (1) is similar to the term introduced by Cressman (1958) in
order to control the very long waves.
At the boundary we assume

dy
and further
d
— 241y e

where there is inflow across the boundary, but v/ 2y given by (1) where there is outflow.
Equation (1) can also be written

(5) (—6’%+v'v)(v21/’+f—%f2¢):—%fzv'Vw—QMﬁpv-vf

The first term on the right hand side vanishes owing to equation (2). The last term can
be shown to be smaller than the Rossby term all over the hemisphere if an appropriate
constant is added to v, and it can be neglected without introducing serious errors.

Following FjgrTOorT (1955) we now introduce a smoothed field 4™ defined by

Vi
b

Ay

(6) PV =y +

where ay is the eigenvalue corresponding to the spheric harmonic component which
is entirely removed by the smoothing. Inserting from (6), equation (5) can be written as

d
(7) (a‘t+f:-v)(v2w+f—xf2w)=0
where
(8) v=kXV
1
©) b (1742
14+ g
an
Equation (7) shows that the quantity
(10) VS — xSy

is individually conserved in a velocity field defined by (8) and (9).

9. Discussion of the method. A complete Lagrangian method would be this:
At initial time the value of (10) in a regular square grid is calculated, and also the
endpoints of the trajectories originating in the gridpoints and following the stream
defined by  for a certain time A¢#, which is so short that ¢ can be assumed to be sta-
tionary. The value of  at time At in the endpoints at the trajectories is then given by a-
rather complicated elliptic differential equation (Wnn-Niersen 1958).
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The procedure could be iterated in the following way: The values of 4 at time Af
is computed from the values of y, and assuming as before this field to be stationary,
the prolongation of the trajectories corresponding to a new time interval of length A¢

Fig. 1. A square grid (broken lines) is displaced

and distorted (solid lines). In the direction AB the

gridpoints have become more crowded, and con-

sequently phenomena on smaller scales may have
been created.

is calculated. The values of y at time 2 A ¢ in the new endpoints of the trajectories are
then got from an elliptic equation similar to that mentioned before, but with other
coefficients since they depend on the mutual position of the endpoints.

This procedure would give the value of ¥ in points which are unevenly spaced over
the integration area. In some places the points will have become more crowded along
certain directions than they are in the initial regular grid. Here, correspondingly,
the field given by (10) will have become more small-scaled as compared with the initial
field. In other directions the gridpoints will have become less crowded, and (10) a
more slowly varying field (Fig. 1). Hence it is seen that by considering gridpoints
moving with the particles, a large density of points is obtained where this is needed
for a detailed description of the field, and vice versal.

In this paper we shall not be concerned with this quite interesting numerical feature
of the general Lagrangian method. In other words, we shall abstain from utilizing the
possibility this method gives to follow the creation of phenomena on smaller scales

! It would, however, be necessary after some time steps to find the value of ¥ in a regular grid by
interpolation before the distortion had become too great. This interpolation would then necessarily
involve a smoothing of the smaller scales if the number of gridpoints is kept constant.
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without increasing the number of gridpoints. We can then as well describe the field at
every time step by means of a regular grid, provided the grid is dense enough to describe
the smallest scales which are of interest. This has further the advantage that the elliptic
equation one has to solve, can be made much simpler.

One way of doing this would be to find the value of (10) in the regular grid by
interpolation from the values in the endpoints of the trajectories, before solving the
elliptic equation. We have, however, found it more convenient to displace the grid-
points backward in the field 9, that is to find the position of points which during the
time At move up to the gridpoints of the regular grid. The value of (10) at initial
time must then be calculated by interpolation.

The method described in this paper differs therefore from the Eularian method
only in the way by which the local changes of (10) are arrived at in a regular grid.
In this connection the first point to be considered is the approximation one has to use
for (10). For a reason which will be explained later, we shall proceed in the following
way:

Let the value of g at time ¢ be given in the gridpoints of a square grid. Drawing
the parallels to the gridlines half way between them, we will get the integration area
covered by squares which have the gridpoints in their middle. We denote the surface
on the earth corresponding to one of this squares by 6. When displaced in the velocity
field —#®, this surface will be transformed into another, commonly distorted one, o’,
with the same area. From (7) we then get

(11) ¢ — [nf2pdo = ¢’ — [f2pdo + [ fio' — [ fio
o o’ o’ c

where ¢ and ¢” are the circulations along the boundaries of the surfaces o and o’ respect-
ively, and where the right hand side is calculated from the value of v at time ¢ The
left hand side, however, has to be expressed in terms of the unknown value of the
stream function at time ¢ + AL

The circulations must be approximated by some finite difference expressions.
Using conformal mapping, ¢ can be expressed by the same formula all over the map,
apart from a factor which depends on the scale of the map. The simplest way is to use
the common five-point formula for the Laplacian.

As to ¢’, one must take into consideration the location of the surface ¢’, and the
calculation will be much more complicated.

Generally the finite difference expression which one has to use in the approxi-
mation to the circulation, fails to describe all the different harmonic components of
the field correctly. It is necessary, however, that the expressions for ¢ and ¢’ behave in the
same way in this respect. If, for instance, the approximation to ¢’ should underestimate
a certain component more than the approximation to ¢ does, the result would be an
underestimation of this component in the solution.

As already mentioned, energy will in course of the integration be transferred to
smaller scales. When too small, these scales will not be properly described by the values
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in the gridpoints in a regular grid, and may falsely be interpreted as waves on greater
scales. This implies that the smallest scales ought to be smoothed. Primarely the use
of integrated values of the vorticity as introduced above, should contribute to such
a smoothing. The calculation of ¢ also implies an interpolation in order to get the
velocity at the boundary of the surface ¢’, and this can be done in a way that suppresses
the smallest wave components.

Another advantage of using the circulation, ¢, instead of the vorticity, should
also be stressed, namely that the circulation round a surface composed of an arbitrary
number of the surface ¢, is individually conserved during the time At.

4. The calculation. In order to simplify the calculation, we have used the five-
point formula for the approximation to ¢. If the symbol V2yp is used for this formula,
one can approximate equation (11) by

®d?f? , wd*% , a2
me y=¢ - m2 w_}_(f _f)ﬁ:

(12) Viyp —

where d is the mesh size, and m is the scale factor of the map. Primed symbols for the
stream function and the Coriolis parameter refer to the midpoint of ¢’, and unprimed
to the gridpoint in the middle of o.

The stream function which serves as initial data for the integration, has been
calculated from the equation

V .fVp=V?i,

where @ is the geopotential of the 500 mb surface. The boundary condition for this
equation is assumed to be

where s measures the distance along the boundary.

The first time step ¥ Af, has to be an uncentered one, in the sense that the given
stream function is used for the computation of the trajectories. Later on the trajectories
are derived from the value of y at time n 3 At The time step is then made equal to
At, and y attime (n—1) % At is used for the computation of the right hand side of (12).

The trajectories are computed in the following way: First the velocity —® is
calculated in all gridpoints, and stored. When the velocity in an arbitrary point is
needed, it is calculated from the values in the gridpoints by linear interpolation. The
trajectories are computed in steps corresponding to a certain time interval é¢. In
order to compute one step, starting in a point with position vector r, the velocity
—4d in this point is first found, and then the velocity —#&’ in the point r’ = r — & 44
Then r;, = r — 4 (# + #’) 8t is an approximate value of the position after the time 6t

The procedure can obviously be iterated, using now instead of —#’, the velocity
in the point r,. It has shown up, however, that with 8¢ equal to or less than 4 hours,
r, is a sufficiantly accurate value.
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Fig. 2. Heavy lines are the regular grid. Thesquare
ABCD is displaced and transformed into a new
surface which is approximated by abed.

In this way the endpoints of the trajectories are calculated, starting in the corners
of the surfaces ¢, and the surfaces o’ are taken to be the quadrangles determined by these
endpoints (Fig. 2). The circulation along the boundaries of ¢’ is then approximated by

4
Z v
i=1

where I is one of the sides, and v, the velocity according to (2) in the midpoint of
this side, interpolated from the values of % in the gridpoints.

The interpolation is done by means of polynomials, and it has been decided that
this interpolation should reduce phenomena with wavelength smaller than 3d, but
maintain the greater ones. In order to attain this, one has to use polynomials of rather
high degree, and the calculation of the coefficient will be very laborious. The procedure
has therefore been simplified in the way that only 4 fixed sets of coefficients are used
corresponding to 4 certain locations in the grid (Fig. 3). Then for an arbitrary point
that set of coefficients is used which corresponds to the nearest of the 4 fixed
locations. The error which is introduced in this way has no systematic dependence
on the different scales of the field.

In order to get close correspondence with the five-point operator for the Laplacian,
the veolocity components are to be calculated as the difference in y over a distance
equal to d.

A {ifth degree polynominal has been used when the interpolation is needed only
in one direction. When interpolation in two directions is needed, the calculation is
done in two steps by means of the same fifth degree polynominal.
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The Helmholtz equation has been solved by
1 2 1 relaxation.

The boundary condition (3) is fulfilled in the
usual way by holding the value of y unchanged
in all the gridpoints along the boundary.

3 3 3 Condition (4) is formulated in the following
way:
For the inner gridpoints we calculate ¢/ in
1 8 the described way when all the corners of the
2

corresponding quadrangle are situated inside the
boundary. In order to calculate v from the y field
In points situated near the boundary, the integrat-

‘ A ¢ ion area is assumed to be extended outside the
lri(:::z ZR ?Z:fth?tzgglizoz'n:ﬁie;hﬁ boundary with a suf.ficient number .of gridpoints,
squares. The set of coefficients used in 2Nd the value of ¢ in these points is supposed to
the interpolation is that which corre- be the same as in the nearest gridpoint at the

sponds to the midpoit of the square in boundary.
which the arbitrary point is situated.

Fig. 3. This figure illustrates the 4 diffe-

When one or more of the corners of a quad-
rangel ¢’ are situated outside the boundary, the
right hand side of (12) is replaced by the Laplacian in the corresponding gridpoint,
calculated by means of the usual five-point formula.

A polar stereographic map is used, and the grid size is taken to be 600 km at
60°N. The grid consists of 781 points, forming an octagon which covers the area north
of about 15°N,

5. Results. A 24 and a 48 hour prognosis have been compared with those com-
puted by PEDERSEN (1959) by means of an Eulerian method. The same stream function
1s used as initial data. Fig. 4 shows computed 48 hours changes of the stream function
and Fig. 5 gives the difference between the Lagrangian and the Eulerian prediction.
In the table below are given some statistical parametres concerning the results:

Statistical parametres for observed changes in the stream function (index R), changes computed by the
Lagrangian method (index L), and changes computed by the Eurelian method (index E). o'is the standard
deviation, and r the correlation coefficient. o(L—k) is the standard deviation of the difference between

tendensies computed by the two methods. Values in the 163 gridpoints situated north of 40° N have
been used.

OR oL Og 0(L—E) TIR TER TLE

24 hours .............. 140 111 105 47 0.666 0.646 0.908
.............. 187 153 134 73 0.546 0.518 0.878
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Fig. 4. Computed 48 hours change of the stream function.

Unavoidable mathematical errors will be associated with both methods, but since
the methods are so different, one must believe that the errors will influence the result
in quite different ways.

However, since nevertheless the two methods in the described case give practically
the same results, one can draw the conclusion that the mathematical errors associated

with both methods are small in this case.
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2]

Fig. 5. Stream function difference between the Lagrangian and the Eularian prediction.
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