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Summary. The physical mechanism of hydrodynamical instability is examined in cases where
an upper warm layer of air is moving relative to a lower cold layer. The two layers are separated
by a shear layer where the wind has a continuous variation with height. Three models with
different distribution of temperature in the shear layer are considered, namely: (i) The entire tem-
perature change is located at the center of the shear layer, in chapter 1. (ii) The shear layer has
a constant potential temperature equal to the arithmetic mean of the outer temperatures, in
chapter II. (iii) The wind shear and temperature stratification have continuous (hyperbolic
tangent) variations in the shear layer, in chapter III. The results represent generalisations of
earlier results by HermMaOLTZ, RAYLEIGH, TAYLOR and GorpsTEIN: The model (i) has over-
stability, thatis oscillations with growing amplitudes, in a spectral band which shifts toward shorter
waves with increasing static stability. The kinematic structure and overstable growth mechanism
of these waves are discussed in section 9. This system has no neutral waves which are stationary
with reference to the air at the central temperature interface. The transition waves from stability
to overstability perform stable oscillations with no growth rate. The model (ii) has instability,
that is stationary wave-tilt with exponential growth, in a spectral band which shifts toward shorter
waves with increasing static stability. The transition waves from stability to instability are
non-tilting neutral waves which are stationary relative to the air at the center of the shear layer.
These transition waves have a very simple structure (section 12) which gives the key to the inter-
pretation of the growth mechanism of the unstable waves (section 16). The model (iii) has
stationary neutral waves which are similar in kinematic structure to the transition waves in the
discontinuous model (ii). However the waves are significantly different near the center of the
shear layer and their behavior is accounted for by this difference. It is possible to construct
quasi-stationary waves in model (iii) which are quite similar in all respects to the transition waves
in model (ii}).

Professor ViLHELM BjerRkKNES’ famous circulation theorem in 1898 opened the door to the
physical hydronynamics of large scale baroclinic motions in the atmosphere. The following
article is an attempt to extend some of Bjerknes’ ideas in a limited area of this field of science.
It is the author’s hope that it may reflect a little of the inspiration that he received in his youth
under the influence and guidance of his great teacher and benefactor.
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1. Introduction. The stability of a fluid layer in which the density and velocity
vary with height was examined by G. I. TayLor in 1914, but he delayed publication
of his results until 1931 [1] when the same problem was studied by S. GoLpsTEIN [2].
Both investigations were carried out by assuming disturbances in the form of progressive
waves moving in the direction of the basic flow, the so-called normal modes of the system.
Tayror makes the following comment in the introduction to his paper: “Itis a simple
matter to work out the equations which must be satisfied by waves in such fluids, but
the interpretation of the solutions of these equations is a matter of considerable diffi-
culty”.
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In the present work an attempt is made to avoid some of these difficulties by using
a different method of analysis: GoLDsTEIN noted that the equations are simplified if the
total change in density from the bottom to the top of the shear layer is a small fraction
of the mean density. In that case the kinematic asymmetry due to the different inertia
of the upper and lower layers may be ignored without losing the basic dynamic char-
acteristics of the systems. If further the wind shear and the stratification of mass are
symmetric with reference to some central level, the shear layer has both kinematic
and dynamic symmetry with reference to that level in a frame of reference which moves
with the fluid at that level. We shall call such systems symmetric shear layers, and the
frame which moves with the fluid at the central level is called the symmetric frame.

The usual method for examining the stability of a hydrodynamical system is to look
for the spectrum of normal modes of the system. These are small amplitude sine waves
whose evolution in time is simple harmonic. If any of the modes tend to grow expo-
nentially with time, the same is true for an arbitrary local disturbance which according
to Fourier must contain the unstable mode in its spectrum. The system is in that case
regarded as unstable. But this method does not give a clear physical idea of the wave
mechanism. The normal modes propagate with the same speed at all levels regardless
of the wind profile of the basic flow. This means that the modes propagate with different
speeds through the air. Because of this constraint the normal modes have in general an
asymmetric structure along the vertical. If the shear layer is quasi-symmetric the normal
modes do not reflect the basic dynamic symmetry of the layer in a simple manner.
The dynamic characteristics of the layer are better understood by examining the be-
havior of wave disturbances which have the same vertical symmetry as the basic flow.
These symmetric waves have the same behavior in the upper and lower part of the
shear layer. The dynamic symmetry of the system assures the continued symmetry
of the wave at all times.

The vertically symmetric waves, in their evolution of growth and decay, reveal rather
clearly the physical processes which modify the waves. Moreover the symmetric waves
in a central layer of constant shear are rather similar in structure to the simplest solutions
in shear layers with continuous variation of stratification and shear, so they are helpful
for the interpretation of these solutions.

The theory of symmetric waves is of course closely related to the theory of normal
modes. The growing and decaying modes are obtained very simply as a special case
from the symmetric wave theory, and the neutral modes are obtained as a linear
combination of symmetric waves. Conversely the symmetric waves may be obtained by
a linear combination of one or several pairs of normal modes. The symmetric theory
can be recovered from the normal mode theory and vice versa. The two methods are
mathematically equivalent, representing different linearly independent sets of solutions
of the basic wave equations.
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2. The constant shear layer. Consider first a central layer of constant shear
between irrotational outer layers of equal depth. In the symmetric frame the air in
the outer layers moves in opposite directions with the same speed U. The shear layer
has the depth d, so the air in the shear layer has constant vorticity of magnitude

(2.1) g = 2U/d. (Shear layer vorticity).

The outer layers each have a constant potential temperature with the warmer air
(6 = 0,) above and the colder air (6 = 6,) below the shear layer. The static stability
of the shear layer is measured by the non-dimensional parameter

(2.2) s = 1,00, — 0,)/(0, + 0,) 1. (Quasi-symmetry condition).

The dynamic behavior of the quasi-symmetric shear layer is governed by a non-
dimensional Richardson Number, namely

(2.3) w = sgd|U?,

It remains to specify the temperature ( or mass) distribution within the shear layer.
The most satisfactory model would be one with continuous variation of potential
temperature from 6, at the bottom to 0, at the top of the shear layer. Such a model
has been examined by GorLpsTEIN [2] and several others. In order to develop tools for
the interpretation of the wave solutions in model with continuous mass-distribution,
we shall first consider two limiting models with a very simple discontinuous mass
distribution:

(i) The entire temperature change 6, — 0, is located at the central level of the
shear layer. Above and below this sharp temperature interface the air in the shear layer
has the same potential temperature as in the adjoining outer layers. This model with
unbounded outer layers will be examined in Chapter I.

(i1) The shear layer has a constant potential temperature equal to the arithmetic
mean of the outer temperatures. This model with outer layers of finite depth will be
treated in Chapter II. TayLor and GOLDSTEIN examined this model with unbounded
outer layers.

A special shear layer model with continous distribution of temperature and shear
will finally be discussed briefly in Chapter III.

3. The vorticity fields of a wave in a symmetric constant shear layer.
The vorticity field of a wave disturbance in a constant shear layer and its changes are
governed by two distinct physical processes, one kinematic and one dynamic process.
The wave-mechanism is better understood if one keeps track of these two separate parts
of the total vorticity budget of the wave.

(1) The kinematic vorticity wave. This part is associated with the deformations of the
boundaries of the shear layer and the corresponding redistribution of the constant
vorticity of the air in the shear layer. Let any one of the two boundaries be given a
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small-amplitude sinusoidal deformation with the wave length L = 2x/£, such that the
air particles in the boundary have vertical displacements of the form

(3.1) z, = A cos kx. . (4 K 1).

This deformation of the boundary gives rise to a sinusoidal field of vorticity, the con-
stant vorticity of the shear layer having been added in the sinusoidal segments outside
the houndary level and removed from the segments inside the boundary level. This
added vorticity field is associated with a Laplacean velocity field in the surrounding
air. The change of the tangential component of this Laplacean field across the sinusoidal
segment of added vorticity is according to Stoke’s Theorem and (2.1)

(3'2) (lt+ - u_)s = + gis = + (QU/d)zs

If the intrinsic propagation of the wave through the air is much slower than the
speed of sound (the usual case for shear layers of practical interest), the compressibility
of the air may be ignored, and the velocity field is quasi-solenoidal. Let the component
velocity field in (3.2) be denoted by the vector ». The corresponding stream-function
of this field may be assigned such that

(3.3) v =ui+ wk =Yy Xj

Here i, j, k is the right handed orthogonal triple of unit vectors of a rectangular frame
of reference (x, y, z) with i along the direction of the flow in the upper layer, k along
the positive vertical, and j along the vorticity in the shear layer. When the outer
layers are unbounded, the streamfunction of the field associated with the sinusoidal
distribution of kinematic vorticities (3.2) has the form

(34) Y= ")Uce_klzla 50 (u+ - u—)s = 2]“/)9

where yp, denotes the streamfunction value along the boundary level and z is measured
from that level. The kinematic vorticities (3.2) at the boundaries of the shear layer
accordingly give rise to Laplacean component fields whose streamfunctions have the
boundary level values,

(3.5) vy = & (Ufx)z (% = kd)

The positive sign applies to the upper boundary and the negative sign applies to the
lower boundary. If only one boundary is deformed, the field associated with the
corresponding local kinematic vorticities would propagate this deformation upwind
as an instantaneously neutral wave with the phase velocity UJx.

(i1) The dynamic vorticity wave. Besides the kinematic vorticities at the shear layer
boundaries the wave has in general sliding vorticities along the interfaces where the
temperature (or density) undergoes an abrupt change. The model (i) has one such
interface at the central level. The model (ii) has two such interfaces coincident with
the boundaries of the shear layer. While the kinematic vorticities are permanently
conserved on the air particles in the shear layer, the sliding vorticities along the density
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discontinuities are continually changed by the static stability (overweight) of the inter-
face particles. The sliding vorticity acceleration is determined by the vorticity equation
for the interface particles (the dynamic boundary conditions). For a quasi-symmetric
system this equation has, in HerLanp’s formulation [3], the simple form

E}(u+" u)p = QSga;;, (Dynamic boundary condition)
where z; denotes the deformation of the temperature discontinuity and .S has the value
s in (2.2) at the boundaries of the shear layer in model (ii) and § has the value 2s at
the central interface in model (i). The sliding vorticities across the temperature inter-
faces are the only vorticities subjected to these dynamic changes. To distinguish them
from the kinematic vorticities we shall call them the dynamic vorticities of the wave.

Precisely as the kinematic vorticities in (3.2) the dynamic sliding vorticities give
rise to Laplacean velocity fields in the surrounding air whose streamfunction value v,
at the interface level, as in (3.4), is given by

(wt — u7)r = 2y

With this value of the sliding vorticity substituted, the dynamic boundary condition
becomes

(3.6) T~ Sgd

Dt ox

This equation gives the evolution of the dynamic vorticity wave at every temperature
interface when its deformation z; is known. The evolution of the vorticity wave is
determined by the local conditions at the interface, and it is independent of conditions
elsewhere. ’

On the contrary the evolution of the interface deformations are determined by the
entire velocity field. The interfaces are moved by all the component fields associated
with the kinematic vorticities and the dynamic vortisities in the wave.
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CHAPTER I

SHEAR LAYER WITH STATIC STABILITY ACROSS THE CENTER
LEVEL. (MODEL I)

4. Symmetric waves in a constant shear layer with a temperature dis-
continuity in the middle. Let z; and z, denote the deformations of the upper and
lower boundary of the shear layer, and let z; denote the deformation of the central
temperature interface. Let y, denote the center level streamfunction value of the com-
ponent velocity field which is associated with the dynamic sliding vorticities (4t — u~)4
across this interface. An arbitrary symmetric wave in this system has the wave elements

2y = Agos (kx — o) = & cos kx -+ # sin kx,

(4.1) — 2y = Acos (kx + o) = Ecoskx — nsin kx,
U
zr = Agsin kx; Y = ;A cos kx (x = kd).

The amplitude 4 of the dynamic vorticity field has been chosen in such a way that the
ratio between this vorticity and the kinematic vorticity at the boundaries of the shear
layer (see 3.5) is equal to the amplitude ratio 4/4,. The dynamic symmetry of the shear
layer assures the symmetry of the wave in (4.1) at all times, so the amplitudes A,,4;,4
and the phase o are functions of time only.

Let us represent the evolution equations for the wave in (4.1) non-dimensionally
by using units of length and time such that U = k£ = 1. We have earlier introduced
the non-dimensional Richardson Number x in (2.3) which depends upon the stability
parameter s in (2.2). In the present model the stability parameter § in the dynamic
vorticity equation (3.6) has the value 25. We now introduce the additional non-dimen-
sional parameters

Sl _
(4.2) foxlU? %
a=e¢" (x = kd)

In the symmetric frame of reference which moves with the air at the central level
the dynamic vorticity condition (3.6) and the kinematic condition at the central
temperature interface are

yr _ 2 9r
(4.3) at % ox
ozr ad Va

o T ox [vr + T (21 — 29)]-
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The kinematic condition states that the central interface is moved by the dynamic
vorticity field y; and by the two kinematic vorticity fields, 4 z/» (see 3.5) at the boun-
daries of the shear layer which are reduced by the factor [Ja = exp (— /, kd) at the
central level. The kinematic conditions at the boundaries of the shear layer are

S 9, 2 (a_ =y
(4.4) (6t+8x)z1_ax (x_a%JFV‘””T)’

d 0 0 21 Za _
(az_ ax)“‘ ox (a v " w Vo)
Before we examine the general solutions of this system of equations it will be useful

to consider two special cases, namely: (i) an unbounded shear layer and (ii) an isen-
tropic (homogeneous) shear layer.

5. The unbounded shear layer (¢ —~ oo). The kinematic conditions (4.4) for the
boundaries of the shear layer are here of no consequence. The boundary conditions
for the central temperature interface in (4.3) reduce to those of a simple gravity wave,
namely

(5.1) 5= |7 O (ns = Sgk)

r _ (m\* %r %r _ dyr
ox ’ ot ox’

The symmetric wave in (4.1) performs the standing gravity oscillations
(5.2) Zp = Agsin kx cos nt, wr = (ny/k) Ay cos kx sin ng,

with the gravitational frequency n; in (5.1). The symmetric wave 1s here identical to
the normal mode of the system.

6. The isentropic shear layer (s —~ 0). This system cannot develop dynamic
sliding vorticities at the central level so the conditions (4.3) have no meaning, while
the kinematic conditions in (4.4) reduce to those of simple kinematic vorticity waves
in the boundaries of the isentropic shear layer. These waves were first examined by
Lord Ravreicn [4]. It will be helpful for the later discussions to review the theory of
the Rayleigh waves very briefly. The difference and sum of the kinematic conditions
(4.4) for the symmetric Rayleigh wave in (4.1) are

E:(l —na)na naE(I _a)/Hy
n = (1 —n)é&. n, = (1 + a)/x.

When either 9 or & are eliminated, we see that both obey the same simple harmonic
equation,

(6.2) £— — ngé. ng = (1 —n,) (1 —n).

(6.1)
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We shall call the non-tilting state of the symmetric wave with the boundaries deformed

in phase (¢ = 90°) the a-state of the wave. The second non-tilting state with the

boundaries deformed in opposite phase (¢ = 0) will be called the b-state of the wave.
Starting from an initial b-state with the interface amplitude 4, = 4,, the symmetric

Rayleigh wave has the evolution:

(6.3) &= A4,cos 0 = A4, cosngt,

n = 4ysin o = (1 — n,) 4, sin ngtfng.
In particular the phase of the wave has the evolution
(6.4) tan ¢ = (1 — n,) tan ngt/ng.

In an arbitrary state (4, o) the upper and lower component waves have both the same
downwind phase velocity, namely

(6.5) o= (1 —n) (4,/4)% = (1 — n,) costo -+ (1 — n,) sin,

The first expression shows that the energy transport, 04?, is constant. The second ex-
pressions shows that the phase velocity changes continuously with the phase of the
wave, having the extreme values in the non-tilting states.

This result is readily understood from the forcing action of each component wave
on the other. Consider for example the non-tilting b-state where the component fields
are in phase with equal amplitudes (see Fig. 6). The upper field, if operating alone,
would propagate the upper deformation upwind through the air as a simple neutral
Rayleigh wave with the speed U/x. The lower ficld, acting in the same sense, will aug-
ment this propagation. Its intensity is reduced by the factor a = ¢ at the upper
boundary and its contribution to the phase velocity of the upper wave is reduced by
the same factor. So the upper wave moves intrinsically upwind through the b-state
with the speed U(l + a)/x. Because of the symmetry the lower wave has the same
upwind propagation through the air. The air moves downwind with the speed U at
both boundaries in the symmetric frame, so in this frame both waves move downwind
through the b-state with the speed U(l — n,). In the non-tilting a-state the upper and
lower fields are opposing each other so, for precisely the same reason, the symmetric
wave moves downwind through the a-state with the speed U(1 — n,).

Since n, = (1 — a)/x < 1 for all wave lengths, all waves move downwind through
the a-state. As soon as the wave leaves the a-state the lower field begins to augment the
amplitude of the upper deformation and vice versa. The wave starts growing when it
leaves the a-state. However, the wave of n, = 1, which has the wave number

(6.6) ng=1-+a,=1.2785.., (L, = 4.94)

has a stationary neutral b-state. Shorter waves move progressively downwind at all
times with rhythmic variations of amplitude and speed. They move rapidly with mini-
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Fig. 6: Evolution of symmetric waves in an isentropic (homogeneous) shear layer.

mum amplitude through the a-state and slowly with maximum amplitude through the
b-state (see fig. 6).

The longer (x < x,)-waves move downwind through the a-state and upwind
through the b-state. From either non-tilting state they approach the same state some-
where in between with a downwind tilt from the a-state. As this state of stationary phase
o, 1s approached, the wave slows down and its energy grows in accordance with the law
of constant energy transport (6.5).

" The state of stationary phase (¢ = 0) of the wave, as obtained from (6.5), is

1—11{, a+ (I — %)

2 —_ — T —
(6.7) tan®c, = =n, —a—(1—n)

The position of stationary phase is determined by the ratio of the phase speeds in the
non-tilting states. A wave just a little longer than the critical »#-wave moves very slowly
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upwind through the b-state and rapidly downwind though the a-state. It comes to rest
just a little upwind from the b-state. The (x = 1)-wave moves with the same speed
in opposite directions through the non-tilting states and comes to rest half way between
them, 45° downwind from the a-state. A wave very much longer than the thickness of
the shear layer moves very fast upwind through the b-state and very slowly downwind
through the a-state. To the first order of x the stationary phase is !/ ,» downwind from
the a-state, so the downwind displacement of the upper crest from the lower crest is
equal to the thickness of the shear layer.

In the state of stationary phase the wave keeps on growing at a rate which is pro-
portional to the instantaneous strength of the field, so the wave has here a constant
growth rate,

d
= (Ind4,) = n. (when ¢ = g,).

dt
This growth rate depends upon the phase and hence is a function of the wave length.
The evolution of the wave in its approach toward the state of stationary phase from an
initial b-state is represented analytically by the equations in (6.3). For the long (r, > 1)-
waves the parameter n} in (6.2) is negative, so the trigonometric functions of ngt in
(6.3) are here the corresponding hyperbolic functions of n¢ where

nt= (1 — ), — 1) = [ — (I — 02 = — n},

and n is the asymptotic growth rate in the state of stationary phase (¢ — 0). In arbitrary
units with the frequency unit Uk restored the growth rate is given by

(6.8) (%}2 - (%1)2 — - (1 —

It is zero for the x»~wave, and it approaches zero again for waves very much longer
than the depth of the shear layer. For the very long waves the growth rate has ultimately
the value Uk, which is the growth rate for all waves in a vortex sheet: For waves much
longer than the depth of the shear layer, the shear layer behaves dynamically as a
vortex sheet. The wave of maximum growth rate has the wave number for which
dnfdx = 0. From (6.8) that wave number is

n(max): %, = 1 — o2 = 0.8 (L,

— 7.94).

This wave of maximum growth rate is shown in fig. 6. It is about eight times longer
than the depth of the shear layer. From (6.8) its growth rate is

(6.9) n(max) = 0.4UJd = */,Uk, (L, = 7.9d).

It is precisely one half the growth rate of the same wave if the depth of the shear layer
shrinks to zero.

The stationary phase of the wave of maximum growth rate, %,, = 0.8, is from (6.7)
6, = — 58°10°. It is about 32° downwind from the a-state. Fig. 6 shows the evolution
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of this wave from an inital a-state or b-state. As the wave moves out of the a-state the
rotational shear layer becomes periodically inflated and deflated, with the inflated
parts centered downwind from the crests of the upper boundary. As the evolution con-
tinues, it is evident that the kinematics of the wave places an upper kinematic limit on
the linear evolution, namely the moment when the deflated parts of the shear layer
have no thickness in the middle. If the wave of maximum growth rate is started from
an a-state which is one per cent of the wave length (4, = 0.01 L) and the linear
evolution is extrapolated to the kinematic limit, the wave will have reached very nearly
to the state of stationary phase at that time, so the limiting interface amplitude 4,,
is given by 24, cos ¢,, = d, so we have

Ak, = 1/, sec o,, = 0.75. (kinematic limit)

mom

This value does not satisfy the condition for the linear approximation (4% < 1), so
here the evolution of the wave is certainly no longer linear. The non-linear terms in
the dynamic equations which have been ignored become increasingly important as
the amplitude grows, and what ultimately happens to the wave can not be predicted
by linear theory. However it is plausible that the periodic inflation and deflation of the
shear layer which develops during the linear evolution will tend toward separation
of the rotating air in the shear layer into elongated regions which tilt upwind from
the shear of the initial basic flow. These regions of rotating air will probably retain
their identity for some time and keep on rotating about their centers of mass, each be-
having roughly as KircHHOFF’s isolated elliptic vortex [5].

7. The shear layer with static stability across the central level. Let us now
examine the symmetric wave (4.1) in this more general system. The central tem-
perature interface conditions (4.3) for this wave are

/ 2
A = nixAq,

(7.1) .
xdy = — (4 + 2)af),

or with A eliminated

(7.2) A= —n?(4+2)a8).

The sum of the kinematic conditions (4.4) at the boundaries of the shear layer gives
Vadfe = (1 — n)é —n,

where #, is the frequency parameter in (6.1). Elimination of 4 from this equation and
(7.2) gives

(1 —m)& — 5 = — w2 [(1 — n)é — .
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Fig. 7: Stability diagram for a shear layer with static stability across the center 1evel.

This equation in combination with the difference between the kinematic conditions in
(4.4), namely

73) (1 — m)é + n2(1 — n)& = 1 + nln,
(1 - na)n = - Ea

describe implicitly the evolution of the symmetric vorticity wave (4.1) from an arbi-
trary tilting state. We recall that in the absence of static stability at the central level
the long (7, > 1) waves have two states of stationary phase. Let us examine whether
the wave in (7.3) has a state of stationary phase, 0 = o,. In such a state only the wave
amplitude 4, changes and the evolution equations (7.3) reduce to

(1 — m)4, + n¥(1 — n)4, = (4, + n’4,) tan o,
(1 —n)4, = — A'S cot 0.
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This system of equations has solutions of the form A, ~ ¢*, where n is a root of the
system

— 2 _ 2 __ (p3 2
(7.4) (1 — m)n® + (1 — n)n? = (n® + nn?) tan o,
(I —n,) = — ncoto,
Elimination of o, and introduction of the two parameters
(7.5) ny = (1 —n)(l —n), (s = (1 & a)/x]
m? = 1y(1 — n,)n,, [n2 = Qufx]

gives a bi-quadratic equation for 7, namely
(7.6) nt + (n? + np)n® 4 4mt = 0.
This equation has a double root #n2 when its descriminant is zero, that is, when
(7.7) d= (n? + nd)? — lémt = 0,
or
nZ 4 4m? 4+ np = 0.

This condition may be represented graphically by a curve in a x,u-diagram (see fig. 7)
having the two branches

(7.8) ng= (1 —mn,) |14+ (131,_—_72[;)1/2 [ In2| = Im2

1 —mn,

Both branches have a common tangent, u = !/, %, at the origin and the common asymp-
tote u = '/ » — 1. The lower branch is tangent to the x-axis at the point of n, = 1,
that is at (% = »,, u = 0).

On the long wave part (» < x,) of the lower branch #? + n; < 0, so here the double
root nin (7.8) is positive. The wave has here two states of stationary phase, one growing
and one decaying at the rate /2m. On the upper branch and the short wave part of
the lower branch the double root is negative. The wave is here a stable wave with the
frequency |/2m. In the region between the two branches the roots of the bi-quadratic
equation in (7.6) are complex. The waves have here no state of stationary phase. We
shall examine these waves in section 9 below. It turns out that they perform expo--
nentially growing oscillations. EppingTON has named this type of motion overstability.
The name is unfortunate, but it has been introduced into hydrodynamical literature
by CHANDRASEKHAR [6] and other authors. Before we consider the waves in this
“overstable” region bounded by the two curve branches in (7.8), let us examine the
critical waves on the lower (x < %,)-boundary for which the frequency equation (7.6)
has a positive double root of n2, and hence the waves have two states of stationary phase.
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8. The critical (x << »,) -waves on the lower boundary of the overstable
region. In the states of stationary phase the growth rate #n is from (7.5—8) given by

(8.1) 7t — o =l —n) = (1 —n)? [(”’:—”“)1/2 1

l —n,

The growing state is tilting upwind from the b-state (see 7.4) and the decaying state
is tilting symmetrically downwind. The stationary phase o, is given by

(8.2) tanzasz( L )2:('%;’%)1/2_1_ n

1 —n, 1 —n, 1 —n

Near the short wave end of this spectral band (x — x,) where n, - 1 the wave is very
nearly the stationary neutral Rayleigh wave in the barotropic shear layer (n ~ o, = 0).
For waves very much longer than the depth of the shear layer the (x ( 1)-wave is very
nearly the stationary neutral Helmholtz wave in the sliding boundary between isen-
tropic layers of different densities (n ~ 0, o, ~ 90°).

The wave whose stationary phase is 45° has also a simple structure (see the center
wave diagram in fig. 8). Its wave number and growth rate are

©3 % =1 — o = 0.768

Y

+n=n=1—n=3a/x=x1—1=03 (Fo, = 45°).

It is just a little longer than the wave of maximum growth rate in the barotropic shear
layex (6.9), and its growth rate is 43 per cent less.

It is not difficult to predict the relative strength of the dynamic vorticity field along
the central interface in this wave. It must be just strong enough to cancel the propaga-
tion which the waves at the boundaries of the shear layer would have in its absence.
Since these waves are 90° out of phase, each would be propagated only by its own field
with the intrinsic phase velocity »~1, that is with the upwind speed »~! — 1 in the sym-
metric frame. To cancel this propagation the dynamic vorticities at the central level
must have an amplitude 4 such that

Viadw 4 (x* — 1)4, =0, or —4/4, = Ve

This result comes of course also from the general evolution equation (7.2) with the
parameters in (8.3) substituted.

In the same way the amplitude of the central interface may be predicted from the
fact that its growth rate must be equal to that of the shear layer boundaries. The latter
is readily seen to be

s V27T — dafx.

A, adyfx + 3o Afx
$ o AS

N
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The same growth rate for the central temperature interface amplitude gives

_ Alx + ]/%As/x _ Afx

4
T = Lafx y 14

ol
This result agrees with the evolution equation for 4 in (7.1), which for the wave in
(8.3) gives AJA; = xn, = /50

The stationary growing wave in (8.3) accordingly has the amplitude ratios

(8.4) AJA, = A4, = — Ve = — 0.48. (6, = — 45°).

The central dynamic vorticity is about one half of the kinematic vorticity at the bound-
aries of the shear layer, and the amplitude of these boundaries is about one half of
the central interface amplitude.

The dynamic growth mechanism of the wave is quite clear: In the absence of the
dynamic vorticities the field from the kinematic vorticities would augment the ampli-
tudes of all three boundaries and propagate the upper and lower wave symmetrically
upwind. The field from the dynamic vorticities at the central interface cancels the pro-
pagation of the outer waves and reduces the growth of the amplitudes. The overweight
of the deformed central interface in turn augments the central dynamic vorticity field.
With the amplitude ratios in (8.4) the fields are properly “tuned” to keep on growing
at equal rates.

In the cor/responding isentropic shear layer the wave in (8.3) would have the sta-
tionary phase o, = — 60° (see 6.7) and the growth rate in (8.3) would be augmented
by the factor |/3.

The two states of stationary phase in (8.3) are a pair of normal modes of the shear
layer. The resultant of these modes with equal or opposite initial amplitudes is a
symmetric wave which initially has a non-tilting state. The non-tilting b-state of the
wave is shown in the upper wave diagram in fig. 8. With the initial b-state amplitude
of the shear layer boundaries chosen as amplitude unit, the component normal modes
have the upper interface evolutions

(8.5) 2t = 3]/2 ¢* cos (x + 45°),

Z1 =32 e ™ cos (x — 45°),
and the resultant wave at the upper interface is

2y = chntcos x — shntsin x = A, cos (x — o).

The phase of the wave is given by tan ¢ = — th nt. The wave leaves the b-state with
the upwind speed n = 1 — n, and moves with decreasing speed towards the asymptotic
state of stationary phase o, = — 45°. Again the initial b-state amplitude of the central

dynamic vorticity field may be predicted from the phase velocity at the shear layer
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boundaries. Its function is to reduce this phase velocity from the isentropic layer value
n, — 1 to the value 1 — n,, so we have

— Vadut = (n, + n, — 2)4, = 2(1 — %) Agt

which from (8.3) gives 4 = — |/a4,. Equation (7.2) gives precisely this value for the
b-state (0 = 0), and for an arbitrary later state
A= —YVaé = — Jachn

In the initial b-state the dynamic vorticity field is neutral, so the central interface has
no initial deformation, but it is being deformed at the initial rate 4, = — |/a/x.

The resultant of the normal modes in (8.5) with opposite initial amplitudes has the
upper interface evolution

(8.6) 2y =shatcosx — chntsin x = A4, cos (x — o).

This wave moves downwind from the initial a-state shown in the lower wave diagram
in fig. 8 with the initial phase velocity 1 — n,. This a-state is neutral, so the dynamic
sliding vorticity is absent (4 = — J/a£), but it is growing at the rate

A= — Janchnt = n’xd;, so 4 = — (2/)a) chnt.

The initial a-state has the amplitude ratio 4;,/4,, = 2/]/a = 2.8. The central interface
deformation is about three times larger than the deformations of the shear layer bound-
ary. This is a rather artificial initial disturbance. A more natural initial state would
be one with the central interface having the same deformation as the outer boundaries
and no sliding vorticities.

This “equal deformation” a-state may be represented as the resultant of two a-
states, namely: (i) the a-state of the wave in (8.6), and (i1) another a-state whose ampli-
tude is augmented by the factor (2/]/a — 1) and having no deformation and vorticity
at the central interface. The evolution of this second component is obtained from the
second pair of normal modes whose amplitudes are proportional to ¢exp (4 nt).
Choosing for the moment its a-state amplitude as unit, its wave elements are readily
found from (7.1—3) to be
(8.7) & = nt ch nt, A = Ja (sh nt — nt ch nz),

— 5 = nt sh nt + ch ni, — A = (2/)a) nt sh nt.

Also this wave leaves the a-state with the downwind speed 1 — 7, and has the asymp-
totic stationary phase o, = — 45°. Putting now the two waves in (8.6) and (8.7)
together, the latter augmented by the factor 2/]/5 — 1 = 1.8, the resultant wave has
the evolution

& = sh nt + 1.8 nt ch nt, A =)o (0.8 shnt — 1.8 nt ch nt),
—n=28chnt + 1.8ntshnt, — Ay =2.8(chnt+ 1.8ntshnt).
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Fig. 8: Evolution of the waves at the transition between instability and overstability.

This wave starts from an initial “‘equal deformation” a-state (4,, = 4;,) and approaches
the state of stationary phase o, = — 45°. Ultimately the evolution is dominated by the
component in (8.7) and the amplitude ratio has the asymptotic value 4,/d; = Jia =
0.48. The kinematic limit of the linear evolution of this wave comes when the central
interface touches the boundaries of the shear layer, that is when its amplitude has
reached the value 4, = 0.654 = 0.08L.
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Let us compare the wave just examined with the (» = 1)-wave on the lower bound-
ary of the overstable region (see fig. 8). The dynamics of the (x = 1)-wave is also
rather simple: the waves at the boundaries of the shear layer are propagated upwind
through the air by their own fields with the intrinsic phase velocity »~* = 1, and hence
would remain stationary in the symmetric frame if the other fields were absent. From
(8.1) and (8.2) the growth rate and stationary phase of the (» = 1)-wave are given by

(8.8) (en)? = en, = tan?o, =2 — 1. (o, = 32°46")

In the state of stationary phase the contributions to the propagation of the outer waves
from the two other fields must cancel:

ad; cos 20, + Ja A cos o, = 0,
so the growing mode has the amplitude ratio
— A4, = Yo cos o, (2 — sec? o) = cos g, (2 — V2)[)e = 0.3.
The equal growth rates of the deformations namely,

adgsin2 o, + JaAdsing, _ 2fad cos o, + A
As - Ar ’

give the second amplitude ratio of the growing mode, — 4,/ 4, = sin o,/}e = 0.33.
The general evolution equations in (4.1) give of course the same values. The central
interface deformation is about three times the deformation of the shear layer boundaries.

An initial non-tilting b-state of this wave as obtained from the pair of normal modes
in (8.8) have the wave elements '

& = A, cos 0 = cos o, ch nt, A= — nSEVQ_e,
n = A sin ¢ = sin o, sh ni, Ap = — njln]/%

The wave leaves the b-state with the upwind phase velocity en? = 0.15 and the ampli-
tude ratio — 4/4, = 0.355. In the same way we find that the corresponding symmetric
wave leaves the a-state with the downwind phase velocity 1 — 7, = ¢~1, and the ampli-
tude ratio Ap/4,, = 5.6. The evolution from an equal deformation a-state of the
(2 = 1)-wave would be represented as the resultant of this symmetric wave and another
constructed from the (¢ exp n¢)-modes whose amplitude is 4.6 times as large. Ultimately
this latter component would dominate as the wave approaches the stationary phase
in (8.8) with the asymptotic amplitude ratio 4;/4; = 3.
The two waves shown in fig. 8 have remarkably similar growth rates, namely

(8.3) x = 0.768 : n = 0.232(U/d), — o, = 45°.
(8.8) w=1 n = 0.236(Ud), — o, = 32°46.
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The longer wave has the more favorable tilt for efficient growth (o, = 45°) but its
static stability at the central interface is more than twice that of the (x = 1)-wave.
The wave of maximum growth rate on this overstability boundary is about half way
between the two waves in fig. 8. Its wave number and growth rate are » = 0.906 and
n = 0.243(U|d). 1t is interesting to note that the rather weak static stability at the
central interface of these waves (u ~ 0.02) reduces their growth rate to about 60 per
cent of the isentropic shear layer value.

9. Waves in the overstable region. In this part of the u,»-diagram the discrim-
inant of the frequency equation (7.6) is negative, so the waves have complex frequencies.
This means that the central interface performs standing oscillations with exponentially
growing amplitude. Let us consider the waves for which the coefficient of the linear
term in the frequency equation is zero, that is

(9.1) W= ng=(n, — 1)(1 —n,).

These are the waves for which the growth rate of the simple Rayleigh wave in the
homogeneous shear layer is equal to the frequency of the simple gravity wave in the
central temperature interface. The condition (9.1) is represented by a curve in the
x,u-diagram (see fig. 7) which leaves the origin with the tangent slope w = /4% and
returns to the x-axis at the point x» = »; along the tangent u = (3, — 1)(», — x).
On this curve the frequency equation (7.6) has the complex roots

(9.2) n=+ (1 4 i)m,

so the waves have no state of stationary phase. However it is readily seen that the general
evolution equations (7.3) have here solutions of the form

En ~exp [+ (1 £ i)mi].
By a linear combination of these we construct the real solution

(9.3) £ = V2 & cos (mt + Y, n),

mt

n = n, ¢™ sin mijm.

This wave has initially the non-tilting b-state shown in the upper left wave diagram
in fig. 9 for the wave of » = 1. Its phase has the evolution
ng sin m¢

(9.4) tang = — ——— 7,
m cos mi — sin mi

It moves progressively downwind at all times. Its phase velocity is given by

—— 3] t -
(9.5) l _ 1—sin2m 1 —cos 2mt

¢ ng 1 —n,
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The wave moves through the b-state (mé = o = 0) with the speed n, and it moves
through the a-state (2m¢ = o = 90°) with the speed 1 — 7,. However these are not
the extreme values of the phase speed as was the case when the wave has a state of
stationary phase. The wave in (9.3) has the extreme phase speeds o, at the times when

"

l—n, .
(9.6) Omt = v = tan-l( . ) (& = 0)
These extreme values are given by
9.7 1 _ 1 T—cecs
(9.7) ('rm—ns+ 1 —n,

From (7.1) the evolutions of the wave elements at the central level are

— . Y ml _ 1
(9.8) A = - 2V2acos 7 & cos (mt — v + 7)

#Ay = + 2Vasin 7 & sin (mt —7)/m.

It may be noted that the non-dimensional time of extreme wave speed is the

complement of the stationary phase of the same wave in the isentropic shear layer
(see 6.7)

. \2 — 1 — (x—1
Cotz‘L':( n ) g a (» )

1—n)  1—n, a+ (x—1)

Waves very much longer than the depth of the shear layer (» {( 1) reach their maximum
speed a short time after leaving the b-state. The short waves (» — %,) have maximum
speed a short time before they reach the a-state. The wave mechanism is rather clearly
exhibited by the (x = 1)-wave which has the extreme speeds half way between the
non-tilting states, when the upper and lower waves are 90° out of phase.

The evolution of the (» = 1)-wave is shown in fig. 9. Its basic parameters have the
values

nga—=1—n,=a=\2m=c¢"7="1m (x=1)
The phase of the wave is therefore
tan o = sin mt¢/cos (mt + 1/47), (v =1).
and the phase velocity is given by
eo = [2 — V2 cos(2mt — 1/, m)]~2
The three wave amplitudes have the evolutions
Ar = exp(2mt — 1)/a,
4 = — 2exp(mt — 1/,) cos mt, (x =1).
Ay = — 2exp(mt + /,) sin (mt — /7).
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These evolutions through a half period from an initial b-state through an a-state and
on to the next b-state are shown in the upper right diagram in fig. 9. The left column
of wave diagrams in the figure illustrates the evolution of the entire wave from the b-
state to the a-state. The right column shows the evolution from the a-state to the next
b-state. The evolution of the wave may be anticipated in a qualitative way by inspection
of these diagrams:

(mt = 0): In the initial b-state the ratio of the vorticity amplitudes is — 4/4, =
2)/a = 1.2. The central level is therefore a nodal plane of the resultant field so all
deformations are instantaneously neutral in the b-state (4, = Ay = 0). The sliding
vorticity across the central temperature interface on the other hand is being aug-
mented by overweight of this interface. The deformations of the shear layer boundaries
are moved by all three component fields. They would remain stationary in the sym-
metric frame if propagated by their own local fields only. The field from the other
boundary would give the wave the upwind speed Ule. The dynamic vorticities in the
middle would propagate the wave in the opposite direction with the speed 2Ule.
So the resultant propagation is downwind through the b-state with the speed Ule.
As the outer waves leave the b-state their resultant field can no longer neutralize the
action of the growing dynamic vorticity field at the central level: The temperature
deformation decays and the growth of the dynamic vorticities slows down as the wave
leaves the b-state. At the same time the downwind propagation of the outer waves
is speeded up and they begin to grow. This is clearly seen by inspection of the wave
at the time when it has reached the state of ¢ = 45°, which happens at the time

(mt = =/8) : This state is shown in the left middle wave diagram in fig. 9. At this
moment the outer waves are propagated by the central field only. If the vorticity
amplitude ratio had remained unchanged the wave speed would have been augmented
by the factor |/2 and the growth rate would have had the instantaneous value 4,/4; =
(V2 — 1)o. However it is evident that the dynamic vorticities must have grown rela-
tively more than the kinematic vorticities. So the wave speed and growth rate are
somewhat greater than the above values. From this state of 0 = 45° the wave therefore
moves rapidly on to the a-state shown in the left bottom wave diagram. It arrives here
at the time of

(mt = m[4) : At that moment the central deformation has decayed to zero, so the
central dynamic vorticity field has now reached its maximum value. It deforms at that
moment all three boundaries with its full strength (4, = 4,Ja = A). The outer waves
move downwind through the a-state as in the homogeneous shear layer with the speed
U(1 — n,) = Ule. As the wave leaves the a-state a new temperature deformation grows
up quite rapidly. In the beginning the growth is mainly caused by the strong dynamic
vorticity field at the central level. Later, as the dynamic vorticity field decays, the task
of augmenting the central temperature deformation is taken over by the resultant field
from the kinematic vorticities at the outer boundaries. The dynamic vorticities are
completely annihilated at the time of
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(mt =1/, @) : At that moment the outer waves have the phase of tan o = — /2
and they move downwind as simple Rayleigh waves (see 6.5) with the speed ¢ = ¢!
cos 20 = (3¢)~%, that is roughly one sixth of the maximum speed in the earlier state of
o = 45°. As the wave now moves slowly on downwind, the resultant field from the
kinematic vorticities have just the right upwind tilt for effective augmentation of both
the central interface and the outer boundary deformations, so the deformations have
ample time to grow. The wave reaches its most favorable tilt for rapid growth (¢ = 37/4)
and the minimum speed at the time of

(mt = 5=/8) : This situation is shown in the middle right wave diagram in fig. 9.
By now the strong overweights across the central interface have generated a certain
amount of dynamic vorticity in the opposite sense. In the absence of this dynamic
vorticity field the waves at the outer boundaries would be stationary in this state (see
6.5). But the weak dynamic vorticities are now moving the waves. As the wave leaves
this state the by now rapidly growing dynamic vorticity tends to speed up the downwind
propagation of the outer waves, but the strong kinematic vorticities at the outer
boundaries gradually find themselves in a position to oppose the propagation, so the
waves recover their speed rather slowly. The dynamic vorticities also oppose the growth
of the boundary deformations. By the time the waves reach the new b-state (shown
in the bottom right diagram) the growths of both the central interface and the outer
boundary deformations have stopped, and they are again instantaneously neutral.

We have examined the kinematic structure and the dynamic wave mechanism of
this (x = 1)-wave in some detail, because it exhibits rather clearly the characteristic
features of overstability. The very long waves of n7 = — n} for example have in prin-
ciple the same behavior. The basic parameters of these long waves are

ns:]‘) ].“72,1:1/2%:‘[, mzl/zv;,
% {1 o(max) = 1 + »/4, at o = 1),
o(min) = x/4, at o = 90° 4 1,V

In the b-state (0 = mt = 0) these waves have the amplitude ratios — 4/4, = 2,
— Ar|4; = *. They move downwind with the air (¢ = 1) through this b-state because
the vorticity field at the central level cancels the propagation from the kinematic
vorticities at the shear layer boundary. For a short while the wave speeds up a little
to the maximum value 1 4 x/4 at ¢ = 1/,|/». Later the wave slows down. It reaches
the a-state after a very long time (o = 2mt = /,z) with the speed !/,% and lingers for
a long time just a little downwind from the a-state where the wave can grow.
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CHAPTER II

SHEAR LAYER WITH STATIC STABILITY ACROSS THE BOUNDARIES
: (MODEL II)

10. The velocity field in a model with bounded outer layers. To satisfy the
kinematic condition of zero vertical motion at the outer rigid walls, the streamfunction
of the field which is associated with the vorticity (u¥ — «~) at the upper shear layer
boundary has above and below the interface the values

pt = y,sh k(h — 2)[sh kh,
v~ =y, sh k(H 4 2)/sh kH.

Here & denotes the depth of the outer layers and d, as before, the depth of the shear
layer. From (3.3) the tangential components of this field at the interface are

ut =y, k cth kA,
U~ = — y, kcthk(h + d).

(10.1) (H="h+ d)

The kinematic vorticity field (ut — ™), associated with the deformation z; of the upper
boundary accordingly gives rise to a Laplacean field in the surrounding fluid whose
streamfunction, as in (3.2), has the boundary level value ¥, such that

(10.2) (ut —wr), = uypf(Mxd) = Uz/(Y/2d).
Here we have introduced the non-dimensional parameter
(10.3) % = Y ,kd[cth kb + cth k(h + d)].

At the lower boundary of the shear layer the field in (10.1) is reduced to the value
ay,, where

(10.4) a = sh khjsh k(k + d).

For waves which are very much shorter than the depth of the outer layers these non-
dimensional parameters reduce to the earlier unbounded layer values in Chapter I,
namely

(10.5) kh»l: »w==Fkd, ao=e™"

At the other end of the spectrum are the waves which are very much longer than the
combined depth of the shear layer and one of the outer layers. These very long waves
obey the quasi-static theory with good accuracy. For the long quasi-static waves the
non-dimensional parameters above have the values

% = 2R(1 + R)(1 + 2R),

d
(10.6) Ak + d) K 1: R= 2
o= (1 +2R)-. ( %)
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The kinematic vorticities at the lower boundary of the shear layer have the same
streamfunction as in (10.2) only with the sign reversed so, precisely as in (3.5), the
Laplacean streamfunctions associated with the kinematic vorticities have the boundary
level values

(10.7) v, = + (Ulx)z,.

The dynamic sliding vorticities (¥t — w~); across the boundaries, whose changes
are governed by the static overweight across the boundaries, give rise to component
Laplacean fields whose streamfunction boundary values v, as in (10.2), are given by

(wr — u™)g = wypr/(Yod).
The sliding vorticity change associated with the boundary deformation z; is

D 325
(w — )y = 250 5

Dt Bx
and the corresponding changes of the streamfunction at the boundary is therefore
D"PT a s
(10.8) : Dr %%y, (‘)

precisely as in (3.6).

11. The boundary condition for a symmetric wave. As in Chapter I let 2,
and z, denote the deformations of the upper and lower boundary of the shear layer.
Let now v, and y, denote the streamfunction boundary values of the component fields
associated with the upper and lower dynamic sliding vorticities across these boundaries.
At some initial time the symmetric wave has the boundary deformations

z1 = 4, cos (kx + o) = Real part (Ze™),
Lo = As COos (kx — O’) — Real part (Z’*eikx)’

(11.1)

where the asterisk denotes the complex conjugate value. The sliding vorticities across
the boundaries are associated with Laplacean component fields whose streamfunctions
have the boundary values

v, = (UJx)A4 cos (kx + 6) = Real part (™),
— p, = (Ufx)A4 cos (kx — 6) = Real part ({*e™).

(11.2

On the right in (11.1) and (11.2) are introduced the complex wave parameters
(11.3) R = Ag°, = (Ux)de? =& 4 in.

It will be noted that the phase angles o and 0 are measured positive upwind from the
non-tilting a-state of the wave.
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The dynamic symmetry of the shear layer assures continued symmetry of the wave
in (11.1,2) at all times, with the amplitudes 4, 4, and the phase angles o, 0 functions
of time which are determined by the dynamic and kinematic conditions at the boundary
of the shear layer. If the upper conditions are satisfied the lower conditions are
automatically satisfied in the symmetric wave, so it is sufficient to consider the con-
ditions at the upper boundary. We represent the conditions non-dimensionally by
using units of length and time such that U = £ = 1. The dynamic condition (10.8)
at the upper boundary, namely

3 9 0z
(& + a?) w1 = (p/%) a%’ (= 5gd| U?)

with the wave elements (11.1,2) substituted, becomes

(11.4) ¢ — il = (ufx) 2.

The kinematic condition at the upper interface, as in (4.4), is

d d d
(5 52) 7= g Upa o ol — ]
For the symmetric wave (11.1,2) this condition becomes

(11.5) 2 —iZ =+ R — al* + Z*[%).

The symmetric wave in the statically stable shear layer may be regarded as the
combination of two distinct symmetric waves, namely: (i) A dynamic vorticity wave ({),
with sliding vorticities along the boundaries of the shear layer, whose instantaneous
evolution (11.4) is governed dynamically by the local vorticity accelerations (over-
weights) of the interface particles in the deformed boundaries. (i) A temperature wave (X))
associated with the deformed boundaries of the shear layer. Its evolution (11.5) is
governed kinematically by the entire velocity field of the symmetric wave.

12. The non-tilting states of the symmetric wave. Let r denote the ratio
between the amplitudes of dynamic and kinematic vorticity in an arbitrary state of
the wave.

Y| dynamic vorticit
(12.1) r=" = y

A4, kinematic vorticity

As in Chapter I any non-tilting state with the upper and lower vorticity fields in opposite
phase (0 = 0 = 0) will be called an a-state of the wave, and the non-tilting states with
the fields in phase (o = 6 = 90°) will be called b-states. The non-tilting states are
instantaneously neutral states. The temperature wave is neutral (4; = 0) because the
vertical motion is zero on the interface crests and troughs. The vorticity wave is neutral
because the maximum sliding vorticity is located at the interface crests and troughs
where the interface particles are level and have no overweight.



94 JORGEN HOLMBOE Vol. XXIV.

It is easy to predict the phase velocity of the temperature wave in a non-tilting
state. If the dynamic vorticity wave is absent the temperature wave is moved by the
kinematic vorticities, so it moves as the Rayleigh wave in the isentropic shear layer
(6.5), having the intrinsic upwind phase velocities 7, and 7, in the non-tilting states.
The dynamic vorticities contribute to the propagation in precisely the same manner,
and the two effects are additive. The intrinsic phase velocities with an arbitrary vorticity
amplitude ratio r is therefore

o, + 1 =n,(l +71), n, = (1 — a)/n
o, + 1 =n(l 4 7). ny, = (1 + a)fx.

These formulas may be obtained by applying the kinematic condition (11.5) to the
non-tilting states of the wave.

The phase velocity of the vorticity wave is obtained from the dynamic condition
(11.4). The real and imaginary parts of this equation, using (11.3), are

(12.2)

d
4 cos 6 + 7 (4sin 0) = ud; cos o,
(12.3)
d
Asin § — Z (4 cos §) = pAsin o.
Multiply the first of these by sin 6 and the second by cos § and substract them. The
result is

(12.4) AJA = (u)r) sin (0 — o).

The vorticity wave grows if the sliding vorticity maximum is upwind from the interface
crest (0 > o) and it decays when its maximum is downwind from the crest, which
could be predicted qualitatively by consideration of the overweight. The vorticity wave
is neutral whenever the vorticity wave and temperature wave are in phase (6 = o).
To find the phase velocity return to (12.3), multiply the upper equation by cos 0 and
the lower equation by sin 6 and add them, thus

(12.5) 1+ 0 = (ur) cos (6 —a).

For a given amplitude ratio 7, the vorticity wave has the maximum intrinsic speed
when it is in phase with the temperature wave, namely

(12.6) 14 0 = ufr. (0 = o).
It will be noted that the dynamic vorticity wave is stationary in the symmetric frame
(6 = 0) if it is in phase with the temperature wave and has the amplitude ratio r = u.

If the wave has this amplitude ratio in a non-tilting state, the vorticity wave is stationary
and from (12.2) the temperature wave has the instantaneous intrinsic upwind phase
velocities

(12.7) Lo, =n(1 + )5 1+ 0, =n(l + p) (A]4; = w).
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Here ¢ denotes the upwind phase velocity of the temperature wave in the symmetric
frame. In general a non-tilting state with a stationary vorticity wave (r = u) has a
non-stationary temperature wave. However the wave for which o, = 0 in (12.7) has
a stationary neutral a-state. The wave of ¢, = 0 has a stationary neutral b-state.
The wave numbers of these stationary non-tilting waves are given by

(12.8) The stationary a-wave: n,(l + u) = 1.

A
The stationary b-wave: 7,(1 + u) = 1. (ZS - 'u)
The b-wave is shorter than the a-wave. We shall show presently that the shear layer
has a pair of unstable modes for all wave lengths in the spectral interval between the
stationary waves in (12.8). This result was derived by TavLor and GoLpsTEIN for a
shear layer between unbounded outer layers.

13. The evolution equations for the vorticity wave. In order to develop the
tools for the examination of the symmetric wave in an arbitrary tilting state we return
to the dynamic and kinematic conditions in section 11, namely

(11.4) [ — it = (ufx)2 (Dyn.cond.)
(11.5) 2 —iZ =+ Rl — a(L* + Z¥[x). (Kin.cond.)

Substitute the value of the temper-ature wave £ from the dynamic condition into the
kinematic contition. The resulting equation,

s okt

E+ B —atn) — = =2+ (CF R,

has the real and imaginary parts

(13.1) L e+ W) — 10E= (2 — ), | n, = (1 — a)/x
74 (1l +p) — 1n = — (2 — m)é. n, = (1 4 )

where { = & 4 in is the vorticity wave in (11.3).

The equations (13.1) govern the evolution of the dynamic sliding vorticity field
in the symmetric wave from an arbitrary tilting state. When the solutions of these
equations are known, the corresponding evolution of the temperature wave is obtained
from (11.4), which have the real and imaginary parts in (12.3).

Before we consider the general solutions of the simultaneous system (13.1), let us
examine whether the vorticity field can have a state of stationary phase such that
6 =0 and 0 = 6,
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14. The states of stationary phase of the vorticity wave (the unstable
modes). In a state of stationary phase (6 = 0, = const) only the amplitude of the
wave can change with time so the evolution equations (13.1) for such a state are

(14.1) A+ [n(1 4 p) — 114 = (2 — n,) A tan 0,
A4 (1 +p) —1]4 = — (2 — n,) 4 cot 0,

These equations are evidently different forms of the same equation. It has solutions
of the form 4 ~ ¢*, where 7 is a root of the simultaneous quadratic equations

2 — f— —_—
(14.9) n® 4+ n,(1 4+ u) — 1 =n(2 —n,) tan 0,
n+n(l +u) —1=—n(2—mn)cot O,
Elimination of 6; gives the bi-quadratic “frequency’ equation
(14.3) 1%+ n(1 + 1) — 1102 + (1 + ) — 1] + 22 — n)(2 — n)) = 0.

If the wave shall have a state of stationary phase we see from (14.2) that the frequency
equation must have a positive root #7. The sum of the roots (] + 73) is never positive,
so the frequency equation has one positive root if the constant term is negative, that is if

(14.4) (nms)? = [n,(1 + ) — N[n,(1 + ) — 1] <0. (n? > 0).

This condition is satsified in the spectral interval between the stationary neutral a-
and b-wavein (12.8). Outside of this spectral interval, both n2-roots of (14.4) are nega-
tive, so the wave has here no state of stationary phase. Both pairs of modes are here
stable oscillations. Their wave components move progressively downwind at all times
with rhythmic variations of amplitude and speed between the extreme values in the
non-tilting states. In the spectral interval of (14.4), on the other hand, the shear layer
has one pair of unstable normal modes, one growing and one decaying at the rate n,
where 7 is the real positive root of the frequency equation (14.3) in this interval. The
corresponding states of stationary phase 0 = 0, are obtained from (14.2). We see that
the growing and decaying modes have equal symmetric phase shifts upwind and down-
wind from the non-tilting a-state (0 = 0).

The temperature field (boundary deformations) of the unstable modes is obtained
from the dynamic conditions (12.4) and (12.5). Putting here § = 0, 6 = 0, and 4/4
= n, the ratio of these equations give

(14.5) n = tan (0, — o).

where o, denotes the stationary phase of the temperature wave measured positive up-
wind from the a-state. In the growing mode (7 > 0) the vorticity maximum is upwind
from the interface crest where the overweight of the interface particle augments the
vorticity. From (12.5) and (14.5) we see that the vorticity ratio r = A/4, is constant
in the unstable modes, so both fields grow or decay at the same exponential rate.
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The spectral interval of unstable normal modes in (14.4) may be written

(14.6) (1 —a) < 1—%; <(1+a), (Instability)
where the lower limit is the stationary a-wave and the upper limit is the stationary
b-wave. If the outer layers are unbounded (2 - o) the parameters x and a have the
values in (10.5) for all wave lengths, namely » = kd, a = 7% The corresponding in-
stability condition in (14.6) was derived by GovrpsteIN [2]. The boundaries of the
unstable spectral band in the unbounded system — the Goldstein lines — in a »,u-
diagram is shown in fig. 14. The upper boundary — the a-line — starts from the origin
with the slope 4 = /,». Near the origin (x (1) the stationary a-waves are approxi-
mately given by

w=sgd|U? =1 ,kd ; or k = 2sg/U>

This result is exact if the depth of the shear layer shrinks to zero. It is the well known
value of the wave number of the stationary Helmholtz wave in a statically stable
vortex sheet. Waves which are very much longer than the depth of the shear layer have
approximately the same behavior as in a vortex sheet.

The lower boundary of the unstable region in fig. 14 — the 4-line — starts from the
point %, (see 6.6) with the slope u = x. Both lines approach the same asymptote,
w41 =3

In the system with bounded outer layers the parameters ¥ and a have the general
values in (10.3,4), and the spectral band of instability (14.6) is here

(14.7) cth kh + cth Yykd > (1 + u)/(}/skd) > cth kk 4 th 1/ kd.

It the thickness of the shear layer shrinks to zero, no wave length satisfies the right
hand b-wave limit. The vortex sheet has no stationary b-wave. However, as kd — 0,
the left hand stationary a-wave limit may be written

cth kb — 2sg/U% = (}ykd)=* — cth 1/kd ~ — kdJ6 — O.

This is the condition for the stationary Helmholtz wave in the vortex sheet between
bounded layers.

In the isentropic shear layer (4 = 0) no wave satisfies the a-wave limit in (14.7).
The isentropic shear layer has no stationary a-wave. The condition for the stationary
b-wave is here

Stationary b-wave: cth kb = (Y/hd)™* — th (Y/kd), (v =0).

This condition is represented graphically in a (kd, kk)-diagram by a line which leaves
the origin with the slope # = 1/,d and has the vertical asymptote kd = x, of the stationary
Rayleigh wave (see 6.6) in the unbounded system.

7
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Fig. 14: Stability diagram for a shear layer with static stability across the boundaries.

Waves which are very much longer than the total height of the system, £(24 4 ) (1,
obey the quasi-static approximation with good accuracy. The pressure distribution
along the vertical is very nearly hydrostatic in these waves. For the long quasistatic
waves the parameters » and o have the values in (10.6). The corresponding values of
the parameters 7, and 7, in (13.1) are

(14.8) n,= (1 —a)fx = (R4 1), k(h + 1od) 1
n, = (1 4+ a)fx = R7% (R = 1/,d/h).

The condition for instability (14.6) for these long quasi-static waves is therefore

(14.9) R>pu>R—1. (R = Y/yd|h).

Let us here replace the “inner” Richardson Number x4 whose length parameter is the
depth of the shear layer (see 2.3) by the “outer” Richardson Number whose length
parameter is the depth of the outer layers, namely

(14.10) w, = ulR = 2sgh| U2
Systems in which this outer Richardson Number has a value in the interval,
(14.11) 1> w>1—2h/d, (Quasi-static instability)
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have one family of long unstable quasi-static modes. All (u, > 1)-systems have quasi-
static stability. In the (u, = 1)-systems the quasi-static waves have a stationary neutral
a-state. In the systems of 4 > 24 the quasi-static waves have a stationary neutral b-
state if w, = 1 — 2h/d. These systems have quasi-static instability for values of u, in
the interval (14.11). They are quasi-statically stable for smaller value of u,. Finally
the systems of d < 2/ have quasi-static instability for all values u, < 1. If the depth
of the shear layer shrinks to zero, this is the criterion of quasi-static instability in the
vortex sheet between bounded layers. It is interesting that this last criterion is inde-
pendent of the depth of the shear layer as long as it occupies less than one half of the
space between the outer boundaries.

15. The evolution of symmetric waves from their non-tilting states.
After the preliminary survey of the instability conditions for the shear layer let us now
examine the structure of the normal modes. In the unstable spectral interval the vorticity
field of the growing mode has the stationary phase 0;, from (14.2) given by
n(ny, — 2) n% 4 ny(l + p) — 1

Ein(tw 1 a2 —n) (n>0)

(15.1) tan 0, =

Since 7,(1 + u) > 1 in the unstable region (14.6), the vorticity wave in the growing
mode is upwind from the a-state (0, > 0) in the long (7, > 2)-waves, and it is downwind
from the a-state in the short (n, < 2)-waves. The temperature wave on the other hand
is downwind from the a-state (o, << 0) in all growing modes. This is quite obvious for
the short (n, < 2)-modes since the temperature wave is downwind from the vorticity
wave in all growing modes. For the long (7, > 2)-modes we have from (15.1)

tan 0,  np— 2

0 < < <1,
n n, — 1

and therefore from (14.5)
tan o (1 + ntan §,) = tan 6, — n < 0, or o, < 0.

Let us next examine the evolution of the unstable wave from a non-tilting a-state
toward the state of stationary phase of the growing mode. This evolution is obtained
as the resultant of the growing and decaying mode with equal initial amplitudes.
With the amplitude factor left out the upper vorticity fields of these are

WIL = 1/26"/ Cos (kx + 63)7
YT = Yae™ cos (kx — 6)),

and the resultant wave has the upper vorticity field

A
y, == ch nt cos 0 cos kx — sh nt sin 6, sin kx = o8 (kx + 0).
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This wave starts from an initial a-state (6 = ¢ = 0), and its phase has the evolution
tan 0 = tan 0, th nt.

The phase velocity of the vorticity field in this wave is obtained by time differentiation
of this phase equation. Using the value of tan 6, in (15.1), we get
n (] 4 ) — | 7 4 (1 4 ) — 1

T cos?0 + T o, — sin20,
— g I}

(15.2) 0 =

This formula is quite general and applies to the resultant symmetric wave from each
of the two pairs of normal modes whose frequency-squares are the two roots, — 72, of the
bi-quadratic frequency equation (14.3). In particular the intrinsic upwind phase
velocities of the vorticity field in the non-tilting states of these waves are

nt g1 p

(15.3) l—i—()a:*?_—; = ( A)
;o= =
 mtbamtl 4,

(15.4) L6, = —5 == =1

The corresponding vorticity amplitude ratios 7 from (12.6) have been added in these
formulas. With these amplitude ratios known the intrinsic phase velocities of the tem-
perature wave in the non-tilting states are obtained from (12.2), namely
(155) 1+ ?-a = na(l + 7a)>
1 + 0, = n,(1 4 7,).
Finally the symmetric waves from both families of normal modes obey the rules
(15.6) 0,0, = 0,0, = — n?

and during their evolution both the vorticity wave and the temperature grow or
decay according to the rule

(15.7) 420 = const; A%s = const.

Let us now examine this evolution in more detail. Inspection of the frequency equa-
tion in (14.3) shows that its roots »? have simple values for the waves of n, = 2. We
shall therefore first consider these waves.

16. The evolution of the symmetric (7, = 2)-waves. The wave numbers of
these waves are given by 1 4+ o = 2x, or with these parameters substituted from (10.3,4)

(16.1) cth kk = (kd)=' — th 1/ kd. (n, = 2).

In a (kd, kh)-diagram this line starts from the origin with the slope d = % and has the
vertical asymptote

kd = 1y(1 + %) = 0.74. (kh — 0.
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So every system with the outer layers deeper than the central layer has one and only
one wave number for which n, = 2.
The roots of the frequency equation (14.3) for this wave number are

(i): n = — (2 + 1), n =2,

(i1): n? =1 —n,(l 4+ u). n, =2(x1 — 1).
The first belongs to the family of normal modes which is stable for all values of u.
The second family has a stationary a-state if x4 = n,* — 1. If the static stability is
greater than this value these modes are stable. If less, the modes are unstable. Let
us consider the symmetric waves from each family in their evolution from a non-
tilting state. «

(i). n? = — (24 + 1): From (15.3) we see that the symmetric resultant from this
pair of modes has the a-state amplitude ratio 7, = — 1. The field from the kinematic
and dynamic vorticities are equal with opposite sign, so there is no perturbation of
the basic flow in this a-state. As a consequence the temperature wave (the deformation
of the boundaries) drifts passively downwind through the a-state with the air (¢, = — 1).
The vorticity wave on the other hand is driven downwind through the air by the over-
weight of the deformed boundaries. It moves downwind through the a-states as a simple
neutral gravity wave with the intrinsic phase velocity u (see 15.3). As the wave leaves
the a-state the vorticity wave moves ahead of the temperature wave. The sliding
vorticity maximum descends downwind from the interface crest and begins to grow
and slow down. As the growing dynamic vorticity wave moves ahead of the kinematic
vorticities the evolution of the temperature wave is dominated by the dynamic vorticity
field because of its greater strength and more favorable tilt, so the temperature wave
decays and moves downwind through the air with increasing speed as soon as it leaves
the a-state. Both vorticity and temperature wave behaves in accordance with the rule
in (15.7).

The temperature wave catches up with the vorticity wave again when both arrive
together in the non-tilting b-state, the vorticity wave with maximum amplitude and
minimum speed, the temperature wave with minimum amplitude and maximum speed.
From (15.6) the vorticity wave moves through the b-state with the phase velocity

(16.2)

: n? 2u + 1 : 7
Gb——ga—— ut 1 , Or 6,,—|~1——1+M.
The b-state amplitude ratio in (15.4) for this wave is therefore r, = — (u + 1), and

from (15.5) its temperature wave moves downwind through the b-state with the maxi-
mum intrinsic phase velocity 2u, driven by the dominating vorticity wave. The ratios
between the amplitudes in the non-tilting states are obtained from (15.7). They are

(4,/4)? = 0,10, = (1 + 1)*(2u + 1)
(Asb/Asa)z - Ga/ab = (2//‘ _'“ 1)_1.

The ratio of these gives r,/r, = 1 + px which is the value we found earlier.
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(ii). n2 =1 — n,(1 + p): From (15.3) the a-state amplitude ratio of the symmetric
resultant of this pair of modes is r, = u. The vorticity wave is stationary in this a-state
and from {15.7) it remains stationary in this non-tilting state at all later times. The
temperature wave moves through the a-state with the phase velocity ¢, = n,(1 + p)
— 1. If w = n,t — 1, this wave has a stationary neutral a-state. If the static stability
is stronger, the temperature wave moves upwind through the a-state and the vorticity
maximum which is left behind finds itself downwind from the interface crest where
it decays. As the temperature wave moves upwind through the a-state it is augmented
by the dynamic vorticity field and damped by the kinematic vorticity field. Which
one of these two effects will dominate depends upon the relative strength of the fields
in the a-state, that is the amplitude ratio r, = u. For sufficiently strong static stability
the dynamic vorticity fields dominate and the temperature wave grows as it moves
upwind from the a-state. When it reaches the b-state the vorticity field which remained
behind in the a-state has decayed to zero (see 15.4), so the temperature wave moves
upwind through the b-state as the Rayleigh wave in the isentropic shear layer with
the speed o, = n, — 1 = 1. If the static stability has the value of u = 2n,1 — 1, the
temperature wave moves also through the a-state with unit speed. With this static
stability the temperature wave of this (n, = 2)-family is a neutral wave which moves
upwind with the constant speed U while the dynamic vorticity field performs standing
oscillations. With less static stability the kinematic vorticity field dominates and the
temperature wave decays during its passage from the a-state to the b-state.

If the static stability is less than the value of 4 = n,;! — 1, the temperature wave
moves downwind through the a-state and the stationary non-tilting sliding vorticity
maximum is left behind in a position upwind from the interface crest where it is aug-
mented by the overweight. The sliding vorticity field tends to dampen the temperature
wave, but this effect is more than compensated by the dominating action of the kine-
matic vorticity field. So the entire wave grows when it has left the a-state. In the b-state
the sliding vorticity is absent and the temperature wave moves upwind with the speed U.
From either non-tilting state the wave therefore approaches the asymptotic state of the
growing mode which from (14.5) and (15.1) has the stationary phase

tan20, = 2% =1 — n,(1 4+ u). (n, = 2)

From (12.5) the amplitude ratio in this mode is r, = u cos 0.

In the unbounded isentropic shear layer this mode (kd = 0.74) is a little longer
than the wave of maximum growth rate (see 6.9). Its growth rate is practically the same
(n = 0.55 kU), and its stationary phase is a little less downwind from the a-state (0,
= 29°). As the static stability across the interfaces is increased from zero it acts in two
ways to reduce the growth rate of the mode: (i) It reduces the downwind tilt of the
temperature wave and thus stops the kinematic vorticity field in a less favorable tilt
for efficient growth of the deformations. (ii) The field from the dynamic vorticities
reduces the growth still further.
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For other wave lengths than n, = 2 the physical wave mechanism is of course quite
similar. However the symmetric waves from the two families of the normal modes
have not the simple amplitude ratios in the non-tilting states, and their evolution can
therefore not be described in detail before the numerical values of the roots 72 of the
frequency equation are known. The following qualitative remarks apply only to the
unstable waves.

In the long unstable (n, > 2)-waves the dynamic vorticity field of the growing
mode has from (15.1) a state of stationary phase upwind from the a-state (6, > 0),
so the vorticity wave moves upwind through the a-state and downwind faster than the
air through the b-state. From (15.3,4) the amplitude ratios in the non-tilting states
of the unstable (n, > 2)-waves must therefore obey the rules r, << u, 7, < 0. Since the
static stability is rather small in these long unstable waves (u < n,;* — 1), this means
that the temperature wave moves downwind through the a-state a little slower than the
same wave in the isentropic shear layer. It moves also slower upwind through the
b-state than the corresponding isentropic wave due to its negative b-state vorticity.
But the relative reduction of the speed is much less in the b-state. It is therefore clear
that the growing mode of the (n, > 2)-waves must be rather near the a-state with the
vorticity wave tilting a little upwind and the temperature wave tilting less downwind
than the corresponding isentropic Rayleigh wave (1 = 0).

In the shorter growing (n, < 2)-modes the stationary phase of the vorticity wave is
downwind from the a-state with a smaller tilt than the temperature wave. In the sym-
metric waves of this unstable family the vorticity wave moves downwind through the
a-state and upwind through the b-state, so the amplitude ratios are positive in both
non-tilting states with 7, > u and r, << u. The temperature wave therefore moves slower
downwind through the a-state and faster upwind through the b-state than the correspond-
ing isentropic wave. The combined effect of these changes of the wave speed is to shift
the stationary phase of the temperature wave upwind toward the a-state from the isen-
tropic value (u = 0) for same wave length. The growing mode in the statically stable
shear layer has always a smaller downwind tilt than the corresponding mode in the
isentropic shear layer. For n, < 1 the isentropic wave moves downwind through both
non-tilting states and is therefore stable. However when the static stability is introduced
in the layer (# > 0) the intrinsic upwind propagation of the corresponding symmetric
temperature wave is augmented in both non-tilting states. For sufficiently strong static
stability the wave will therefore move upwind through the b-state while still moving
downwind in the a-state so the wave is unstable. This occurs for the range of static
stabilities inside the unstable band. For still greater static stability the symmetric

waves of the unstable family moves upwind through the a-states as well. So the waves
are stable.
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CHAPTER III

SHEAR LAYER WITH CONTINUOUS DISTRIBUTION
OF STATIC STABILITY AND SHEAR

17. The statically stable Th-shear layer. We shall in this last chapter examine
wave disturbances in a shear layer which resembles the discontinuous Taylor-Goldstein
model in Chapter II, but which has continuous variation of the velocity and the
potential temperature through the layer. The undisturbed flow has a hyperbolic tangent
profile, namely

(17.1) U = U, th (2z/d).

We shall call this flow a Th-shear layer. Far from the center level the air moves in oppo-
site directions with the same constant speed U, The air at the central level has the
maximum shear U'(z = 0) = 2U,/d. The parameter 4 in (17.1) may therefore be

regarded as the depth of the most similar constant shear layer. The distribution of
potential temperature in the layer is given by

(17.2) - 6 = 0, exp [2s th®(2z/d)].

We shall assume that the total variation of potential temperature through the layer is
a small fraction of the temperature at the central level, so the system is dynamically
quasi-symmetric. With this assumption the potential temperatures far above and below
the central level are approximately

6, — 6,6 — 0,(1 + 29),
0, = 0,¢67% = 0,(1 — 2),

so the non-dimensional parameter s in (17.2) has the same meaning as in the discon-
tinuous shear layer (see 2.2), namely

(17.3) s = a0 — 0)/(0 + 6) <1

In the following we shall use units of length and time such that U, = 1/,d = 1,
and introduce the abbreviated notations.

T =th (2z/d) = th z
‘ § = sech (2z/d) = sech z

(*ed = 1)

These are connected by the useful relations
(17.4) T"=82=1—-7%T"=—-2TT" = — 2TS$2

The static stability of the continuous stratification in (17.2) is represented by the
logarithmic gradient of the potential temperature, namely

(17.5) o = (In0)" = 657252
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We note that this stratified Th-shear layer has maximum static stability and maximum
change of the windshear at the levels

o =0: T3 =1/, (z = 0.43 d)
7" =0: T?*=1, (¢ = 0.33d)

Both lie inside the boundaries of the “equivalent” constant shear layer (z = 1/,d).
We must expect some difference between the dynamic properties of the continuous
Th-shear layer and the “equivalent” discontinuous constant shear layer on this account.

(17.6)

18. The wave equations for the Th-shear layer. We now introduce into the
Th-shear layer s amall amplitude disturbance such that the air parcels have the
displacements z,(x,z) from their equilibrium levels and have the additional small
amplitude motion

(18.1) v (%,2) = ui + wk = Yy X j.

Besides the vorticity of the basic flow the air has now the added vorticity of the dis-
turbance, namely

(18.2) g=— V™ =gx + qp.

As in the constant shear layer this added vorticity may be represented as a sum of two
parts as indicated in (18.2) namely: (i) The kinematic vorticity ¢, which comes from
the advection of the vorticity U’ of the basic flow due to the vertical displacements
z, of the air. (ii) The remaining part ¢, which we call the dynamic vorticity. The ad-
vected kinematic vorticity has to the linear approximation the value

(18.3) g = — Uz, = 2782,

The motion is isentropic so the potential temperature of the air particles is conserved.
Associated with the vertical displacements of the air particles are therefore local changes
in the potential temperature 0 which, as in (18.3), to the linear approximation have
the values

(18.4) 0= — 0'z, = — Ooz,.
The dynamic equation for the resultant motion, V = Ui + v, is
Dy — ~- b \RJc,
o =8 0+ 0OVt =% (100)

We linearise this equation, then substitute the static pressure x from the static equation
and eliminate the dynamic pressure # by VV «x differentiation. The result, using (18.4) is

DV DV
0=V X I:@_I (E — ngsk)] ~ VYV X (D_i — ngsk).
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The approximation to the right ignores the kinematic effect of the baroclinity. This
is the quasi-symmetry approximation which is justified if the total temperature variation
is a small fraction of the temperature; see for example FjorToFT [7]. With this approxi-
mation the dynamic equation takes the simple form

D ’ Dq "o aj‘s

Separating out the kinematic vorticity qx in (18.3), the equation gives the dynamic
vorticity change
D DqD azs

D4~ =7, =g -
The non-dimensional value of og in units of 1/,d = U, = 1, using (17.5), is
(18.5) og = 6sgT28% = 3 T2S2. (p = sgd|U?%).

The non-dimensional form of the dynamic and kinematic equations for an arbitrary
small amplitude disturbance of the Th-shear layer are therefore

D 32,

Sl =TI S g = 2Ty,
(18.6)

Dz, o

D ox’ — V% =¢x + ¢p-

We shall use these equations to examine the behavior of wave disturbances which have
a sinusoidal variation in the horizontal direction of the basic flow with an arbitrary
non-dimensional wave number k = 1/,kd.

The stationary waves in an isentropic Th-shear layer were found by Garcia [8]
in 1954. In 1961 Garcia investigated the Th-shear layer with the stratification in
(17.2), and found all the possible stationary waves in this system. Although these results
are not yet published, Garcia has kindly given me permission to refer to his solutions
in this paper.

19. The non-tilting states of a wave in a Th-shear layer. As in (12.1) let r

denote the amplitude ratio of the kinematic vorticity field to the kinematic vorticity
field,

(19.1) r = qpl9x ; q=(1+1r)gx.

In a non-tilting state the dynamic vorticity maximum is located at the crests of the
deformed isotherms where the air particles have no overweight, so the wave is instan-
taneously neutral. Let D(z) denote the instantaneous upwind intrinsic speed through
the air of the dynamic vorticity wave in the non-tilting state, and let C(z) denote the
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corresponding speed of the temperature wave. In frames which move locally with one
of these waves, the wave has no local change, so from (18.6) we have

Dgp 99p 9gx
Dt =D x 15T ax’
Dy L on o
Dt 7 9x  ox

With z, represented in terms of the dynamic vorticity ¢ = (1 + 7)gx = 2(1 + r) 752z,
these give the intrinsic phase velocities in the non-tilting states, namely

DU = 1.5u/r,
CIU = 2(1 + ) (S*y/[q).

These formulas resemble the corresponding phase velocity formulas in section 12 for
the non-tilting states of the symmetric wave in a constant shear layer. In particular,
we note that the pseed of the dynamic vorticity wave is determined entirely by the
vorticity amplitude ratio. However, the wave in the Th-shear layer has 509, more
dynamic vorticity than a wave with the same relative speed in the constant shear layer.
The reason for this is at least partly that U < U, at all levels in the Th-shear layer, so
the vorticity wave needs less overweight to have the same relative speed.

To predict the phase velocity of the temperature wave in (19.2) we must know both
the amplitude ratio and the streamfunction of the wave. Inspection of the wave equations
in (18.6) suggests that waves whose variation with height are simple functions of 7
and S may possibly have a simple analytical behavior. We therefore consider an initially
non-tilting wave whose streamfunction has the form

v = 4,8"T" cos kx,

(19.2) (r = qplqx)-

where for the moment m and n are arbitrary non-negative constants. By substitution in
(18.2) we find that the vorticity ¢ associated with this field is given by

7)) = (m+n)(m -+ n+ 1) —nln — )T+ (B — m?)s

We shall in the following only consider waves of this type for which m = £, so the last
term on the right is zero. Introducing the abbreviation

(19.3) K,=(k+nk+n+1),

these waves have the wave elements

v, = A, T"S* cos kx,

g, = A,[K,T" — n(n — 1) T"%]8**% cos kx.

(19.4)

By substitution in (19.2) we see that the instantaneous relative phase velocities of the
(n = o0)-wave and the (n = 1)-wave are independent of height if the amplitude ratio
is a constant. Let us examine these two waves a little further.
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20. The non-tilting a-wave (# = 1). The streamfunction and vorticity of this
wave are

w = TS cos kx,
q/(S*y) = Ky

The wave has a nodal plane at the central level with symmetric fields in opposite phase
above and below, so it resembles the non-tilting a-state of the symmetric wave in the
constant shear layer. From (19.2) the dynamic vorticity wave and the temperature
wave moves upwind with the relative intrinsic phase speeds

(20.2) D|U = 1.5u)r; CIU = 2(1 + r)/K,.

(20.1)

The wave is a stationary neutral wave (D = C = U) if the amplitude ratio has the
value r = 1.5u and the parameter A in (19.3) has the value

(20.3) Ky=3u+2=(+1)k+2). (D = C = D).

This is one of the families of stationary solutions which were found by Garcia (see
section 22 below).

To compare these stationary a-waves with the stationary a-waves in the constant
shear layer we recall that £ = 1/,kd = /[y, so the stationary wave condition in (20.3)
may be written

(20.4) 3u = x4 3(Y ). (v = kd).

In the #x,u-diagram (see fig. 21) this parabola coincides near the origin, to the order
of »%, with GoLpsTEIN’s a-line for the stationary a-waves in the constant shear layer
between unbounded outer layers (see 12.8). For the shorter waves the parabola in
(20.4) lies above the Goldstein-line. The stationary a-wave of » = 1 in the constant
shear layer has the static stability 4 = (¢ — 1)~ = 0.582. The same wave in the Th-
shear layer has the static stability 4 = 7/12 = 0.584. The stationary a-wave parabola
for the Th-shear layer is practically coincident with the stationary a-wave line for the
constant shear layer for all waves longer than 2zd. This remarkable coincidence suggests
that the two systems have similar dynamic characteristics for waves which are much
longer than the depth of the shear layer. However there are significant differences
between the two systems which become evident when we consider the a-waves in
(20.1), for wave lengths other than the stationary waves. If the amplitude ratio is r =
1.5u, the vorticity wave is stationary. The temperature wave moves upwind through
the a-state if the wave is longer than the stationary wave, and downwind if it is shorter.
This agrees qualitatively with the behavior of the waves in the constant shear layer.
However the phase velocities are different in the two systems. In the constant shear
layer the temperature wave moves through the a-state with the intrinsic phase velocity
in (12.7) which with present notations may be written

ClU = n,(1 + 7). n, = (1 — e7%)[x.
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The temperature wave is moved through the air partly by the field from the dynamic
vorticities and partly by the kinematic vorticities. In absence of the dynamic vorticity
field (r = 0) the temperature wave would move through the a-state with the intrinsic
speed;

Constant shear layer: CJU = (1 — e ") /n. (=1 — 1),
Th-shear layer: CJU = (1 + 3¢ + »%g)~L (=1 —3/p).

Both have the same asymptotic value G, = U for the very long waves, but the departure
from the asymptote is 509, greater in the Th-shear layer.

21. The non-tilting b-wave (n = 0). — From (19.4) the streamfunction and
vorticity of this wave is

(21.1) p = S*sin kx, q = k(k + 1)S2p

The wave is symmetric with respect to the central level with the same phase above and
below, so it is of the b-wave type. Its instantaneous relative phase velocities (19.2) are

DJU = 1.5u]r, CIU = 2(1 + n)/K,.

This wave is a stationary neutral wave if its amplitude ratio is r = 1.54 and the para-
meter K, (see 19.3) has the value

(21.2) K,=3u+2=Fkk+1. (D =C=1U).
The corresponding x,u-parabola,
B = Y + Yy — 2, (v = kd).

is very different from the line for the stationary b-wave in the constant shear layer
(see 12.8 and fig. 21). The reason for this is that the wave in (21.1) has the maximum
vorticity near the central level where the wave in the constant shear layer has no added
vorticity. The partial field from the vorticity in the central region augments the upwind
propagation of the temperature wave at all levels, so the stationary wave in (21.1)
is shorter than the stationary b-wave in the constant shear layer. If the excess vorticity
in the central region is removed from the wave, the temperature wave would move
downwind at all levels, similar to the same wave in the constant shear layer.

It is impossible to set up a stationary b-wave in the Th-shear layer unless it is given
excess vorticity near the central level, where no such vorticities can be generated by
kinematic advection or by dynamic action of the overweight. However, with the aid
of the field of the a-wave in (20.1) we may construct a b-wave which has no excess
vorticity at the central level simply by changing the sign of the a-wave vorticity in the
lower layer. Accordingly this b-wave has the vorticity field

(21.3) g = Ky| T| 8" cos kx.
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0 I'gs 2 3 4 K

Fig. 21: Stationary waves in a Th-shear layer.

Above the central level this wave has the same vorticity as the a-wave in (20.1). The
partial field from the vorticities below the central level is Laplacean in the upper region
for both waves, so the two waves differ only by a Laplacean field. Above the central
level the stream-function of the vorticity wave in (21.3) accordingly has the form

o = (TS* + Ae™) cos kx. (z>0)

Since the field is symmetric with respect to the central level we have ¢'(z = 0) = 0,
so A = k7% The streamfunction of the vorticity wave (21.3) is therefore

(21.4) p = (| T|$* + k=% *) cos kx.

If this wave has the amplitude ratio r = 1.54, the dynamic vorticity wave is stationary,
and from (19.2) the temperature wave in the upper region has the relative speed

¢ 3u -+ 2 ( 1

'(7 = == {1+ ]C—'ZT(]. _}_'T—>k (7’ = 1'5/")’

(21.5) )
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Its upwind speed is greater than in the corresponding a-wave (20.2). For very short
wave lengths it has the same asymptotic behavior as the a-wave. In particular the
condition for a stationary short wave is the same (20.3) for both waves. For the longer
b-waves in (21.4), on the other hand, the relative speed of the temperature field is a
function of height, so for no value of the static stability are these waves stationary at all
levels simultaneously. The wave is stationary at a given level 2 = z(7,) if the static
stability has the value of

(21.6) Bu 2 = (k+ )k + 2)(1 T Ty)‘l, (1) = U.

At higher levels this wave moves slower than the air, at lower levels faster. The wave
is stationary far from the central level if

3u + 2= (k+ 1)k + 2)[1 + (k21 T, =1) =1,

This line is shown in the u,x-diagram in fig. 21. It meets the Goldstein line for the
stationary b-waves in the constant shear layer at » = 2k = 1.5 and at » = 4.15. In
the spectral interval between these waves the stationary b-wave in the constant shear
layer has a little more static stability. For example the (¥ = 2)-wave in the constant
shear layer is stationary if u = (2 — 1)/(¢2 + 1) = 0.76, while the same wave in
(21.4) is stationary far from the central level if u = 2/3.

We recall from (17.6) that the Th-shear layer has maximum static stability at the
level of T2 = 1/,. With this value of 7| substituted, equation (21.6) marks the waves in
(21.4) which are stationary at the level of maximum stability. The corresponding line
is shown in fig. 21. These waves have considerably less static stability than the stationary
b-waves in the constant shear layer. The main reason is probably that the vorticity field
in (21.3) has a unrealistically large value near the center level where there is no physical
mechanism for the generation of vorticity.

Let us therefore consider a third class of b-waves which has very little vorticity near
the central level, namely waves with the vorticity distribution ¢ ~ 725" The stream
function of this wave is obtained by taking the resultant of two of the waves in (19.4).
Omitting the trigonometric factor, the waves of n = 0, and #n = 2 are

g, = K5 Y, = S§*
gs = (K, T2 — 2)S¥+% y, = T2SK
The resultant of these, augmented by the proper factors, is
(21.7) g = K,K,T25*+%; = (2 + K,T%S"

If the amplitude ratio of this wave is = 1.5y, its dynamic vorticity wave is stationary
and its temperature wave moves with the intrinsic upwind speed

¢ 3u + 2 2
(21.8) TG+ kT3 1 + KE+ DT (r = L5u).
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This wave has maximum vorticity at the levels of 72 = 1/,(1 + 1/,k)~1. For the very long
waves these coincide with the levels of maximum stability (see 17.6). For £ = 2 they
coincide with the levels of maximum gradient of the wind shear. For £ = 0.8 the levels
of maximum vorticity are in the middle between the levels of maximum stability and
maximum wind shear gradient. The wave in (21.7) is stationary at the level of maxi-
mum stability (72 = 1/,) if the stability has the value of

Kk + 1)k + 2)(k + 3)
4k +4 )

In a u,x-diagram (»x = 2k) this line meets the line for the stationary b-wave in the con-
stant shear layer at the points (u = 0, » = %, = 1.278 ..) and (u = 1.75, » = 2.9).
Between these points the wave in (21.9) has a little less static stability, but otherwise
its properties are quite similar to those of the stationary b-wave in the constant shear
layer. Like the stationary a-waves in section 20 this similarity probably reflects a funda-
mental dynamic similarity between the Th-shear layer and the constant shear layer.
However, whereas the constant shear layer has only these two families of stationary
waves, the Th-shear layer has an infinite number of such families.

(21.9) 8y 2 = (T2 =1, = U.

22. The stationary waves in the Th-shear layer. (Garcia’s solutions).
From (19.2) the general condition for a stationary wave in the Th-shear layer with
reference to the fluid at the central level (D = U = C) is

(22.1) g = — Vi = »S%. (v =3u + 2).

When the streamfunction has a sinusoidal variation in the x-direction, Garcia noticed
that this differential equation, by suitable transformation, is the hyper-geometric
differential equation. As such its solutions may be represented by the series

(22.2) p =3 A4, T"S" cos kx,

n =0

where the coefficients 4,, are the coefficients of the hyper-geometric series. These
coelfisients are in the present case easily determined by the formulas in (19.4): The
field in (22.2) has the vorticity

(22.3) g =3 A[K,T" — m(m — 1) T"2]$**2 cos kx.

With these substituted in the stationary wave equation (22.1) the coefficient for 7™ gives
4,(K, —») + (m + 1)(m + 2)4,,,, = 0.

Repeated use of this recursion formula gives

(22.4) A, =4, —K)» —K,)...(» — K,_,)(m))™* (m even)
(22.5) A, =4,(» — K)» — K3) ... (v — K,_,)(m)? (m odd)
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Thus p in (22.2) is a solution of the differential equation if
(22.6) vy =K,or3u+2=k~4+n)k+n+ 1),

where 7 is any non-negative integer. If n is an even integer, 4; = 0 and the coefficients
4,, have the values in (22.4). If n is an odd integer, 4, = 0 and the coefficients 4,, have
the values in (22.5).

The stationary wave conditions in (22.6) are represented in the £,u-diagram by a
family of identical parabolas, cach displaced unit distance toward decreasing £ from
the next lower member. The (r = 0)-parabola marks the stationary b-waves (see 21.2)
which have no nodal plane. The (n = 1)-parabola marks the stationary a-waves (see
20.3) which have one nodal plane at the central level. The n* parabola marks the
family of stationary waves with # nodal planes. If z is odd the central level is a nodal
plane and the field has opposite phase at equal heights above and below. The wave
is of the a-type. If # is even, the wave has the same phase and amplitude at equal heights
above and below the interface. The wave is of the b-type.

By examining all the solutions of the hyper-geometric equation Garcia found that
the solutions in (22.6) represent all the stationary waves in the Th-shear layer with
the stratification (17.2) which have bounded and continuous velocity fields.
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