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Summary. In the meteorological problem of integrating the hydro-dynamic equations
applicable to the large-scale atmospheric motions it has been customary to introduce the
approximations which follow from the conditions that the atmosphere is in a state of approximate
equilibrium between pressure, gravity, and Coriolis forces. By elimination a spatial second
order partial differential equation is obtained for the tendency of geopotential. The numerical
solution of this is difficult because of the intricate boundary conditions which the geopotential
tendency must satisfy, and also because in extreme cases the equation may be hyperbolic
in certain regions. In this article is proposed not to undertake the elimination, but rather
apply a relaxation procedure to the system of equations itself. It is shown how the above
mentioned difficulties then are removed.

1. Introduction. In the large-scale and meteorologically significant motions, free
acoustic, inertia, and gravity waves and oscillations exist only as relatively shortperiodic
superimposed motions of small amplitude. It has been shown by J. CHarRNEY [1] and
A. Eviassen [2] that simplified hydrodynamic equations exist in which these components
arc filtered out apriori. The integration problem then changes radically.

In order to illuminate this we adopt the quasi-static system of hydrodynamic equa-
tions with pressure as vertical coordinate. Neglecting friction and heating, these equa-
tions are:

dv
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(v = horizontal velocity; V = horizontal nabla operator in isobaric surfaces).
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In addition to these we have the following restraint conditions:

(4a) Viede, =0
dp
(0 ==7)
dowo + vy = 0 for p = p, = pressure at the ground
(4D) 5
o - o
(a = specific volume; y = 5)
(4c) w=0forp=20
(4d) y = 0 at the vertical boundary.!

In Eq. (4b) the term of minor importance, v - V¢, has been neglected.

Taking the individual time derivative of Egs. (1) —(2) we obtain:

d2v d v df
(5) ﬁ:—%V(p—f,ﬁXE—ElﬂXv
0 d + F
= — ‘ﬁ Pp Pp0
(6)
F = 9 InG
By a substitution in Eq. (5) from Eq. (1) we obtain
d* d —
(7) w T T g VeSS

(@ = —f1Vp X k)

having ignored a term of minor importance.
A filtered equation in which free gravity and inertia oscillations and waves are
2,

discluded is obtained when the term e ignored in this equation. A disclusion of

this term will be justified for components of motions in which the orbital time variations
are sufficiently slow compared to the variations in inertia oscillations. Denoting the

meteorological variables in the filtered solution with capital letters and substituting
d d

9 .
7= % +V- -V 4+ @ in Eqgs. (5)—(6), we then get:

! When we, as we shall do, deal with limited regions of the atmosphere, no natural boundary con-
ditions exist at the boundaries defining the horizontal extension of the region. Condition (4d) is therefore
somewhat arbitrary and could f. inst. have been replaced by a condition that » is directed along the
boundary.
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(8a) 0=f2U—(ft+0,)0—0,V—90,0—T,

(8b) 0=fV—0,U—(ft+0,)V—9,0 T,

(80) 0=—0,U—®,V— (D, — FP,)Q — T,
(I' = @)

Together with Egs. (4) applied to the filtered solution, these equations determine
U, V, 2, and @, as a function of the @-distribution.

Assuming that the coefficient matrix in Eqs. (8) is non-singular, we can solve for
U, V, and £, and then substitute into Eq. (4a). This gives a partial differential equation
for I' of second order of the form:

(9) (AT, + BT, + CI'), + (AT, + BT, + C'T,), + (4"T, + B'T, + C'Ty), = H
Further, the boundary conditions (4b)—(4d) become: '

AT, 4+ B'I, + C"'Ty + o' = 0 for p = p,
(10) AT, + B'I", 4+ ¢TI, = 0 for p =0

I'=0 at the vertical boundary.

To solve Egs. (9)—(10) numerically becomes difficult for several reasons: First the
removal of the residuals in a straight forward relaxation method is laborious because
of the variable coefficients in this equation. Next, the boundary conditions are indeed
very complicated for numerical treatment, since they are conditions upon derivatives
of I" taken along directions which vary along the boundary. Finally, although the values
of the coefficients in the atmosphere are such that Eq. (9) is predominatingly elliptic,
cases in which the equation becomes hyperbolic in certain regions cannot be discluded
altogether.

Because of these difficulties the filtered problem has hitherto been integrated only
after a number of additional simplifications have been introduced, the exact nature of
which has varied quite a lot from one experiment to another. In this paper a method
of solution will be described which deals directly with the system of equations itself,
Egs. (8) and (4), rather than with Egs. (9)—(10). It will be shown that the method
eliminates the two difficulties first mentioned, and that it applies with some modification
to the hyperbolic case, as well.

2. Description of the method. With &7 defined as the tensor
f2 + @xx dixy ]
o, fr+o,l

xy

(11) @:{

and by integrating Eq. (8¢c) from p, to p, Eqgs. (8) can be written as:



232 RAGNAR FJ@RTOFT Vol. XXIV.

(12) 0=f —V- P —QUd, — v T
4
(13) =T, —[(V-V®, + (2, — FD,)) dy

Po

We introduce now an iteration index r and a relaxation factor » in Egs. (12)—(13) as
follows:

(14) yor) — y oy, (fzI_/ — V. P QU e, — I
»
(15) o+ — ]10(7+1) __pJ“(V(7+1) . VQ% + Or+1) (q)pp _ F@ﬁ)) dp
These are recovery formulae for ¥ ¢+1 and '+ for r =0, 1,2, .... ... , Vo

representing an initial guess. Letting ¥, Q) and I') be subject to the same restraint
conditions as the ones in Eqs. (4) for ¥, 2, and I, the recovery formulae for Q¢+
and I,"+Y are seen to be:

P
(16) _Q("—Fl) —_ fv . V(r+1)dp
b
po
(17) T = — Q0+ = aooj“v YUy

Egs. (14) —(17) with the addition of the boundary condition in Eq. (4d), constitute
the proposed complete iteration scheme. The arithmetical operations involved are
rather similar to the ones which have to be used for the time integration of the original
unfiltered equations, except that the above problem is linear in the variables which
depend upon r. Provided therefore that it is pcssible to find values of x, if necessary
as a function of 7, which make V' +1), QU+1 pPi+1) . ¥ 0 TI'for r — oo, we are then
in the possession of a method for solving the earlier defined filtered problem which
is free of the difficulties mentioned earlier. Naturally it remains, however, to see if
other difficulties appear instead before the proposed method can be finally judged.

3. Remarks on convergence criteria of the iteration scheme in Eqs. (14)
—(17). We define first v and " from

(18) o =V Y, )0 =T T .

Multiplying Eq. (12) by » and subtracting from Eq. (14), we then get:

(19) W = o) | (— o P — G D, — )

where the inhomogenious term fzi now is eliminated. Further, by subtracting Eq.

(13) from Eq. (15) we get:

P
(20) y('“) - yotr+1) - J‘(v(r+1) . vgjp + w7+ ((DM . F‘-Dp)) d/’

P
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Having assumed that V¢+1 QU+ and I,¢+ are subject to the restraint conditions
valid for ¥, £, and I, we also obtain:

»
(21) ol — J‘v . i+ dj)

0

o
(22) yo = 0y [ 7 . o) dp

0
(23) y+1 — 0 at the vertical boundaries.

We shall now assume that v,, o,, y, are eigen-solutions satisfying Eq. (13),
Egs. (4), and

(24) — vznvn = — v, ‘? - w11v®ﬁ - vyn

We shall next assume that these solutions represent a complete set, whereby any v
can be developed after eigen-solutions v, as

(25) v=5Sw,
Using Eq. (24), the n-th component of Eq. (19) can then be written:
(26) o = (1 —w,2) o),

or, after repeated eliminations:

(27) vt = (1 — )40 o)),

Using Eq. (25), we may now write.Eq. (19) correspondingly as:

Ms

(28) VD = ) g (— " P 0)(’)V§D¢, _ Vy(r)) —

Il

(1 - %a,n2)'+1 ULO)'
n=1

As we shall soon see, the eigen-values — 2,2 must all be real. Excluding the singular
eigen-value »,2 = 0, the cases to be considered therefore are:

I. The elliptic case: »,? are all of same sign.
II. The hyperbolic case: v,? are not all of same sign.

In the elliptic case it is seen that all | I — xp,? | << 1 provided #x is chosen such that

2
(29) Isx<s s for all »2.

n
Under this condition »"+? — 0, e.i. V¥+Y - ¥, when r — oo.
In the hpperbolic case, however, it is not possible to find a fixed value of » which

makes all | 1 — 2| < 1. In this case some components must increase in amplitude
indefinitely as 7 — co. A slight modification of the method, however, makes it work
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in this case, as well. This modification is to let » depend upon 7 as »? = (— 1) x.
The iteration scheme will then be one where Eq. (14) is replaced by

(30) VO = VO L (1) (fV — V0 P — QO B, — VI,
but where otherwise Egs. (13) —(15) of the earlier scheme are used. Eq. (26) now be-
comes
(31) ot = (1 — (— 1) wn,2) o).
Increasing here r by one, we get
(32) I = (1 — (( —1)"* o, 2) o0+ = (1 — 32y 4) o),

Therefore, Eq. (30) now can be written

oY — 0 4 (— 1) % (— o e P g Q)p _ vy(f))

(33a) w
=3 (L= o

when r = odd, and

(33b) T = S (1 — ) ol

n=1

when 7 = equal.

Now, all | 1 — »2,4

< 1, provided
2
(34) 0 << |L2| for all »,2.
Under this condition therefore, also in the Ayperbolic case
" 50, ei. ¥ » ¥V when r - oo

provided the iteration scheme in Egs. (30), (15)—(17) is used.?

4. Interpretation of the proposed iteration method. We shall now introduce
a variable 7, of dimension time, in ¥, 2, and I', whereas @ as before is assumed to
depend on #, y, and p only. To distinguish these variables from the variables in the
filtered solution, which at any instant are functions of x, », and p only, we introduce
the notations V*, Q* and /™. For these we now assume the following governing equa-
tions:

(35) VE =fW V¢ P Q¥ P, — V¥
and in addition the equations analogous to Eqgs. (20) —(23).

1 The iteration equation (30) works of course also in the elliptic case. However, from considerations
on convergence rates it follows that we should always use the iteration equation (14) whenever it is
known that the problem is elliptic.



No. 7, 1962 A NUMERIGAL METHOD 235

The filtered solution can now be considered as the equilibrium solution of Eq.
(85), and conceivably be arrived at by carrying out a z-integration in a specified way.

To see how this could be done we first use the filtered solution as reference motion
by introducing

(36) vF=V* ¥V, of = 0% - Q; ¥ =T% — I
v¥, ¥, v* satisfy now the homogenious equation
(37) vi = —v* P — 0¥V, — Vy¥

and Eqgs. (20) —(23). We assume now that the general solution of Egs. (37), (20} —(23)
can be composed of eigen-solutions v, *, w,*, y,* with a dependency upon 7 given by

a trigonometric factor ¢?»%. Eq. (37) taken for the n-th eigen-solution then becomes:
(38) - vnzvn* = - vn* : ‘g) - wn*vdjp - vyn*

The squares of the frequencies », of the above solutions are therefore, apart from a
sign, identical with the eigen-values defined in the preceding section. The latter may
therefore be interpreted correspondingly. In the particular elliptic case where all
v,2 > 0, the solution of Egs. (35), (20) —(23) are therefore composed of eigen-oscillations
around corresponding component equilibriums ¥,, 2,, I,.* It is therefore clear that

by carrying out a stepwise integration in this case of Eqs. (35), (20) —(23) over a total
1z
period 7 starting from arbitrary initial values of V* and V. *, then - [ V*dv and
1z b
- I I'*dv -V and I for increasing .
0

This would therefore be one method of successively getting at the filtered solution.
It is thought, however, to be more efficient to carry out the z-integration in the follow-
ing way: The integration is carried out as before except that at the end of each
time-interval of length ¢’ the “energy’ (V,*)? is removed by putting V. * = 0 before
the integration is continued. If further ¢’ is taken sufficiently small compared to the
length of the period of the most rapidly oscillating eigen-solution, we do not risk to get
7’ equal to a half-period of any of the eigen-solutions, and as a result we must obviously
approach the equilibrium after each partial integration, most rapidly for the high-
frequency components, and less rapidly for the low-frequency ones. It can be shown
that this method of getting at the filtered solution is essentially the same as the iteration
method described in the previous section for the elliptic case. We shall confine ourselves
to an indication of this by pointing out the following facts:

1 In the other elliptic case, where all »,2 < 0, the eigen-solutions will contain factors increasing
exponentially with v. However, by changing Eq. (35) into

(35) Vige= —(fW = V* - " —2*v &, — VI*

we have again the stable case.
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Noting that ¥ * has been put equal to zero at the beginning of each partial inte-
gration we have approximately, if 7’ is sufficiently small:

V(0 + 7)) =V* () + lr’z Vi (7))

(39) 2

(r=20,1,2, ....)
where, according to Eq. (35),
(39D) Vi (re) =W —V*(v) - P — Q* (" )V®, — VI*(r7)

1
Identifying ¥*(rz’) and 51’2 above with ¥ and x in Eq. (14), it is seen that Egs.

(39) above and the earlier Eq. (14) are identical recovery formulae for V.1

5. Discussion of eigen-values and possible choices of relaxation factors.
Above we have got some insight into why and when the proposed iteration scheme
applies to our problem. It was seen that the permitted values of » were bounded up-

2
wards by a limit 2 man if the hyperbolic as well as the elliptic cases were to be included.

On the other hand, however, the convergence rate is slowed down very much if | xl
is taken much below this limit. If we want to study how we can maximize the total
convergence rate of the proposed iterations it is necessary to find the range covered
by the eigen-values »,% under general atmospheric conditions. However, it will also
be valuable for a fruitful discussion of this problem to bring in a number of different
considerations. These are connected with the possibilities of speeding up the convergence
rate by letting the relaxation factor depend on the iteration number, and also in the
time-integration of the filtered solution, with the practicability of using as initial guess
of the variables of the filtered solution at any time-step, their values at the preceding
time-step. As a third possibility we may even let the relaxation factor be a function of
the iteration number in the time-integration. As it would lead us too far in this paper
to undertake a full discussion of these problems we shall confine ourselves to derive a
formula for »,2 by means of which upper bounds for |»,2| may be found.

We arrive at a formulae for »,2 by multiplying Eq. (24) by — v, and then integrate
over the entire region inside the boundaries. This gives:

(4_0) Vn‘zJ"vn2 = f(vn - + wnvq§1> + vyn) ",
(] = [J]dxdydp)

L A closer examination shows that the exact form of Eq. (39a), when applied to an eigen-solution
in the elliptic stable case is

o
Vit (7 4 7) = V507) 4+ — Ty ()
Vn 1T
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Differentiating next Eq. (20) with respect to p, we get by a subsequent multiplication
by T Wy

0= I(— v, VO, + 0,(P,, — FD,))w,
Adding this to Eq. (40) we get:

(41) 2 [v2 = [(v,— 0,k G (v,— 0,8 + [(Vy,— 7,50 - (v,— 0,k)
7 being defined as the tensor:
fr+re, 9, 2,
(42) F = o, [+, D,
P, b, Py — IO,

In view of the restraint conditions in Eqs. (21) —(23) we obtain
[Ty — k) - (v, — w,k) = [agwipdoy = [p7" agw]y, where [do,

[ Oo
symbolizes a surface integral at the ground. Substituting this into Eq. (41) we get
after division by [ o2,

I[(v7l - wnk) ! *7; : (vn - wnk) + po_laowfzo]

[
We make next in each point (x, », p) a transformation of 7% to its principal axes i,
J’» K whereby Eq. (43) can be written:

aw? + a4 aw’l - pyta,w?

(43)’ P2 = ﬁl z _23 i,o_i]

[
Here u,’, v,) and w,’ are the components of v, along the principal axes of &%, while
a;, 4y, a5 are the three roots of

(43) v, =

f2 + @xx —a ®xy (Dxp
(44) o, i+, —a @, — 0.
@, o, @, — Fd, —a

These roots must all be real because of the symmetri of &5 . The sufficient and necessary
condition that a;, a,, a3 are all of same sign is found to be the simultaneous ones:

(fP4 D) ([*+ 2,) — D2+ (2f2 + VIO) (D), — FD,) — (VD)2 >0
f2 —I_ @xx ®xy ®xp

(44) o, fr+o, @, |>0
®Xf> ®W (DM’ o FQP
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'This is also, as can be shown, the condition that Eq. (9) for @, s elliptic. If we also have
(45) 22+ V0 + @, — FO, >0

then ay, a,, az are all positive. The conditions in Egs. (44) —(45) are as a rule satisfied
in the atmosphere. This is because of the dominating influence from the inertia and
gravitational stability in the atmosphere. To a first approximation we have in fact

f*2 00
P~ 0 f20
00 o, —Fo,
Correspondingly

a ~ay ~ fP ay ~ Dy — FO,,

while the principal axes become:

VP ~i,j ~j, K ~Fk

In accordance herewith the formula in Eq. (43)’ approximately becomes

(4‘6) 2 J‘ Zv'Zl + f(¢?1> —F@#)wi + fﬁ?laowfm

YV, RS T
n 2 2 2
f v, I v, fvn

This formula is equal to a formula in integral form which can be derived for the fre-
quencies in certain systems of oscillations where intertia stability, and internal and
external gravitionally stabilities are acting together. This is of course not so surprising
when account is taken of the identity between the above eigen-values and the
squares of the eigen-frequencies of the oscillation problem formulated in Egs. (37),
(20) —(23), equations which are obviously closely connected with the original un-
filtered equations, Eqs. (4) —(6).

6. Application to certain systems of linear, algebraic equations. In this fi-
nal section we wish to point out that the proposed iteration method can be applied
to systems of linear, algebraic equations in which the coefficient matrix is symmetric
and non singular. Let R be the N-dimensional vector, R = [x;, x,, . ... xy] where
X, %3, ... %y are the unknowns, H an other N-dimensional vector, and &7 the
coefficient matrix of N-th order,

Ay, Argy -5 Aiy
ANl) AN2a RN ANN
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The equations can then be written
0=R- P+ H
to which the following iteration scheme can be applied:
RV+D — R® (— D)% (R" . &P 4+ H).
For » we have to take a value
0<x< |l/{_iax ,
where a, are the eigen-values given as the roots of the algebraic equation
Ay —a, Ay -y Ay !
Ay, gy —a, ..., Aoy 0

|AN1’ Anzs -+ Ayy —a
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