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Summary. The simplest baroclinic model of the atmosphere (advective model) is considered.
By means of linearized hydrodynamical ‘equations sinusoidal waves and composite motions
are studied with a view to finding stable motions where infinite amplitudes do not occur.

1. Introduction. It is the purpose bf’thé::présent paper to study certain aspects
of the problem of stable perturbations in the simplest baroclinic model of the atmo-
sphere, the so-called “advective model”. - ‘ ) S

This model is defined as having zero static stability. The curvature of the earth is
ignored. The atmosphere. is incompressible, horizontally unbounded and vertically-
bounded by rigid horizontal planes. The undisturbed motion is a steady zonal current
which ‘increases linearly from the bottom to the top of the atmosphere and has'no
variation with latitude. The wvertical density gradient -dp,/dz is by definition zero.,

Waves of small amplitude in the advective model have been studied by Fjgrrorr

(1950), extending an investigation by CrarNEY (1947), by means of the linearized:

hydrodynamical equations. Fjertoft started from a more general model where the.
vertical density gradient was different from zero and where the velocity perturbation

was dependent on latitude, longitude and height, and he arrived at the advective

model with velocity independent of latitude, as a limiting case. A more detailed study
was made by HoLmBoE (1959) taking the advective model as a starting point.

The assumption 8p,/dz=0 makes it possible to study stability of waves independent -

of the effect of the static stability of the atmosphere and at the same time it leads to a
great simplification in the equations of motion, whereby it becomes possible to establish
a comparatively simple frequency formula from which stability conditions can be deri-
ved, as shown by Fjertolt. S : -

The simplifications involved in.the model itself and in the assumptions regarding
the nature of the motion facilitate the mathematical treatment, but, on the other hand,

they limit the field of application. It also becomes necessary to guard against inconsis-
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2 PETER THRANE Vol. XXV.

tencies drising in a system of differential equatlons 'when restrictions are imposed
on the form of the solutions. Such inconsistencies can be avoided here by ignoring the
latitudinal variation of the Coriolis parameter,

Another difficulty encountered in studying waves of the advective model is that
mathematical solutions derived from the linearized fundamental equations may have
‘forms conflicting with the basic assumption of small amplitudes. Thus the stable sin-
usoidal waves have infinite amplitudes at certain levels. It will be attempted here to
find forms of stable motion where no infinite amplitudes occur.

2. The linearized hYdrodynarﬁical equatic;ns appiied to the simple wave
motion. The motion of a frictionless, incompressible fluid .on a rotating globe is
governed by the equations |

_?_/+252x V+v ¢=—SVP, (1)
t ,

yr=0, 20, ©

Where V denotes velocity, & angular velocity of the earth’s rotation, ¢ gravitation

' ' d @
potential, § specific volume, P pressure, ¢ time, — —Z4V-y.

dt 0t

These equations will be applied here to the advective model. Ignormg the curvature_

of the earth we introduce a rectangular system of coordinates,. %, y, z, with x in- '

_creasing eastward, » northward and z vertically upward. Let i, j, k denote unit

vectors directed along these axes, let the velocity of the undisturbed current be iU(z)

and let p,, #y, po denote its pressure, specific volume and density. Putting 2. k=

=20, =f and denoting by g the gravity acceleration we obtain from (1) for the -
undisturbed current :

| PolifU+kg)= =Vpo. | ‘ 3
Performing in (3) the curl operation y X and recalling that 9p,/dz=0 we find

d . ' o
g—Inpo = fU", . B 4)
. 0y SO :

(“thermal wind equation”) where U’=dUjdz.
We now introduce a small perturbation’ defined by v, , «, so that

V=iU+U, P=p0+p, S=CCO+€Z. (5)
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We put v=iu+jo+kw. Further we assume that U’ is constant. The linearized
equations of perturbation deduced from (1, 2, 5) may be written -

id";*"UTW+29><v+ano=—aov;=, S (6)

vo=0, Lotuy=0, Q)
@ | |

where dfdt=0[0t+ Udjox +v . v.
It is convenient to introduce

Ko = —glnatg , Ko+ = —gln(ey+a), k= ~9,. . (8)

%o
From the definition of the model it follows that Ky is independent of x and z. We
further adopt the assumption introduced by Rossby that » is independent of the
meridional coordinate, i.e. dv/dy =0. | .
In the equation (6) we shall denote the lefthand side by 4 writing 4= —guyp.
From v X (p,A) =0 combined with (8) and (4) we find" | -

vxd=—dx yio=T(_id vka). @
g g L '
"The component equations are
dy 6z g
04, 04,
———==0," b 10)
Pl (b) (10)
o4, ot _sU, ©
ax  dy g
where according to equations (3) (6) and (8):
A, = ?+ Uw+2Qw— fv, (@)
t - . .
a,=2 0 I ®
dt g :

A, =-j——2!1 utr. | (c)
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The vorticity equations (10) are interdependent owing to the relation v .y x4 =0.

The equations (10) and (7) will be taken as the starting point for the subsequent
deductions.

In (11) and (10) we may introduce a stream-function -¥(x, z) with

LWy e W |
ity il AN | 12

The first ee[uation (7) is thereby satisfied. The second equation (7) may be written,
having regard to (4) and (8)

d dx :
—(xo+K)=—+fUv=0. | 13
dt( otK) . f (13)
From the above equations it follows that
2y =0, - 14
P v | e

where B =df]dy. This can be seen in the followmg way. Introduce 1n (11) the €X-
pressions (12) for # and w. Find from (11) 8A,|dy, 94.[d, recalhng that dv/ay =0.
Apply to equation (10b) the operator 6/6_y and then d/dt, having regard to (13)
and the values just found from (11). This gives the relation

dv v | '
4 (dt 6x) 0- (1)

Applying the operator fd/dt to (10b) and having regard to (15) we arrive at the rela~
tion (14). ' ‘
We shall assume that y and v have the form
F(z, k,y)e '®19 (16)

where % and y are constants (k real, y complex or real). From (14) and (16) it
follows that '

BV = By kM) =0. 17
Following HoLmBoE (1959) we introduce the hydrostatic approximation
' Vzllf — !l’” (18)

which is permissible if we consider waves that are long compared to the height of the
atmosphere. Introducing this in (17) we obtain py''=0. The condition ¥"' =0
is obviously incompatible with the boundary conditions ¥ =0 for z=0 and z=% (This
observation applies likewise to the condition "’ —k%) =0). Thus the fundamental equa-
tions and the properties ascribed to the model cannot be reconciled with the form (16)
and the assumptions &y/dy=0, dv/dy=0. In order to avoid inconsistencies we put
henceforward g=0. It follows then from (13) that dx/dy=0.
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Having made this assumption we may now adopt the form (16) for x as has already
been done for  and ». For brevity we introduce

LA V=u(U—C)=71(kU—?). 19)

f ok g

When differentiating , », ¥ we then have dfdt=ifv.
We now turn to the equations (10, 11, 12). Introducing the form (16) for W, v, Kk,
having regard to (18, 19), neglecting in (10a) the term (—fU'jg). (dw/dt —2Q.u)
and in (10c) the term ( fU’'lg)2Qw and introducing from (13) _ :

Ck=iUZ (20)

' v

we obtain A
vy .—(l—rU)(-E) =0, - (21)
v
fw“-('-’) —0, 22)
\v .
—vv—-rc£+i(1—rU+rc)¢’+irI7'gb =0, ' (23)
v

We note that equation (21) can be derived by differentiation of (23) with respect to z
having regard to (22). | | -
Integrating the first-order differential equation (21) we find

b KV pyir—/m N gHthx=m - (24)
1—rU—vA\2uv+r+./m _ .
where '
m = 4’ (1~re)+72 (25)

The expression found for # may be simplified when the following conditions are
fulfilled |

re|<1, |rUj<1, lil<1. (26)
7 bl |
We may then put \/n_z =2p and

p=— XV B rm‘t‘ew"‘"”’) . | (27)
1—rU—v\y+1 .

Let us denote by the subscripts 0 and % the values of the variables at the levels
z=0 and z=4k, respectively.
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‘According to equation (22) we may write that valu;: of  which satisfies the
boundary conditions (g, Y5 =0), as follows

z h
i = [~dz—=[~dz. (28)
oV haov ‘ :

If y is complex, v is complex, and it is seen from (27) that »/v has no singularities.
(The case of real y will be treated in a later paragraph).
Introducing the expression (28) into the equation (23) we obtain for z=0, since

Yo =0:

(1=rUg— )2
Vo
A corresponding equation for z=h, i, —0 ‘is obtained by replacing in (29) the sub-
script 0 by the subscript %2 . Combining these equations we obtain '

1—rUo—vg Vo _ 1—-rU,,—v§.£,l. (30)
1—rUg+re vo 1—rUptrew,

Using (27) and recalling that U—c=v/u we finally obtain the frequency equation

oy \FM2p A\
T e
r \1l+wv, 1__1?\)‘rt 14 v, :

Taking the logarithm on both sides and putting In(I —rv/p) = —rv/u we find after a
simple transformation |

tanh™ !y, —tanh™'vy = ¥,—vo . (32)

Taking here coth on both sides and writing for brevity v, — vy =a we obtain 1 — vy v, =
acotha, whence it follows that

| 1 o1 1,
c—=(Uy+Up | = -3(1+—a —acotha ). (33)
2 w 4

This equation was given by FjerTorr (1950) on the basis of a simplified version
of the equations (21—23). o

The frequency equation in the forms (31-—33) is subject to the conditions (26).
Therefore these forms cannot be used when p—0 (5—0). In this case one has to go
back to equation (30), where o, 7, are determined by (24).

The expression (27) may be simplified still further. If ‘r/2,u| is sufficiently small
we may write [(v—1)/(v+1)]J™#=1. Putting 1-rU=1 we obtain

K'V ei(kx-'?t) A _ (34)

D=
1—v?

0 1%y '
—(1—=rUg+rc)—[—dz=0. (29)
hovw
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Fig. 1. Amplitude of w as a function : Az
of z when & and » have real values.

7o _

Introducing this into (28), having | 7T Z===Tor
regard to (32) and noting that z=o0

A= =vw)l(w=n) wefind 2270 TR

i = %{tanh"lv—tanh_lvo—v-f- Voot L - (35)
. J7; .
- We further have w= —iky and . |
. . . ., sz i(lx — £) . ' .
iu=niy =——e ", - (36)
1—v

It is seen from (34—-36) that the amplitudes become infinite when v = +1. This
can only happen when y is real. For any real values of £ and y there exists at least one
level between z=0 and z=#, where v2=1. Otherwise the real part of ¢’ in (36)
would have the same sign throughout the interval (0, /), and the boundary conditions
could not be satisfied. Let U= Uy and U=U, denote “critical” levels where
v=p(U~eo)= 11, ie. U=c+flk, Uy=c—flk. If U,>U, we have, since at least
one of the critical levels must be within the interval (0, &), two alternative conditions

Ug<ct flk<U,. (37

One of these must be satisfied. Both may be satisfied if U,<c<U, and U, - Uy >2f1k.
We then have two critical levels, This case is illustrated in Fig. 1.

It is evident that, if ¢ is real and one of the conditions (37) is fulfilled, the boundary
conditions can always be satisfied, and no frequency equation is needed. The signi-
ficance of equation (32) for real values of v, and vy can therefore be understood
only when a continuous transition from complex to real ¢-values is considered. We
shall return to this in a later paragraph. ' '

The fact that 2,y in (34 ~36) are infinite at certain levels, when v is real, in-
volves a contradiction, since the linearized equations (6—7) were deduced on the
basic assumption that v, x were small, so that product-terms could be neglected.
The “stable waves” defined by (34—36) are therefore formal mathematical expressions
which do not give an adequate description of possible fluid motion in the model con-
sidered. It would be of interest to seek forms of motion other than the form (16) with
a view to finding stable motions where no infinite amplitudes occur.. This will be at-
tempted in the following paragraphs, IR
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3. Forms of motion with bounded amplitudes.

3.1. Solutions of the partial differential equations. Let us consider the system (S)
consisting of the four linear partial differential equations (10) and (13). Since the
coefficients are independent of x and ¢ we may seek solutions of (S) of the form

¥

Fi( 2 k) = f il ko me® "y, (38)
Yo .

" where F, may denote ¥, s, ¥ for n=1,2, 3 respectively and the functions f. have

to be determined. % may be independent of y, or a relation k=£k(y) may exist.

We shall consider the latter case. y, is a constant independent of 7.

It is evident that, if the functions F, satisfy the system (S) then the integrands in
(38) must also satisfy (). We may therefore choose for the functions fiexp[i(kx — )]
those particular values of ¥, v given by (34, 35) and the corresponding value of x
from (20), provided that the conditions (26) are fulfilled. X may be any function of y.

Since the functions in (34—36), constituting the integrands in (38), satisfy (S)
for all values of ¥ and 7y, this must be the case also for F,. This leads to the intro-
duction of new solutions of (S) '

.y -
| | Gixt,zkey) = (Fixtozkodn (39)
. ] 'Fo ’ .
and similarly =~ '
Hy(x,1,2,k,7) = [G{x, 8,2,k n)dn . . - (40)
. Te

This procedure can be 1terated any number of times.
It is convenient to introduce v- as variable instead of 7 in the integrals (38—40)
Let us consider for instance the case where f, is identical with the amplitude of v

in (34). Introducing k=£k(y), dkfdy=F, fv=kU—vy, (KU ~—-1}dy —fdv we obtain from
(38) (replacmg 7 by # under the integral sign)

Judﬂ_:jwd
: 1—v

where L is a regular function. Abbreviating L{x,t, U, v)=L(v) we may write:
‘[vdr,' =—~L(1) _— ——L( l)j JLl(x, t,U,v)dv, 41)

where L, is another regular function. L and L, areknown, when a value of K =K(y)
in (34) has been chosen. -
The integrals in (41) are taken along a path of integration in the complex v-plane
This path must not pass through or terminate in the points v=+1 on the real axis.
If rthe integral (38).has the form (41), then F, contains terms with the factor
In(v+1). The riext integration, corresponding to (39) will then render terms containing
(v I)ln(v +1), and (40) will render terms containing (v+1)%n(vtl).
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Summing up, it is seen that, if we
replace in (38) the functions f, by the
expressions {34—36) and perform three
successive integrations like (38—40) we A
arrive at a solution of the system (§) of
the form H,. Let this solution be de-

noted by ¥, 3, . It is seen that these b

variables contain In{v+1) in terms of 7 g £ Fe— M,
the form (v+1)"In(v +1), where m =3 ! 1

for y, m=2for 7and x, m =1 for y"' and N=1

#', so that all terms in (5) are continuous
for v=+ 1.In the motion determined by
¥, v, ¢ no infinite amplitudes occur.

3.2. Stability in relation to boundary conditions. Let d)(x, t, z,n) be an analytic function
and suppose that || >c0 when £— too if the parameter # is complex, whereas:
¢ remains bounded if 5 has real values. The function may then be-called “stable”
for real values of 5. Obviously an 1ntegral of the form

I= I $(x,t,z,m)dny

' is also “stable” if 5 passes through real values from v, to v.

Ii ¢p=o¢ (¢ z,7)(n—1)-1 where ¢, is rcgular, we may choose the path of inte-

gration in the complex #-plane as shown in Fig. 2, i.e. either the path vlabcv or some

path like v,4v. _
‘ The small semicircle contributes to the integral w1th the term ind,(x, ¢, z, 1).
A sufficient condition for the “stability” of [ is that v, and v are real. This condition
is also necessary. :

Applying this to the 1ntegrals (38—40) we conclude that they can be made stable
by a suitable choice .of the path of integration in the complex #-plane. Choosing a
suitable path of integration we can thus ensure that the solution ¥, 2, ¥ mentioned in
paragraph 3.1 above is stable and bounded. It remains to see if the boundary condition
=0 for z=0, z=*# can be satisfied.

It is necessary that these conditions are fulfilled for the function f; in (38). If we
had, for instance, ¥,=£,(0, k, n} #0, then F(x,¢,0,% y) could not be zero for all
" values of x,¢ but only for particular values. On the other hand, if £, fulfills the
boundary conditions, this applies also to Fy, Gy, H; in (38—40). We conclude that -
it is necessary and sufficient that the expression (35) should vanish for z=0 and z=4,
which leads to the equation (33) as shown in the previous section.

In the integrals (38—40) the existence of a relation k=4(y) was assumed. We shall
now specify this relation, taking it to be identical with the frequency equation (33).
For brevity we write

Fig. 2. Paths of integration in the complex 7-plane.

1+—41-a_2—acotha =M, ' 42)
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where a= v — Vo= p(U, — U,). We turther introduce

1 1 1 U-0U, ' '
~Ug+U)=U,,, {(=—{z—"h)= 2. 43 -
2O+ U) h( 2) s @
Equation (33) may be written, having regard to (19)
y=kU,+ f/M | (44)

When this relation between % and y is fulfilled, v may be written in the form

v=uU—}’-’=Cai\/ﬂ @)

This gives v as a function of % and z. Itis convenient here to use 2 and ( instead
of ¥ and z. Weshall consider the case U, >U, whereby a is positive and proportional
to £ and . { determines a level between z=0(¢=—4) and z=h({=%). .

We further note the following properties of A :

(a) ' M=0 -for a=0 andfor a=gq, - 2,4 (approx.)
(b) M<0  for O0<a<ay, M>0 for a>a, (46)

— 1
i ——q }——cotha——1, when a—o0o.
© (33 -cota- ”

Combining this with (45) itis seen that v =0 for ¢ = 4y, v complex when 0<a<a,, -
v real when a>a, If +]/H 1s chosen we have from (45) and {46) (c) when a— o0

v—>(§+€)a-—cotha—>oo, when C>—%,

v— —cotha— —1, when { = ——1 .

2

e :

According to (45) v dependson ¢ and ¢, In Fig. 3 v=vg-+iv; is represented by
a point in the complex v-plane. Let ¢ vary from O to gy, while { is kept constant.
The point P({) representing v then describes a curve, e.g. OAB. To each value of ¢
corresponds one curve. OCD corresponds to (=4, i.e. the upper boundary level
and OC,D; corresponds to (= —}, ie. the lower boundary. The point’ B where
the curve meets the axis can have any position between D, and D depending on
the choice of {. For (=0, vp={a is zero and the curve reduces to the straight line
OEQ. : ,
- We note that 0D =44,=1,2 (appr.) and OD,= —3%ay. The points F and F,
correspond to v=1 and v=—1, respectively. '
The curves in Fig. 3 are for the greater part determined by equation (45), However, -
it should be recalled that this equation is valid under the conditions (26) which are
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¢ E A C
Fig. 3. The complex v-plane,
y=vgp-iv; (vg abscissa, v; :
ordinate). s, { 6/ s T
£ ) )
[ 0 B F D

obviously not fulfilled when 2—-0 (u—0). Therefore, a certain part of the curves,
indicated on Fig. 3 by OG, OH, OH,, is not in conformity with (45). In order to study
this part we go back to the expression (24). Introducing this into the equation (30)

we obtain a form of the frequency equation which may be wrltten '

(1—;‘U,,+rc_ V"‘"_ 2uvyt+r—/m 2uvo+r+m

' 1—rU0+rc) 2uvo+r—m 2uv,+r+m ,

This is a relation between y and p which replaces equation (44) for small %-values.
The exact form of the curves will not be studied here. It is sufficient for our purpose

to know that the curves pass through origo, i.e. v=0 for u=0 (a¢=0). This is secen

as follows. In order to have v=p(U—¢)—-0 when p—0, we must have puc—0.

We may then expand ,/m in a series: S '

m_ 2
r r

2 2
1 c+—;z 2‘u4(:2+ ) - (49)

(48)

Introducing this in (48) we easily find that the right-hand side approaches to the
value (rU,—1)/(rUy—1) when p—0. The left-hand side approaches to the same
value provided that ¢—0 when p—0.

“The curves in Fig, 3 illustrate the variation of v when a varies from 0 to g,
while { is kept constant. The arrows indicate the direction of the motion of the point
P({) representing v. When a increases beyond «, ./M becomes real, and since
we have chosen its positive value, the points P, leaving the curves, move along the
real axis to the right as indicated by the arrows. The point P({) coming from OA4B
will pass through the singular point F. The point P(}) does not pass through F
or F,. The point P(—%) moves from D, to the right but, according to {47), it
does not reach F, for any value of a. If we put {= —%1+¢ and if a=a,>q, is
given, we can always find a value of ¢ such that the point” P(—%+¢) coincides
with F, when a=a,.

It follows, therefore, that, for any value a; >4, there always exist certain levels ¢
for which the point P({) has to pass through F or F when "a varies from a<a
to a>a,.

It should be noted that @ cannot be too large. Owing to the apprommatlon (18) %
must not exceed a certain maximum value, whence it follows that ¢ must bc kept
below a certain value aq,
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If a=ay and { variesfrom —} to 1 the point P, representing v, moves along

the real axis from D; to D. The stream function  defined by (35) becomes infinite

at the points F;, and F. Not let P deviate from the axis following the semi-circles

S; and §. ¢ then obtains a continuous variation from Y=yp=0 at D, to Y=y,

at D. It follows from equation (32), which is identical with (44), that ,=0. The
y-value in (32) is real in this case, and it has been shown previotsly that, when vy
is real § can be defined so that y,, ¥, =0 regardless of equation (32). This would,

however, entail a discontinuity in ¥, not only at F and F, but also on § and Sy

Or on any curve joining two points on the real axis separated by F or F,.

The role of the frequency equation for real y is to ensure continuous variation of
¥, x,v when v varies from a real value v, < 41 through complex values to a real
value v, > 4 1. : 7 .

It was shown above that the integrals (38—40) can be made “stable” by performing
the integration along a path beginning and ending on the real axis of the complex
n-plane. The same obviously applies to the complex v-plane when v has been intro-
duced in stead of %, as shown in (41).

Further the path of integration must conform to the equatior_ls (44, 45). We have

therefore to choose one of the following paths:
(a) The curves 04B, OAC etc. letting a vary from zero to g,
(b) these curves with addition of a part of the real axis, letting a vary from |
 zero to a;>a, o (50)
(c) parts of the real axis only, obtained by letting @ increase from a, >q,
to a,Za,. - _

In all cases {-values exist for which the path of integration has to pass through
one of the points F or Fy, (v=+1), whereby the integral (41) becomes meaningless.
We conclude that, in a strict mathematical sense, stable integrals of the form (38—40)
are incompatible with the boundary conditions. '

~ Let us consider the error made by deviating from the path of integration determined
by the equation (45), using the semicircle § (or §;) as a part of the path. When
@>dag, =7z determined by (44) and v=v; determined by (45) are real. Let the
corresponding point P({) be situated on the axis within § when ¢ ={,. We now

replace P({;) by a point P'({,) on § having the same abscissa. y; is then replaced.

by ye+iy, and vg by vg+iv,, where y, and v; depend on ¢ and on the radius
of § but are independent of {. For any {-value the point P({} is then replaced by
P’({) having the same abscissa and describing a semicircle when P’({,) moveson S.
Thus, for {=1 the point P’(}) describes the semicircle T.

The value of y, determined by (35) is different from zero on T, and since T

is part of the path of integration for { =1, the integral fy,dv is also different from zero.

Thus the upper boundary condition is not satified. However, if the radius p of §
is small T is small and [y,dv—>0 when p 0.

Further we note that, if » and ¢ are given by (34, 35) the integral fydv taken
along § contains the factor plnp, thus tending to zero when p—0. The integral

|
+
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fodv taken along S or §; renders a term of the form iR (R real) which does not
tend to zero when p—0. The next integration (corresponding to (39)) taken along
S renders a term containing the factor iRp—0, whereby the continuity at v= +1
is ensured. It should be noted, however, that a discontinuity will always be present in
certain higher derivatives like 0™j/0v".

Going back to the integrals (38—40) and the solution ¥, x, # defined in paragraph
3.1 we may now affirm that, if one of the paths of integration (50) is chosen, this
solution represents a stable motion with bounded amplitudes satisfying the boundary
conditions, save for an error due to the semicircles §;, §, 7. This error is always present
but can be made arbitrarily small.
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