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Summary. A two-layer model of an ideal fluid over an elastic bottom layer is considered.
‘The boundary conditions are developed for simple harmonic wave motions superposed on an
arbitrary linear fluid flow. The frequency equations are discussed for surface waves on a uniform
stream and for perturbation of a flow with constant shear. Two response functions defined for :
the boundary are found useful for a graphical discussion of the frequency equations, ]

1. The boundary conditions. The present paper deals with some simple two- ;
dimensional motions in a two-layer system. This system consists of an inviscid, in-
compressible and homogeneous fluid over an elastic bottom layer. The motions to be '
investigated are small perturbations in this system. The basic motion is a horizontal,
linear and steady fluid flow under which the bottom layer is at rest.. The coordinate
system is chosen so that the ay-plane coincides with the horizontal interface and the
z-axis is vertical, directed upwards. p, and p, are the densities of the fluid and the
clastic medium respectively. 1 and u are the Lamé’s constants. The displacement
vector is @ =i{+k{ and the stress components are . - '

o, =y p+2us
ox
(L.1) o, = Ay-p+ 2
0z
Tz = ﬂ(a_?'l'iC) .
0z ox

In the following an undisturbed quantity will be denoted by a superscript .
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origin‘at the bottom surface in its unstressed state; the other with its origin at-its surface -

under the action of gravity. However, the approximations in the linear theory allow
us to neglect the distinction between them. -

When the system is perturbed, there will be displacements &(x, z, £) and ¢ (x z, t)
in addition to p° and additional stresses o,, o, and %,, derived from (1.1). The inter-
~ face is now given by z={(x, o, £} ={¢(, ?), and the dynamic boundary conditions are

- 69+, +p =0
(L.7)

1 .
(™ =Os_ Z=Co-

For a surface element makmg an angle @ w1th the positive x-axis, a decomposﬂ:mn :

| y1elds | |
0 = ¢ cos_2 8+ ¢ 2sin*0 — 212 cosBsind
(1.8)

_'r,?t = 12,(cos*0—sin’0) + (o0 — ag)cosﬂéinﬂ )

o

_ , ox
{o to be small quantities, (1.7) becomes, to the first approximation,

and the analogous expressions for o, and t,,. Putting tan = —~%and assuming 8 and

Gz+(pz-p1)gco+P =0

(1.9)
- 2p° (0)#0% , z=0.
"A+2u Ox ' '
- Here use is made of (1.3) to (1.6). -
The kinematic boundary condition is
(1.10) Dlo Ko, yZo_y, =0

dt a;. 0x

where. w is the vertical component of the fluid veloc1ty In addition to the conditions
at the surface z={,, the bottom layer is assumed to be bounded by a rigid horizontal
plane at z= —H. The boundary condition here i is that the displacements vanish, i.e.

(1.11) £=(=0, 2= ~H.

2p%( ) 350
l+2,u ax
fact that although 7,0 vanishes throughout the medium, 2 = (62 — 62) cos 8sin 6,
in general, does not. The eﬁcct of the term depends on the order of magnitude of
2p° ©
Ad2u

The appearance of the term —£ 177 in the boundary conditions is due to the
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If the motion in our two-layer systcm is taken to be ocean waves under the influence
of seismic waves (tsunami Waves), the mean pressure term can be omitted. 4 and p .
will both be of order 10° atm., in a depth as great as 5 km. $°(0) is about 5 * 102 atm.

and jp (20) will be of order 10~3. On the other hand, for a muddy bottom layer the
+ap

term would perhaps be significant. For a discussion of tsunami waves, reference is
~made to a paper of NARamUrA [1], and the papers cited therein. In the present in-
vestigation we will not restrict ourselves to special geophysical models, or to special
values of A and p. However, the mean pressure will be omitted throughout most ‘of
the paper to simplify the algebra.

2. The boundary condition in terms of the stress function and the stream
function. Expressions for the stresses and the displacements can be found independent
of the motion of the fluid. Since the equations of motion for the elastic medium are
linear, the additional stresses and displacements are governed by equations which are
independent of the undisturbed stresses and of gravity. Hence we have

ot Ox 0z
2.1)

9% ot o,

P o

On the basis of these equations Rapox defines his stress function [2]. Using this we put
2 2
(P LN
‘ 0z* 2c,2 o)

' 2 2
a’z = .E_—_l__.._a_ (I) N
ox*  2c,%or

where ®=®(x, z, {) satisfies the differential equation

2.2)

) 2 2
(2.3) Vz—nl_z,a Vi— 128 ®=0,
Coqlor c,? or?
. . . N
v? is the two-dimensional Laplace operator, V> = a_.._2+p and ¢, and ¢, are the
' : x° 0z

dilatational and distortional wave velocities, defined by

2.4 pacs® = A+2p, pet=p.

Radok considers some solutions of (2.3) assuming ®=®(x—¢f, z) with ¢ real
and less than both ¢, and ¢,. In our problem we have to allow for ¢>¢, and ¢> 61,
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and also for the possibility that ¢ might be complex. However, we will consider only
one Fourier component of the motion. According to this we assume @ =¢(z)e*¢—,
and from (2.3) we find for the amplitude function ¢(z)

(2.5) ¢(z) = A, Coskpz+ A,Sinkf,z+ A;CoskB,z + A,Sinkf,z
when 8, #0 and B, 0. These factors are defined by

2

, ¢

@6) Br=1-5, pr=1-5.
Now (2.2) gives the normal stresses, from which the displaceménts are found by an

integration, and finally the tangential stress is found. For the elimination of the con-

stants 4,, 45, A3 and 4, we have at our disposal the five equations (1.9), (1.10) and

(1.11). Remembering that g.(_" = ik{, and % = — ikc{y, we may write the result of

the elimination in the following form

. 0)A -—_“’(L)_[ A~ Ayt ik O ]:o

2.7 p0)A, K- UO) 9(p2—pA, 2+mkl—l—2}u 3

where A,, Azl and A; are the determinants for the three sets of equations
7.(0) =0 6 0) =0 6,0) =0
{0 =0 T(0) =0 {(®» =0

(2.8) |

o §(—H)=0 - H~-H)=0 H—H)y=0
{(—H) =0 {—H)=0 {(—H)=0

respectively. The arguments 0 and —H refer to the z-coordinate. The determinants
can now be found, and may be written

(2.9) Ay =_QD1 ’ Az = kﬂ(l—ﬁzz)QDz » Ay= “i(l‘—ﬁzz)QDs >

where @ is an immaterial constant. After some calculations, the functions D, D,, D,
are found to be |

Dy = Bi(1—B,*)?*[CoskHp,SinkHp, — B, 8,SinkHp, CoskHp,]
D, = [(1+8,5)?+48,>8,%]SinkHp, SinkHp,
(2.10) —B1Bo[(1+B,%)* +4CoskHB,CoskHB, +48,8-(1 + B,%)
Dy = (14-B,>+2p,*8,*)SinkHp, SinkHp,
— B,Bo(3+B,2)CoskHB, CoskHB, + B, B3+ B,7) .

It should be noted that the integrations determining ¢ and { give two arbitrary
functions. In the calculations leading to (2.10) these functions are put equal to zero.
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This is necessary in order for the equations of motion to be satisfied when f; 20 and
B, #0. For p,=0, (2.5) becomes

(2.5 ) ¢(Z) = AlkZ+A2+A3C_0$kﬁzz+A4Sinkﬁ22 N
and for B,=0
(2.5”) ¢(Z) = AICOSkﬁIZ-I-AZ Sinkﬁlz+A3kz+A4 .

On the basis of these functions, calculations similar to those above can be carried out
to determine the correct values of D,, D, and D, for ¢=¢, and for c¢=c, Apart
from a factor B, (resp. f,), (2.10) are found to give the correct limits. Hence, by using
(2.10) in the boundary condition (2.7), we do not lose any solutions with velocities
¢, and ¢,. Butwe will find (2.7) to be satisfied by ¢=¢, and ¢=¢, for all wave lengths.
These solutions are false solutions.
For the perturbed motion in the fluid we introduce the stream function

¥ =%¥(x, z t) by

I S h(x—et)
@.11) , u 7w T o Y(z)e”
Retaining only terms of the first order, the equations of motion give for the fluid pressure
(2.12) p(2) = —pa[(e—U@DW (2)+ U (2] .
According to this, (2.7) becomes |

: U'(0) g
2.13) VO S+ ® -0 o =0,
—U©) (c—-U(0))
where the function B is defined by

‘ 2 0

(2.14) B= ”_2[1 -E(Dz—zp (O)Ds):l -
: pil gDy A+2p

3. Elastic response and the free waves. Since the variable part of the fluid
pressure acting on the interface z={y(x, ) is given by p({,) =p(0) —p,8{s, and the

vertical velocity component is w(0)=—k(c—-U(0)){y, (2.7) can be rewritten in the
form '

2p°0 "
(3.1) (o)A +Co|:P29’A1 Ay +ikp——- cll ) 3] =0.

/1+2,u
From this we find .

p(o)

3.2 = —B
G2 - P1gto

Thus B is a stiffness coefficient for the elastic boundary as introduced by Brookk
BenjamiN [3]. B is nondimensional, and is to a certain extent arbitrary, depending
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on the normalizing factor used. It is also worth notirig that B does not depend on the
properties of the elastic medium alone, but also on the boundary conditions.

When the fluid pressure has its maxima at the wave throughs, B will be positive,
while the maxima at the wave crests correspond to B negative; otherwise B is

complex. From (2.10) and (2.14) it is seen that this can happen only for complex
values of ¢. _ - _

Brooke Benjamin also considers a flexible boundary to be characterized by a surface
tension T and an effective mass m per unit area. We will shortly discuss how these
quantities must be chosen for our elastic bottom.

Let us consider a fluid motion with a pressure p({;) at the interface z=¢, ()

and {, both varying as ¢**—  (3.2) will then be the frequency equation. Further

we assume that the elastic bottom can be replaced by a membrane with a mass m
per unit area and with a tension T, m and 7T depending upon % and ¢ in such a
way that this membrane will cause the same effect on the fluid motion as does the
elastic bottom, The equation of motion for the membrane is -

| | PCo_ @0 v (o1 PN,
3.3) mzle- 7% p(co)—(ﬂ? 0 )67-

which gives
(G.4) T = mc2+%5’13. -

Since this is the only equation determining 7" and m, we first conclude that one of
“them can be chosen arbitrarily. Further we note that the expressions for 7 and m
‘can usually not be found without a knowledge of the motion in the bottom layer.
However, if the boundary really was a membrane with known values for 7° and m,
(3.4) would define the stiffness coefficient B for this membrane. We may introduce
the free wave velocity ¢, for the membrane by putting T'=mecy? The expression for
B can then be written

. _ 2 2 2
(3.5 : B= -ni(coz-——cz) = zk—(l —-c—z) .
‘ P1d P14 Co

The free waves in the elastic bottom layer are found by putting p(¢,) =0, the
frequency equation is B=0, or from (2.14}

. 2p°%(0
(3.6) D,=—2 p, +® O, .
ke; A4+2u

By means of (2;10) we find the approximate form of (3.6) for ZH>1 and c¢<g,

(4]
3.7) A+8.° 488, = g, (1—p+ 2 D1_2p.,4 5. .
ke, A42u

R
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When gravity and the mean pressure are neglected, (3.7) reduces to the RAYLEIGH'S
.~ equation [4], the solution of which varies between ¢=0,8741¢c, and ¢=0,9554c, as
Poisson’s ratio varies between 0 and 0,5. This implies that the solution of (3.7) de-
pends chiefly on the rigidity g in the medium and only to a small extent on the com-
pressibility. Both gravity and the mean pressure lead to an increase of the wave velocity
since the left hand side increases with ¢. The gravity effect is of order (AH) -1, and
vanishes in the limit #H — o0, expressing the fact that the shorter the wave length 18,
the larger the relative displacements are and the more dominating are the elastic
stresses.

. c 2 .
In the limit £H -0, B tends to the finite value &(1 + EF—I) and hence there can be

Pi
no finite wave velocities for infinitely long waves. If we assume ¢ to tend to in-

finity as (kH)?, we find for the group velocity ¢,=(1+ p)e. To avoid an infinite value
of ¢, we have to put p=—1. B, and B, defined by (2.6), become imaginary for
¢>¢, and ¢>c,, We then put f;=io, and By =10ly, 1.€., :

2
¢ _
——1, « =1,
012 2 .

(3.8) oy* =

"The solutions of (3.6) for kH—0 should therefore be characterized by ¢-»c0, while
kHo, and kHa, approach finite values.

To examine the solutions of (3.6) for ¢>¢, we first consider B= t o0, Le., Dy =0
or

(3.9) CoskHB,sinkHo, — B0, SinkHf coskHo, = 0.
Putting o

(3.10) ‘ o Bo;TankHp, = tany

we find from (3.9)

(3.11) kHo, =y+nx. n=0, +1, 42, ...

In the interval ¢, <¢<¢;, tany does not change its sign; for ¢>¢; it changes its sign
whenever tankHa, does. For the variation of ¥4 and ¢ along a curve for D, =0
we have therefore

nn<kHo,<{(n+ Hn €y < C< 0y
(3.12) '
(n— Dr<kH(oy+oa)<(n+ Hn c>Cy

For ¢>¢, there will also be an infinite series of curves for B=0, each of them lying
between two neighbouring curves for D, =0. Thus, as a fairly good approximation
for this series of free waves we may write kHo, =a,, or '

¢ a 2 ij2
(3.13) | —=i0+'"9 :
¢ (kH)
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with a,,, — a,~n. The group velocity ¢, based on this approximation is found to be

c a 2 -1/2 c -1
3.14 S 4145 =(£) .
G19 Cz ‘( +(kH)-") (c)

These waves are virtually unaffected by external effects such as gravity and mean
pressure. As will be shown below, they are also mostly independent of the fluid motion
“when the surface of the bottom layer is not free,

=gV 1+ TORA)

I
|
i
I
J
|
F
!
1
t
1
1
i
X 1
| 1
) 1
1 |
! 1
i I
1 ]

Fig. 2. The bottom response function.

In the following sections the function B, defined by (2.14), will be called the bottom
response function and will be written B =B, (s, k). Another expression will be found

for B. This expression will be determined from the fluid flow and will be called a fluid

response function B =B,(c, k). The frequency equation may then be written By(c, k) =
By(c, k). We shall find it convenient to discuss the solutions of the frequency equation
by considering the intersections of the curves for B, and B; for given values of £.

In Fig. 2 a sketch of B, is given. For kH> 1, the first zero will occur for a value
of ¢ near the Rayleigh’s velocity and the distances between the asymptotes are about
¢,(kH) ™% For kH<1 the first zero and the asymptote distances are of order ¢, (kH) ™1

2p°(0)"

Here, and in the rest of the paper, the mean. pressure term will be omitted,

A+2u _
The dependence of B,(¢=0) upon kH may be of some interest. It is found to be
; ’ .2
(3.15) B(c=0)= _3(1 +2_ f-(kH)) ,
' P gH

where f (kH) is given by

082kH +(2kH)? +2(3 —4v)

o o
3.16 kH) =
G16) JUH) = lell (3—40)Sin2kH —2kH

v is the Poisson’s ratio.
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kH)
B.
6.
7 =13
4
v =l/4
) 4 v =0
2
123 4 uH

Fig. 3. The function f(kH) defined by (3.16).

The function f(kH) is shown in Fig. 3 for some selected values of v. Unless v
is near 0,5, the minimum of f(kH) will be slightly less than f(0). The wave length
giving this minimum is of same order as H. For kH -0 we find f(0) =¢,%/c,% and for
large H, f(kH) tends to 2 im0 |

4. Surface waves on a uniform stream. We now consider the fluid to have a
free surface at z=#4, and a uniform basic flow with velocity U. A periodic and irrota-
tional disturbance given to this flow yields surfaces waves superposed on the uniform
stream. The fluid layer thickness 2 and the bottom layer thickness H are of the same
order of magnitude. Waves which are long compared with £ will also be long com-
pared with H, ie., both of the approximations k<1 and kH<1 must be used.
Analogously we have both k:>1 and kH > 1 for the shortest waves.

The free surface is given by

(4.1) : z= h+§n(x, t) — h+aheik(x—cr) )
Ca

and the bounda condltlons =w and p°+p=const. at z=h+{, become, in
ry )

Ll aRp o
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terms of the stream function,

, g
4.2 k)~ hy=0..
(“2) R0
Since the stream function is a solution of Laplace’s equation v2¥ =0, we write
4.3) : ¥(z) = C;Coskz+ C,Sinkz ,

and the elimination of C; and C, from (4.2) and (2.13) (with U’(0) =0) gives the
frequency equation
k{c—U)*Tankh—g g

(4.4) 5 - 3
k(c—U) —gTankh k(c—U)

(B—1).

The fluid response function for this motion is found from (4.4),

| | k (C-U)“—(-g‘—)z
45 - - Bge, k) =—Tankh k]
g (c—-U)z—-kg_Tankh

Tts variation with ¢ for a given ki is given in Fig. 4. For (¢—U)?< %Ta.nk_h it is

.3

=~ Byt

Fig. 4. The fluid response function for the surface waves.

restricted to B =1, while for (¢—U)%> .i_ Tankk and B;— + o Athe curve tends
asymptotically towards the parabola B, - (ﬁ Tankh) (¢— U)2+Tan2kk. As menti-

_ 8
oned above, the frequency equation may be written B, (¢, k) =B, (¢, k). If the curves in

Fig. 2 and Fig. 3 was drawn on a single diagram for a common value of £, the points
of intersection would directly give the real solutions for ¢. '
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Let us first assume U=0 and 4 >1. The diagrams show that there will be two
intersections between the inner branch of B, and the inner branch of B ¢, correspond-
ing to the free water waves. These two wave modes may be considered as dominated

chiefly by the fluid. Further there will be one intersection between the inner branch

of B, and each of the outer branches of By, corresponding to the lowest mode of
the free elastic waves; and since ¢— + oo when B;— + o0, there will also be one
point of intersection on each of the outer branches of B,,. corresponding to the infinite
series of free elastic waves discussed above. The waves Corresponding to the free elastic
waves will be denoted the elastic dominated waves. For decreasing £H, B,(c=0) will
decrease while B(¢=0)=1. The condition for an intersection between the inner
branches of B, and B, is B,(c=0) >B,(¢=0), or

. 2
(4.6) P11 ® sy,
P2 gH

Since for a compressible bottom' f (kH)pin=sf (0) =012/622 the critical density ratio
will be approximately equal to 1+¢,%/gH. However, the waves which first become

unstable for increasing p,/p, are not the infinitely long ones, but those with wave

lengths of the same order as H. For an incompressible bottom the critical value of
p1lps is about 1+6,2¢,%/¢H. The other solutions can not become unstable,

For a free stream velocity U different from zero the diagram for B, should be
shifted a distance U to the right (assuming U> 0). From the diagrams we may con-
clude that U will cause a destabilizing effect on the fluid dominated waves since the
inner branches of B, and B, may now cease to intersect. Another conclusion which
may be drawn by examining the diagrams is that whenever the fluid dominated waves
are stable, all the elastic dominated waves will also be stable. The destabilizing effect

of U can obviously be balanced by making p,/p, and ¢cs®[gH large, or by increasing

the velocities of the free elastic waves. For increasing wave length the inner branch

of B, will become more oblate, for decrcasing wave length it will be steeper while the

distances between the asymptotes of B, decrease. For the longest waves, a small

2 .

increase in &2( 1+ f;_l) will have an appreciable stabilizing effect, while for the shortest
P & '

waves the dominating stabilizing effect will be an increase of the free velocities. In

summary, the main effects to be taken into account for the long waves are gravity
and the compressibility in the bottom layer; for the short waves the important effects
are the basic current and the rigidity. , '

Let us now assume the motion to be stable. The velocities for the fluid dominated
waves will be restricted to the inner branches of both B, and B  for all wave lengths
This restriction means that ¢ is less than the lowest free elastic wave velocity, and

further (¢ —U)? <_§ Tankh. Considering infinitely short waves, we find ¢—U. chcé;

a necessary condition for stability is that U must be less than the free elastic wave

B

s
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velocity for infinite wave-number (the Rayleigh’s velocity). Further we assume that
the frequency equation has no solutions for which B;=B,= tco. It means that
¢=U+(g/k)V® is less than the lowest solution of B,= £ co, and a sufficient condition
for this is U <c, — (gh)*.

By means of (4.5) the frequency equation can be written

4.7 ZETankh(c —U)? = B, +[(B,—2Tan’kh)* +4Tankh(1 — Tan’kh)]"/* .
g ,

An examination of the right hand side immediately shows that the solutions when the
lower sign is used, are characterized by

(4.8) \ (c—U)? S-ETankh , By=B;>1.

'By using the lower sign in (4.7) we thus obtain an equation for the fluid dominated
waves for all wave lengths. The asymptotic solutions are found to be

. 2 5—1
(4.9) (c—U)* = gh[ -E&(Hi) ] for kH—0
P2 gH .
and ‘
(4.10) (c—U)2=% for kH—o .

Using the upper sign we find thé right hand side of (4.7) to be positive for all real B,.
Its minimum occurs for B,— — oo and yields the solution

“4.11) , (c—U)? = % Tankh .

When B,— + o the same solution is found when the lower sign is used in the equation.
Hence, if there are solutions (4.11) coinciding with B, = = co, there may be a transition
from an upper sign solution to a lower sign solution. According to the assumption made
above, there are no points on the dispersion curves where "B; =B, = + co. The upper
sign equation will therefore give a series of dispersion curves, each lying between two
neighbouring curves for B, = + co. For these waves the approximate solutions (3.13)
and (3.14) should still be appropriate. The lowest solution, however, will become less
than ¢, in the limit - co. From (4.7) we find the asymptotic equation

(4.12) (c—U)* = % (B,—1),

and with the asymptotic expression for B, (4.12) becomes

(4.13) _ | pylc— 12})2 - 48,5, —(1 +fzz)2
' P2 G Bi(1-B2%)
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Lole:

Fig. 5. ‘The solutions of (4.13) for some values of U/ and for v=1f,,

In Fig. 5 the variation of ¢ with P1/p, is given for some selected values of U.
v i8 set equal to 1/4 in the construction of the curves. If U is less than the Rayleigh’s
velocity, the solutions will be real for all values of the density ratio. For larger values
‘of U instability will occur in these elastic dominated waves at some critical value of
p1/py, depending on Uje, and v. , ' ' a

5. Perturbation of a flow with constant shear. .

a) The integr;l solution. When the veloéity profile in the basic ﬂowlis_ linear, we put
6.1y U(z) =Uys+U’'z, U’ constant.

Then the linearized equation for the stream function becomes
(52 (e~ UENW"(2)—k™Y(2)) = 0.

The fluid is bounded by a horizontal rigid plane at z =k, and the bo_un,dary_' condi_tidns
may be written

V(O +kFy(0) =0
Y(h) =0,

(5.3)

where F is given by (see (2.13))
_ U g

(5.4) F= —+
k(c—U,). ke—Up)*

(B-1).
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For convenience we put ¢=U;+U’y. For a given wave number %, F will then be a
function of #, F=F(5). The solution of (5.2) satisfying (5.3) may be written

Y(z) = ASink(h—n)(Coskz—F(y)Sinkz), 0<z<y

(5.5) _
¥(z) = ASink(h—z)(Cosky— F(i}Sinkn) ,n <z <h,

Tlns solution, which is called a singular eigensolution, is continuous at z=#; but
this is in general not the case for ¥’(z), hence there can be infinite vorticity at z=g.
For F(n)=Cotkh, the solution becomes -

66 Y(@) = AS“;"("

)
P Sin k(h z)

in the whole interval (o, /), and thus F(y) =Cotkk is the frequency equation for the
ordinary eigensolutions. These solutions, however, have no vorticity. If we consider
a given distribution of vorticity as an initial condition, this condition can not be satistied
by the ordinary eigensolutions alone. To find the complete solution we use the procedure
introduced by Eriassen, HeiLanp and Rus [5]. Assuming ¥ to be periodic in x
but notin #, we put A=A(y) in (5.5), and integrate from #=0 to 5=k Thus we

obtain

Y = Uﬂ‘.){ § A(m)Sink(h — z)(Cosky — F(x) Sinkn)e *Vdy
] ) .

G.7)
+ ;A(n)Sink(h —1)(Coskz— F(x) Sinkz)e‘”‘”""dn} .

By differentiating under the integral signs, we find for the vorticity
(5.8) V¥ = —kA(z)(Coskh— F(z)Sinkh)e™=~ v

To satisfy an initial condition (y2¥),.,=G(z)e™, we have to put
(59) Alr) = —-%G(n)(Coskh-—F(n)Sinkh)“1.

From this we find that the eigenvalues may give singularities in A(y), and when the
integration is carried out along paths in the complex #-plane, the integral solution
(5.7) may be multivalued. However, since the vorticity V2% = G(z)¢**~U®? is inde-
pendent of the paths of integration, the difference between two such solutions has
no vorticity and must therefore be an eigensolution or a sum of two or more of them.
Since the complete solution of (5.2) is the sum of the integral solution and all the ordi-
nary eigensolutions, the paths of integration can be chosen arbitrarily. Obviously they

can be chosen in the halfplane where Imy <0 in such a way that both o and — i

ox 0z
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tend to zero for increasing £ If one of the end points of the paths of integration coin-
cides with an eigenvalue, one or both of the integrals seem to start or to end in a singu-
larity. We must remember, however, that the disturbance is assumed to be small
initially. This implies that the initial distribution of vorticity G(z) must be such that
the integrals exist at-f=0. Consequently the integrals exist for all ¢>0, which is
easily seen from (5.7). The integral solution can therefore always be considered as a
stable one, and the stability of the flow will only depend on whether the frequency
equatlon has complex solutions or not.

- Since the integral solution has a continuous spectrum of singular eigensolutions
a similar continuous spectrum will occur in the corresponding solution for the motion
in the elastic bottom layer. All these singular solutions have the same wave number, -
while their wave velocities are distributed between U(0) and U(k). Expressions
for the displacements and the stresses in the bottom layer will not be given here.
We can, however, easily find the form of the interface z={,(x, {) by means of the
boundary condition :

(5.10) | %o, 1, aco L
S Tox 0x Jz=0

Introducing from (5.7) and integrating, we find
: h
(5.11) . (o= — = Tg?) Ié(r_?ﬂsmk(hmn)e—iﬂf’md" i

To find the complete form of the interface we have to add the contributions from the
ordmary eigensolutions to the expression in (5.11). '

From the definition (3 2) of the response factor B, it is clear that the solution for
a rigid bottom at z=0 is obtained by lettmg B tend to infinity, In this limit (5.7)
becomes

IP B eik(x Uot) z S]Ilk h —Z S k kU ?itd"
—_ G 1nkhne Tk

(5.12) ,
] -
+ | G()Sink(h—n)Sinkze™*¥ ""dn} .

~ Apart from notation, this is the solution given in [5] for a homogenous fluid. Since

F(n)— o when B-s oo, the frequency equation becomes Tankh=0. Comparing this

with the solution for B ‘finite, we see that the new features introduced by the elastic

bottom layer are the singularities in the’ integrals, and the ordinary eigensolutions.

Finally it should be noted that the solution found above, and the discussion foHowmg

it, will apply not only to an elastic bottom layer, but to all non-rigid boundaries giving
boundary conditions in the form (5.3).
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Lo+ U T kh /2%

Fig. 6. The fluid response function for the shear flow.

b. Discussion of the freqizenqy equation. The frequency equation. F(n) =Cotkk is found
from (5.4} to be ' :
U’ g

(5.13) Cotkh=— " 4 :
k(c—Uyg) k(e—Uy)

(B-1).

‘Hence, the fluid respdnse function B, for this motion is the parabola

2 N2
(5.14) B, — Keotin ¢—Uy— Ly T20KkE\" | 1(U'h)* Tankh
g 2 kh 4 gh kh ’

which is shown in Fig. 6. By comparing Fig. 6 with Fig. 2, some conlucsions can im-
‘mediately be drawn. The parabola will always intersect cach of the outer branches of
B,. As the wave number varies there are no possibility for transition from one branch
to another. Hence the approximations (3.13) and (3.14) will apply to these (always

. ) g 5iIAY
real) solutions. For infinitely long waves the minimum of B;is 1 —é.(Ukh) , and the
, : 4
condition for intersection is

_1umy?

(5.15) 1 <By(kH =0).

An increase of the shear U’ will cause a stabilizing effect on these waves. For finite
wave lengths we find from (5.14) that an increase of the shear U will displace the .
parabola towards the right and downwards. The former displacement represents a
destabilizing and the latter a stabilizing effect. Considering a small increment 8T ’
we find the displacement of the parabola to have a gradient —U’fg. If B, and B,
0B, U’ '
—i<— for ¢=¢".
dc g

increases for decreasing wave length, we may say that the increase of the

just meet at c=¢', a positive U’ will cause a stabilizing effect if

b

oc

Since
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shear will make the long waves more stable and the short waves less stable. However,
the length of the displacement will be proportional to Tankk/kk and will tend to zero
for the shortest waves.

From (5.13) we find the asymptotic solutions

1/2
c—U, =-§U'h il:%(U'h)_z+gh(Bb—-1):| for kh—0

(5.16) and
(c—'U0)2=.§(Bb—1) " for kh-o.

In the first equation of (5.16) we have to put B, =[2(1+ci) and the condition
P1 g

(5.15) becomes

7 1172 2
G.17) ’2(1— KD )<1+51-_ .
‘ p2\ 4 gh gH

The latter of (5.16) is identical with (4.13).
At last we shall assume U, =0 and neglect the effect of gravity. The response func-
_tions may be redefined (stﬂl d1mens1onless) by writing

' B - g
5.18 | B.—_9 B
( ) . ‘f k(Ufh)Z J
, g
B =.——.B
RN

and putting £=0. From the results _
_ . _ ) ‘
B Cotkh( 1U,hTankh) _ 1Tankh

PO\ 2 kh 4 (kh)?
(5.19) and
B, = z(;zh)zf(kH)>0 for ¢=0,
Pi :

we conclude at once that the motion is stable for all wave lengths since the parabola
pass through the origin for all values of k&.

Acknowledgement. I wish to express my thanks to Professor EINAR Ho1LAND for
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First we consider the basic flow given by
(1.2) v =iU(z).

Since the fluid is inviscid, the pressure $° depends on z only and the pressure gradient
is given by '

. d 0 .
(1.3) L e py.
dz

ideal fluid
ylz) densily ¢, .

=0 X

elastic medium

A p

Z==H
VAV AV Ay 7 VAV AV ayd I

Fig. 1. The basic flow system.

Since there are no tangential tractions on the bottom and the flow is uniform in X,
. the state of the bottom layer will also be uniform in x, and the displacement relative
to the unstressed state is p® =k{%(z). Hence we have for the stresses

dt° dc®
(1.4) =2 ™,
' dz d

Z)

while 7o vanishes throughout the medium. The equation of equilibrium gives

do?
(1.5) =, =P
and the boundary condition is
(1.6) 62+p®=0, z=0.

It should be noted that here we are using two coordinate systems, one with its
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