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Summary. Throughout this paper, small perturbations of a plane Couette-flow in a viscous
fluid are discussed. Section 4 deals with an incompressible homogeneous fluid with the result

. that the Couette-flow is stable for small perturbations. The amplitude of the perturbation velocities
decreases with respect to time. In section 5—7, we find that in a stratified fluid, we can always
have neutral wave-solutions for sufficiently large values of the Reynolds number, however small
the value of the static stability. In section 6, 2 curve in'a (%, R)-plane is found along which we have
neutral wave-perturbations. Here # is the wave-number and R is the Reynolds number. The
wave-solutions for values of » and R on both sides of the curve of neutral stability are, however,
stable.

1. Introduction. The problem of a theoretical determination of the transition
to turbulence has lead a number of workers to study the stability, with respect to
infinitesimal disturbances, of laminar motion of viscous fluids. For a detailed list of
authors see C. C. Liv [1]. _

In the case of a homogeneous fluid, the linearized differential equation determining
the streamiunction is a regular equation having four independent solutions which are
analytical functions of the vertical coordinate z. In the case of plane Couette-flow it
is more convenient for discussion to use asymptotic expansions of the stream-function.
This case has been discussed by L. Hopr [2], W. Wasow [3] and others, All investi-
gations tend to show that the flow is stable. In the case of Hows with curved velocity
profiles it is more convenient for discussion to find the streamfunction by use of asymp-
totic series. In an important paper, W. HresEnsERG [4] has given two asymptotic
methods for this purpose. C. C. Lix [5] has given a more detailed discussion of the
validity of the asymptotic series obtained by these methods and of the “crossing
substitution” in order to find the correct asymptotic series in different regions in the




2 EYVIND RIIS Vol. XXIII.

“complex . z-plane. Flows with velocﬂ:y profiles of the symmetrical type or of the
boundary-layer type are found to be unstable for sufficiently large values of the Reynolds |
number. Furthermore, a curve of neutral stability divides the (», R)-plane in a region
of instability and a region of stability; R is the Reynolds number and x is the wave-
number. ' | -

In the case of a stratified fluid, however, the streamfunction has a logarithmic
singularity at the point where #, — ¢ = 0 (1, is the mean velocity and ¢ the velocity
of propagation). H. ScHLIcHTING [6] has discussed this case for flows of the boundary- -
layer type. He found that the effect of the static stability of a stably stratified fluid is
to diminish the region of instability mentioncd above in the case of a homogeneous
fluid. ‘ '

The present paper deals with the stability of plane Couette-ﬂow of an 1ncomprcs—-
sible viscous fluid. Sections 2 and 3 give the mathematical formulation of the problem.
In section 4, the case of a homogeneous fluid is considered. Hopr found an infinite set
of stable wave-solutions in this case for a given value of the wave-number and of the
Reynolds number. The least stable wave-solutions found by Hoer are, however,
different from the corresponding wave-solutions which will be found in the present
paper; the approximations made by Hopr will be shown to be incorrect for these
solutions. The case of a stably stratified fluid is dealt with in sections 5, 6 and 7. In
sections 5 and 6 the static stability is assumed to be small, whereas section 7 gives a

‘brief discussion in the case of finite values of the static stability. A comparison with
the inviscid case is given in section 8. In the inviscid case the velocity and the vorticity
become infinite at the singular point (4 — ¢ = 0). The development of an arbitrary
infinitesimal disturbance can, however, be found by a method given by A. ELIAsSEN,. .

~ E. HoiLaxp and E. Rus [7]. : '

2. The perturbation equations. The velocity of the mean flow is given by
@1 4y = 220

where d—; is a constant (Fig. 1), z is the vertical coordinate and the flow is confined

between two rigid, horizontal planes in relative motion. The planes are situated at
z =10 and z = & The den31ty 0o of the mean flow, assumed to decrease exponentially
with height, is glvcn by
1 dp,
2.2; : ==

2.2) | o dz Vs
where ¥ 1s a constant. :

Small perturbations are superimposed on the mean flow. Assuming the fluid to be
incompressible and the motion to be two-dimensional, the linearized equations deter-
mining the motion are :
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Fig. 1. The mean flow. |
' 0 dug '
(2.3) [( +“oa) +w—l-l=—Vﬁ'“g9k+1’Qo\72”a
‘ ' du ow
d d d
@5 (5:+ )g+w%°=0
| 3 3

Where o, pand v =ui —!— w k are perturbatlon quantities and V =1i_+k
ox dz °
Elimination of ¢ from equation (2 3) gives

L 0 duy . ]
V g X 3t+u°8 'v—[—w—zz—vv 'uJ
(2.6)

(3 d du, .
+ 0,V X é}—[—u‘]a v—}—w-gz—;—vvﬁvjzmngxk.

Normally the first term will be small compared to the second term for sufficiently
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small values of y. Considering periodic disturbances, we introduce the streamfunction
Y(z)e™™ defined by

(2.7) ' U = —— W= — kPN

Furthermore we eliminate ¢ from equations (2.5) and (2.6). The equation for the
streamfunction can then be written as

(2.8)  (up — 0)2 (P — B2W) — 1—’; (o — ¢) (P — 2K2F" + kW) — gy =

. du oy
— (g — ¢) [(u0 —¢) ¥ —d—;?i’ — (P — k@?’)] .
The kinematical coefficient of viscosity », has been treated as a constant. The term
on the right hand side of equation (2.8) is due to the first term in equation (2. 6)
Introducing non-dimensional quantltlcs, equation (2.8) can bé written as

¢
(o — et (" — wop) + O (o e gy gy =
(2.9) h duo ’ i y |
g dZ (31_01) (Zl_'cl)"tU —‘P-l—%_R(‘P _%"P) ’
where
' gy ¢
(2‘10) ) §= — %253’1 h’%_khcl_h@ﬂ’
dz dz
: hﬂ%u—"
Z
R=— (&) =¥ () ,

R is the Reynolds number and s is the Richardson number. Equation (2.9) is the
equation found by H. ScuricaTING [6], if we put ¥/ = 0 in his equation. In a homo-
geneous fluid s = 0, and equation (2.9) reduces to -the Orr-Sommerfeld equation

i
(2.11) (o —a) (p7 — ) + 5 (9 — 20" ot W =0.
We introduce a new independent variable { given by
(2.12) L = (xR)1B (7, — ¢y) — 16%,

where

(2.13) | a 6= (’%F
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Equatioﬁ (29) obtains

(2.14) D0+ i0%) B 4 (L 8% (& — id?) @7 +[s — 8 (£ 4 i8] B —
(nR) Y3 5 g (%?)2 (¢ + 6% [(¢ + 552) O — D i (D — 5],

where
(2.15) | ? () = v (z1)-

Iif @ is expanded in power series in (xR)™YS, we have as a first approximation to
equation (2.14)

(216) i (£ + i8%) @ 4 (£ 4 i6?) (¢ — i6%) B + [s — S (¢ +i89] D = 0 ,

which is equivalent to neglecting the first term in equation (2.6). In the following

discussion we shall assume that equation (2.16) can be utilized to find the stream-
function with a sufficient degree of accuracy. - | _

' In section 4, long wave-solutions (% < 1) will be found. Assuming the Reynolds.

number R so large that xR is finite or even large compared fo unity, we put % == 0 in

equation (2.9) except in those terms where # is multiplied by R. This shows that the

first approximations of equation (2.16) and (2.12) are ' :

- (2.17) Lo + 20 s =0,
(2.18) L= (eRYYB (g — ).

v,

3. The frequency equation. The boundary conditions are
Y(z) = ¥(2) =0 for =0 and z — A

. These conditions are equivalent to

(3.1) D) = B(0) =0 for £ =¢, and ¢ = ¢, |
where
(3.2) Lo = — (¥R)Y3 0y — i8%, £y = (RS (1 — ) — o .

It @,(0), j =1, 2, 3 or 4, are four independent solutions of equation (2.16), the fre-
quency equation determining ¢; can be written as - '

) @10 ‘-@20 @30 ¢'4o o
@f @I @r- @!
3.3 10 20 30 0 _9 , .
( ) gD11 @21 ¢31 @41 '

Dy Dy D'y Py
where @y, = &;((,) and &', = Bi(E,) .
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The wave-soluttons are

stable <
neutral ; as Im(c,) = 0
unstable
Since
(3.4) - by = Lo = (xR),

Zo and ¢, must lie on a straight line parallel to the real axis in the complex {-plane.
When 2z increases from 0 to &,  will vary from £, to {; along this straight line. Acccord-
ingly we have '

neutral waves when  arg (o = +mor 0,

stability waves when 0 < arg (Cl.—|~ i6?) < arg (§o -+ 0% < =,
(3.5)
instability waves when — z < arg ({, + #0%) < arg (§; +160%) < 0.

In a homogeneous fluid, s = 0, the equation for the stream-function (2.16) has no
singularity for { = — 762, In this case the condition for instability (3.5) can be replaced by -

(3.6)  instability waves for s =0 when arg ({, -+ %) > = and arg ({;+ W) < 0.

Patting

o —

5.7) 5t = | g

]

(8) (L
Q) P

p——

¥

the frequency equation (3.3) can be written as

* f1alCo)fsa(Ce) — S1a(Co) Soal(Cr) + Sralo)fas(Ca)

3.8) -
( ) +f23 (Co)fm (C1) “fJ;4 (Co) J13 (61) +f:’.4 (Zo)fm(cﬂ = 0.

4, Homogeneous incompressible fluid. Some of the terms in the frequency
equation which will be developed in this section did not occur in the frequency equation
discussed by Hopr. These terms will be most dominant for long wave-perturbations.
We shall therefore first discuss the case when % < 1. Since s = 0 in the case of a homo-
geneous fluid, the equation for the streamfunction is approximately given by equation

(2.17) with s = 0,
(4.1) z‘c@un + Cz@n — 0’
‘Where

(4.2) | = (#R)Y® (2 — 1)
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The well-known solutions of equation (4.1) are

(4.3) D, =1(,0,=1,P; = [({ ~ x) F (x) dx, B, = [(¢ — x) Fy (x) dx,
G 0

where
Fi(x) = x%—Hlm(l’(% 32 ehl%) s

(4.4)

1 .
Fy (x) = folfg‘z’(zE; X3 e_"”f) .

Iy (x) and F, (x) are solutions of the equation

(4.5) -~ iF7 (%) + F (x) =0.

Hy,'Y and H, 4 are the Hankel-functions. As lower limits in the integrals in the
solutions (4.3) we have chosen (,, the value of ¢ at the lower plane. The frequency
equation (3.3) is found to bé -

' .3 &y &y 1 : :
(4.6) JxFy (%) dx [Fy (x) dx — [Fy (x) dx _?sz (x)dx = 0.
€o .G £y o

The values of ¢, and £, are given by equation (4.2)
(4.7) L= — (eR)US ey, £y = (xR) (1 — o)

In order to evalute the integrals in equation (4.6) for large values of |¢,| and 11 ls
we shall find the asymptotic expansions of F, (x) and F, (x). The asymptotic expansions
of the Hankel-functions are ([8], page 198) -

1
o\L (i _ (— 1)”(?’ ”)
H1f3(1) () =‘(;2)2 ¢ ( 12) zow > | valid when
[ T %
Tg SMELsy

Hy @ (z) = (_QM)% e (z”%) >

Lz

H

[}

L~
—

No

o~

N
~—

2

The asymptotic expansions of Fi(x) and Fy(x) are then found to be

Fy (%) = Ny (%), - -
(4.8) valid when — g agx < 9
Fy(x) = N2‘(x), J
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where

(4.9) "

— 3 .7
’ 3 zﬂ —im—e?‘““' 3 % ]. _q:ﬁ _iﬂ-._l_
.Ng(x):l/;e w1 42(1)(§,n)e PR

To find the asymptotic expansions for other values of arg x, we utilize the relations
([8], page 75)

. 7 . mx
sin (1 —m)g S0
Hyy 0 (2) = —————— H,,® (™) — 3 —— Hy;s® (2e™)
Sin g : 7 sin g
: 7 . m
sin (1 4+ m) . sin
' ; 2 .
H1I3(2] (z) = w 1/3(2) (ze™™7) + e _8 o H1,'3{1) (ge_mn) >
sin§ sing ’

where m is any positive or negative integer. "The corresponding relations for F; (x) and
F, (x)} are found to be

[ 1 7T mar 7
] S0 (1—-m3 Ly n SOF _ 2
Fi{x) =¢ 3 —T"Fl(xe 3)—33—'-?F2(xe_3) ,
' si_ng ' sing
(4.10) _

- il ™ i

o sin (1 + m) 3 _omz 5 sin am

Fo(x) =¢8 - Fg(xe 3)—[—33—;5‘1(% 3)
sing , sing

Putting m = 1 the above equations read

| j F, (x) E ( “ﬂ)
x) = — xe 8 )
(4.11) 2 :
= L iz L2n
I_Fz(x)ze 8 I, (xe 3) —e¢ 3 F, (xe 3) .
Utilizing the asymptotic expansions (4.8) on the right hand sides of relations (4.11), we get
F,(x) = — N, (xe_i%n) , valid when ,
T

i 2 7 270 Egargx <— -
Fz(x)meﬂj\/‘z(xe 3)——53N1(xg 3), 2 — 6
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These equations can be transformed further by equations (4.9) to

F(x) =N (), valid when
(4.12) - n /=
Fo(®) =Ny (x) — 3N, (), | 9S¥8F= g

In the following discussion we shall assurf;e

T 7T 7T
(4.13) <a l‘gCg 6 Hggargé‘lgE .

oA

I these conditions are fulfilled, arg ¢; > 0 and arg &, < 0 correspond to stable and
unstable wave-perturbations respectively.
To demonstrate a mistake made by Hoer, we shall evaluate the asymptotic values

of f Fydx for large values of |{,] and |Co]- According to equations (4.8) and (4.12) we

have approximately

.ﬂ:

C]_ Ae E Cl
[Fuds= [ [N, () — ¢ TN, (x]dx—l—f.]\f (x) dr |
Zo o Ae,,_ .
where 4 > 1.
Hence
i
& & o e 2
[ Fads = [ Nydx —¢ T [ Nydu
Cg C() . CO

1 W, is approximated by the first term in the last of expansions (4.9), we have to
consider

CJ. 8 Py
1 2 Z
- —x e
fx 48 dx .
Co
Integration by parts gives
&y 3,7 3.z 3.
22 ,i.{”_[ LA _8 _350% 4.
fx4e3 dx=¢ 4| —  4¢87 + iy tes
%o '
o1 8 .;m
3 L= p 1 2.5iT
— ¢ 4fx 4¢3 dx
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JorF neglected the last term in this equation. This can obviously lead to erroneous
esults. The first two terms on the right hand side of the equation will for instance

. o 4 7
end to zero when £, > oo ¢ and {; > co % with — E<?<g> whereas
: g 5 $
“aegd 0 25, G G a3 &
xte?B dx'=fx4e3 dx—[—fx"’_ea C dx
Z Co 0

0 .

s easily seen to tend towards a finite constant in this case.
To find approximate values of the integrals in equation (4.6) for large values of
£o] and |{;], we shall therefore use another method. We first notice that

[ #F; (1) dx = — i[F; (&) — F} (&)1 , j=12

ince F; and F, are solution$ of equation (4.5). The freqﬁency equation (4.6) can be
vritten as

' &y & .
4.14) [Fy (&) — Fy (Eo)] ( l[ Fodx — Jdex) — [Fy (&1) — Fy (&)

& ¢
([ Fdx — [Fx) =0 .
0 0

Jtilizing equationé (4.11); we ‘make the following transformations

-2
Co _ & Coe 3
.fFldxme sf Fodx. .
0 0
-3 L
to £y B 3

7T

[Fus=— [ Fao—o®
[+ 0

[he first of these equations shows that

i L
) B

4.15) 7 Fx—c'% 7 Fyds .
0 0 .
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Z &
Utilizing this relation, IFldx and f F,dx can further be transformed to
D b

g — —rem

CO we 2 ncoe 3 -

fFldx = f Fidx + e—ia—f_ig_; Fydx
0 0

we

PR 2% 3
Lo 7 2 é-0"' 3 foe 2
[Fde= 2% [ Fs—e [ o Fs— [ o Fus.
0 0 we 2 we ©

Furthermore F; (¢,) and F, ({,) can, by equations (4.11), be transformed to |
. ‘ 23"5
F; (Co) — % 5 (e ®),
i s i3z
Fo(l)=¢e? F,;(Coe Y+ Fy(lee ?).

- By these transformations, the frequency equation (4.14) can be written as

‘ . Jt £y ncoe ®
(4.16) [F; (¢) — F(te v ] [c+ f Fyde ¢ [ a Fuls

2
“eﬂﬂ —i% oL e
Hf o Bl ] = [Fa) = Bt ™) — B (0 )]
we .
£y _,3;608_1-3_
[f alide —e Is_f_ﬂ dex] == 0,
we we B
where
i =
xDe 2 5:,;
(4.17) C=3¢'3 f Fydx = 2]/33

-

The value of the constant € is exact and evaluated in Appendix A.
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Because of assumption (4.13), F) and F; in equation (4.16) can by e(iuation (4.8)
be approximated by N; and N, respectively for large values of |,| and |&:}. From
expansions (4.9) we find

e E; ‘f ] S 5 o T
- 3 24 8 > 4 4 vy
YR e [ AR IR
— (187 _Ecg"e"fr 1 5 - 7 13
/8 T2 78 L 4 T3 T3
Ne(@)=]/—¢ e F4—@e . +0(@¢ ),
s 3 &
2.3, 7 1
, /3 S 30 ° 1 7 ™3 3 )
M@y =/ Ze e [@_W ¢+og )},
(4.18) e
sz 2 g 'z w5 11
, /5 Tt EUT )L 7 T 7% )
N () = ~¢ ¢ (¢ +gge ¢ +0( )],
& 137 2 Z—%? 8 9 15
f 3 "z 38°° 7 3 i ~3
J g Made=1/—e e 10 dgge L4000 ),
¢ | — _‘1731: C: zf; . o
21 80 € "3 3 3 16/
fd,_;_cNgdx; 3, 7,0 ¢’ e “ttroww)

isn[ 1 gclgeig X "E_Co.:_e,-g]
(4‘-19) VEg 8 C]_"' & _ CO g 3 _ + Co_z n Cl‘z
3 E
3 - g 3 3\ ;7
+ 65 (Lol)H (L — go){ ¥ RO

27,32 SANFS BAr7¢. L -1
+sin| g (a8 —g7) o3 }—(cocl) [ ler+a70)
3 3y .

+§‘é‘ oly (C{g -+ go_'g)- Cos [—g— (CIE — go'é') e‘*?] =0 .

In solving equation (4.19) we must keep in mind that ¢, and £, must fulfil the relation
(3.4) i.e.

(4.20) b — to= (WY .
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We shall first find solutions of cquations (4.19) — (4.20) where

i Z FELA
(4.21)  Le=pe ¥, [j=ge? &P
To fulfil relation (4.13) we must have
2%
0< 99 3

A solution of this kind represents a wave perturbation where the velocity of propagation
of the wave is equal to the velocity of the mean flow in the middle of the layer, i.e.

1 . . . -
R(e) = 3 This is easily seen from equations (4.7) and (4.21). For solutions where
O<op< g's the wave-perturbations are stable, whereas they would be unstable in the

case of g < @< 2—; - With the assumptions (4.21}, equations (4.19) — (4.20) become

3 3
~ 8 2agt (28,3 . 1 223 (42 .3
(4.22) Vrot e 5 2z sm(§92 sin g—%) + sin ep[—z-e 38" ' T _gin (592 sm—ég)]
2 3p 3(7 g 41 5p\ (42 3g\ )
40 2 cos2 m—92(480032—{—48c032)cos( o? sin 2) 0.

' 1
(4.23) 20 sin ¢ = (#R)? .
We first notice that these equatlons have an infinite set of solutions w1th g € 1 for

2
4 a.nd
any finite value of %R. Assummg ¢ < 1, the terms containing ¢ 2 g e

1 e

—-— COS?-% . ] .
¢ 5 ¢ oo as factors in equatlon (4.22) can be neglected. Equations (4.22)—(4.23)
can be approximated by

(4.22°) psin (29§ tp) — 9_; + Q_g cos (29"2?: qo) =0 .

(4.23%) ' 209 = (xR)% '

Equations (4.22%)— (4 23%) are the same as those discussed by Horr for small values
of . The solutions given by Horr can be written as :

4 S R ’
(4.94) @=—-2—[g~ﬁ—@,,] o= 2.
| (xR) % . 8 (~2~ T — @n)
In these solutions @,,, = 0 and 0 < 6,,,,;, < % . 92m+1 decreases with increasing

values of m.
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When xR < 1, solutions (4.24) are valid for any integer n greater than 1, since the
assumption ¢ < 1 is fulfilled and |{y| and |¢,| are large enough to justify the asymptotic.

approximations made above. As xR increases, the lower modes starting with n = 2
given by the soluion (4.24) can not be utilized. The terms containing ¢ ¢ “*72 and
3 8[20053(2 . . . g s
¢80 2 in equations (4.22) have to be taken into account. An infinite set of solu- -
tions is, however, given by solutions (4.24) for any given value of xR, by making 2
large enough. ' -

We shall find the solutions corresponding to the lower modes » = 2, 3, 4 and 5
given by the solutions (4.24) for larger values of zR. For a given value of %R, we choose
different values of ¢, g is then given by equation (4.23). The values of ¢ and p which
satisfy equations (4.22) — (4.23) can then be found graphically. This has been done for

different values of #R and the results are shown in Table 1. For %R less than about 305,

Table 1.

I mode (n = 2) 2 mode (n = 3) 3 mode (n = 4) 4 mode (r = 5)

uR e P 4 ? e ? e ?
1 39,5 48,5 81,5 21 158 10,9 | 239 7,2
200 . 3,14 6876 4,14 4479 534 3372 7,55 2278
300 - 3,47 7478 4,43 490 - 4,58 4679 - 6,25 32%4
400 3,78 770 — — 5,59 41392

500 4,08 7618 — — 4,58 600
600 4,42 7277 — — - 4,48 7072

all modes exist. For #R about 305, the second and third mode coincide and cease to
exist for still larger values of #R. This means that they cease to exist as wave-solutions
with the velocity of propagation equal to the velocity of the mean flow in the middle of
the layer. As will be shown below, we get instead two solutions of another kind where
the velocity of propagation of the waves will tend to the velocity of the mean flow at
the lower or upper plane as xR increases. For »& about 605, the first and fourth mode
will, in the same manner, coincide and cease to exist as solutions of the first kind for
larger values of »R. Again, two solutions of the second kind will occur. As #R increases
further, more and more solutions of the first kind will cease to exist. Each time a pair
of solutions of the first kind vanishes, two solutions of the second kind will appear.

In discussing the solutions of the second kind, we observe that because of the
symmetry it is sufficient to discuss wave-solutions where the velocity of propagation
is equal to the flow somewhere in, for example, the lower half of the layer. This is
easily seen to correspond to [{;] > |{y|. We will seek solutions where [¢y] > |&,|- We.
must, however, have so large values of |{,] that the asymptotic expansions made above
are valid. Since [{;| > [{o] and &y — § == (%R)Y3, the dominant terms in equation
2 . 8z i .
(4.19) must be those having &8 %7 ¢ % a5 a factor. The first approximation of equation
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(4.19) is found to be
_ & 1 4= 8 38
(4‘.25) 'l/ g 8 f-—¢ 4 é‘o 4 o2

In Horr’s discussion of this case, the first term in this equation did not occur. This
term must, however, dominate compared to one of the other terms in the equation.

It is easily seen that the second term or the last term in equation (4.25) can be neg-

5 5
“lected wheng < arg {, < “69_1: or —é—z < arg {, < ~g » respectively. Accordlingy, we

have to solve the two equations

3 .n
- ErE et ;0
2me® £,4 — _ 5k when QE \<\argCo<*6?—I s
_gmos o7 S5 5ot Tn
2me's [yF = — 8 %0 when€<argé'0<%“-

. . i(i‘E_e). . i(i&,.a)'. o
These equations, by putting {, = r¢'\ "/ in the first and ¢, = ¢ 6. in the last .
are transformed to

: 3 3
3 2 3. 80 r2 5 a8 gz 30
2|mrt =ev” S‘“‘é“;(a" ws g +§ +7) ,
i @' 8 o 0
- 3 2rZain 2 -_251”3_)
2-'/%?4’ ———BET sin = —2(37 eos‘2 +;—+ 2

These equations must be satisfied by the same values of 7 and §. Only solutions where
0< O<g 3 can be used. Separating the last equations in their real and imaginary
parts, we have to solve N

3 2 23 86
QVJ_Z—;VZ — 651’ sin =~ ,
(4.26) : 3
2z 3 =« 36
37 cos?ﬁ— z +Z=2nn .

For small values of ¢, these equations approximate to
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which have the solutions

3
w2, [ o |

8 ? B 3
(Sn — 78-) 7

The solutions (4.27) can be shown to be fairly accurate solutions of equations (4.26).
With n = 1 in the solutions (4.27), the corresponding solutions of equation (4.25)
are found to be |

1
fo = 4,0867; 16671 = (%R)E + 4.08¢f 19891 ,

and . |
Eo = 4.8 18899 , ¢y = (#R)E + 4,083'5 13899
For increasing values of the integer z in solutions (4.27), || increases and arg £, tends
. B -
to 150°. The solutions are shown schematically in Fig. 2. In Hop¥’s discussion arg £, = g

for each solution in this case.

Only a finite set of solutions of this kind can exist for a finite value of xR, For any
given value of %R, a finite number of the solutions (4.27) make |{,| < |{;|- For values"
of n which make |&,| only slightly less than |{;[|, equation (4.19) has to be solved instead
of equation (4.25). The number of solutions of this kind with |{,| < |{;] is equal to
‘the number of pair of solutions with |{y] = |£,| which has ceased to exist.

The wave-solutions of both kinds found above are damped solutions since

g—< arg £y < ar._The frequency equation we have discussed is only valid for values

of {, and {; which fulfil the assumption (4.13). The frequency equations for other
values of the argument of ¢, and ¢, can easily be obtained. They can, however. be
shown to have no solutions for large values of |Co| and |¢y). IE &o| or |&,| or both are
assumed not to be large enough to justify the approximations made above, expansions
of F, (x) and F, (x) in power series in x can be utilized to find frequency equations
which are convenient for discussion in those cases. These equations will not be given
here since no solution in addition to those given above has been found. They can,
however, be used to verify the solutions having the least values of ||

A discussion of the frequency equation for finite values of the wave-number x will
show that we have the same two kinds of solutions as for » < 1. This discussion will
not be given here. We shall restrict ourselves to show that the same method of evaluating
the frequency equation for large values of |¢;| and |Z;| can be utilized. The equation
for the streamfunction (2.16) with s = 0 is

(4.28) i+ (L —i6?) &7 — 6D =0
where { is defined by equation. (2.12)

b
(4.29) = (%R)3 (zy — ) — 02 .
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’P ¥-plane

7\
Fig. 2. Diagram showing the position of £, when &4 »> [&]-
The solutions of equation (4.28) can be written as
2 e :
D =%, B, =%, 0, — [Sino (¢ — x) Py, @, — [Sin 6 (¢ — x) Fydx.
: Co ' ) C()

Substituting these solutions in the frequency equation (3.3) we obtain

Gy {3 &y 0y '
4.30 | % Fydx [ % Fydx — [ e Fydx [ Fax — 0 .
(4.30) 1 2 1 2
Co Lo Lo Co
By the same method used for » < 1, we can make the following transformations
( | -2 | | ’
{1 . Loe 8 - 3-2?” 1
[ Fde = — &5 [ m % Fx + [.n = Fdx,
C coe—%-g uoelg
’ 2 2
(4.31) ; W T
' J fe‘sa‘”ngx = G (8) + f o % % Fdx e 3f_ﬂ et ° Fidx
CO ooe_iﬁ_ ooetE
£y
+ % F,dx ,

O R A S ety ot et S T L i i e e it
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where
i ‘
2 2 2, 3
, 27T 4 kiA 5w é

(4‘32) 0(5) _ ei% (eéme 3“_1__ 20 + g0 _) Fdx—2]/3.e 1z ¢ = .

1]

This value of C (8) is evaluated in Appendix A. The other ihtegra_ls in the frequency
equation (4.30) are given by equations (4.31) and (4.32) by putting — & instead of 6
in these equations. In the integrals on the right hand sides of equations (4.31), F; and
F, can be approximated by W and W, respectively for large values of |{o| and |Zy
if;—z < arg §y < g and — g < arg &y < g . The frequency equation we arrive at in
this manner will again be different from the corresponding equation discussed by
Hopr, due to the constants C (§) and € (— ) which did not occur in his calculations.

5. Waves of infinite wave-length; slight static stability (0 < s € 1). When
s is different from zero we shall, to simplify the mathematical treatment, first discuss
waveperturbations where the wave-lengths are large in comparison with the height
of the layer i.e. # < 1. The Reynolds number is, however, assumed to be so large that
xR may be large compared to unity. As shown in section 2, the equation for the stream-
function is in this case approximated by

(5.1) L@ - 2+ s = 0 ,
where ‘ '

1
(5.2) [ = (2R)® (2, — &) .

Equation (5.1) has a logarithmic singularity at the point { = 0. The logarithmic
term can be shown to tend to zero as (3¢ when £ tends to zero. Accordingly, if @ ()
is a solution of equation (5.1) @ (o), @’ (o) and @ (o) exist and are singlevalued.
Hence the velocity and the vorticity exist for { = 0.

In order to find solutions of equation (5.1) which are convenient for discussion
for large values of ||, we expand @ ({) in a power series in s

(5.3) B(0) =S D (1),

n=0

Then equation (5.1} becomes
i@(o)ffll _I_ C @(9):/ =0 ,
(5.4 Pin-1)
) z'@(‘n.)f”! _l_ C @(ﬂ)!l e C

The solutions of these equations can be written as

3 n?l.
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¢ g '
(59) B0 =500~ L0 = [ (¢ ) Fde 00— [ (¢~ 5) R,
T e % e
(n-1)
@‘”?——f —x)dx[Fl(x )@y (_y)y
_(n—-l) )
. 2(x)fF1(J’)dja) V) @], j=1,23%0r4,

where F; and F, are defined by equations (4.4). The lower limits in the integrals in
the solutions (5.5) have to be suitably chosen. The asymptotic expansions (4.8) —(4.9)

show that for large values of || and — g Sargx < =

2
@) [ OIS —F @) [ i) R0 b= — 28 11y gy

ooe owe

when the integrals exist. Utilizing this asymptotic behavmur the solutions of equations
(5.4) can be written as

e
7 2 F@{ﬂ-—l)
(5.6) 0 =, =" [ (¢ — %) dx[F S
_ : fx fa
F,®,*-V

—Ff

— - —f;’(x)]Jrf;. @,

. x F@(ﬂ 1)
@(O’Hﬂl@(ﬂ)—— (& — x)dx[
SR
; Fi@zmhl) 6 rt
—sz_ﬁ—},—czy—_—gn(x)]Jrgn@),
we 2
¢ £
® F@(ﬂ 1)
B0 = [ (¢ — %) Fyds, B, — [
R e N Y
b F@(n—l)
— Iy T 4)’]
metz;-‘ —y ’
@(ﬂ n
(D(“J—fh_ Fdxdi‘”’—~' (wa dx[ ———dy
. a {(n-1) '
o ]

we 6
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where

7

-(5.7) k)= xi adn"x , g, (%) =D Buln"x

Furthermore we must have

fn:n:(x) - _j;’*-lz(x) , -;: ( ) - &n-1 (x)

X x%

2

to make the integrals in equations (5.6) exist. We find

whereas a,, and 8, for m > 2 can be calculated by integrating twice f, (x) and g, (x)
as given by the relations above. The constants of integration must be chosen in such-
a manner that f, (x) and g, (x) take the form glven by equations (5.7).

Asymptotic values of @, ({) and D, ({) given by equations (5.6) are seen to be

P ISACH
S, () =1+ > s5"g,(0), When——?—;garggg
n=1

1 1 T
‘The same series, which are seen to be convergent when [s| < — 3 > are found if £z * V'I"

and C‘ V ‘are expanded in power series in 5. Hence, we have asymptbtlcally

. @, (L) =12 pr Ve
(5.8) when —

1 1
@2 (C) = CE_ V;-s »

’

o
o8

garg{ <

1
at least when |s] < T

~ The asymptotic solutions @; and &, given by equations (5.8) are seen to be the
solutions for the streamfunction in an inviscid fluid. '
Substituting the expansions (4.8) —(4.9) in equations (5.6), we find the asymptotic
values of @, and @, to be '

n]‘ﬁ

%lm

? 19 5 2 e
(5.9) (DS(C) :V%e 24 C ‘4 23 s

: 5 2y e‘i |
@4(C)=V;824(:4’63 , when —

w]m
ISk
(ST

carg{ <

9.
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To find asymptotic values of the streamfunction for other values of arg ¢ we observe
LBt

that @; (Ce 3) is a solution of equation (5.1) if @; (Z) is a solution of the same equa-
tion. Accordmgly, we can write

. s o
(5.10) B, () =5 4, 8,(e7F), j=1,2,30r4
. k=1 .

The constants Ay, have been determined in Appendix B. Equations (5.8)—(5.10) can

7
then be utilized to find asymptotic values of @; ({) when § Sarg{ € —g .
29‘:‘:

If we put ¢e' s instead of ¢ in equations (5.10), then these equations become
L. & |
@; (C" 3) :kZlAjk@k (&) .
Solving thesé equations with respect to @; (£) we obtain
. 4 [ gam
(5.11) o D; (%) = zBﬂc@k (Ce 3) ’

‘where the constants By, are determined by the constants 4, . Equations (5.8), (5.9)
and (5.11) can then be utilized to find asymptotic values of @, ({) when

§E< C %

Equation (5.11) can also be written as

. 4 4 i@ 4 I
(5.12) &) =3 3 ByBut,(t¢7) =3 G0, (67) .
i=1m=1 ma=1
Equations (5.8), (5.9) and (5.12) can then be utilized to find asymptbtic values of
' 3n D7 '
D, ({) when — 5 argl £ — 5

As shown in section 3, the frequency equation can be written as

(5.13) Sr2 (Go) Saa (81) — fas (Co) foa (82 + fra (8o) S (1)

+ oz (C0) S14 (&1) — Soa (Lo) fis (L0) + fau (G0) Srz (&) =0,
where
%) 2,()
D4(8) D, (2)

If we substitute equations (5.8) —(5.9) in equat1ons (5 14), then the asymptotlc values
of Jgk ({) are found to be

- (0.14) | Ji (§) =

-
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(fu (O =—2,
3 .7
13, 1 o Vg
ful) =Yf2ate ettt
Tr
3 .z
Ful =)3eu g et
7{ B
(5.15) v 1 23 when— 2 <argl < 2.
3 L R 6 2
fr ) =)2ew gt
L
5 .1 1 5 i
e e 3
A
6
Fu(® =22,

where

Utilizing équations (5.10) —(5.12), we find that Jix (£) given by equations (5.14) also
can be written as ' : ,
N ’E—r{{

3

(5.16) - Q=SS Ayde fin 26557 .

l=1m=1

. %2__.7t 4 iiﬂ—:
(5.17) S (§) =¢ 3 2 Z 1 B S m (Ce 5) .
_iZL 3 _ e
(5.18) J;k 3 2 Z_ Cit Ciom fim (Ce 5).
Substituting equations (5.15) on the right hand sides of equations (5.16) —(5.18) we
{ind the asymptotic values of fj, (£) wheng <arg{ < ng ; — '5*55 < argl < ——% and

3w 5n ) .
—=<gargl £ — e respectively.

2
We shall then seek such solutions of the frequency equation (5.13) that

b : 7
(5.19) §<argé'osgandm%$argé‘l<g-
Asymptotic values of f;, ({;) are therefore given by equaﬁons (5.15), whereas asymptotic
values of f;, ({;) can be found from equations (5.15) —(5.16). Substituting these values
of £ (L) and fj; (£;) in the frequency equation (5.13), we see that the dominant terms
iz s,’z)- i

in this equation for sufficientlarge values of |, and |{;| are those having 3 (C" T Je
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as a factor. Retaining only these terms, we find that the frequency equation can be
approximated by

2=, (L
(5.20) (A11A44 — Ay dy) e @ ( 4-:) (Apedyq — A24A42) (gl)

0
2

27
+ Apydy ¢ 3P (Col)P— Apdan e 37 (L) # =0

~ We shall restrict ourselves to discussing the case when 0 < s < 1. In this case app-
roximate values of the constants 4 easily can be iound. Apprommate values of the
constants occurring in equation (5.20) are (cf. Appendix B)

Apdyy — Ayl = 3i§ .

A22A44 — A24A42 =. [4 : 3 -

4‘3‘52 i""_t
Agedy = — —gr €% 5.
e
3
Al =0 (s?) .
1 ]
m=g s

Equation (5.20) can therefore be approximated by

(5.21) ble (e sk 007 =0,
' : - Lo 5 0>/
where

' 7 4? .
(5.22) K= 37‘,61,(%) =8,09.
Since

1

(5.23) _ i — G = (%R)E ’

equation (5.21) has no solution when s = 0. As seen in section 4, other terms in the

(C 3/2+ 3]2) «;% 7 )
frequency cquatlon than those having ¢3'°9 1 /¢ 7 ag a factor had to be taken
into account in.order to give solutions in this case. When s &= 0 equations (5.21)—
(5.23) have the two solutions

O]

1 1
_ R, (R 3
(5.24) o= — 2 + 5 l/l — W > Ly =g+ (2R)3 .
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When"
' 14
(5.25) ' (xR)3 = T’
L 1
we have a solution with £, = &?i ¢ and {; = Eg)_s - This solution represents

a neutral wave-perturbation with a velocity of propagation equal to the velocity of the

mean flow in the middle of the layer, ' '
When |
4
(%R)3 < I?:S‘ »

we have o] = |£4] for the two solutions (5.24). When the relations (5.19) are fulfilled
. oy O . '

we have one solution w1th~§" < arg {, << @ which represents a stable wave-pertur-

! , Im . ..
bation. For the second solution we have @ < arg &, < 5 This solution is only a

mathematical solution of equation (5.24) and does not represent an unstable wave-
perturbation, (see conditions (3.5)). In order to find unstable wave-solutions we have
to find the asymptotic expression for the frequency equation for negative values of
‘arg {, and arg {;. This can be done by use of equations (5.15) —(5.18). As no unstable
wave-solutions have been found for large values of || and |;| when |s| < 1, the fre-
quency equations obtained in this manner will not be given here.

When

1 4
(%R)s -2 E 2

further approximations have to be made to find whether the two solutions (5.24)
represent stable wave-perturbations (arg £, < «) or if they are non-existent (arg &y >n).

We observe the great difference between the solutions in a non-stratified fluid and
a stratified fluid. In the first case we have, as shown in section 4, always damped
oscillations. In a stratified fluid, we can always find neutral oscillations however small the
value of s, by making the Reynolds number large enough to satisfy equation (5.25). As
mentioned above, the asymptotic expressions (5.8) for @, and P, are the solutions for
the streamfunction for an inviscid fluid. In the case of a non-stratified fluid @, and
P, represent the streamfunction for an inviscid fluid in the entire {-plane. For a strati-
{fied fluid, however, this is not the case as shown by equations (5.10). The asymptotic
value of @, for instance is found to be - S

. . _
Q51=C§+”, when—%gargcs,g;

T
1 g I 52,307 7
@1=C2+H—[—A14l/§-e8C""6’352843 when'g"éargcs.—%'
24 . .
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1
The last term will dominate compared to the inviscid solution {2 * # for sufficiently

5 -7 . _
large values of || when g < arg ¢ < g - This is true however small we make s.

6. Waves of finite wave-length; slight static stability (0 < s < 1). In this
section we shall find neutral wave-solutions for any value of the wave-number .
Accordingly, we have the equation for the streamfunction glven by equation (2.16)
which reads

(6.1) t(f+ %) D+ (L4 i0%) (i)D" + [s —BL(L+1i02)] P = ‘0 s
where
(6.2) : = (”R) (2 — ¢1) — 10 .

Expanding @ in power series in s, we put

[=2]

(6.3) D (L) = > P (2)

n=0
in equation (6.1}. The solutions of equation (6.1) can then be written as

¢
@, = Sin 6, P, = Cos 6, B, = f Sin [8 (¢ — x)] Fydx ,

2

@, = fii".. Sin [6(C — x)] Fodx ,
(6.4) | *
(D(n)_ af Sin [8 (¢ — #)] [Fl(xf yi(;:(y)@
. z(xfw% yi(:;(y)@;] j=1,2,30r4,
where
(6.5) m—m—a—gs  a=—-

By this choice of g;, the integrals in equations (6.4) exist, In the following discussion
the Reynolds number will be assumed to be so large that -

66) 5 — (’;:)l <1.
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Due to this assumption, we can, for l.arge values of [f] approximate equations (6.4) by

¢
@, = Sin 8¢, B, = Cos 8z, B, = f 2 Sin [8 (& — )] Fdx ,
e 2

¢
AES f 7 S [6 (& — x)] Fodx
J %

(6. 7) ) = F2 @j(n- 1
O = — Sin [6 (Z — x)] dx[F _
f ! f <%y

we

L we

Furthermore, equation (6.2) can be approximated by
. . :

(68) =R .

We shall seek solutions of the frequency equation given by equation (5.13) where o

(69) . Lo = (ig_)_ ein , cl (%};)5 .

Solutions of this kind represent neutral wave-perturbations. We shall furthermore assume
(6.10) s< 1,

In evaluating 9; (£o) and @; (£,), given by equation (6.7), we shall assume (%R)1/3s0 large
that F; and F, can be apprommated by their asymptotic values. As in section 5, the fre-
82 a2y ;T
quency equation W111 be approximated by putting the terms having ¢3 (C" 1 )
as a factor equal to zero.
If we put ¢ = £; in equations (6.7), F; and F, can be apprommated by Ny and N,
respectively. Approximating N; and N, by the first term in their expansions (4.9) we
find as a first approximation

[ @, (&) = Sin 8, ,
D, (1) = Cos 6Ly,

2 .x
3 plom 5 2.3 '
(6.10) 1 @, (&) ___]/;g 24 5;143351 s

3_i£ .....5.. "E‘Cg ei
Dy (L) = =t 290y 4e 37

w18
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If we put ¢ = {, in equation (6.7), F; and F, can not be approximated by N, and N,
since arg {, is assumed to be equal to #. We shall again find that @, and @, contain
2,82 ;7 7

terms having eEC ¢~ as a factor when z < arg £ < éz

5 Taking for example &,

given by equations (6.7), we have

o.M () = f Sin [6 (¢ — #)] dx[ 1 (%) f 22 )ysm_@;@

¢ o .
— Fy (%) figFl (y)),SIP“"(?J‘) d)’] '

ooe2

This equation can be transformed to

.231:

B () = (% i%nf_i_ Sin | é¢’ 5 (Ce e x)] dx

2 R Sing 2R () sin (0eF) }
Jn =0+ [ o
we O J 0 7

Y RACLENC
—Fz(xe 3){:% y dy]
Since, by. equatidﬁ (4.11)
.27

F(w'5) =R,

. 27¢

i PEia i .
F,(%%) = ¢ F, () — 7T F, (3)

we find
o
610 000 =¥ [ s e )] p
o
i ’Jz%: sin [0¢ 7 (2% —x]dx[ 0[ F, Sm(@ye 7) .

27

fm FSm(@ye 3)@]

m|§
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The constant C; (6) is given by

]

.27
i . Lry
6.12) Gy f 236) Sm@”ciy —e [ g Fy(5) Sin (e 3) dy
—z—— —— v

we B

. o ) i_23'l1 .
AL P Ty

This value of C, (8) is evaluated in Appendix A. Transforming @, ({) given by
equations (6.7) in the same manner, we arrive at

L2r -
. e o
(6.13) B0 () = 2563 Gy (9) [, Sim [ T (e% — )] Fax
i . (507
_ iergf_%* Sin | &¢° = (@e 5 —x)] dx[Flo_i GF Cos)()ﬁye 3)@
_sz. FlGos(a_ye 3)@]’
we ? 'y
where
-2 ( 2::)
t  F, Cosdy ;2% ° F,Cos \op¢ @
(6'14') G2(6):£e_z% Z-y———dy_,_ 3“‘[;_1:% : B 4)’
...152_71;
+e"“% “:E F, Cos}gdye 3) i
2

The value of G, (8) is independent of the choice of the constant a and is in Appcndlx A
evaluated to be

2 s
(6.15) Ca(d) = —jgre +0(89.
=)
3
7

Wheng arg ¢ € = , Fy and F, in equations (6.11) and (6.13) can be approximated
by N; and N,, respectwely. We then see that the first term on the right hand side of

g 32 ;% '

3C e 4

these equations has ¢8 as a factor and will be the dominating term for large
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S5x In . .
values of || when 5 <arg £ < 5 - Accordmgly, approximate values of @, (£,) and
D, () are found to be

3 FEL
; 297

@1(50)=Sin6§'n-l—s-g]/z L (8) ¢ 2 C 433% d 4:

(6.16) .

e
ESE

. 3 Pz 52
@2(50)30055504—5%] —C’z(é)e 24 C04,3350

To find approximate values of @, (£) and @, (£) given by equations (6.7) we can
easily transform them to

251:
ER

7 fc .
D0 () =¢"7 f Sin | 8¢ T (Ce - x)] Fodx |

-
e 8
L0 (&) = G (8) Sin 8¢ — C, (8) Cos 60 — [,

;2
m Ce B

. sin [67 (e _ x)]dex—ei?fiE sin [8°5 (677 — x)]pdx,

e

where
(
C, (8) = f Cos (64) et f Cos (6x' %) Fyds
we 6 .
LA 20 = i |
+ 65 [, Cos (053 ) Fyude = 25675 4 0 (69) .
(6.17) e

. 0 0 270y,
Co(8) = [ Sin(93) Fdx + [, Sin (02 Fya
we © : :

L i 28
+6% [ o Sin (00 T) By —0 (89 .

we

The values of C; (8) and C, (8) are evaluated in Appendix A. Apprommatmg D, (L)
and @, (L) by D (L)) and @, (£,), respectlvely, approximate values of @, (Co)
and @, ({,) are then found to be '
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oo .7
3 w5 3,300
117 5 2C'2"5—

(6.18) _
@, (Lo} = G5 (0) Sin 68y — €y (8) Cos 65y — ]/—g-sz-g"ﬁ"ago“z ¢3 "0

Substituting @; (£,) and &; ({,) given by equations (6.10), (6.16) and (6.18) in equ-
ations (5.13)—(5.14), we ﬁnd an apprommate form of the frequency equation. App-

/2, . a/z L
roximating further by putting the terms having ¢ (Cl %o )" as a factor equal to
zero we finally arrive at
| K
(6.19) Sin [8 (& — &o)] + % Sin 82, Sin 8¢, — 0,

1 2\1
“where K is defined by equation (5.22). Since ({; — ;) = (#R)3 and § = (%E)g we find
0(ly—Lo) =2

For neutral wave-solutions given by relations (6.9) we have furthermore
% _ % |
8y =— 5> =7

Equation (6.19) then shows that we have neutral wave-solutions when

(6.20) Ig5 =2 = =\
For a given value of s, equation (6.20) represents a curve in a (%, R)-plane whlch is

schematically given in Fig. 3.
The two asymptotic branches are given by

1y
(xR)8 = e when # €1,
2 s
%z(%s) when 2 > 1.

The asymptotic branch when # < 1 is seen to be the same as that found in section 5.
Neutral wave-solutions are found when R > R,;,. This minimum value of R is found
from equation (6.20) to be

]

3 2
' Rmin = (%) e %
3 I
Tg ]
where ,
%y = 1,62
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=N

min

Fig, 3. Diagram showing the curve of neutral stability.

is a solution of

- 4 P
g f - Tp— — 1=
Tg2 Su g2' L=0.

We must keep in mind the assumption s < 1. We then have along the entire neutral
(xR )1/3

curve in Fig, 3 tha,t_ |C°| = {4 = > 1 and & <€ 1.in accordance with the

approximations made above. For decreasmg values of 5, R,;, is seen to increase and
tend to infinity when s tends to zero. This is in accordance with the fact that no neutral
wave-solutions are found in the homogeneous case. For finite values of 5, the solutions
found above can not be utilized. A brief discussion of neutral wave-solutions in this
case will be given in section 7. ' :

As shown in section 5 only stable wave-perturbations can exist when » < 1. A
discussion of the proper frequency equations for finite values of » will give the same -
result. The regions on both sidés of the curve of neutral stablhty in Fig, 3 are regions
for stable wave-solutions.

7. Waves of infinite wave- length finite values of s. For finite values of s, we
shall restrict ourselves to discuss long waves i.e. % < 1. The solutlons of the equation for
the streamfunction i in this case

r.1) e 007 56 =0,
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can be written as

(7.2) @1 — z Z"ﬂ am C3n+—l , @2 — Z Z’ﬂ bn é3’n—|—2 , .
n=0 =0
B, = ", D B, = sByinl + i3 d, ",
n=0 - n=0

The real constants a,, b,, ¢, and d, can easily be determined. For neutral wave-pertur- -
bations with ‘

(7'3) | : CO == Qgins 51 =0 Q@ = -

the frequency equation is by equations (3.7)—(3.8) found to be

(74)  In{ £33 (@) fos (@) + S5 (0) fau (@) + 125 (0) fra (@)} = smBe { £i5 () fas (0)} -

In this equation fj; (¢) is the complex conjugate of Jir (0). Furthermore fm and Re
stand for the imaginary part and the real part respectively. The left hand side of
equation (7.4) can be seen to be a power series in g, starting with the term 0%, whereas
the right hand side can be seen to be a power series in g, starting with the term o’
(xR)1

2
: 1
shown in section 5. For s = 10> the solution of equation (7.4) is found to be ¢ = 3,7.

When s < 1 equation (7.4) is inconvenient for discussion since g = >1 as

This value of g is seen to correspond to an asymptotic branch of the neutral curve in
(%, R)-plane given by ' '

1
(xR)8 =74 whenx <€ 1.
Equation (5.25) shows that this branch is given by

1
(xR)® =4.,9

when the asymptotic method is utilized. For increasing values of s, the solution of
1

. . : 1 e ]
equation (7.4) gives decreasing values of (xR)?. For s > =, these solutions can not

be compared to the results found in the preceeding sections.

8. Final remarks. In an inviscid fluid, a neutral wave-solution with a velocity
of propagation equal to the velocity of the mean flow somewhere in the layer can not
be utilized due to the fact that velocity and vorticity become infinite. Singular solutions -
of this kind can, however, by an integration process be utilized to find the development

~of an arbitrary infinitesimal disturbance, A. ELiassen, E. Homano and E. Rus [7].

I .
In the inviscid case the value of s = 4—:'1_3 emphasized. When » < 1, the solutions for
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the streamfunction can be written as
1 1 l 1 ] f1
— (uo C)§+Vz_ss Q:2 (uo C)E— Z_s

_ S Lo/ic 1_ /L.
which, as mentioned in section 4, are proportional to 2 +]/4 * and &2 ]/4, !
, 1 1 )
respectively. When s = ey @, and @, coincide. When 0 < s < — 7> 0o ordinary wave-

solutions exists, whereas when s > - an infinite set of neutral wave-solutions are

4

found. The velocity of propagatlon of these waves do not coincide w1th the velocity
of the mean flow anywhere in the layer. :
~The particular value s = ) does not seem to be emphasized in a viscous fluid.
The four solutions in the power series in { (7.2) are four independent solutions for any
value of s. Furthermore the series are convergent for any finite value of & As shown

. . . . 1 1
in section 7, we have for instance, neutral wave-solutions for s < y and for s > e

APPENDIX A

The constant C was given by equation (4.17) as

m|§l

we

f

0

co|'e‘-i

(A1)

Due to the definition of F, (x) as given by the first of equations (4.4), we have
, 7T '

R AU 15 '
C = 3¢ 3f szﬁg(Sﬂe 4)dx——36 1z fH(”(ye 2)4)}

0

Since _ _
PEL 2 _iz_:m : i
HE) ( ye 2) =—e 3 K1f3( ) (see for instance G. N. WaTson [8], page 78).

f Kuys (9) & =1§ (1—)11(25) — % (G. N. WATgON [8], page 388),

-

we arrive at

i
(A 2) C=2)3cw .
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The constant € (d) was given by equation (4.32) as

X
2 _ 277 .27
Fl ( eﬁwe"’? - eaa': + eﬁme""—s‘) dx .

%2
3.

(A 3) C({8) =¢

o3

It follows from equation (4.5) that
JT

; R °°ei— ‘ L 277 .27 27 277
C' (8) = — z'ezgf F/ (e%fé"e‘s“’e“é' + %% |- e‘i'i"_ea“ﬂ?) dx .
1]
Integrating twice by parts, we find
' (6) = — 16%C () .
Accordingly, C (J) is seen to be '

Vol. XXIII. -

, &8 ..5:-5 Kk
(A 4) CO)=Ce3=2]3cne7,
since C (0) = C is given by (A 2). Utilizing the first of equations (4.11) which reads
27T
(A35) Fy(x) = —F, (xe_z—s-) )
the constant C; (8} given by equation (6.12), can be written as
F .

FEia
owe 2

277 T , 27t

. ' F e i o -/Ezt— . { R i
(A 6) ?Cl(é)mf —f(Sinﬁxe 8 —¢ 8 Sindx — e 3 Sindxe B)dx.

0
It follows that
1 1 _om 43
Cy (8) = —500) —5C(~ 8 =—2|3 = cos -
Accordingly, we find
o 0 48 77
(A7) C, (8) =2)/3¢' ™= f cos g dx = 2/38 =2 + 0 (87) .
: L

The constant G, (6), given by equation (6.14), can be written as
we 2 2 7T 27

FJ.( ) '_@._ﬂ i— —zﬁ i — l
(A 8) 6‘2(6)=f ~ Cosdxe 3 —e 3 Cosdx — e 3Coséxe—s) dx

a

2 ) L2
- 4 %235 om

“;?FI Cos (6x342?n) m ?Fl Cos (6er ?)
=/
x

dx—l—e'i?f o dx ,

if we make use of equation (A 5).
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If a - 0, equation (A 8) gives

i

mlé‘l

L

0

F( 2% )
Gy (8) = f Coséxe' & —¢ 30086x—e 3Cos6xe 8) dx — ¢ 3F1(a Vg-

It follows that
11.1'1: 53

C;(é):—-—c(é)—l— C(wé ~—-2V38 12 smmg-
Hence,
um 9 8

Cy (8) =2)3e' = fsmsdx—e F1 (0) V_-

[4]

' : 2 3 43y, .
Since Fy (x) = x2 H{j} (é* X% ¢ 4) , it is easily found that

' 2 P
Fy (0} =+ oy ¢ ¥ .
13
Accordingly
‘ - 117w
(A 9) Co(d) = v T8 40 (39 .
' 7 3511 (g)

Equations (6.17). and (A 5) give.

g ™€ 2 23'5

'Ca(é)z—eigf F, (Goséxe 3—|—Gos§x+(}osaxe 3)dx.

.27

G, (8) = ___;gf F (Sm Sxe” 5 <4 Sin éx + Sin éxe ?) dx .

It follows that

3

(A10) G =

. 117 53

C) + = C(— 8) =236 T sing =0 (89 .

ml'——- N’I'—'

(A1) G ()=

35

C(®) —5C(—9) =2]/3¢ Beos = 2]/3¢ 1340 (8) .
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APPENDIX B _
The constants A, & were given by equations (5.10) which read
(B1) @; (5 = kZ A, D, (Ce_z?) i=1,23%0r4.
=]
LT

If we put { = a¢ 2, these equations then become
' .7 4 7t
k=1

When 4 - oo, the asymptotic expansions (5.8)—(5.9) can be utiiized on both sides
of these equations. We then find :

-A12":A13=A21““=A23:A3_12432:A3mO,
(B 9) -

2 '
n(%_#) , g =¢ 3 Ap=1.

Ay =é (s “‘),422 =3

From equations (B 1) it follows that

f cbj-(O) = i Ap Dy, (0)
(B?)) - E: @(0 —3 32 k@k(o

4;11’4

@”(o)—e B Z 4,97 (0) .

Solving these equations we find

r 0, 127 < (o s @'/ (o)
= (=) g () = 4 @28 = - CHON
®,(0) (. BL(0) (g1 \ B (o)
Az‘l,z (1 __‘A'22) ajm = (6 3 _‘A22) QZ(O) = ( 3 _A22) &_5’—2’(0) 3
.27
B 4) 2 (1 — 4,9 (ez?—A )
( ) A14A41 — '3 ( j.4122 - All 22 5
;2
A A, = — ei% (1 — 45" (e 3—A11) ,
24414 y—

| dy=e¢3+e3 e 3_“*411)(6’ 3“A22)-

The constants 4, are seen to be determined by equations (B 2) and (B 4).
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For the particular case s € 1, equations (5.3) and (5.6) give
(D, (0) =1+ 0(),
By (0) =1+0(s),
2 {2
33r (é‘)

(B 5) ‘ @4(0)=—f-i£xF2dx—i—0(s)‘= - £T 40 (),

9 2 L
a)=fﬂ_£F2dx+0(s) =75 ¢ 2+ 0(s) .
one 6

Furthermore we have
1 1
(B 6) ,u=]/1—-.5‘=§—5—l—0(5‘2).
Equations (B 2}, (B 4), (B 5) and (B 6) finally give the approximate values
2% 2n 2n ' AT
A].l: 8(1_3 )A22=1—[—i?5,.&14=']7§—6 45,
' 2332 1;53.
Agy=——3

BERAY e 45,
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