CONTRIBUTION TO STATISTICAL METEOROLOGY

I. On the application of non stationary time series to the study
of Norwegian air temperatures

BY C. L. GODSKE
FREMLAGT I VIDENSKAPS-AKADEMIETS M@TE DEN 9DE FEBRUAR 1962

Summary. The aim of statistical climatology is to arrive at mathematical models giving
an adequate description of the statistical properties of the atmospheric variables. Proceeding
from simpler to more complicated studies, we may start with the following problems:

1. The construction of a mathematical model, say a distribution function, describing the
statistical properties of “isolated” atmospheric variables for a given time and locality.

2. The construction of a model describing the statistical properties of the time variation of
the atmospheric variables characteristic of a fixed locality, e.g. by autocorrelation analysis.

3. The construction of a model describing, at a given time, the statistical properties of the
space variability of the variables (studies of representativeness).

4. The construction of a model taking into consideration the statistical relationship between
different atmospheric variables mecasured at a given time and locality.

Combining 1 —4 we arrive at the more difficult, but extremely important, problems charac-
teristic of synoptical climatology and statistical weather prediction.

The present paper is a contribution to problem 2. In Chapter 1 we present a summary
of the statistical analyses of air temperatures from Oslo and Bergen, taking especially into con-
sideration the time persistency in the data; the time unit of the correlograms is partly chosen as
one day, partly as one hour. Stationary time series can, with some caution, be used for repre-
senting the day to day persistency. However, the correlograms with one hour as time unit are
of non-stationary type, owing to the daily variation of temperature. In Chapter 2 the stationary
time series are generalized to what we have called a chain of time series, some simple properties
of which have been summarily studied. Finally, Chapter 3 gives some simple numerical examples,
making probable that chains of stationary time series may be useful mathematical models for
the study of daily variations of quantitative atmospheric variables like the air temperature.
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GHAPTER 1

SOME STATISTICAL PROPERTIES OF THE BERGEN
AND OSLO AIR TEMPERATURES

1. Introduction. The thermograms for the air temperature at the Norwegian
meteorological stations are only partially utilized in climatology, owing to the la-
borious work connected with the reading off of hourly values. For some few stations
a longer series of carefully checked hourly temperatures Tyy, Tye, ... T4 exist, thus
for Bergen 1904—30 and for Oslo 1901 —30. These data have been punched under
the supervision of TH. WERNER JoHANNESSEN, chief of the Climatological division of
the Norwegian Meteorological Institutte. Correlation computations have been carried
through by K. Fromsanp and E. Ramm on the IBM 650 digital computer at the Uni-
versity of Bergen, and correlograms have been drawn by M. Gopske. For working
out the numerical examples in Chapter 3 the assistance of B. Grunc and J. H.
Knupsen has been valuable; the final drawing of the diagrams is due to E. BorsTap
and S. O. SiverTseEn. The investigation has been sponsored by the Geophysical
Research Directorate, Air Force Cambridge Research Center under Contract AF61
(052) —416.

Among the computations hitherto performed we will only mention those which
are of interest for the following time series studies, namely:
1. Computation of monthly temperature averages for each hour of observation:
Ty = 711—2 Toss Toss .- Toy for Bergen. The sum is extended to all days of the months
and to a certain number of years.

2. Computation of corresponding “‘between-days’”’ standard deviations:
P p g Y

1w . =
Sox ZV;Z (Tor — To1)? Soz> +-- - - Soq

3. Computation of corresponding serial correlation coefficients with time lags, 1, 2,
... 8 days for all hours of observation and all months.

4, Computation, for Bergen and Oslo, of serial correlation coefficients with time lags
1, 2, 3, ... 72 hours for the 8 hours of observation 01*% 04% ..... 22" and all
months.

The aim of these computations has, among others, been to furnish data enabling
us to decide how far the concept of stationary time series is applicable to the study of
daily and seasonal variations in air temperatures, and which generalizations of the
series are necessary if stationary series cannot be utilized.
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2. Daily and seasonal variations in the “between-days’’ variability of
Bergen air temperatures. The standard deviations “between days” of the Bergen
temperatures have been computed, for each month, separately for the 12 odd years
1907, 1909, ... 1929, for the 13 even years 1906, 1908, ... 1930, and for the 25 years
1906 —30. It may be quite difficult, owing to persistency and non-normality in the
temperature distribution, to judge the statistical significance and reliability of diurnal
and seasonal variations if we only consider results from the complete 25 years period.
However, features which appear in clear form both in the 12 odd years and in the 13
even years series, can with some confidence be considered as statistically significant.
(The division of the complete series into an odd and an even one has also been chosen
so as to eliminate changes, if any, in climate; in fact the two series thus selected may
possibly be considered as random samples from the same “statistical universe”).

Fig. 1 shows, for the 25 years period, the daily and seasonal variation in s;, starting
with January at the top of the diagram. In order to give some indication of the “time
stability” of the variations without overcrowding the diagram, we have drawn the
curves for January, April, July, and October also for the 12 years (dotted curves)
and for the 13 years (dashed curves). The following features appear, and are confirmed
by the curves for the 12 odd and the 13 even years for the other months:

In October —~ February the between-days variability of the temperature has a flat
minimum between 13" and 15, and only slight variations between 22" and 10* The
daily amplitude is greatest in January —February. In April—August a maximum exists
about 13*—16"; the values of s, are practically constant between 22" and 07" In March
the 25 years period — as well as the 12 years and 13 years period — shows a morning
maximum in s;. A very flat secondary maximum at about 16" is found for the 25 years
period; this is more pronounced for the 12 years period but does not exist in the 13
years period. In September the 25 years period shows minima at 09—10" and at
19—20" with maxima at 07* and 14—15"*; the same features are also evident in the
odd and the even series.

Although the physical meaning of the arithmetic mean of 24 standard deviations
for a given month is more than doubtful, we have represented this quantity, for 12,
13, and 25 years, in fig. 2. Its seasonal variation is very marked: maxima occur in
April—May and December—January, minima in February —March and August—
September. The agreement between the odd and the even periods indicates the sta-
tistical significance of the variations. We note in particular the strong change from
September to October, corresponding to almost 50 per cent increase in the between-
days temperature variance.

In a stationary time series

1 (1) Cxt— 1), x(0), 2+ 1), L

where ¥, for each value of ¢, is a stochastic variable, the standard deviation, o,, of x
must be independent of time. Then o, estimated from between-days variations by time
averaging over a month (or the same month for many years) keeping the hour of
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Fig. 1. Daily and seasonal variations of the between-days variability, s;, for the Bergen air temperature
during the period 1906 —30. Dotted and dashed curves represent the variations for the odd 12 years
period and the even 13 years period respectively for 4 selected months.
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Fig. 2. Seasonal variation for Bergen 1906 —30 of the ‘““average” between-days temperature variability
as measured by the standard deviation s;, together with corresponding curves for the odd 12 years
" period (dotted) and the even 13 years period (dashed).

observation constant, should show only slight and insignificant daily and seasonal
variations. Fig. 1 shows that this is not the case for the Bergen air temperature 7.
Thus we are justified in concluding that both the series of the type:

1 (2) T =1, T@), T+ 19, T+ 29 ..., (h = hour)
and the series of the type:
1 (3) e T(E— 1%, T, T(t+ 19, T(t+2% ..., (d = day)

(where T denotes the Bergen air temperatures) are non-stationary.

It might, however, be possible that the time series obtained by dividing the tempe-
rature anomaly 7, — 7; by the corresponding standard deviation were stationary.
Then the correlation coefficient 7 [x(¢), x(¢ 4 )], where ¥ = T- T-, should be

oT
independent of ¢, only depending on 7. In order to obtain more information about
the character of the series (2) and (3), we consequently have to consider the serial

correlations corresponding to these series.
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3. Correlograms for the Bergen temperatures with time lags 1, 2, . . .
8 days. Serial correlation coefficients with 1, 2, ...8 days lag have been computed
for Bergen, for each hour of observation and each month for the above defined groups
of 12, 13, and 25 years; in all 864 curves have been drawn. For Oslo analogous curves
have later been drawn for 3 periods of 10 years and for the 30 years period 1901 —30;
the discussion of the Oslo curves will not be attempted in the present paper. Some few
of the Bergen curves, all referring to the 25 years 1906 —30, have been presented in fig. 3,
namely the curves for the main hours of observation 01*, 07", 13* 22" and for the
months January, April, July, October. To the left we have given 4 small diagrams for
the main hours of observation starting with 01* at the bottom; to the right the same
data have been presented, but the small diagrams refer to the selected months,
starting with January at the bottom.

Fig. 3 left shows, among others, that for lags 1 —4 days for all hours of observation
the October correlations are the highest; for 13* April also shows high values. Thus the
“persistence predictability’”” 1—4 days ahead of a Bergen air temperature is greatest
in October, a result whose reliability is made probable by considering also the 12 years
and 13 years periods. Fig. 3 right shows that the predictability in January is practically
the same for all hours of observation; also in July the difference is small with regard
to predictions some few hours ahead. For October, and for lags 1 —6 for April, however,
the persistence predictability P; of the different hours of observation is characterized
by the following inequalities: Py, < Py; << P;3 < Pyy. In order to obtain some quanti-
tative information about the difference, we present in table 1 the percentual residual
variance for the 12, 13, and 25 years groups, for 1 day and 4 days persistency; de-
creasing values of the presented figures correspond to increasing predictability. The
differences in the predictability are not great, but show a systematic character and are
probably real.

Table 1.1 Percentual residual variance for ““persistency prediction” I and 4 days ahead.

Hour of observation 7% 01 13% 19%
April 12 55 53 47 44
13 53 51 43 40
25 52 51 44 41
1 day
October 12 46 47 48 40
13 54 52 45 39
25 50 49 46 39
April 12 93 90 90 87
13 95 95 89 89
25 93 92 88 87
4 days
October 12 88 88 87 87
13 84 82 85 76
25 86 86 85 82
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Fig. 3. Correlograms for the Bergen air temperatures 1906 —30, 01%, 07, 13%, 19% for January, April,
July, October.



168

C. L. GODSKE Vol. XXIV.
e 4h 7P 10" 130 16" 19" 220 h

D' S~ /~ l #"‘ ~~~~~ ----~"'-"‘~____‘___, D'
0.76 T - ., 1 <=~ 1

p m y
06 J, / | l 0.68

0.66 0.66 7-? 0.68—
0.6 ,/m V\—f'l\ 0.66
N I

F. 0.64 N 0.72 .

" V/‘llf 2 N i ‘&v M
068 0.74 —pamr S et 0.74 |

N T ~ .

072 0.72
A [ &
. 4 .
068 \\ \/ 0.68

0.74 / 4 \

M // AN \\1 0.72
070 0.70 2 /\___\ M.
JL A L.
0.66 \‘L J ’/— 0.66

o@ ~ 0.64
0.72 S‘ 0.62
. A 4
070
0.68 J/ \l < 0.68

A — A.
06 ~ Nl \ -

‘ d AN '

T
N
0.60 = \‘ f/ X\ 060
0.56 / A\ 056
S. 7 0.54 o S.
0,52 \ 052 076
N A0 BN // AN 074
[ = e N
N. / 0.68 0.78 /\ Oi??
l
0'706 ~—T— =1
1h 4h Al 100 13h 16h 19h 22h 1h

Fig. 4. The daily and seasonal variations of the Bergen temperature autocorrelation coefficients 1906 —03

for time lag one day.
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In the January curve (bottom, right) we have added small circles corresponding
to an ‘“‘average” exponential decrease of the correlation coefficient 7;, The decrease
observed is for small ¢-values more rapid, for greater i more slow than the exponential.
This indicates that not all previous information about 7(¢) is contained in T(¢ — 1);
the temperature time series, at least in January, cannot be considered as Markovian.
A systematic treatment of curves of the type fig. 3 will be taken up later when mathe-
matical models will be fitted to the empirical date (see for instance J. Norpg, 1959).

Fig. 4 (analogous to fig. 1) gives, as a supplement, for different hours of observation
and months the value of [ T(¢), T(t — 1%)], but only for the 25 years period; similar
curves have, however, also been drawn for the 12 years and 13 years period. In January
a noon minimum and a midnight maximum is indicated in the 12, 13, and 25 years
periods — and a slight indication of a secondary maximum at 17* and minimum at
21", December gives curves of quite other types, so also does February. If, therefore,
the daily variations in 7 shown in these three months are significant, there must exist
arapid change in the character of the persistency during the winter months — probably
associated with similar changes in the frequency of different weather types.

March is not too unlike February, with a pronounced afternoon and a flat night
minimum, the corresponding maxima occurring at 11* and 19% In April the morning
minimum at 06" is very marked for all 3 groups (12, 13, 25 years), whereas the after-
noon minimum is clearly indicated only in the 13 years period. The highest value of »
is found at 19* The highest r-values (0.765) and the lowest (0.655) correspond to resi-
dual variances of 41.5 and 57.0 per cent, showing that a considerable difference exists
in one day persistency between morning and evening.

In May both maxima are pronounced, as in March, but the first maximum is as
early as 07", The minimum at 13" is very weak in the 12 years period, but extremely
strong in the 13 years period. The June curve shows only slight variations, which may
be of random character although the three minima at 04*, 08", and 14" and the maxima
at 11" and 22" appear both in the 12 years and the 13 years periods. For July the odd
and the even periods show quite different features, but the minimum at 16" and the
morning maximum seem to be real. In August, these two extremes are much more
pronounced, moreover a minimum appears in the early morning and a maximum in
late afternoon, so that May and August show strong similarities. The September curves
show a very deep morning minimum and a high maximum at 19%, the secondary
extremes being at 12" and 14", Although the average r-value for the 12 years and the
13 years period (0.535 and 0.617 respectively) are quite different (see fig. 5), the daily
variation of » is surprisingly similar for the two series, so that at least the form of the
September curve must be considered as securely established. For the 25 years period
the maximum in 7 (0.671) corresponds to a residual variance of 55.0 per cent, whereas
the corresponding value for the minimum (0.475) is 77.5 per cent, showing the very
low one-day predictability of the September morning temperatures.

In October the level of predictability is markedly higher than in September
the deep night minimum has flattened out; both maxima and the intermediary noon
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Fig. 5. Seasonal variation of the ‘“‘average” autocorrelation coefficient for the Bergen temperatures

1906 —30 (time lag one day).

minimum exist in the 12 years and 13 years periods. November shows a radical change
with the main maximum at noon and a main minimum at midnight. In December,
like January, the daily variation of r is very small, with a high level of . The highest
of all -values in the 25 years series is found for October 18* namely 0.782, corresponding
to a residual variance of 38.5 per cent — to be compared with the value 77.5 per cent
found for this quantity at the minimum in September.

In order to compare the general levels of “one day persistency predictability”
for the different months we have computed the arithmetic mean for the 24 hours of
observation for each month and presented them in fig. 5 for 12, 13, and 25 years. A
pronounced minimum exists in September, a maximum in December; January, April,
June, and October show very ‘‘stable” conditions, with practically the same values
for the 12 and the 13 years periods; the greatest scattering is found in August. As in
fig. 2 we note the great change from September to October, corresponding to an
increase of 50 per cent in 7%

Summing up we may draw the following conclusion with regard to the auto-
correlation coefficient (lag one day) for the Bergen temperatures:

1. The value of r shows a seasonal variation, so that only short series (say a month)
ought to be used when computing serial correlations; in order to obtain sufficient data
such small series from different years must be pooled.
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2. The value of r shows in spring and autumn typical daily variations, the greatest
predictability existing some hours after sunrise and about 19*—22". In winter and
summer these variations are much smaller, but still some of them may possess statistical
significance.

In a later paper we will discuss the analogous Oslo curves and possibly also data
from other meteorological stations in order to find the ‘“region of validity” for the
above results. The time stability, revealed by a comparison between the 12 years
and the 13 years series, makes probable that 10 or 15 years may be sufficient, when
trying to extend the investigation to other stations. However, our results indicate that
it is recommendable to perform all computations separately for each month and decide
about the pooling of different months only after careful inspection of the data (for
Bergen, it might be permissible to pool February and March, and June and July).

4. Correlograms for the Oslo and Bergen temperatures with time lags
1, 2, ...72 hours. The correlograms r (T}, T,—), j = 01% 04", ...22"; i =1, 2,
...72"% for Bergen have been computed for five 5-years periods, namely 1906 — 10,
1911 —15, 191620, 1921 —25, and 1926—30, and for the “‘total” period of 25 years.
Since 5 years curves gave a too bad approximation to the 25 years curve, we applied
later 10, 15, and 30 years periods for the analogous computations for Oslo, and elimi-
nated also most of the climatical variations by basing all curves on the following 5
years periods:

a: 1901, 1907, ... 1925; b: 1902, 1908, ... 1926;
c: 1903, 1909, ... 1927; d: 1904, 1910, ... 1928;
e: 1905, 1911, ... 1929;  f: 1906, 1912, ... 1930.

The three 10 years periods were the following: a + d, ¢ + ¢, b + f, whereas the 15
years periods were b + ¢ + ¢, and a + 4 + f. Since correlograms thus were computed
for 8 hours of observation, for all months, and for 6 different groups, for both Oslo
and Bergen, 1152 curves have been drawn, each of 72 points.

As an introduction to our provisional study of these curves, we present in fig. 6
some few of the more complicated ones, namely curves for Oslo, 07" in April for the
10 years periods and for the period 1901 —30. As shown by the exponential curve
e~ where ¢~ = (.05, 0.10, 0.15, ... 0.60 (light continuous lines), we again see
{compare fig. 3) that even the regular decrease in r for 1, 2, and 3 days cannot be
approximated by an exponential curve (therefore, not much would be gained by using
logarithmic paper).

The curves do not present an “undisturbed” regular decrease of 7, but a series of
regularly distributed “‘relative’” maxima and minima — ‘“relative’” when referred to
some decreasing “average’ curve. Two main problems now exist: to find the position
(i.e. the i-values) of the relative extremes and to estimate the reliability of this position.

<
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Fig. 7. Times of occurrence, measured by ¢ —j corresponding to the relative extremes in the correlograms
for T (j = O1%, 04%, ... 22%), 10-years periods and the period 1901 —30 have been used; corresponding
t0 4nax = 72 we have, in each period, 3 different determinations of the hours of extremes.

The solution of the first problem ought to be based on well defined “undisturbed”
curves. Since the definition of such curves may be somewhat arbitrary, we will apply
simple visual methods, for the most pronounced extremes based upon “common tan-
gents” (sec line segments a—a in fig. 6). For the relative extremes for small i-values
the exponential curves may also be of some value (still the extremes may be quite
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difficult to fix accurately to the left of our diagram). As an example consider the 4th
relative minimum of the 30 years curve; its position is given by ¢ = 40 corresponding
to j —i=7 — 40 = — 33 which, modulo 24, is equal to 15. The ‘G — ¢’ value,
reduced modulo 24, is given at the bottom of our diagram and marked by m,; in a
similar way the other extremes my, M,, M,, have been marked in the diagram.

The values of j — ¢ corresponding to a given extreme show a high degree of stability
from one 10 years period to another, and can therefore reasonably be assumed as being
statistically significant. The accordance between the 3 curves for 10 years is, on the
whole, for all diagrams of the type represented in fig. 6, surprisingly good. As a conse-
quence we conclude that a 10-years period is suficient for obtaining the general form of the
correlograms having time unit 1 hour. (even 5-years curves, as computed for Bergen, reveal
most of the characteristic features).

A cursory glance at the non-represented April curves for j = 01%, 04*, 10* ..., 22"
(see also fig. 8) makes probable that relative minima occur not for constant values of <,
but — approximately — for constant values of j — i. We have consequently determined
these values for the extremes of the 8 April curves (01% 04% ... 22" for Oslo and
presented them in fig. 7. Dots represent the position of the 10-years minima, crosses
refer to the analogous maxima, whereas dots and crosses surrounded by a small circle
refer to 30-years extremes. In case of doubt, interrogation marks have been introduced.
Each extreme is represented thrice (see figures 1, 2, 3 at the bottom of the diagram)
corresponding to i-values between 1 and 24, between 25 and 48, and between 49 and
72 hours. We may note that (as follows from non-represented diagrams) m; is much
more pronounced than m, for j = 10", 13" 16" 19" whereas the opposite is the case
for 01* 04", 07". For j = 22" both minima are about equal in intensity. For 22% 01*
04% 07", 10* the maxima M, and M, are about equally strong, for 13% 16", 19%, M,
is almost non-existent, but M, is very pronounced.

The minimum m; shows a remarkable “stability in time” (least so for 04" and 07"
when it has a small intensity and its position may be difficult to determine). We may
safely conclude that j — ¢ for this minimum is independent of j. The minimum m,
and the maximum M, and M, show a slight dependency on j; the study of the statistical
significance of this dependency will be taken up later. Thus our general conclusion is:
At 05" and 14" —15" the information rendered by the observed temperature about the
future temperature is abnormally small; we may also say that the prediction value of T
is small and the noise level high at 05" and 14" —15" whereas the prediction value is
great and the noise level low at the hours corresponding to the maxima M, and M,.

As a supplement to our provisional study of the 07" April curves for Oslo, we have
in figs. 8-—11 presented for 8 hours of observation the 25-years curves for Bergen (con-
tinuous lines) and the 30-years curves for Oslo (dot-dashed lines) for 4 selected months,
January, April, July, and October (the curves for 5-years and 10-years periods are used
in the discussion when we have some doubt about the statistical significance of the
time position of the extremes). In the discussion we also refer to corresponding, not
represented, curves for the other months.
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Let us first, in connection with figures 6 and 7, consider the diagram for April
(fig. 8). On our curves the times corresponding to the Oslo extremes, namely 05%
15", 18", and 20—23" have been marked by small dashed vertical line segments. For
the Bergen diagrams we have identified the same maxima and minima as for Oslo;
they appear often a little later than in Oslo (partly, at least, owing to the longitude
difference of 6°), and are, on the whole, less marked (since the Bergen climate is
more oceanic than that of Oslo).

In January (fig. 9), with a very small daily temperature variation, the only feature
which seems to be statistically significant in the Oslo curves is a weak minimum at 09*; the
Bergen curves are highly variable from one 5-years period to another; perhaps a minimum
at 12— 14"may possibly be real (compare also the minimum in the January curve of fig. 4)

In February, Oslo, the 14" minimum is quite pronounced, a secondary minimum
being found at 7—8"; two rather diffuse maxima occur at about 10" and 20*. For
Bergen there is a pronounced variability between the 5-years periods (thus rg, for
01" is equal to 0.2 for 1906 —10, and equal to 0.7 for 1921 —25!) but the general form
of the curves is the same for all groups, and the distribution of maxima and minima
is one the whole as for Oslo. Similar conditions seem to obtain in March, but the night
minimum is a little earlier than in February. Thus there is no difficulty in identifying
tor February—March the extremes m,, my, M;, and M, studied in detail for April.
In May a maximum is indicated for Oslo at 07"—09" and a little later in Bergen;
the minimum at 14*—16" is less pronounced than the night minimum at 04"—05"
Finally we have a maximum at 19*—21"* Also in June the 04" minimum for Oslo and
the 05" minimum for Bergen are very marked; the maximum at 8*—9* (somewhat
variable in time for different values of j), the secondary minimum at 13*—16" and
the maximum at around 20* are less pronounced.

The correlograms of July, fig. 10 are similar to those of June, with the Bergen ex-
tremes slightly later than the Oslo ones (minima at 04*—05" and 15*—18", maxima
at 19"—20" and 07*—08"). In August and September the night minimum is very pro-
nounced, especially so for Oslo; also the day minima forj = 2 and 1 are well developed.
In August the night minimum occurs at 05"—06" in September at 05—07* The
afternoon minimum is similar to that of July; the evening maximum occurs at 20*—21"
in August and at 18" —19" in September, the morning maximum at 07*—09" in August
and at 08" —09" in September.

The October curves (fig. 11) are less wave-shaped, but still the 4 extremes
are clearly visible: minima at 06"—08" and 14", maxima at 08*—11" and 18"—19".
In November the only reliable extreme is the minimum at 14*—16" which is very
weak for Bergen; in December a very weak minimum can be identified for Oslo.

The seasonal variation in the occurrences of the Oslo extremes is summarized in fig.
12, where also the time of the sunrise is indicated. m, shows a typical seasonal variation;
its time of occurrence coincides fairly well with the minimum temperature. Ana-
logously, m, occurs around the time of the temperature maximum. Thus the noise level
is highest at the times of the daily temperature extremes.
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correlograms (or to high and low temperature noise levels.)

Fig. 13 finally, gives another representation of our computed correlation coetficients,
namely for Oslo, April the values of r( T}, T,;;) for t; = 05", 09*, 14" and 20" correspond-
ing roughly to the relative maxima and minima discussed above. The diagrams thus
give the prediction value of T, for ¢ hours ahead. Since the original tables were computed
for the main hours of observation, the coefficients in fig. 13 can only be given by 3
hours intervals. The diagram clearly shows the difference between the extremes in
the prediction value; they are very strong for short range predictions (8—16 hours
ahead) but less marked for 24 hours, as is also shown in fig. 4. Moreover, as shown by
the scales at the bottom of the diagram, T (corresponding to m;) has an extremely
small prediction value for the hours 13*—16" corresponding to m,; analogously, 73,
(or m,) has a small prediction value for T, (or m,). The fact that the April temperature
maximum gives small information about the temperature minimum and vice versa
is, of course, not surprising. In fact, in spring an increase in cloudiness may have small
influence upon the daily average temperature, increase the minimum temperature, and
decrease the maximum temperature. For M, (corresponding to 09") the “‘weakest
points” in the predictions occur at around 14*—16" (near m,) and 04" (near my),
the detailed determination being difficult since only 3 hours values are available;
maxima occur near 20" and 08", For M,(20") the extremes occur at almost the same
time. Thus there seems to be a strong ‘“‘mutual information” between A, and A,
whereas m, and m, have small prediction value for all future hours.

It is reasonable to assume that the hours with great noise, or a low prediction value,
also will have a smaller predictability than hours with great prediction value. This
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Fig. 13. Diagram giving the prediction value of Ty, Ty, Toe and T,y for one future temperature.

is to a certain extent confirmed by fig. 3 and fig. 4, and shown in clearer form in fig. 14,
which is analogous to fig. 6, but refers to those among the main hours of observation
which can represent my, my, M, and M,. The curves for Ty, and 7,5 dip down much
lower than the curves for T;,and 7,4; moreover, the relative maximum for T, is very low.
We note that none of the curves in figs. 13 and 14 lie for all values of j — i below or
above the others, the reason being that the correlation coefficients are not only decreased
by noise in the predictand, but also, and perhaps even more, by noise in the predictor.
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Summing up the results presented in figs. 6 —14 we conclude that the temperature
correlograms with time unit 1 hour need as a mathematical model a generalization
of the stationary time series hitherto discussed. Such a model will be presented in the
following chapter and applied summarily to the 30 years temperature data of Oslo
in Chapter 3. However, a general and detailed discussion of the model and its meteoro-
logical interpretation and application will not be attempted in the present paper.
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CHAPTER 2
A GENERALIZATION OF THE STATIONARY TIME SERIES

5. Definition of a mathematical model for a chain of stationary time
series. Let us consider a stochastic variable y, with expectation y, and standard de-
viation s, defined at time #. Assuming ¢ to vary discontinuously with steps equal to 1,
we have thus defined a stochastic process. Generalizing the linear autoregressive scheme
applied for stationary time series (see for instance, M. G. KENDALL, p. 414), we assume
successive values of y to be connected through the following formula:

— 4 -
2(1) Swii (Pm—q — Imei) = 21 i Sij—i P — Imiii) T Emtis
where J=0L2,...m— 1L

¢; is a stochastic variable (whose distribution may be assumed to be normal); g;; are
constants (satisfying certain conditions), and i, j, #, and m are integers.

Let us further suppose the stochastic variables to be characterized by the following
equations:

2(2) ¢, = 0 for all values of ¢,

203) o =0, 5=, —) =9, e—z—z %when (ty — t;)m~1is an integer.

2(4a) &) = 0,

for all integer £.
2(4b) gy, =0,

The bars denote expectations, averages which can be defined as “phase averages”
over different realizations of the stochastic processes or, more practically, as time aver-
ages estimated by adding the variables at £ times m¢, (m + 1)¢, ... (m + k)t and
dividing by £, supposed to be sufficiently great,

Moreover, we assume for the constants:

2(5) a; ;=a

i when (j, — jy)m~! is integer.

92, 12

Thus the erratic terms ¢, are uncorrelated with each other and with all preceding
values of », and a displacement in time equal to m units will not affect the statistical
properties of the series. Under the assumptions (2) —(5) formulae (1) define a chain
of stationary time series. Each of the series (1) will be denoted as a primitive series of the
chain; m is called the order of the chain.

Writing down (1) for j = 0,1, ... m — 1, m, ... we find by a process of successive
eliminations m series with time step m:
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2<6> 57;1—1 (.ymt——y _jmt—i) :_ZlAj,i ())m{-i—mi ‘.y_mt—i—-mi) —I— elmb—i’
where j=0,1,2,...m—1

The series (6) will be denoted as “m-series” in the subsequent considerations. We
assume the series to converge as will probably be the case in problems which have a
clear physical interpretation. The erratic term in (6) may be written:

2(7) . & =L(gy ey ovv g oet)s
where L denotes a linear function. Thus, using assumption (2), we find:
2(8) o =0.

In general ¢’,,, ;will contain e-terms which in time are prior to y,, ;_,; and thus contri-
bute to this value. Consequently, we have:

2(9) Slmt—j.ymt—i—mi :‘: 0

Moreover, &', ; and &', ;_,will in general have certain e-terms in common, so that:

2 ( 1 O) ‘slml—j Eilt—f_;i + 0.

Taking into consideration (3) and (5), we conclude that the m series represented by
(6) are stationary time series for time lags m, 2m, ..., but not of that type (with inde-
pendent error terms) for which the “classical” theory, due to Yure, Worp, and others,
is valid.

The computations leading from (1) to (6) are elementary, but fairly complicated
except when n and m are small, and lead to a wunique system of m-series. The opposite
problem, to find the m primitive series (1) when the m-series (6) are given, will in
general be very complicated from the mathematical point of view. Since all m-series
in general contain an infinity of terms, their coefficients must satisfy an infinite
number of equations if z; in the primitive series shall be finite. Moreover, it can be
shown (see p. 193) that if series of type (6) can be considered as m-series, to one system of
m-series there will correspond an infinity of primitive series of type (1), associated with
different strengths of “coupling”.

The quantities ; ;, 9,,; ands,,_; (i == 1,2, ...n;, 7 =0, 1, ... m — 1) give a complete
definition of our chain of series. They must satisfy the following inequality, obtained

by squaring (1), taking the expectations, using (4) and (5), and observing that &,,_; > 0:

"
2(11) 1 = 25,5 G T Pm—i—is Imi—ji)-

The matrix

{a;,:}
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(dimension m X max(n;)) will be denoted as the matrix of tradition. The number of rows
corresponds to the order of the chain, whereas the number of columns will be called
the maximum length of the tradition ; n; will be denoted as the individual length of tradition
for row ;.

Introducing a new matrix «;, where o;, = a; ,_; we may write equation (1)
in the ordinary form

2(12) Yoo = {01} ¥ s

where y,, and y’,,_, are the row vector { ¥, ¥,—1, - - + Vi +1) a0d the column vector
[ Dani—t> + + - Pomi—max(j + ny ) T€SPectively. However, the matrix {e; ,} is of a special form,
having zeros below the’ diagonal starting at the upper left corner. Moreover, displacing
the starting time in equations (1), we may essentially change the appearance of the
corresponding a-matrix, whose order depends on the maximum of j 4 #; (as is easily
seen in the simple chain treated in section 4). Therefore, we will not make use of the
matrix notation (12), but concentrate our attention upon the coefficients a, ;, an inter-
pretation of which will be given in the following section. Moreover, we will “normalize”
our variables introducing instead of y, the quantity x, defined by:

2(13) X, =" (0 —).

Thus s, = 1{or all values of ¢&. The formulae characterizing the chain of stationary time
series for the normalized variable x follow from (1) — (10) by substituting x, 0, 1 for
9,9, s respectively.

A simple generalization of our model (1) would follow if we consider non-equi-
distant time steps 7, Ty, - . - T, 50 that

The mathematical developments will be practically the same as when 7; = 1; an
application of the generalized model is given in example 10.

When applying the model (1) to, say, the time persistency of air temperature, the
coefficients ¢; ; must be estimated from empirical data. The correlograms can then be
used, giving estimates of the theoretical autocorrelation coefficients, the knowledge
of which makes possible the determination of the regression coefficients a; ;. We will
not, at present, discuss the general formulae connecting regression and correlation
coefficients; some few simple examples are given in sections 7—10. Moreover, a dis-
cussion of the difficult problems of “goodness of fit” of the theoretical models will not
be attempted in the present paper.

7. Tradition interpretation of a chain of stationary time series. Let us

consider a “normalized” property x, partly determined by “former values”, partly by

“noise”. For simplification we first consider the ‘Markov” type chain (to be treated in
more detail in section 3), for which n; = 1. ‘
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If m = 2 we can illustrate the series by assuming the quantity x to represent a
tradition following the ‘“‘male line”; we assume that a man receives all tradition via
his mother, whereas a woman obtains the tradition via her husband (see fig. 15d),
Ky %9y sy - - . thus refer to the man of generation no. 1, 2, 3 .. (reckoned back-
wards in time), x,,_, ¥, .. to the woman of generation no. 2, 3,... No tradition
passes in this case directly from father, grandparents, etc. to the son and daughter-
in-law, only the mother is able to transfer tradition. If ¢y ; = 0, the tradition is broken
because the mother transmits to her son nothing of that tradition which she received
from her husband; if a;; = 0 the tradition is broken because the wife cannot obtain
from her husband any part of the tradition he received from his mother. In these cases
the tradition can be characterized as “intermittent’; each man acts as a ‘“‘source”,
each woman as a “sink” of tradition when a,, = 0, whereas the opposite is the case
when a, ; = 0.

Let us next assume, considering as before n; = 1, that each generation is statistically
different from the parent generation, but similar to the generation of grandparents,
with respect to their sense of tradition, so that m = 4.

Counting the generations backward in time, we then have:

[ XpsXy_4s ..  correspond to man of first, third, .... generation,
2(14) Ko 15Xy 53+ » correspond to woman of second, fourth, ... genej‘ratlon,
Koy 25Xy - - correspond to man of second, fourth,. .. generation,
Xy 3s%m_75- - - correspond to woman of third, fifth,... generation.

Also in this case the tradition can be broken. If, say g,, = 0, the tradition is
broken because, in every second generation, the woman is absolutely without any
interest in her husband’s family tradition.

As our next, non-Markovian, example, let us assume m = 2, n; = 2, a case illus-
trated in fig. 15f. The son may then be assumed to receive tradition via mother and
father, his wife via husband and mother-in-law. We may note that ¢, = 0 (“mother
contributes nothing to the male line tradition”) does not mean that there is no correla-
tion between mother and son (both are influenced by the son’s father); in fact, dis-
cussing time series we have to be very careful in not confounding zero order and partial
correlations and regressions.

m =2, ng = 3, n; = 2 would correspond to a direct influence also of the grand-
mother upon her grandson; if also #; = 3, the father would transmit tradition directly
to his daughter-in-law, etc.

Finally, considering as in (14) a periodicity in the generations we have for m = 4,
n; = 4:

son influenced directly from parents and grandparents,

wife » » »  the husband, his parents, and his grandmother.

In the following sections, when discussing different types of chains and “sources”
and “sinks” of information, the notion of tradition will prove very illustrative for cases in
which m = 2" (see the diagram fig. 15).
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7. The chain of series of Markov type. The chain with the minimum
non vanishing tradition is obtained when n; =1 for all values of ;. The value of
x,,_; then depends explicitly only upon x,, ; , since the normalized system of equations
(1) can be written:

mb—i-

2(15) xm;——;' = ai,l xml—i—l + 8ml—~—i (.] = 0, 1) ceay M — 1)'

We will denote such a chain of stationary series as a Markov type chain. Taking the

expectation of (15) after multiplication by x,,_; ;, and introducing the notations:

X,

mb—j—1 ) 7

r(x 7, 1>

ml—j 3

we find, since s, = 1:

2(16) a, =71; .

7

Consequently, formulae (15) can be written:
2(17) Xt = T30 Moy + & (J=0,1, ...,m —1).

The Markov chain of series of order m for a normalized variable is therefore com-
pletely known when we know m parameters, 7; ;, satisfying the conditions:
2(18) 7] <1, (j=0,1,...,m—1).

For a non-normalized variable it is also necessary to know the m values of the
standard deviations and the m mean values — see equation (1). In general, therefore,
3m parameters are needed to characterize completely a Markov chain of stationary
time series of order m.

By successive eliminations from (17), we find the corresponding m-series:

m—1 k
2k19) mt——; = (1—_[ 77+1 1) xml—;—m + 8mt—7 + Z (1_[) ml—j—k'

1=Q k=1 \i=1
Introducing:

m—1

2(20) ]_—I 7’7+1 1

and denoting by ¢’,, ; the total error term, we may write:

2(21) Kot = T m Ko 1) —j T+ € (j=0,1,...,m—1),
which represent m simple stationary time series, because in this case the inequalities
(9) and (10) reduce to equalities. Since 7, ,, is independent of j, the m-series, which are
of Markov type, are identical.

(21) is a special case of the formulae, obtained by combining n — 1 of equations (17):

2(22) mt——; = (H 77+1 1) mt—7—~n + Smt—f + z (l—:[ 7.7+1 1) mi—j—k*

k=1 Vi=1
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Consequently we have:

n—1

xml—j——n) = Ty',n = 1_[ (77'+i,1)

=0

2(23) 7 (X s
enabling us to express the n-th order correlation coefficients by means of the given first
order coefficients 7; ,. '

(23) shows, in particular, that we always have 7; ., <7, ,, so that absolute maxima
and minima (like those observed in figs. 6, 9, 10, 11) cannot occur in correlograms of Markov
chains. Consequently the Oslo and Bergen air temperatures at one hour of observation
depend not only upon the immediately preceding temperatures, but also on tempera-
tures in a more remote past.

Considering the tradition representation of our series, we note that in the Markov
case the tradition length is | in the primitive series and m in the m-series, thus also in the
m-series equal to one time step. Of course the tradition is much stronger in the primitive
series than in the m-series. The strength of tradition may be different for the different
primitive series, but all m-series have the same strength of tradition. If one or more of
the coefficients 7, ; vanishes, there will be a break of tradition in the corresponding
primitive series,-and all m-series will have zero tradition, i.e. x,,_;, x x
will be stochastically independent for all values of j.

m(t—1)—j>* ¢ * m(t—ny—j> ¢

8. Special case when one m-series is of Markov type. When the primitive
series are non-Markovian, the m-series will, as shown by (6), in general possess an
infinity of terms (have an infinitely long tradition). However, if with a suitable labelling
we can write the normalized series (1) in the form:

m—;j

2(24> xmt—i = Zl ay‘,i xmb—j-—i + 81111—7'!
=
elimination of x,, ; 1, %,,—i 2, ... %y_j_,,4; l€ads to a stationary series of Markov type,
i.e. a relation connecting x,, and x,,,_;, with an error term uncorrelated with former
errors and former x-values. The other m-series, however, contain an infinity of terms,
and are of the general type (6). '
Let us consider a simple example and discuss in some detail the equations:

2(25) Xoo = o,1%9—1 T Qo,0%0-2 1 Eans
2(26) Kopm1 = ay,1 %92 + €
For the first m-series, to be called the even, series, we find:
2(27) Koy = (a9,101,1 + o) %o F &2, + Qg 1801

Introducing for simplification:

I
2(28) Di = Ky by = Qo,101,1 + Qo2 & = €y + o 18215
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we find the Markov type series:

2(29) Dy =b1peq + ¢/,

which is seen to be of the ordinary type since for its random terms we have the equations:

- _
l & &, = &, &y T o1 (32zl g1 Eop—1 5212)

2(30) l + a5y eam1 ey = 0 Tor ¢ F 1,
&) = EaiXou—iy + Qo,3891%2p—s = 0 for 7 = 0,
as a consequence of conditions (4).

The second m-series, to be denoted the odd series, assumes the form:

[ve]
— S 4t
[xZL—l = 4p,181,1 Z Ay, 2%01—3—2i
i=0

2(31)
\ + ea1 + “1,1';"6,2821—2—2#
Putting:

_ _ i1
Ry = Xop1, € = Q9,181,140 25
2(32) w

o i
& = €1 T 41 z Qp,2€01—2—2i>
i=0
we can write the above series in the form:

2(33) R = Z €2 T &

i=1

Since, as follows from (9) and (10):

2(34) "z + 0,
and:
2(35) e + 0,

the error ¢”, at time ¢ is neither independent of preceding errors, nor of the preceding
z-values,

The first order correlation coefficients:
To,1 = T(¥a¥a—1)s
To,2 = T(XppXo2),
11— 7{X915%2-2) 5
(

T1,2 = T(Xp1,%-3),
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can be expressed by means of the regression coefficients ¢, ,. By direct computation, or
by putting @, , = 0 in the general formulae (45) we find:

To,1 = o1 T g 201,15

71,1 = 41,1

To,2 = o5 1 dg,101,15

1,2 = @1,3(ag,1 + Q9,901,1) = To,171,1-

The higher correlation coefficients r,, = 7(x,%y,_,) and 7, ; = r(x,_,, %5,_,) can be
expressed by using equations (25) and (26). Multiplication with x,_, gives when ex-
pectations are taken:

2(38)

{To,n = do,o0,m—2 T 0,171,515 m > 2

71,01 = Q1,17 0,n~2" m >3

Using the given values of the first order coefficients and observing equations (37)
we easily find:-

)
70,20 = To,2
I n
To,2n+1 = To,170,2
2(39) B -
Tien—1 = T1,170, 25
_ n—1
T1,2n = To,171,170, 2 -

Finally, the regression coefficients a, ; are expressed as functions of the first order
correlation coefficients by the formulae:

To2—To,171,1
2
1 — 1

7o — 71,1 70,2
0,1 — > Qo2 =

2
1 — i

2(40)
lal,l =T4,1 a4, = 0.

We may illustrate the chain just studied by using a tradition diagram ; we assume the
man to obtain his tradition via his parents, whereas the woman gets tradition informa-
tion only from her husband (see fig. 15a). The left end of the diagram corresponds to the
time 2¢, and time decreases towards the right; man is denoted by a cross, woman by a
dot. The diagram shows that all information due to grandfather, great-grand-father,
etc. passes through the father, so that the even “man’ series is of Markovian type.
Similarly we see that all earlier women contribute to the tradition received by a woman
(thus W, obtains information from W, via M, and M, etc.). The odd “woman” series
consequently must contain an infinity of terms. We note that two arrows end at M;,
and two start from M, but only one arrow ends, and one starts at W;; thus the
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Fig. 15. Tradition diagrams for different chains of stationary series.

man receives tradition and transfers tradition in a more manifold way than the
woman.

Let us now suppose all correlation coefficients to be positive, as is the case with the
series for our air temperatures. Then 7, > 74 17y ; Will correspond to ay, > 0; we
will denote this case as“‘super-Markovian”. On the other hand, ry o, < 74,71, will lead
to ag o < 0 (“sub-Markovian™ case). In the latter case a direct “‘negative” influence of
Xg—p UPON ¥y, combines with the “positive” influence via x,,,. Moreover formulae (39)
show, if no r-values are equal to 1, that:

TO,Zm > 7‘(),2m+1> 71,2m—1 > 7‘1,2m‘
Finally we note:

T1,2m 1 To,2m—1
T =TT = for all m-values.

T1,0m+1 To,2m
According to 7y 4 > 74, OF 75 < 755 We thus have two essentially different cases. In
the first case the correlogram slopes continuously downward from the left, in the second
case absolute maxima and minima appear, displaced with one time unit when we pass from
series (25) to series (26); examples will be given in Chapter 3. This case will necessarily
also be super-Markovian, since 7y, > 74 371 ; follows from 7g 5 > 74 ;.
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A generalization of the chain (25), (26) to m = 4 is given in fig. 15b. Two types of
generations exist. In the first (A, w) corresponding to x,, and %54, the man has a
“long” sense of tradition being influenced both by parents and grandparents, whereas
his wife, with a “short” feeling of tradition, is only influenced by her husband. In
the second type of generation (m,}V) corresponding to Xy, and xy, ; the man’s sense
of tradition is much “shorter”, since tradition is received only via his parents; his wife,
however, obtains tradition from both husband and parents-in-law. The diagram shows
in a simple way that a Markov type tradition exists in the special ““4-series” connecting
all men with “long” sense of tradition. The women of type w receive information from
one single channel, but transmit it through 3 channels, whereas conditions are opposite
for women W; on the contrary the number (4 or 2) of channels carrying tradition fo
the man is equal to the number transmitting tradition from him to the future.

Let us consider the different types of ‘“‘breaks in tradition” for the case m = 2.
ay,, = 0 breaks the tradition between man and mother, but a correlation between them
still exists owing to the father’s influence (fig. 15¢). The odd series (31) degenerate, since
all women represent “‘blind alleys” in the development of tradition. a,, = 0 breaks
the direct connection between father and son (fig. 15d) and makes the primitive series
as well as the odd and even series Markovian. If, finally, the tradition between wife
and husband is broken (¢, ; = 0), as illustrated in fig. 15e, the mother just adds “‘noise”
to the pure male tradition (her contribution is ““‘uncorrelated with”; or “orthogonal to”,
the male tradition). The odd female series then degenerate into a succession of inde-
pendent stochastic variables. If both 4, , and a; ; vanish, the women are completely
left out of the picture, and all traditions follow the Markovian pure male line. If a5 ; =
a2 = 0, part of the tradition created by a man passes to his wife, but nothing to the
next generation, and both y, and z, are independent of former values. Finally, if 4, ,
= ay,, = 0, only the mother can transmit tradition which, however, does not belong
to the male line, and dies out with the son. _

Breaks of tradition in the case m = 4 (fig. 15b) can be discussed in a similar way.

'

9. Chain of second order with length of tradition equal to 2. When
m = ny = ny, = 2, the normalized equations (1) reduce to:

2(41) Xgy = g 1%9—1 T Qg0%9—2 T Eap
2(42) Xom1 = Q1,1%—9 T dq,9%9—3 T Eg—1-

For the two series (6), as in section 8 called the even series and the odd series, we have:

[0
Jle = (a9,2 + 0,101,1)¥a—2 + 49,1811 Z @y oXe—g—s;

=1

2(43)
l + &y + a9, 2, dl 2€91—1—2i>
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and:

«©
Xot—1 == (“1,2 + 41.1a0,1)x2¢—3 + a4,140,1 Z Ao o¥oi—3—2i
=1

9(44) i=

0
+ ep1 + 411 Z aof282t—2—2i-
i=0

The general inequalities (9) and (10) will hold, so that the stationary m-series, even
in this simple case, are not of the type generally considered. ‘

Let us now consider two normalized series of type (6) with time step m = 2. If
these series shall have (41) and (42) as primitive series, we find comparing (6) with
(43) and (44):

Aoty Ay _ fori=2,3, ...

= dy,9, = Gy
Ao.i Ay

Moreover, ¢ = 2 gives:
89,191,1%1,2 = AO,‘Z) @9,141,1%,2 — A1,z

which leads to:

o

1,2 Qo2

|

N

[

0, 1,2

For 1 = 1 we have:

A0,1 - A1,1 = Qg2 — Q1,9 Ao,l = g5 + 41,141

If these conditions are fulfilled, 4 ,, @, , and the product 4, ,a, ; are unambiguously
defined through the coefficients in (43) and (44). Thus the two “coetficients of coupling”,
ay, and a, ;, which connect the two series, are not determined, but only their product.
Passing to the general case we thus conclude that o a system of m-series, satisfying certain
conditions, corresponds an infinity of primitive series, with different types of coupling.

The regression coefficients a4, ;, @94, 451, @1, can be expressed by means of the
corresponding first order correlation coefficients 7y 5, 7q o, 71,1, 71,0- In fact, after multi-
plications of (41) by x5, and xy_,, and of (42) by x,_, and x,_5, we find taking the
expectations, and observing (4):

49,1 -+ Tg,00:,1

1 — Qp,2%1,2

7,1 =

G1,1 + @1,09,1
1 — Qp,281,2
2(45)

2 2
Gyt 89,185,1 — Qoiat,e + g%,

1 — Qg,201,2

2 2
Q1,0 + 85,1010 — G5l T B151%,2

1 — ag,00; 5

13
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The inverse formulae, giving the regression coefficients as functions of the correlation
co:fficients, can be written:

0 = To,1 — "1,170,2 o — To,2 — To,1"1,1
0,1 1 — 7 2 3 “0,2 1 —7 2 b]
1,1 1,1
2(46)
la T TN, P T1,6 — 70,1711
1,1 1 — 2. 2% 1 70,21
Since |7;;| < 1, certain restrictions must be put on the regression coefficients.

The higher correlation coefficients 7, ,, = 7(xy,%5,) and 7, ,_; = 7(xy_1,%y_,) can
be expressed by the lower ones. We multiply equations (41) and (42) by x,,_,, take
expectations, and use (4) together with 7, ,, = 7,0, 73, = 71 2"

2(47) Toow = Qg alo 2 T QoT1,m-15 7> 2,
2(48) Ti—1 = Q1,911,031 Q1,170,0—20 7 > 3.

These formulac make possible a successive computation of the correlation coefficients
when @, 1, @ 4, @11, and a; 5 — OF 74 4, 7o 9, 71,3, and 7; 5 — are known.

The tradition diagram corresponding to the above formulae is given in fig. 15f,
The man receives direct tradition from mother and father, the woman from husband
and mother-in-law. No Markov chains can be defined by considering pure male or
pure female lines. The different types of breaking the flow of tradition can be discussed
by means of the diagram as was done at the end of the preceding section.

10. Simple non-Markovian chains of order 4. In our discussion of the Oslo
and Bergen temperature correlograms for the different months, we noted that two
minima and two maxima per day could be identified. In order to reproduce this feature
by a chain of stationary time series, its order must be at least 4 — and in fact ought
to be much greater. Even the chain of order 4 is quite complicated to discuss; at present
we will consider only some few simple cases, reserving to later a more systematic treat-
ment.

a. Chain of order 4 and tradition length 2. The model is defined by the following
equations:

X = a1 Xg—1 t Qo,0%a—2 T €
2(49) Xym1 = Gy3%—2 F G5 9%4-3 + &4,

Xymp = A 3¥g—3 T Gz 0%4—4 T €40

Xy—3 = d31%y—q T 03,285 + Eq—s-

It is illustrated by the tradition diagram fig. 15g; two different generations exist;
in both the woman receives tradition via husband and mother-in-law, the man via
mother and father.
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Taking expectations of the first equation multiplied by x,_,, the second by x4,
etc., we find:

To,1 — %o,271,1 = Qo,15
711 — QG o =q
1,1 1,272,1 1,1
2(50)
To,1 — G2,273,1 = 42,15
l — Q3,979,1 73,1 = d3,1-

Similarly, by multiplying the first equation (49) by x,,—, the second by x,,, etc.
we find, taking expectations:

~

To,2 = Gg,371,1 T o,
71,2 = Gy,172,1 T Q1,9
To,e = d9173,1 T Q3,2

T3, = d3170,1 T U3,2-

Equations (50) give the first order correlation coefficients as functions of the partial
regression coefficients a; ; and a, ,; the second order coefficients are afterwards found
by (51). The higher order correlation coefficients are determined by the equations
(Where ri+4,n = Tf,n) d7‘+4,n = ai,n):

2(52) r;’,n = ai,lr"l-l,n—l + aj,27i+2,n—2 (] = 05 19 2: 3),
valid for n > 2.

Solving (50) for the correlation coefficients, we find:

81+ Gi111%52 + 4421028 41,2 + G +318i,2 82,285 +3,2
2(53) iy = 3 —
I —] Jas
i=0
where J=0,1,2,3.

From (50) and (51) we find:

9(54 Tin — Ti+11752 T2 — 4T
(54) iy = ] — 2 » G =T 2 s
Tit1,1 Tit11

expressing the regression coefficients as functions of the correlation coefficients. Under
Markov conditions 7; , = 7; 17,4, corresponding to ¢; , = 0. As in section 8 the pri-
mitive series (49) may be both super- and sub-Markovian; in the same chain some
series may be super-, other series sub-Markovian (see also example 12).
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b. Special chain of order 4 and tradition length 5. The model is defined by the equations:

Xy = Gg1%g—1 t Qo,3%a—3 T Eap
9(55) Xy—1 = Oy 1Xg—9 + 0y 5%g—y T €41

Xy == Gy 3%4—3 + Qg g%y—5 + €42

Xy-3 = Q31%4—4 T 03,3%4—s T €43

Using the “‘two-generation” model mentioned on p. 192, we see (fig. 15h) that the
man in this case obtains his tradition only via mother and grandmother, the woman via
husband and father-in-law. Multiplying the first equation by x,_, and by x,.,, the
next by x4, and by x5, etc. we find, by taking expectations, 8 equations between
the a-coefficients and the correlation coefficients 7; ; and 7, ,:

70,1 — Qo,3"1,2 = 4o, 15
7o, %0,171,1 — Qy,372,1 = s
- 71,1 — 1,372,2 = 43,15
T, %1,172,1 — @1,373,1 = >
2(56) ' R o

79,1 — Qg,373,2 = Qg1
— Q,3%0,1 + To,0 =02 1 73,1 =0 ’
L a3,370,2 + 3,1 = 43,1,

— 43,170,1 — 83,3"1,1 + 73,2 =0

Multiplying the first equation (55) by x4, the second by x,,_,, etc., we find ana-
logously equations giving 7; 3 when r;; and 7; , are known:

2(57) Tis = G110 + s (1=0,1,2,3).
The higher correlation coefficients are found by the analogous equation for n > 3:
2(58) Tin = Gilir1—1 T ali43,-3 (1=0,1,2,3)
which enable us successively to determine 7,
The determinant of equations (56) is:
J D =1 — 4,485,101 ,303 5 — 01,103,105,3%0,3
2(59) — 9,301 305 303,5(d0,101,5 T @1,105,5 + d3,1053 + 45103

2 2 2 2
\ — 40,1‘11,1‘12,1‘13,1) — Qo,5%1, 305,393 35
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and the general solution of the equations will be quite complicated. We will, therefore,
only consider the quasi-Markovian case, in which g, 5 are so small that powers and pro-
ducts higher than the second order are negligible. In this case (59) reduces to:

3
2(59’) D ~ 1 — a51a5 10,385 3 — Gy,143,185,300, 35
and the correlation coefficients 7; ; and 7; , are given by the expressions:
1
T &~ D (%‘,1 + @;,30541,1%+2,1 T @;,305+1,3%+3,1
? )
— G+1,3%+3,3%,1%+2,1
R a5 1+ Giiq,10542,1%,3 T aj+3,1(aj,3 =+ aj,laj+1,laj+2,3)aj,3
-1
2(60) | 72 ~ D7Ha54851,1 + G418, T Gi+1,5%,10%5+2,1%+3,1
2 2
F Gi1,3042,3051 1 4 3010,305,18545,1 (1 — %11,1))

& ;105411 aj+2,1(aj,3 + aj,laj+3,1aj+1,3)

2
+ 4;,10,43,14),30+0,3 + d',1(‘lj+z,3 + aj+1,1dj+2,1aj+3,3)aj+1,3'

The expressions for ¢;; as functions of the correlation coefficients are simpler,
a9, and a, 5 only appearing in the first and second equation (56), 4, ; and @, 5 only in
the third and fourth etc. In analogy with (54) we thus find: ‘

TinTiter — Tieli+ie2
=
Tite,1 — Ti+1,175+1,2
I e Thalit
73 T .
Tite,1 — Tj+1,175+1,2
We note that in this special model regression coefficients of order unity and three

can be computed from correlation coefficients of order umity and two.

¢. Special chain of order 4 and tradition length 4. Finally we consider the non-Markovian
chain of series:

Xy = Qg1%X4—1 + Go,a¥q—1 T+ Eap

' Xy1 = 0y11%g—9 + @1, a%u—5 + 41
2(62) - ‘
Xyp—g = Qy 1¥a—3 T Qo,a%a—¢ T Ea—25
Xy—g = A31X4-q T d3,9%a—7 T €43
The tradition diagram is presented in fig. 151; the woman receives. tradition via hus-

band and his grandmother, the man via mother and grandfather. Multiplying the first
equation by wx,_;, X4—s, %y—s, the second by x4_,, %43, %44, €tc. we find, after taking
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expectations, a system analogous to (56) but consisting of 12 equations serving for
the determination of 7;,(j = 0, 1, 2, 3; ¢ = 1, 2, 3). Multiplying the first equation (62)
by %44, the second by x,,_;, etc. we find equations analogous to (57) for determining
7i 4

’ If the correlation coefficients 7;, 7; 5, and 7; 5 are known and satisfy the quite
complex conditions which are necessary for a model of type (62) to be applicable, the
corresponding a-values can be determined by one of the 3 types of formulae, analogous
to (61):

g = T Tl g — viter T Tl
5,4 ) 5,1 — i )
Tive,2 — Tij+1,17541,3 Tite,2 — Tp+1,175+1,3
753 — Tinli+1,2 T5175+31 — T541,375,3
2(63) a; 4 = A = ——
DA el — Tiprofitrs DL pia ) — Tirrofibrs
j+3,1 jt1,275+1,8 §+3,1 j+1,275+1,8
Ti2li+1,2 — 75,375 +1 75,37 +22 — Tj+31752
G = > 4,1 = _ J
+1,275+2,2 j+1,175+3,1 Ti+1,2"5+2,2 5+1,175+3,1

where j =0, 1,2, 3, and the formulae r;,, = r;; must be observed. Only 2 of these
3 sets of formulae are independent.

The solution of the 12 linear equations for the lowest correlation coefficients as
functions of the 8 regression coefficients is very laborious. Assuming a quasi-Markovian
regime (see b) we find, by keeping only linear terms in a; ,:

Ti1 = 41 + @+1,1%+2,1%+3,1%, 0>
2(64) Tie = G5,105+1,1 + @ro,19543,1(45,0 + aj,zlaj+1,4):

Ti3 = G801 + Grs (80 + 0% 1(01,0 + 43110540,4)),
where j = 0, 1, 2, 3.

The higher order correlation coefficients are determined successively by the formu-
lae:

2(65) Tim = Galitin—1 T Galin—as 7> D,
derived by the method indicated in subsection b.

The expressions (63) contain correlation coefficients of order 1, 2, and 3. If we
estimate these 12 coefficients from an empirical correlogram, we cannot expect the
model (62) to apply. However, by estimating only 7; ; and 7; , we have a sufficient
number of equations for the determination of g; 4,4; 4, and 7; 3 — but these equations
are not linear. By laborious computations we can determine quadratic equations for
one of the unknown, say 4, 4, and find that solution which vanishes in the Markovian
case; the other a-values can then afterwards be determined by linear equations. We
will, at present, not enter into the discussion of this fairly complicated problem.
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CHAPTER 3

NUMERICAL EXAMPLES OF CHAINS OF TIMES SERIES WITH
APPLICATION TO AIR TEMPERATURES

11. Examples of Markov chain of series. The following 3 examples illustrate
the most important properties of the series discussed in section 8.

Example 1. Let us consider the “‘single-period” chain of order 8 presented in fig. 16,
upper left; the value of the first order correlation coefficients 7; ; are given at the top
of the diagram. In analogy with figs. 8 —11 the curves have been displaced vertically,
the value j increasing from top to bottom. The curves show within the “period”,
equal to 8, one relative maximum and one relative minimum (“absolute” extremes
cannot exist in the Markov case), which have a time displacement of identically the same
type as that observed on the temperature diagrams figs. 8—11.

It is interesting to note that the curve for 7;; may be situated completely below the
exponential curve (seej = 3 in fig. 16) or completely above it (see j = 7); consequently,
“average” curves ought not to be drawn “by intuition”.

Example 2. The ““‘double-period” chain of order 8, represented in the lower left part
of fig. 16, has within the period two relative maxima and two relative minima (one
minimum and one maximum is extremely flat) and shows the characteristic time dis-
placement. The general form of this diagram resembles the correlograms for the winter
month temperatures, where no absolute maxima and minima occur.

Example 3. In fig. 16 right we have chosen for the first order correlation coefficients
(top) those found for the Oslo temperatures for April, using a time lag of 3 hours.
The “‘average” exponentials have been drawn (dashed lines) and also the empirical
correlograms (dot-dashed lines). There is very small similarity between the Markov
curves and the empirical ones; our former conclusion, that the temperature is not
governed by time series of Markov type, is thus strongly confirmed.

12. Examples of simple chains of order 2. The simplest generalization of
Markov chains of series is the chain of the type considered in section 9. Fig. 17 re-
presents some examples of this type.

Example 4. Assuming m = 2, ny = 2, ny = 1, ry ; = 0.85, r, , = 0.70, r; ; = 0.90,
we have, according to the remarks on p. 191 a chain of sub-Markovian type. Its 8 first
correlation coefficients, computed by using equations 2(46) —2(48) are given in fig.
17, upper left diagram. The correlograms are situated systematically below the Marko-
vian ones, corresponding to 7,; = 0.85 and r; ; = 0.90 respectively. Moreover, the
slightly wavy shape in the Markovian correlogram, indicating relative maxima and
minima, has been almost destroyed in the non-Markovian figure.
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Fig. 16. Correlograms for Markov chains of series of order 8. The diagrams to the upper left show one

relative maximum and one relative minimum within the period, whereas two pairs of relative extremes

exist in the lower left diagram. In the diagram to the right a Markov chain (continuous curves) is fitted
to the April temperature data for Oslo (dashed curves).
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Fig. 17. Correlograms for chains of order 2, of the special type discussed in 2.4, To the left are preséntcd
one sub-Markovian chain and twe super-Markovian. To the right chains of type 2.4 (continuous curves)
have been fitted to Oslo April temperatures (dashed curves); in the upper diagram T, has tradition

length 2, and 77, tradition length I, whereas the opposite is the case in the lower diagram..
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Example 5. 1f 7y , in example 4 is changed to 0.80 > 0.85 - 0.90, we arrive at the
super-Markovian chain whose correlogram is presented in fig. 17, left, middle. The
curves lie systematically above the Markovian ones, and the wavy shape of the latter
curves have been strengthened by the non-Markovian term. The ‘‘displacement”
of the relative extremes is the same as in the Markovian case.

Example 6. Keeping the same value of r, ; and r, ; as in the preceding two examples,
but changing 7, , to 0.92, so that 7, , > 7, ;, we arrive at the correlograms shown in fig.
17, left, bottom. The curves are strikingly super-Markovian with absolute maxima
and minima, displaced one time unit when we pass from #,, to xy_;.

Example 7. Let us consider our computed correlograms for Oslo, April 07* and 19”;
we identify x,, with the normalized value of T; and x,,; with normalized 73, When
applying the model type 9 we can find the “best model” in different ways, by esti-
mating the correlation coefficients in the model by means of some of the empirical
coefficients. The simplest procedure is to identify 7, 5, 7, ;, and ry , with the observed
values, i.e. by putting 75, = 0.7070, 7, , = 0.7212, r, , = 0.6553. Using 2(39) we
have computed the higher order correlation coefficients, presented by continuous
curves in fig. 17, right, top. The corresponding empirical values are given by dashed
lines. A comparison between ‘‘theoretical” and “‘empirical” curves shows that the
theoretical curve for Ty, (from which two empirical coefficients were used) is not too
bad. The periodic maxima and minima are reproduced correctly in the model, but the
empirical curve lies systematically above the theoretical one. The theoretical curve for
T, does not at all fit the empirical data, which do not show the time displacement
of the extremes (the reason being that two maxima and two minima appear in the
empirical curves, as indicated by the dotted lines, so that with 12 hours interval it is
impossible to identify the true extremes of the correlogram).

Example 8. Let us now identify the normalized value of 7, with x,, the correspond-
ing value of 7y, with x,,_;. From our data we find 7y ; = 0.6553, r, , = 0.7634, r, , =
0.7070. Computing the higher correlation coefficients, we arrive at the diagram fig. 17,
right, bottom. The representation of 7,4 by our mathematical model must be charac-
terized as very good.

Since in the model the even series (time step 24 hours) for x,, is a Markov series,
the good agreement between theory and experience with regard to the 7T, 4-curve, seems
to indicate that the 19'-temperatures at consecutive days may to first order approximation be
defined by a Markov series. This provisional result will, however, need confirmation by
study of months other than April and stations other than Oslo. We may also note that
Ty in April, Oslo, is clearly super-Markovian; not all information needed for a prog-
nosis 24 hours ahead is contained in 7, itself. One should therefore expect that the
series for the average diurnal temperature also should be clearly super-Markovian.

The model for T, is highly unsatisfactory; however, also the empirical curve having
time unit 12 hours gives no good representation of the true conditions, as is shown by
a comparison between dashed curve and dotted curve for T,.
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Fig. 18. General correlograms of order 2 and tradition length 2 (continuous curves), fitted to the Oslo
April temperatures (dashed curves). In the diagram to the left the model has been applied to T, and
T4, to the diagram to the right to T, and T3,

As a consequence of our discussion we may state that the empirical correlograms
with time unit 12 hours cannot adequately be represented by the simple mathematical
model defined by equations 2(25) and 2(26).

Example 9. Fig. 18, left, corresponds to a general chain of order 2 and tradition length 2,
as defined by equations (41) and (42). We have identified x,, with the normalized value
of Ty, %97 with the normalized value of T4 in the April temperature correlograms
for Oslo; 7; ; has been put equal to the empirical correlation coefficients (see values at
the top of the diagram). The equations 2(1) corresponding to the non-normalized
temperatures assume the form:

[ Tono = 0.330T5; + 045277, — 072 +
| Typ—y = 0.288Ty; _, + 0.600 T 5 + 1.90 + &5,

where the second subscript refers to the day.

3(1)
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The variance reduction is 62 per cent for 7, and 61 per cent for T, We note that
both series are highly super-Markovian, as could be expected since the Markovian
chains of fig. 16, right, completely underestimate 7;; for higher values of 1.

As shown by fig. 18 left, the model (1) gives a surprisingly good fit for the evening
temperature (compare also fig. 17, right), but no good representation for the morning
temperature,

Example 10. Fig. 18 right is computed for non-equidistant time steps (see p. 185);
%y, corresponds to the normalized value of 7 (near the minimum in temperature and
temperature-information), whereas the normalized 7,4 has been maintained for xy,_,.
The model for 774 1s not as good as in the diagram to the left; the reason being that for
the not too good predictor 7,; we have substituted an even worse predictor Ty,
having a maximum of noise (see fig. 9).

13. Examples of chains of order 4. In the last 4 examples we have identi-
tied x4, X4—1, ¥gy—2> Xg4—3 With normalized values of Ty, 0, Top —1, T16,-1, L19,—1 Y€S-
pectively for April, Oslo, the aim being to arrive at mathematical models for the em-
pirical correlograms. Starting with the simple Markovian chain, we proceed to models
of increasing complexity, making use of the formulae developed in 10. The empirical
parameters used in the model are given by table 1.

Table 3.1. Statistical paramelers for the temperature correlograms for Oslo, April.

Time oo 99h T 104
j 0 1 2 3
7;: 1°.86 4°.18 8°.88 6°.21
St 12092 | . 3°.03 4°.45 3°.72
A :
“ript 0.8366 0.8046 0.8511 “|  0.5901
riz 0.5081 0.7683 0.4579 0.7658

3

Example 11. The’ Markowan model, dCerCd by using the first order correlatlon
coefficients from table I, is defined by the non- normahzed equatlons s

Toro = 0.806Tp_, — 151 + ey | .
Typoy = 0.548Ty_y — 0.68 + ey

Tyeoq = 1.018 T30y — 2.56 4 e10

Tio—y = 0.752 Ty _y + 0481 4 &30

3(2)
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The variance reduction for Ty, Ty, 744, and Ty respectively is 70, 65, 73, and
35 per cent. The reduction for T, is especially low, the reason being that T, is an
extremely bad predictor, much influenced by noise. The high value of the regression
coefficient in the third equation is partly due to the high correlation coefficient, but
even more to the high standard deviation in the 16" temperature.

The correlograms characteristic for model (2) are represented by continuous lines
in fig. 19 left, the dashed lines giving the corresponding empirical correlograms, whereas
the dotted lines represent empirical correlograms with time step one hour. The close
correspondence between dashed and dotted lines indicates that a fairly good first
approximation to the statistical time behaviour of the hourly air temperatures is ob-
tained by using observations 6 hours apart, provided that the hours of observation
correspond to the daily extremes in the noise level.

Practically no similarity can be found between the theoretical curves and the em-
pirical, which are strongly super-Markovian for i > 4. For i = 2 the theoretical corre-
lations are higher than the empirical for Ty, and 74, whose 12 hours predictability
has been overestimated in the Markovian model.

Example 12. We improve our model by using a tradition length 2 (equal to 12 hours),
applying the formulae 2(49), together with 7; ; and 7; , from table 1. We then arrive
at the equations:

Toso = 1.180Tp 4 — 0.316T 4 1 — 0.27 + g4,
Ty = 0.372T 1 + 0.247 Ty, — 0.66 + &,
Tio-1= 1.067T5 1 — 0.104 Ty 4 + 2.45 + &4
Tro-1 = —0.215Tpy -y + 1114 T4y _, + 1.94 + &y

The first and third equations are sub-Markovian, since a high value of 7,4 contributes
towards a low 04"-temperature, 7,, being kept constant, and a high value of Ty,
contributes towards a low 7,4 when T, is kept constant. Taking into consideration
the influence of cloudiness, this behaviour of our model is not unreasonable from the
meteorological point of view. Moreover we note that, as shown by the last equation,
a low T,, contributes towards increasing 75, when T,, is constant — as can well be
imagined by clear skies when 7, is low and the morning rise of temperature very rapid.
The variance reduction in the above prediction equations is 77, 68, 72, and 60 per cent
respectively. The prediction is thus most successful when the observations 6 hours
earlier have a minimum of noise; the worst prediction is found for T, which is im-~
mediately preceded by the minimum temperature whose noise level is very great.

The correlograms for the model represented by (3) is shown by the continuous lines
in fig. 19 right, the dashed lines characterizing the empirical correlograms. The general
form of the correlograms for Ty, T35 and 7T,, is reproduced by the model, which
shows the correct position and displacements of the relative and absolute extremes.
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i 0 To: X4pos -
2 4 6 8 10 12 . Z 4 6 8 10 12 !
t - t

1day 2d 3d 1day 2d Sd

Fig. 19. Model correlograms of order 4 (continuous curves) applied to empirical correlograms (dashed

curves) for the Oslo April temperatures T4, Ty, Ty Tqo. To the left a Markov chain has been fitted

to the data, to the right a chain 2.6a where all terms have a length of generation equal to 2 time units
(12 hours).
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Fig. 20. The special correlogram 2.6b of order 4 (continuous curves) applied to the empirical correlo-
grams (dashed curves) for the Oslo April temperature Ty, Tyay T16, Z1o

However, the model gives systematically too low values of 7;; for ¢ > 2, probably
because some influences exist in Nature of time scale greater than 12 hours. For T,
the theoretical correlogram is highly unsatisfactory.

Example 13. The natural generalization of our model would consist in introducing
additional terms of type a; ;. We will, however, at present only apply the special chain
2(55). Its tradition length is 3, and it contains regression coefficients of order 1 and 3
only. Using 2(61) for the determination of these coefficients by means of 7; ; and 7; ,,
estimated from table 1, we find, for the non-normalized equations corresponding to
2(55):

Tono = 1.347T5 ; — 0.573T1 _; — 0.211 + £y,
Tho—1 = 0.418T 4 _, + 0.432 Ty ; — 0.335 + ey,
Ty = 1.124T1 _, — 0.169 T4, 5 + 2.610 + ey,
[ To1 = 0.297 Ty 1 + 0.593 T34 _5 + 0.394 + &5,

3(4)

Two of the equations can be characterized as super-, the other two as sub-Markovian.
The variance reductions are 92, 78, 76, and 72 per cent for Ty, Tas, 714, and 75,
respectively, thus greater than in the model (3). If model (4) gives a better fit than (3)



208 C. L. GODSKE Vol. XXIV.

to the empirical data, it consequently is preferable, containing a higher degree of
predictability.

The correlograms corresponding to (4) are represented in fig. 20 (x4 is to be
identified with T, not with T as is erroneously stated in the diagram). A comparison
with fig. 19 right, representing model (3) of tradition length 2 shows: The general
model with tradition length 2 gives for 75y, T4, and T,, a better picture of the form
of the empirical correlograms, but model (4) — a somewhat artificial chain of tradition
length 3 — corresponds to correlograms which on the average give a better representation
of the empirical data. None of the models gives a good representation of 7,, but the
special chain (4) with tradition length 3 is decidedly the better. An application of a
general chain of tradition length 3, with coefficients determined from the empirical
correlation coefficients 7; 5, 7; 5, and 7; 5 thus seems promising, and will be attempted later.

Example 14. An application of the special model of tradition length 4 given by 2(62)
to the data of table 1 is more complicated since the determination of ¢ ;, 4; 4, and
7; 3 leads to quadratic equations. Moreover, the condition 2(11) is not fulfilled by the
computed values. Consequently, it is not possible exactly to represent the 2 first terms
of the empirical correlograms by means of model 2(62). It may be possible to arrive at
a model of this type by changing somewhat the values of table 1; some attempts made
have not been successful, and the detailed discussion of the problem will be taken up
later, when the computations have been programmed for the digital computer IBM 650
for different types of mathematical models.

14. General considerations about the time flow of information. A time
series connecting x,, %y, . . . %, describes a flow of information (measured by correlation
coefficients) from the past to the present. n gives the number of previous “hours of
observation” which transmit information directly to the time ¢ The hours of observa-
tions prior to ¢ — n of course also contain information of interest to the time ¢, but this
information will always “pass through” the times ¢t — 1,¢ — 2, ... t — n. These
informators consequently contain no “additional information” to that already obtained
x. If n = 1 (Markov case), all past information passes through the immediate past time
t — L.

Let us first consider stationary series with = 1; the correlation coefficients 7(x,,%,,)
and r(x,,,%—,) by definition are then equal. A certain amount of information passes
from time ¢ — 2 to time ¢ — 1. Since part of this information is “destroyed” by the
noise at the time ¢ — 1, only a certain fraction of it is transmitted to the time ¢ But
at the same time new information is “created” at ¢ — 1, and part of it is also transferred
to the future time ¢ Under stationary conditions the information which x,_, gives
about #, is the same as the information which x,_, gives about x,_;. Consequently:
in the time flow of information there are neither ‘“sources” nor “‘sinks”; one could
denote this flow as non-divergent, using the terminology of vector analysis. If n > I,
similar conditions obtain: the total information given about x, ; by x5, %;—3, .+ +5 ¥—1—,
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is equal to the information given by I
X1y Ximpy + .5 %—, about x,. In general 099 K SOURCES
a nondiwergent time flow of information is

|
| SINKS | | SOURCES
[
characteristic of the stationary time series.  9gl—> :
|
|
|
1
|
!

Let us now consider, as the simplest
example of a non-stationary chain of 097 —
series, the Markov type 2(15). In this

case the flow of information from x,,—;., 096 —

t0 X,,—; varies with j with a period equal !

to m. We then may encounter ‘“‘relative 0'950 4 8 12 J
sinks of information”, in which more

. . . . Fig. 21. Diagram illustrating sinks and sources of
information is received from the imme- information.

diate past than is transmitted to the
immediate future, and analogous ‘‘relative sources of information”. Iig. 21 gives an
illustration corresponding to example 1, and to fig. 16, upper left. The times 05" —
07", 13*—15", where 7; increases with j evidently represent relative sinks, the times
0—04", 08—12", ... where r; decreases with j relative sources of information; the
information is measured by the correlation coefficient ;. Since, in the diagram fig. 21
the strength of sources and sinks shows a regular variation with time, their added
contribution to the higher correlation coefficients is responsible for the relative maxima
and minima in the corresponding correlograms of fig. 16. Owing to the periodic char-
acter of the sources and sinks and their concentration on certain time values, the in-
formation about x,,_; given by #,,_;_,, is independent of j in the Markov chain of series.
Let us next proceed to a non-Markovian chain of series (n > 1); we consider n
successive times of observations as an entity, their accumulated influence being measured
by the variance reduction. If x,_, receives more (less) information from x,_,, ... %,
than «, receives from x, ;, ... %, the latter time interval of length n can be charac-
terized as a relative sink (source) of information. An illustration is shown in example
12 (fig. 19 right); the time interval containing 7, , and 7Ty, , appears as a relative
source, contributing a greater amount of information about 7,4 ¢ than the information

about T,y,, which is given in the time interval containing Ty, o and T, _;.
In the non-Markovian case we further meet with correlograms in which, for some
values of n > 1, r(x,, x_,—,) is greater than r(x, x_,) as shown in some of our models
-and.empirical diagrams (see for instance fig. 6). Then for certain values of j the direct
information, given by x,_ about the value x, decreases as the time distance ¢ —
decreases. In Meteorology we have certain time intervals during which predictability
decreases with decreasing prognostic interval. As an example we may mention (see fig. 6)
that a statistic prognosis of the April temperature Ty, in Oslo by means of one earlier
temperature is much better when we use a time interval of 22 hours than if the time
interval is only 16 hours. During the hours from 09" to 15" a great amount of “day-
time’’ noise occurs which decreases the information given by the actual temperature
about the future morning temperature 7.

14
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The preceeding fairly loose considerations stress the importance of the concept
of the time flow of information in Meteorology. In more general problems, to be attacked
later, we must also take into consideration the cross-information, which one meteoro-
logical variable gives about an other, referred to the same or to a later time, say the
cross-information which is encountered when the time variations of temperature and
cloudiness are discussed simultaneously (with time units 1 day or 1 hour).
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