DISCUSSION OF A HYPERBOLIC EQUATION
RELATING TO INERTIA AND GRAVITATIONAL
FLUID OSCILLATIONS
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Summary. The hyperbolic partial differential equation describing (approximately) simple
oscillations (or onset of convection) in a rotating homogeneous fluid and in a stratified incompress-
ible fluid in static equilibrium is studied. Special characteristic lines are defined and applied to
the discussion of certain boundary value problems. Finally an analytical approach is attempted
for the case of rectangular boundaries.

1. The differential equations. The characteristic lines. The equation gover-
ning inertia oscillations symmetric around the axis of rotation in a homogeneous and
incompressible fluid may be written [1]
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Here v is the velocity streamfunction, o the frequency, and £, and 2, the components
along the x- and y-axis of the (constant) angular velocity Q. The linear dimensions of
the cell within which the oscillations occur are considered small in comparison with its
distance from the axis of rotation.

The equation corresponding to equation (1.1) for gravitational two-dimensional
oscillations in an incompressible fluid with a density decreasing exponentially upwards
(along the vertical) is
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Here I' is the “coefficient of barotropy” introduced by V. BJERkNES, and g, and — g,
the components ol the acceleration of gravity g along the X- and Y-axis respectively.

Our last equation will also for statically unstable stratification govern the onset of
convection. By a somewhat changed interpretation of the quantities 2, and £

,» Cquation
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(1.1) will likewise describe (approximately) onset of convection symmetric about the
axis in a rotating fluid when 2 is decreasing sufficiently rapidly with increasing distance
from the axis.

If the lincar dimensions of the cell are small compared to the length [ given by

1 1
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it may be shown that equation (1.2) may approximately be written
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Considering now the equation
%y %y Py
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we see that this equation gives the equation (1.1) for inertia oscillations when

(1.6) ay = 282, and ay = 20,
and the equation (1.4) for gravitational oscillations when
(1.7) a; = gylff and a, = gx]/f.

In the following discussion we will often have to refer to a coordinate system &, %

where ay = a, = 0,a; = ag = a; i.e. where the equation (1.5) takes the form

N
%y %y
2 g2) = Bt
(1.8) (o a?) 22 +o an? 0.
In this equation
(1.9) a? = 40% or o? = I'g?

correspond to inertia and gravitational oscillations respectively. For the case of inertia
oscillations the n-axis is perpendicular to the axis of rotation whereas for the case of
gravitational oscillations it is directed vertically upwards.

The homogeneous equation (1.5) has no solutions within a cell (bounded by a
closed curve) when it is of elliptic type. Only when it is of hyperbolic type may we expect
solutions within cells, a fact which might also have been deduced by application of
one of the circulation theorems of V. Bjerknes, see [1]. The equation is of hyperbolic
type when

(1.10) 0 <o0? < a? = a4 e

From this condition it follows that for every admissible value ¢ of the [requency, we
may always choose a coordinate system &’, " in such a way that ¢’, = 0. In these systems
of coordinates our equation may be written in the form
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d
(1.11) 5;;{(20’2 —az) :F 9 Ja? — o —1 =,
where the minus sign before the last term corresponds to o) = erz — o2 whereas the
plus sign corresponds to a;’ = — Va2 — o2,

The two sets of lines
(1.12) ' = const.,
are in the &5-system given by

(1.13) nﬁiF]’/2 §+C

the minus sign again correspondmg to a,” > 0, the plus sign to ¢’y <2 0. These two sets
of lines are the characteristic lines of the hyperbolic equation (1.5). For convenience let
us denote the first set of characteristic lines set I, the second set set II, and the
corresponding coordinates x,’, ¥, and x,’, y,’. For the angles ; and f, which the
characteristic lines make with the &-axis, we have

(e
040 tan f, Va2 . for set I,
o2
tan ff, = T/ﬁ for set 11,
or
sin f; = — % for set I,
(1.14%)
. o
sin ffy = " for set II.

The two sets of characteristic lines are thus symmetric with regard to the & and %-axis.
The equations (1.11) may be integrated to give

3 —
(20‘2 . az) 1‘:) — 92a 1/(12 —g? i: :f:[ ()}1’)9
(1.15) " ot
(20 — af) 7 + 2 Jfa? — %}2 = f2 (P s)-
We then obtain
(20% — — 9% e —o? ----,— = const.,
(1.16) 7
— 9
(26* — a Vo2 =62 5“:’2 = const.

along characteristic lines of set T and set II respectively.
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Introducing the velocity components

, U oy
Uy = — 75, V1= 7>
(1'17) ayl a’Cl
5 dy oy
Uy = — =

Ty, T A,
in the systems of coordinates corresponding to set I and IT respectively, we get
(1.18) (202 — a2) 2’y + 20 Jo2 — o2 u’y = const.,

(202 — a?) o’y — 20 |[a® — o2 'y = const,

valid along the characteristic lines of set I and set IT respectively,

2. The general solution of equation (1.5). Equation (1.5) may be written in
the equivalent form:

9.1 2 a0y — 0 /o — o2 a\ (@ aiaz__—}—c]/rzTﬁ?zi -
24) x 0% — a,? ady o v==

ox ot —a®
It is casily seen that this equation has the solution
ayay— o |JoF— o
(22) p=F [y 20l
1

x) + F, ()’ + Ll x) .

Since this solution involves two independent arbitrary functions, it is also the general
solution of the equation.
The equations giving constant arguments in the two functions, i.e.

Aty — O Va2 — o*

y = — i_ng alszﬁ x —+ const.,
(2.3)
a0y + o Vaz — q?
= — —??* X +const.,

are the equations for the two sets of characteristic lines in the xy-system of coordinates.

For later application we will in this connection especially draw attention to the fact

that if we change the sign of a; a, (say by changing the sign of a,), i.e. change the sign
2,

d
of the coefficient for 8:% n equation (1.5), the slope of the systems of characteristic

lines will change sign in the xy-system.
We introduce the abbreviations

iy, — o chz — g?
by = ————————

(2.4) o2 — g,

a0+ 0 /e — o
g = -
2 ]

g% — o ®
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into equation (2.2), and obtain
(2.5) p=F (94 %) + F, (3 -+ ca%).

In the interval (1.10) of o, ¢; and ¢, cannot be equal.

Let us now assume that the functions F, and F, may in a region including the cell
and its boundary be developed in a convergent McLAURIN series, i.e. that we have
in this region

==}

(26) Y= ;An(.}) + Cl‘x)” —|— Z Bw(.y + ng)“.
0

Consider as an example that part of the boundary consists of the x-axis from x = 0 to

x = x, and part of the y-axis from y = 0 to y = y,. At these parts of the boundary

the streamfunction y = 0, so that we have

g./i—i—b‘ =0 for0 <y <y,

> [Aue"s" 4+ Bye"s"] =0 for 0 = x < %,

0
These two equations can not be satisfied simultancously when ‘611 =+ ]cg|. Since ¢,
cannot be equal to ¢,, the only possibility left is

(2.7) 6 = — 0l
Then the equations will be satisfied simultaneously for
Azn = Bﬂn: A‘zu 1= Bapt1 = 0,
and the solution (2.6) takes the form
(2.8) ¥ =2 Ap [(n + 6:6)™" — (1 — af)™].
1

Here we have written 7 and £ instead of » and & because as is readily seen, the condition
¢, = — €y is satisfied only in the &x-system.

Thus we have shown that a solution of the form (2.6) does not exist when the boun-
dary has a corner where two pieces of straight lines belonging to the boundary meet
at a right angle unless the pieces of straight lines are parallel to the &- and the #-axis.

3. The special characteristic lines. In section 1 we defined the two sets of
characteristic lines for which the relations (1.18) were fulfilled. We now for cach set
define what we will call the special characteristic lines by the requirement that the relations

(202 — o®)o,’ + 20 Vo® — P u =0,

(20% — a®)v, — 20 Va2 —o2uy =0

(3.1)
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shall be fulfilled along a special characteristic line of set I and set 1T respectively. Since
the streamlines are closed and with the exception of contingent points where the velocity
on a streamline vanishes, of finite curvature, there must always on a streamline be
points where the first ol equations (3.1) is satisfied and also points where the second
of equations (3.1) is satisfied. The corresponding characteristic line through these
points is a special characteristic line given by the appropriate relation of the pair (1.13).

From the relations (3.1) we see that at all points of a special characteristic line the velocities
are parallel to each other. Assuming that they are not parallel to the characteristic line
itself, they can not in a divergence-free motion have the same direction along the whole
line through the interior of the cell. Therefore the velocity must be zero at some point on a
special characteristic line inside the cell. At a point where the velocity is zero, both of the
relations (3.1) will be fulfilled. Thus there will pass a special characteristic line of each set
through a point where the velocily is zero inside the cell.

The first of the relations (3.1) is valid along a special characteristic line of set I
with negative slope, the second along a special characteristic line of set IT with positive
slope in the &-system. It is easily deduced that the velocity in a point on a special
characteristic line of set 1 is parallel to the characteristic lines of set IT while the velocity in a point
on a special characteristic line of set 11 is parallel to the characteristic lines of set I. We now also
have verified our assumption above that the velocity in a point of a special characteristic
line is not parallel to the characteristic line itself. Above we saw that in a point where
the velocity is zero inside the cell, two special characteristic lines must intersect. Now
we also see that in a point where two special characteristic lines intersect, the velocity must always
be zero.

4.. Some special boundaries.

a. Cureular boundary. 1f there is only one zero point for the velocity (no zero point
on the boundary) inside the circular boundary, we will have two special characteristic
lines intersecting at the zero point. Each of the special characteristic lines will, according
to what we deduced in the previous scction, cut the circle in two points with parallel
tangents. Thus the special characteristic lines will be diameters, and the velocity on
each of them must be perpendicular to the line itself. Therelore, since the velocity
at a point of a special characteristic line must be parallel to the other sct of characteristic
lines, the characteristic lines of the one set must be perpendicular to the characteristic

; - b 7

lines of the other set. Thus the one set of characteristic lines make an angle f;, = — T
L : " ;

the other set an angle f, = = with the &-axis. From equations (1.4) we then obtain

4
4 g = —V2 a

correspording to frequencies
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o= 20 for inertia oscillations,
(4.2) T
o= o ng’ for gravitational oscillations.
It is easily verified that the solution considered here is given by
(4.3) p = A+ n2 —r),

where A is a constant and r the radius of the boundary circle.

Consider now the case that there are two zero points (for the velocity) inside the
circular boundary. Then there must be two zero points on the boundary. From simple
geometrical considerations it is easily seen that these two points will be the terminal
points of a diameter either parallel or perpendicular to the &-axis. Consider the first
case, it is readily seen that in order to satisly the boundary conditions and the conditions
of symmetry of the characteristic lines in the &x-system together with the rules for the
directions of the velocities on the special characteristic lines, we must have f; = — g,

fs = g This corresponds to

(4.4) G:%

or
oc=20 for inertia oscillations,
o=3 VP for gravitational oscillations.

It may be verified that the corresponding streamfunction is given by
(4.6) y = An(&® +7* — %),

the origin being at the centre of the circle.

Assuming that a solution of equation (1.5) also exists for an arbitrary number of
zero points inside the circle, we may proceed to find the frequency, say for n zero points
on a diameter parallel to the 7-axis. The angles §, and g, will be given by

T

JT
ﬁl——m, ﬁ‘a_g(n_‘_l):

leading to a frequency

(4.7)

n dis
on+1) "

Where the zero points are situated, may also be quite easily determined for a given

(4.8) 0 = «a sin

value of n. We find for instance that for n = 2, the zero points are at = Mgr and

for n = 3, the zero points are at 4 = 0 and 5 = + |/2 Ve
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Tt the zero points are on a diameter belonging to the &-axis, we obtain for the
frequency

T
(4.9) g = a COS m .

b. Elliptic boundary. Tt follows from the definition of conjugate diameters for an
ellipse that two conjugate diameters will satisfy all conditions for being special charac-
teristic lines through the centre of the ellipse when the &-axis is parallel to one of the
lines bisecting the angle between the conjugate diameters. With the conjugate dia-
meters as special characteristic lines we will have only one zero point inside the elliptic
boundary.

The streamfunction is given by

x2 -J)z
(4.10) w:A(E—I—bz—l),

where @ and b are the halfaxes of the ellipse. The corresponding frequency is

(4.11) o= (f—’aaﬂﬁiiiza)% ,

It is easily verified that equation (1.8) has a solution given by
ey een(EeEo),
being zero at the elliptic boundary
w . Bl
For the corresponding Irequency we obtain

b \1L

(4.14) ¢ =ua (m)z :

We note that by the transformation
(4.15) &= af, n=>by,

the ellipse (4.13) transforms into a circle. By this transformation the differential equation

(1.8) transforms to an equation which may be written
oy ap
PR \ Sl T s S
(4.16) (6* —a )85’2 Fo pueE 0

Here o’ is given by

(4.17) @t = Elé [b%2 + (a® — b%)o?].
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According to what we developed for a circular boundary above, the equation (4.16)
gives lor a circular boundary in the &#’-plane with n zero points on the #’-axis (the
centre of the boundary being at the origin) the frequency equation

(4.18) o2 = o2 sin? ————

2(n41) "

Inserting here our expression (4.17) for «’2, and solving with respect to o, we obtain

; 7 1 |
(4.19) o = ba sm2(n Y ( ﬂ) ‘

2 B L
a? cos? 2 + 1) -+ b2 sin? 3n - 1)
Thus, this is the frequency for oscillations within an elliptic boundary with hali-
axes ¢ and b having n zero points on the axis which is part of the 5-axis.
For n zero points on the other axis of the ellipse we obtain the frequency simply
by changing the sine to cosine and the cosine to sine in the above formula for o.
As for the preceding case a solution of equation (4.16) for n > 3 must be assumed.

c. A general boundary of finite curvature and with no inflexion points. Just a few remarks
will be given here on the case that the cell is bounded by a general boundary of finite
curvature and with no inflexion points. Let us assume that there exists only one zero
point for the velocity inside the boundary. Now, as our boundary is defined, there will
to a given point on it correspond one and only one other point on the curve with
tangent parallel to the tangent at the given point, i.e. with the same direction of the
velocity at the two points. If we draw a line between the two points, say line I, this
line may then be a special characteristic line. If there is a corresponding special charac-
teristic line of the other set, this line, say line II, must connect the two points on the
boundary where the tangents are parallel to line I. For these two lines to be correspond-
ing special characteristic lines, it is, however, also required that line II is parallel to
the velocities at the terminal points of line I, and it is evident that this requirement
will, in general, not be fulfilled. Thus it seems probable that the general rule will be
that no solutions of equation (1.5) exist for a general boundary of the type studied
here with one zero point within the boundary. For specially constructed boundaries,
we may, however, have solutions. In the case of the ellipse we saw that for every point
of the ellipse we had corresponding lines which fulfilled all the requirements for being
corresponding special characteristic lines.

d. A parallelogram as a boundary. At the corners of the parallelogram the velocity
is zero, and thercfore the diagonals of the parallelogram satisfy all the requirements for
being corresponding special characteristic lines. The lines bisecting the diagonals must
then be chosen as the & and #-axis. The solution may be given in the explicit form

L . I
(4.20) p = A sin 7 (¥ — ycotan y) sin 7L
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where L is the length of the “horizontal” sides (parallel to the x-axis) of the parallelo-
gram, y the angle the two other sides makes with the x-axis and H the height of the
parallelogram measured along the y-axis.

For the frequency is obtained

(4.21) g — (T N B Vindos TE - afHTY
. o (L% + He) ;

The corresponding value of y is given by

01G2
(4.22) cotan y = at— "

It appears that for given values of L and H, we get two values of ¢ with two different
values of y. It may be shown that the one value of y corresponds to a positive slope of
the non-horizontal sides, the other to a negative slope of the non-horizontal sides of
the parallelogram. Since, however, a somewhat more detailed discussion of this case
with a parallelogram as a boundary is given clsewhere [1], we will refrain from further
discussion here.

e. Rectangular boundary. A special case of a parallelogram is a rectangle. For a rec-
A
2
to equation (4.22) above, we must then have either ¢, or ¢, equal to zero. That means
that a solution with only one zero-point for the velocity inside the cell will, for a rec-
tangular boundary, exist only when the sides of the rectangle are parallel to the é-
and n-axis.
The solution is given by

tangle the angle y must be equal to 7 and therefore cotan y equal to zero. According

. T R/
(4.23) v = 4 sin 7 & sin 77
with

H H
(4.24)

Uf(iluzjm:flb,

where D is the diagonal of the rectangle, see Fig. 1.
Since the diagonals must be special characteristic lines, the angle f is given by
(see Fig. 1).

ol

(4.25) sin f =

Inserting from (1.14") we obtain again the relation (4.24) above.
The only zero point within the rectangle is the point where the two diagonals
intersect.
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N
Considering the rectangle made up of

20808 5y s rectangles, each of the smaller L
rectangles being congruent, the frequency
formula (4.24) will apply to each of the small
rectangles. Corresponding to a partition of our

H

rectangle in rectangles with sides % and =

(m and n positive integers), we obtain the
solution H
nm

. mm :
(4.26) =4 Sin—7- & sin Pl

with a frequency
mH
VnL + e
According to the theory of Fourier series, our

system of solutions (4.26) forms a complete p
set of lunctions within the rectangular boun- 5’

(4.27) o =ua

dary.

If m = n, i.e. if the small rectangles are
similar to the rectangular boundary, we
get the same frequency as for only one zero point within the cell. Thus we get an in-
{inite number of solutions corresponding to this value of the frequency. And this is
also true for all other values of o corresponding to ditferent values of m and 7. Thus
the Ligen-solution of equation (1.5) lor a definite Eigen-value is far from uniquely
determined in the case considered here.

The inlinite numbers of solutions corresponding to a delinite value of ¢ may be
presented in a way very different from the above one. We consider only the case that
we have one zero point for the velocity at each side of the rectangle between the
corners. If we then select a point Q on one of the rectangle sides, Fig. 2, we can
with this point as starting-point draw lines parallel to the diagonals as shown in the
diagram. These lines together with the diagonals will be special characteristic lines
for the definite value of ¢ when their intersection points are zero points for the velocity.
We get four minor cells inside our boundary. The streamlines are sketched in the dia-
gram. Letting the point () pass from one terminal of the side to the other terminal, we
will obtain a continuous spectrum of solutions for the definite value of ¢ all of them
corresponding to a division of the rectangle in four minor cells. If the solution is uniquely
determined by the number and positions of zero points for the velocity inside the rec-
tangle, our spectrum will obviously contain all solutions for the definite value of ¢
corresponding to four minor cells inside the boundary. The suggestion that all the
solutions for the definite value of ¢ might be obtained by some integration over this
spectrum, might then perhaps be likely, but will not be discussed here. We notice

Fig. 1.
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Fig. 2. Fig. 3.

that when Q is at the middle point of the side, we obtain a solution of the set discussed
previously.

If we select two points on the side as starting-points, we obtain nine minor cells,
and so on.

The same procedure as used above for the rectangle, may also be applied to the
circular and elliptic boundary. In Fig. 3 is sketched a solution for circular boundary
with four minor cells and with frequency equal to the frequency obtained for only one
zero point of the velocity inside the boundary.

It should be noted that above we have assumed the existence of the solution when
appropriate special characteristic lines can be drawn.

Consider now a rectangular boundary with pair of sides which are not parallel
to the & respectively the #-axis, which are, however, parallel to the x respectively the
y-axis. Let the angle between the x-axis and the &-axis be denoted by g, see Fig. 4.

The diagonals are now not symmetric with regard to the &-system, and can there-
fore not form corresponding special characteristic lines. Therefore, with this boundary
there are, as already stated above, no solutions of equation (1.5) with only one zero-
point for the velocity inside the rectangle. There may, however, be solutions with
two zero points. In Fig. 4 are drawn two pairs of parallel lines satisfying all the require-
ments for being corresponding special characteristic lines when the velocities at the
boundary points E and F are zero. The zero points for the velocity inside the boundary
are at ¢ and 7.
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The lower limit for the slope of the
special characteristic lines is ¢ (the point
E coincides with the point 4 Fig. 4). To
a given value of L and H (the sides AB
and BC respectively), the angle ¢ must
therefore satisty the relation

b4
(4.28) |tan 2¢| < &,

if a solution with two zero points for the
velocity inside the rectangle and one zero
point at each of the sides BC and 4D may
exist. For ¢ = 45° the left hand side of
our formula becomes infinite. In this case
there is therefore no solutions of the
considered type.

The condition that solutions with two
zero points inside the rectangle and one
zero point on each of the sides 4B and DC may be possible is easily seen to be given
by the relation

Fig. 4.

| L
(4.29) |tan 29| < -

From formulae (4.28) and (4.29) it appears that both types of solutions considered

) 7 7 3
here may exist for the same rectangular boundary when 0 < ¢ < gy > p> FH

7 3n . o
When, however, g <p< ' the two types of solutions cannot exist simultaneously.
For the angle # determining the frequency we must for the case illustrated in Fig. 4
have

H
(4.30) @ + arc tan = B> ¢

f3is determined by the equation
H
(4.31) tan(f — ¢) + tan(f + ¢) = .

: . ; , H .
This equation enables us to determine f as a function of ¢ and 7 Thus we also can find

the frequency if the corresponding solution exists. 8, of course, must also fulfill the
condition (4.30) above and ¢ must fulfill the condition (4.28). Also for the zero point
situated at each of the two other sides of the rectangle the frequency equation and a
condition similar to (4.30) may be deduced. It will, however, not be given here.
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It is easily seen that no solutions with
an equal number of zero points on two of
the (parallel) sides of the rectangle (bet-
= ween the corners) and none at the two
™ other sides can exist. For an unequal
“ number (an equal number of cells within
the rectangle), say 2n + 1, we may have
solutions. Corresponding to the formula
(4.28) and (4.29) we obtain the correspon-
ding relations

H
|tan 29| < e 1T -
(4.32) (20 + DI

__ A
on + DH"

tan2¢p|<(

S The formulae corresponding to the rela-
> tions (4.30) and (4.31) are casily written

< «  down,
Fig. 3. It will be noted that for the case consi-
dered here, just as in the case when the sides
of the rectangle were parallel respectively perpendicular to the &-axis, we may select
a point Q on a side, and with this point as starting-point draw lines parallel to the
characteristic lines. Considering only the case that we have one zero point for the
velocity at each of the one pair of rectangle sides and three zero points at each of the
other pair of sides, these parallels will form two parallelograms, see Fig. 5. It appears
that the parallels, together with the original special characteristic lines, may represent
a new set of special characteristic lines. A sketch of the corresponding solution (assuming
again that it exists) is given in Fig. 5. As in the preceding cases we may let the point Q
travel along the side, and we may obtain a continuous spectrum of solutions corre-
sponding to a definite value of ¢, and with eight minor cells within the rectangle. Again
we also may choose two or more points on the side as starting-points for a similar
procedure, thus obtaining solutions with 21, 40, . ... minor cells inside the boundary.

5. An analytical approach for a rectangular boundary. In the last part of the
preceding section we discussed by the method of special characteristic lines the possi-
bility of having solutions of equations (1.5) within rectangular boundaries. We found
that when certain conditions were fulfilled, we might have such solutions. In no cases
with ¢ different from zero, was the existence of such solutions demonstrated. And
even if they really existed in all cases when an appropriate system of special characteristic
lines might be drawn, we obviously did not get a complete system of fundamental
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solutions as in the case when ¢ = (. For
instance we did not in any case with ¢
different from zero have a possible solu-
tion with only one zero point lor the
velocity inside the boundary. And for
@ = 45° we do not have possibility for
a single solution of equation (1.5) with a
finite number of zeros inside the boun-
dary.,

The problem as to whether funda-
mental solutions exist when an appro-
priate system of special characteristic
lines can be drawn, may be of interest
both from a mathematical and a physical
point of view.

For ¢ = 0 we had fundamental solu-
tions of our equation which may directly
be continued to the whole &p-plane re-
presenting oscillations or onset of convec-
tions within cells obtained by dividing
the plane in rectangles congruent with
our original rectangle. In neighbouring
cells the streamlines will be identical, the
velocity, however, will be in opposite
rotational direction.

A similar direct continuation of a contingent fundamental solution is not possible
when ¢ is dilferent Irom zero. The diagram Fig. 6 shows the geometric pattern of the
corresponding characteristic lines in neighbouring cells for the case with two zero
points for the velocity inside the cells. Looking now at for instance the points 4 and B,
we see that the velocity there is zero at one side of the line CD and different from zero
at the other side. If the pattern of the special characteristic lines in the cell to the right
of €D had been as shown by the dotted lines in the diagram, the streamlines in the
neighbouring cells to the right and left of the side CD would be symmetric with regard
to this side, of course again assuming the solution to exist. This change of pattern of special
characteristic lines in the cell to the right of €D corresponds, as emphasized in section
2, to a change of the sign of a;a, in equation (1.5). This change of sign will not change
the value ofg. The direction of the & and n-axis will however be changed. Thus applying
equation (1.5) with say — a, substituted for ay, in the cell to the right, we may continue
periodically the contingent solution in the middle cell to the cell to the right. And it
is easily seen that for all possible solutions in the originally considered cell, a periodic

regular continuation of the solutions is possible if, by passing from a cell to the neigh-
2

L4 in equation (1.5).

bouring cell we change the sign of the coefficient ol W

15
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The Fourier development for a function changing sign in this manner is easily found

to be given by
32a1 ap 1

22 @ D@+ D

‘=

sin (2m + 1) n%sin (2n + l):rz-];r.

Thus, the contingent fundamental solutions of the hyperbolic equation

Py
(62 — oy ) dxc2
32«11(12 1 P x J Py
(5.1) ZZ @t 1) @ F D) sin (2m + 1) & 7 sin 2n+ 1) = H 353
a2y
—f—(dg—af)@ =0

within a rectangular boundary may, as in the case of ¢ = 0, be continued directly to
the whole xy-plane.
Introducing in the above equation a double Fourier development for w, i.e. putting

"B

(5.2) P = sin p o =

o T sin ¢ = =

w1
H?

olvis
OMS

we obtain an equation which may be written
g2 © ® p% 9,2[ x . 5
= 2 2y = 2 . s
- 3 EO nE B, [(a o2) + (0% — ay?) H] sinpw —+ 7 Singm

W o o W pq . X " x
-+ aiagzozu:zo"%ﬁ’pq @m 1) (25 & 1)[sm (2m 4+ 1 + p) 7y +sin 2m -+ 1—p) ni]

X[Sin(2n+1+?)ﬂ%r‘|‘5in(2ﬂ"l—1-——g)ﬂ%]—(]

The coefficient for every term  sinrz T sinsz 'I)jl (r and s definite positive numbers)

must be zero. Simple calculations then lead to the equation

Pq
1% B, 2
(5.4) e p%{) qéu 2 1% (g*— %)

7t r2H s*L) B,
+ 55 39 [( alz) L_ + (0'2 - azz) I“I] — =0

Here it is summed for all even positive numbers (except zero) of p respectively ¢ if r
respectively s are odd numbers, and for all odd numbers of p respectively ¢ if r respectively
s are even numbers.
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Since p and ¢ never take the value zero we may introduce
— 1
(5‘5) qu - pn+1 qn+ qu)

n being an arbitrary number.
The system of equation (5.4) then assumes the form

|
(5.6) s 2, 2D o (3~ 9 gt — )

7> r2H s2L Dy
@ [(62 i alz) _E- + (02 - (122) E] N2 rn+2 = 0.

To this doubly infinite system of homogeneous linear equations it corresponds a
determinant equation where the determinant has a double infinity of terms in each
row and in each column. So far as the author knows, no methods are available for
solving an equation of this type. There will therefore be no attempt to discuss it here.
The aim of this section was only to present a formulation of a consistent attack of the
problem of finding solutions of the hyperbolic equation (1.5) within rectangular cells.
From the discussion in the previous section it appears that the determinant equation
will have no solutions for ¢% > .2 4 @,% Nor will it have solutions when a; = a,.
It is seen that for v a, = 0, we recover the [requency equation (4.27).

The necessity of changing the sign of a, from cell to cell in order to obtain a solution
which may be continued periodically is from a physical point of view readily understood.
By this change of sign we obtain a density distribution which is symmetric in neigh-
bouring cells and the corresponding vectlor e is also symmetric. It is then evident that
when a solution giving oscillations (or onset of convections) exists in one cell, a solution
with symmetric streamline pattern will exist in the neighbouring cells.
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