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PART I. THEORY AND ANALYSIS OF OBSERVATIONS

Summary. In the first chapter we give a deduction of the basic equation of internal waves
'When_-th’e influence of the compressibility of sea water is taken into account. The result is that
the kinetic energy depends on the density in situ, ep=1+10d, , while the potential energy
depends on gy=1+10"%g,. If the depth is not too large, it will not be necessary to make this
distinction. - :
The different types of waves which are possible under the 1nﬂucnce of the Earth’s rotation

are deduced by a uniform procedure. Formulae for potential and kinetic energy are given, .

and the influence of eddy Vlscosﬂ:y on internal waves is investigated. Waves of higher order '

are very cifectively damped. _

Methods for numerical integration of the basic differential equation are given and methods for
the detection and analysis of internal waves are deduced.

In the second chapter the observations of internal waves in Herdlefjord 1934 and 1949 are
discussed and the results are compared with the theory. It is found that the waves are mainly
of progressive character. A comparison of the results from the two years show that the waves appear
with the same phase angles when the hydrographic conditions are similar.

In the appendix a more elaborate treatment of the frictional influence on internal waves is gwen

Part I contains tables of the observations.
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CHAPTER 1. THEORY

1. Introduction. The system of large ocean currents which are more or less
stationary have always attracted the attention of the oceanographers, and it is clear -
that the investigation and explanation of these phenomena will allways be a major
alm in oceanography. For this purpose observations of temperature, salinity, oxygen
and other characteristic properties of the sea water arc collected, in order to get an'
indication of the prevailing currents. - o _ , SR

Strictly, the observations ought to be simultaneous, but this condition can not be
fulfilled at present. The question then arises: How far can observations which are not
simultaneous be combined? Or otherwise expressed, can a single observation give a
sufficiently close representation of the prevailing conditions at the point considered.
Most oceanographers have tacitly assumed that, apart from. the surface layers, the-
conditions are sufficiently stationary to allow the combinations of obsetvations as if
-they were simultaneous. - - - _ _,

Different expeditions have, however, made observations which show that the condi- =

tions may alter in a very short time. _ _ : _
 Repeated observations during 24 hours. show that the changes often are more or
less periodic and that the tidal periods are predominant. The changes are in some way
connected with the tidal currents. . o o o

- The observed variations of temperature and salinity can only be explained by assum-
ing large vertical oscillations of the deeper water layers, and a full explanation is only
possible by making use of a theory of internal waves. o _ o

A theory of internal waves was first given by STokes in 1847. [11] ' )

He considered the oscillations of two superposed liquids of different density. It is
then possible to have large vertical displacement of the common boundary, while the
surface is nearly undisturbed. The horisontal velocity is discontinuous at the boundary
and the velocity of propagation will depend on the difference of density between the
two layers, being: ’ = ' ' '

ghiha(py — P2)
(by+ha)py

£ =
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where k, and A, are the depths of the two layers, the total depth being A p, and
p. are the densities of the two liquids. Such waves are often called boundary waves

and it was the theory of boundary waves which was used by occanographers when

trying to explain the oscillations in the deeper layers of the sea.

The theory of Stokes is based upon the assumption that there is a sharp dlSCOIltll’lllltY
in den31ty, but that the two layers are otherwise homogeneous

Near the coast one may sometimes find a sudden increase in density which approx-
imates to a discontinuity and then the theory of boundary waves may be applied,
but in the open sea real discontinuities are practically never found. Sometimes one

may find a layer with rapid variation of the density, but the layers above and below.

are never homogeneous unless in great depths.

Observations of internal waves were made by Otto Pettersson in 1907 in Storebelt
and in 1910, observations in the Faroe-Shetland channel were made by a Damsh a
Scottish and a Norwegian research vessel. [7] '

Large variations in temperature and salinity were found which could only be attri-
buted to vertical oscillations of tidal period. But here the variation of density with depth
could not even approximately be represented by a discontinuity layer.

On the Meteor-Expedition vertical oscillations of tidal period were found in the

‘south Atlantic, but the discussions of these observations by Derant [1] were stlll'

unpublished when I published my paper “Interne Wellen” [4].

The current measurements which were made by Helland- Hansen and Ekman in
1930 showed that the tidal currents varied greatly with depth in a manner which could
not be explained by the classical theory of tidal currents.

The theory of boundary waves may explain a certain phase difference between the
tidal currents in a top layer and a bottom layer, but the observed Varla.tlons were of a
more complicated character.

The theory at that time also suffered from another defect. When the influence of
the Earth’s rotation is taken into account, one may find a solution of the Kelvin type,
which gives a wave where the amplitude has an exponeritial decrease in the direction

perpendicular to the direction of propagation. This decrease depends on the velocity

of propagation and is more marked when the wave propagation is slow. The consequence
is that for internal waves the amplitude would be infinitely small at a short distance
from the coast. Defant was hereby led to the conclusmn that real mternal tidal waves
would be impossible in the open ocean. : :

The observations had shown that relatively large variations of temperature and
salinity of tidal period were present in the ocean, but the current theory was unable
to explain them. Helland-Hansen has drawn attention to the possibility that variations
might be observed where the temperature and salinity varied rapidly in a horisontal
direction, but a closer examination shows that the observed variations in most cases
were too large to be explained in this way. '

Such was the state of affairs when I started my theoretical investigation in
1931.
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I saw that a new theory must take into account the real density distribution such
as it was found from actual observations. It was also necessary to see if other types E)f
waves were possible, than the Kelvin type. I succeeded in finding a new type of waves

- where the amplitude showed a periodic variation in the direction perpendicular to the -
. direction of propagation. ) _

For the amplitude of the vertical oscillation I found a differential equation, and this
equation with the appropriate boundary conditions admitted an infinity of waves with
the same period but different velocities of propagation, and consequently different wave
lengths. ' -

The velocities of propagation of the different waves were as a rule incommensurable
and as a consequence the whole wave phenomenon would not be periodic in space.

In order to test the theory some observations were made in Nordfjord 1933, and
it was found, that tidal variations of temperature and salinity occurred, indicating that
internal waves were present, but owing to unfavourable weather conditions the ob
servations had to be discontinued after 42 hours. - -

The next summer observations were made in Herdlefjord, near Bergen, and some
preliminary results of the expedition were presented at the meeting of the International
Union of Geodecy and Geophysics in Edinburgh 1936 and at the congress of Geography
in Amsterdam 1938, . S

In 1949 I had an opportunity to make a new series of observations with two ships.
at the same place, and it is the results of all these observations which will be presented
hére. . | ' o

Before going into the treatment of the observations we shall give som theoretical
considerations on internal waves. -

2. Influence of compressibility on internal waves. In the previous paper.
“Interne Wellen” [4] it was assumed that the water could be treated as incompressible,
but in most oceanographical research the influence of the compressibility is taken into
account, and we shall in this chapter investigate what modifications of the theory are
necessary when the compressibility is taken into account. :

The equations of motion are unaltered, and since we are here concerned with long
waves, the vertical acceleration may be neglected. Consequently the equations of.
motion may be written in the form: '

ou 1op .
—aE-——lv—l-—a——O,
du 106 - _
1dp -
& ;&-0

The equation of continuity is
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d,a_]_p(au dv aw)zo__

EP\GTE T

i (2.2

To these equations we must add an equation giving the influence of pressure on
the density. This equation may be given in the form:

where x is the velocity of sound. More explicitely we write

op

A

ot

df 5
-
ap  dp, 3p Qe)_aﬁ o o P
P Ty Y ez T T TP T2 (2.3)

and we assume that & may be regarded as a function of the depth only.
To simplify the equations we put

w=—

dg

dt’ P zpo(z) +p1(x3.y: Z, t)

A
p=po+g | podz+py

where p; and p, are assumed to be small quantities. The equations then take the

form
3—?—10+%%?0,
%%—Au-l-}—o%&*:o )
e+ Do, @)

When the depth is constant it will be possible to isolate a factor depending on z

only. We therefore assume

®

U(x, y, el (z)
v =V(x,, H)cF(2)
b =Z(x, 3, )PpF (2) ,
{ =Zw(z),
pr=2¢(z) .

2
]

Dropping the common factor ¢F, the two first equations (2,4) take the form
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o oz

ot AV oG =0, E
2,5)

v 0z (2

H—-}-/‘{U'l-ﬂay =0 s

and to these equations we add the following, which is suggested by the form of the
equation of continuity ! -

0Z ou avy | .
o c(ax +5J’)"O' (2,6)
In the equation of continuity all terms will then contain the factor
| | oz
ot -
Dropping this factor, the equation takes the form
' dw
b+ poF 4 p 2 0 @7)
and the physical equation is then
xz(c,b +w—§~§ﬂ) —~cEpeF +gppw=0. (2,8)
The equations (2,7) and (2,8) may be solved with respect to ¢ and F giving
o dw -
o &Y
F= K2 —c2 -
and
62@‘— w
¢ —l—w@-ﬂ = Z—°
dz "% xBg?
. The remaining equation
8pP1+—— 51 =0
is in the same manner reduced to -
: d
g +‘%E£(P0F) =0
~or introducing the values above
K2d_w — o) 62_6.1_{{)_._ w )
LAz T dz ¢ dpy
TR\ E—E | T8 e mew =0
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This equation may be written in the form

4
dz

The surface condition is

or

which again reduces to

giving

The surface condition is thus unchanged. The bottom condition is

In the equation (2,9) ¢/« is the ratio of the wave velocity to the velocity of sound,
and this ratio is extremely small and may safely be dropped. The equation is finally -

d dy
Po’zwg‘) —”g—(ﬂ*‘%ﬂe)w:o .

The density is now a function of temperature, salinity and pressure.
Salinity and temperature are again assumed to be functions of the depth. Accordingly

we may write

and consequently

If we put

and

we have

¢ dz 2 | dz o2

gld{ po

1 -~

K2

R
| podz4p,=0,

ht+ &

—gpol +p,=0

w=0; z=0.

dz

c2

0z Op 0z 0z

dpy , &Py _ 9Py ]

Z T2 ez
po=1+10"3¢, ,

pit=1+10-%,

apo___ ._.360}
2z =107
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The only difference between the equation (2,10) and the corresponding equation
in “Interne Wellen™ is that the density in the first term of (2,10) is the density in situ-
while the equation in “Interne Wellen” only used the density 1 +10-3¢, in both terms.

When the depth is not too great it will not be necessary to take the influence of com-.
pressibility into account.

3. Different solutions of the wave equations. The equations:

oU 0z
o e =0,
. \‘\
av 0z
_az—'f"j.U'['CE 20,

oz aU+aV)_O
at ”(ax ay )"

may be solved by writing

2
U:A%-E—cz iy

ot dxdy ’
V=%—C2§§, | (3’1); .
Z = —ci%f— wa% R -
where ¢ is a solution of the partial ,differgntial equation: _ )
tro-e(58420) 20, (3.2)

In an infinite uniform straight canal we get a solution of the Kelvin type by taking

ay/e. - x
¢ =Ae P %ing (t———) .

¢
Then

U=261de " cose (t —’—;)
V=0

-

Z =2¢cAAe P cosa (t —%)

The complete solution is then with
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2044 =C,

- x' dw
u==Ce ‘ly""cosa(t—-—)c—
.dz

¢
»=0 (3,3)

{ =Ce™™/°cosa (t _é) w(z) .

For the internal waves the velocity of propagation ¢ is very small and consequently
the exponential factor ¢=*'¢ will be of greater influence than the corresponding factor
for ordinary tidal waves. The amplitude of the internal wave will tend rapidly to zero
with increasing value of y. In the open sea far from the coast waves of this type are
impossible. _

If we disregard the limitation of the sea altogether we may take

¢ = dsin(ot —kx)
where ¢ and £ are connected by the equation
6% — )2 = (22

the velocity of propagation ¢fk=x is then given by

and we find ‘
U =olAcos(ot —kx)

= —)2A4sin(ot — kx)
Z =cAkAcos(at —kx)

The complete solution is then with ¢id=C

u =Ccos( ot —kx) c—dw ,
dz
Ao dw
0= ——&—C'sm(crt ——kx)cE ) (3,4)

c=}1-%c ; -
=l 1-%5 cos(ot —kx)w(z) .

In a very broad channel we may also have a solution of another type. If we take
¢ = Asin{gt —kx)sinyy -

we have ,
02 — )% =2(k2 +?)
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and
U =A(slsinyy — c*ycosyy)cos (ot —kx)
V= —A4(2%+y*sinyysin (ot — kx)
Z =A(ckksinyy —caycosyy) cos(at —kx)

or if we take

¢%yA= —C
u—C(cos ——afl—s' ) os(ot —kx) dw
= 7y oy S | cos(o s
_ 12+62y2 . . dw _
v = C’Wsmyysm( ot —/cx)c_a— s (3,5)

G i
¢ _EC ( cosyy — ?‘—?smyy) cos(at —kEAyw(z) .
The formulae give
v=0 for »=0

and yy=mmn, where m is an integer.
The condition of possibility of these waves is

0% —22% —¢2y2 ()
and a fortiori |
o2 =120,

It may however be remarked that if we take the influence of eddy viscosity into account
it may be possible to get wave propagation even if this condition is not tulfilled.

4. Energy of internal waves. The potensial energy of an ordinary tidal wave
is given by

it

1
E,=gp [ (z=h)dz=5gp(%.
In a two layer ocean the corresponding expressions will be
1 1
E, =§§(P1 = ps){s® +§g:02622

where (, is the amplitude of the wave at the internal boundary and {, the amplitude at
the surface, . '
In an n-layer ocean the corresponding value will be

1 1
By =g82(pi—pre1)f 580,02 .
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If the layers have all the same thickness Az we may write

I _pi—ps 1
Ep =§g2p'A—zp+lAZCi2 +§gpn(:n2 .

For an ocean with continuously varying density we then get the expression

1 h
E,= _—g.f C2d2+—gphCh .

Introducing
{=Zw(z)
we finally get the expression for the potensial energy of the internal wave
1 "dp
g7 2 _ (4.2 .
E, 2gZ l:p,,w,, | 6[ P dz]

The kinetic energy is expressed by the integral

]. h
~5 { Ptz
or if we introduce _
dw dw
U= UC—E‘— U= VCE ’

we get
_Lie 2 ; 2 _d_zg. *
Ey=g(U +V)6[cé(dz) dz
Remembering that w is an integral of the equation
ad (o) _ o
dz

we get
kodf dw
2 2
¢ gj wﬁ;( P )dz =g j w dz
or integrating the first integral by parts, we get
czp(wd—w) —czf ( ) dz=g f—wzdz
dz _ dz

The boundary conditions :
w=0; z=0.
5 W

T—gw =0; z=kh,
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then give
B dw\? : hdp
2 il - 2y _g (4P,0
cal'p(dz)dz g(pw?), gojdzwdz.

The two integrals involved in the encrgy expressions are thus equal,
The eigen functions w and ¢(dw/dz) may be normalised for instance by the condition

brdw 2
2 . —_
| ¢ of p( g ) dz=1
or a similar condition.

For the functions tabulated as a result of the numerical integrations, we have chosen
the value _

108 .
This was convenient because the numerical integrations were carried out with-a -

unit of depth equal to 10 m.
For waves of the Kelvin type we get

For the other types of waves we get.

- 5. Influence of eddy viscosity on internal waves. For simplicity we only _
treat the case when the influence of the Earth’s rotation is disregarded. - '
‘The linearized equations are then - :

6_u+i@_i£( )
ot pox p dz\"oz

1o _
p 0z

du Ow

a—'o+w§E =0

As before we put _
. P =p0(Z) +P1 3

, k
P=po+g | pydz+p,,

&
W=
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The equations may then be written in the form
6u+1 oy _ 1 6( 6u)’

ot " py 0% pg 0z Toz
ou 2L
w T ~O
L9 -
gpl Bz "0: (5:1)
ap, , 0¢ dp, 0.
ot ot dz

When the depth is constant we may try to isolate a factor contammg only z, and
consequently we assume

The equations may then be written
(aUHaZ) dw _Uii ilfg)
ot dz p, dz(" dz?

U  8Z \ dw | |
( % + )dz =0 (5:4)

It will then be necessary that

1 df d*w fd_w

Po dz (n‘dz2 ) dz
where f is a constant, : -

d{ dw dw _

pa (ndz) +fp0d =) (5,5)
and

- d dw g dpy.
az(ﬂod—z) 2 =0 (3,5)
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The remaining equations then take the form

zZ

W v+ o,

0z, U .

ot ox o

It will now be shown that the equations (5,5) and (5,6) are equivalent if
fr2p
- gp_o : (537)
dz

Equation (5,6) may be written

Po d2w+ dw g
dp dz2 dz  c®

w=0.

dz
If we put
Po _ _ 81
dpy  fep
dz

the equation will be , | |
—£ dw dw g

If we differentiate with respect to z, we get
g 'd(dzw) g dp Pw dw_ g dw -0.. o

e, "\ fc2 R @ dz
But
& dp
Jepq? dz" 1+1=0
and the equation reduces to )
d [/ d?w dw
Z(1zx ) =0

which is equation (5,5). ' :
With this solution it will not be possible to satisfy the condmon u =0 at the bottom, f
but this is not so serious, because the bottom friction will probably be small in compari-
son to the friction caused by the great shear in the upper layers where the ve10c1ty
changes rapidly with depth.
The expression (5,7) for the eddy viscosity gives as a result that it is inversely pro-
portional to the stability, and this is in good accordance with experience.
In greater depth where the stability is small the expression (5,7) will probably give
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too large values of the eddy viscosity, but this will to some degree be compensated by
allowing slipping motion at the bottom,

It might be mentioned that W. WerENskroLD [12] has deduced a similar formula
from quite different assumptions.

In order that the coefficient of eddy viscosity shall be independent of the order of
the internal wave, it is necessary that

J¢®=constant.

"This means that the friction coefficient f will increase rapidly with the order of the
wave, and this must be expected since the velocity will change more rapidly with depth,
and thus the shear will be greater. If we put

u CN ei(o‘t—kx)
3

we get o
(to+f)U—cthZ=0

—cklU . +igZ =0
giving ; ,
—o? +iqf+62k2#0
-and if we put |

k=——1
e K
we find
2 , o
ol
Qﬁi o
k¢
An approximate solution is then
K~ ,
~L
2’

but more exact values may be found by solving the equatlons We then get damped

waves with the exponential factor
e..fx/Zc -

A more complete treatment of this problem is given in the appendix.

6. Numerical Integration Methods. The density p is determined by observa-
tions at selected depths and the coefficients of the differential equation are given in
tabular form only. Hence the integration has to be performed by numerical methods.
The horisontal velocity is given by
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dw
U=c——

dz -
and consequently it will be necessary to calculate both w and dw[dz. Introducing
u=c(dw/dz) into the differential equation, we have

d » dw -
0'3;(,0“) =g[E(pw) —pE} o
or
_ci g _ dw
g\ |= ey

Integrating between z and £, we get

h P
c(pu —gc—rpw) = —‘% [ pudz .

z

or since cz—gw=0 at the upper limit, it follows that

g h
cpU=gpw +; - | pudz .

z

Here we may write

wel { udz : '
¢4 - :
and finally we get the integral equation

. . 611"
pu:;‘%-l:p J udz + j'pudz:l. 1)
¢ -4

This equation may also be used when the density is discontinuous,
I p is constant we may take # =constant and the equation gives 31mp1y

which is the well known formula of Lagrange.
In a two layer ocean with density p; and velocity #; in the bottom layer and si-
milarly p, and %, in the top layer we get one equation if z<A; '

h h
Pl =iTIP1#1 + gzz 5 Palla

and if z>A we get

h hy
Pally = gc_21p2u1 + %Pz_uz

or
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giving

¢t —2(ghy +ghy) +ghy - gsz-lf-f—z- =0
1

which gives the velocity of the boundary wave.
The integral equation may casily be transformed to an equatlon with symmetrical

kernel. If we put u]/ p =¢, the equation may be written in the form

b=u I K(z, $)$(s)ds - |

where

~and

°b) |

D os>z. '
p(z) .

From the general theory of integral equations with symmetrlcal kernel, we know
that the kernel may be expressed by the bilinear expansion

Kz, 5 = £ 0e(2) 6:05)

H

where p, are the eigen values and the functions ¢, form a normal orthogonal system.
If we put z=s and integrate between 0 and % we get

hezt
Ha
or since -
g
He =Cr:—2 ]
(6,2).
gh=12XZc?2. | -

This may be regarded as a generalization of Lagrange’s formula.
For the actual calculation of # and w the integral equation is not convenient.
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The integration is best performed by a step by sfep mecthod. One such method has
been given in “Interne Wellen” and we shall here give details of two such methods.”
Ordinarily it will be convenient to introduce other units in the equation, mostly
I have used x =107z as a unit of depth, and with p=1+ 10-34, the equation is then
d/ dw g do, . o
}E(pd_x) e
We also denote dw/dx by u, since it only differs from the function # defined above
by a numerical factor which can be restored after the integration.
We divide the interval of integration in equal steps and denote the abscissac by

.?Cl = Py x2 =26"6 » ‘e ﬁtC.
If we integrate the equation between x,_, and Xy, We get

g *n+1
(Ptt)yiq— (Pu)n—l ch(aw)n+1 —(ow),1— | oudx
. Xp—1
and at the same time we have
Xpt1
?:01'1+1_ZU1'1—21.= I udx'
- *p—-1

From the two equations we may eliminate w,,,, giving

. *n+1
(P)ns1—(pt)yq =€%[(Un+1 =)W1+ [ (Gpeq— U)de:l .

. Xy

- Expressing the last term by Simpson’s formula, the equations will be

' ' @ - 4D -
(0U)psr — (put),_; =§[(°’n+1 ~Op_y) (wn—l +_3_un—1) + (041 _-O'n)“g—un:l : (6,3)

Wy +1 — Wy ='3_[un+1 +4un +un—1] - (6’4)

By means of these two formulae the step by step integration may be performed, if only
the two first values are known. . ' |
*. Starting from the surface, we may chose an arbitrary value of 4y, and w, is so

i

hosen that the surface condition is satisfied. With the unit used for the integration,
this will be

ty~10%50, =0 .

w; and u, may then be calculated by Taylors formula, and remembering that

d2w -
=0

at the surface, we may chose the interval so small that sufficient accuracy is obtained
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when we stop with the terms of third order. The formulae then takes the form

wl_w0+u0 [l_l_f;z plﬁpr:oﬂ ”] . _

“ —u0(1+% 1~ Pow) . ‘
¢t 2py ‘

Since we start from the surface, the increment @ is taken negative.
- The integration formulae supposes that the parameter gf¢? is known. This is not
the case, and we have to perform the numerical integration with an assumed value
" of the parameter, and surface values of # and w, which satisty the surface condition.
If the bottom condition is also satisfied, the parameter value is correct. If not, we have
to chose another value and make a new integration. If the bottom condition is still
violated, a linear interpolation will ordinarily give a nearly correct value of the parameter.

To find a preliminary value of g/¢> we compute the integral

| 1 dp
d——J‘ —FECJZ

and apprommate value of g/c2 is then given by

g [mn

-(2) '

where m is an integer.
Another method of numerical integration is set forth in the paper mentioned
above. (3) | - | o
Let us write the equation in the form o -

Pw_1dplg dw] |
dzz_ p dz = T | _ -

' let

ol Pl o
- dz? T p dzf ¢ dz
and
- 1
wxw—TQ—E
then

. w,-1=¢, ”
which is a very convenient formula for the integration process. '

The equation may also be solved by means of a differential analyzer.

Theoretically we have an infinite number of solutions corresponding to waves of
different velocities of propagation, but in practice a finite set of eigenfunctions and
eigenvalues will be sufficient. As will be secen 5 such solutions are Sufﬁment to express
the observed oscillations. '
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7. Detection and analysis of internal waves, The marked discontinuity of
density which is supposed in the theory of boundary waves are practically never found
in the open sea, but near the coast one may sometimes find variations of density which
approximates more or less to the ideal discontinuity. '_

The motion of the boundary layer may then be registered by means of a buoy,
whose weight is adjusted so as to keep floating in the discontinuity surface. The motion
of the buoy may then be registered by a pressure gauge. ) h

Such methods have been applied especially by Hans Petterson in Kattegat and
Gullmarefiord, but when there is a more gradual change of the density the only method
is to take regularly repeated observations of temperature and salinity. Experience shows
that when the density increases continously with depth there will generally be a
number of internal waves present, and to get a sufficient picture of the motion it is
necessary to have observations from as many depths as possible.

The vertical oscillations may then be detected by observing any conservative pro-
perty of the sea water. Let § be such a property. Then S

ds
| " |
-~ or if the change of § in a horizontal direction is small, the equation is approximately
o3 -+ wﬁ =0
at " oz

or if we put

d
5=8,0)+5,, w=t, o

The vertical alevation of a water particle, ¢, from its equilibrium position may then
be determined by making regular observations of .

Sy is then determined by taking means over one period and §; 1is the deviation
of the single measurement from the mean. ¢ may then be calculated, either from the
single observations or by harmonic analysis of the §; values, and then calculate the
corresponding harmonic constants of {.

When we have regular measurements of temperature and salinity, we may compute.
the corresponding value of the density which may then be harmonically analysed.

Suppose that we have found

. 2
p1=A4,coset +Bsinat, o =_; -

The harmonic constants 4, and B, are functions of the depth and we may express
them by the series '

g

__dp,
4,= —EZ—Za,,w,,(z) -

d
B, = —%Ebnw,, (z)
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and
CA = zanwn ) CB = anwn .

I 4, and B, were known as functions of z, from the surface to the bottom, the de-
termmatlon of the cocificients might be done by the Fourier method since the eigen-
functions w, have orthogonal properties expressed by

h d 0

(pw,0,), — Owaw Wz=0; n#m.

The first term is ordinarily negligible. Multlplymg the series by w,, and integrating,
we get

? B
JAw,dz= —Z2a, | d—pw,,wmdz s
b 5 4z

_ pwnly = zan(pwnwm)h >
and adding, and taking the condition of orthogonality into account, we get

3 hdp
Pﬂ%ﬂ+um$hﬂ%Bm%%ffg%ﬁ&]
(1] 0 A

from which the coeifficient @, may be determined.

In the practical computation the eigenfunctions have been normalised by the condi-
tion.

h
cnzfp((fz")zdhg(pw) gf—wzdz 10%,

or

a,=10"3¢ [IA w, dz—l—(pwm(:) }

The coefficients &, are determined similarly.

The theory supposes that the repeated observations have been done at a constant
value of z but in reality the observations have been taken at a constant depth below
the surface which itself exhibits tidal variations.

Let the dlrect observed value of the density be p’ Wthh is

d -
prepEtl) =P+ G

Let -

Pr=potprs, P=potprs
then

Py =p +d—z0§h )
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and
h ‘ k T k dp -
| pywndz= | pyw,dz+1, § —Pw,dz
0 0 o dz ‘
i 2/ dw
Jplwmdz_]'((:pwm)h ‘:hg ( dZ )0
or

| . |
107% [ pywadz =a,~, - 10-%(pu),.
| ; |

The last term is ordinarily small and may be neglected. ~
‘The coefficients a,, may then be determined by the direct observed values of the
density. . ' -

If the surface elevation is known, a correction may be applied; but this will seldom -
be possible. : ‘ | ‘ -

Generally the observations will be restricted to a small number of depths and then
the general Fourier method can not be applied. The only possibility is then to try to
represent the observations by a finite number of eigenfunctions and determine the
coefficients by the method of least squares. :

When it is possible to integrate over an interval which does not cover the whole depth,’
the. eigenfunctions are no longer orthogonal and we-then get a set of -equations from
which the values of the coeificients may be found. This is the method which we are |
going to use in the following chapters. h

The current measurement may be treated in a similar manner.

Let one component of the current be expressed by

u=Fcosot+ Gsingt .
Fand G are then functions of the depth and may be represented by a series of
eigenfunctions |
F= Tfitn(z) , G= Zgndn(z) . .
. The eigenfunctions form an orthogonal system and have been normalised by the condi-
tion -

) ‘
J pudz=103.
0

It will here be necessary to introduce also the zero order functioh, which to a sufficient
approximation may be taken to be a constant.
- F=f;3 + E.ﬁiun bl G =g0 + Zgnun .
The coefficients may be found by the method of the least squares, but often we then
meet the difficulty that the determinant of the equations is nearly zero.
This may be understood since it will also be possible to represent a discontinuous
function by a sufficient number of eigenfunctions.
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If we are able to draw curves representing F and G from the surface to the bottom,
the Fourier method may be used, and the coefficients are then determlned without -
ambiguity. -
~ If the waves are progressive we should get the same results from the analysis of the
vertical elevations of the water layers and from the analysis of the current measurements

\f;:=an3 gn=bn'

For standing waves the results are more complicated.

8. Treatment of observations. The current measurements were taken at irregular
intervals and the single measurements show quite large. fluctuations both in direction .
and velocity. The variations might be characterized as some sort of turbulence but may
partly be due to standing lateral oscillations in the fjord.

To eliminate these short period oscillations and get values which are more readily
analysed for tidal currents, we have smoothed the curves by taking means of four hours
by means of a planimeter. But the currents also include more or less irregular wind
currents and currents set up by pressure gradients caused by the distribution of density.

We. were mainly interested in the tidal currents, and so the non tldal currents
had to be eliminated. ' 3

Suppose that the observed current could be represented by a formula of the kll’ld_

u=A+ Bt +Ct®>+ Rcos(at — k) +90 .

where the polynomium represent the non tidal current and ¢ the random variations.
By taking means over four hours, we get o , _ -

4
+g) + RS

sin2q

P cos(crt—rc) +6-

u=A-+Bt+C(t2

Since § represents random variations we may assume that 5 may be neglected
We now form the difference

- Au=u(t—3) -_u(t+3) = —-68-12Ct

sin2¢ '
5 2s1n30Rsm(at —K).,
Repeating this process, we get
APy =72 —-erﬁz%ln% oRcos(at — k) .

In this manner the non cyclic correction is eliminated, and the amplitude has been.
multiplied by a factor which is easily evaluated.

For diurnal waves it is better to take differences with 12 hours interval. The whole
calculation together with the harmonic analysis of the resulting values is easily included
in a computation form.
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Ordinarily the measured current vectors are decomposed in a North and an East
component and the two resulting curves are treated separately, -

As a result of the analysis we get two components of current represented by the
formulae

E : u=Mcoset + Nsinot o

N : v=Pcoset + Qsinct ,
From the coefficients, M, N, P and Q we have to find the axes and the orientation
of the current ellipse and also the time when the current attains its maximum value.

The necessary formulae are easily deduced in the following way:

In a coordinate system we imagine two vectors of constant magnitude rotating in
opposite direction ‘ _
Vl =Aei(rz+at) , Vz :Bei(ﬂ_ﬂ) .

The resulting vector has the components -
u = Acos(o + o1) + Beos(ff — ot)
- v=AMdsin(a+of) +Bsin(f —at) .
‘The maximum velocity is obtained when both vectors point in the same direction
«+ot=F—gt | |

or , - B

N

At this moment the vector forms an angle y with the #-axis determined: by
t (v . : : : _
gx o E gt=7t . .

_f+a

or

The maximum velocity is 4+B, and the minimum velocity is A—B. To find «,
B, 4 and B we have only to identify the coefficients of cosor and sinogf in the equa-
tions: ' '
Acos(a + ot) + Beos(B — ot) = Mcoset + Nsinot
| Asin(o + ot) + Bsin(8 — of) =Pcosot + Qsingt
We then easily deduce the equations

M+Q _M-Q
5 .Bcosﬁ— >

PN g DA

Acosa =

Asing =
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or | .
N P+ N

P
tgoc—M+Q tgf = W=q

A= JTTQF+ (PN, B=1V(M—Q)2+(P+N)2 .

The temperatures and salinities are smoothed and analysed in the same manner,
such that the results of the analyses are given by formulae

T, =Rycos(ot —yr)
, S =Rgcos(ot —vyg)
To obtiin phase angles which are more easily compared we have computed the x-angles
K=+ ZJO +u

where v, +u is the initial phase of the tidal component 11/12 vo+u Is computed by the
formulac of Doopson [2].

@

CHAPTER II

ANALYSIS OF OBSERVATIONS

9. Observations in Herdlefjord 1934. The tide generating forces of the Moon
and the Sun can not create internal waves of notisable magnitude. But when the tidal
currents are distorted by the bottom configuration, this will set up internal waves such
that the superposition of the ordinary tidal wave and the internal waves will give a
variation of the tidal currents with depth which is necessary to satisfy the boundary

_conditions of the current.

When searching for a suitable locality for the measurement of internal waves, we
were guided by the following considerations: There should be no discontinuity, but a
gradual increase of the density from the surface to the bottom. The waves should be
of a comparably. simple type, preferably of the Kelvin type. This suggested that the
observations should be made in a fjord, and the bottom configuration should be fa-
vorable for the formation of internal waves. | .

In the summer 1933 some preliminary investigations were made in Nordfjord.
The ship was anchored at a place where the depth is quite uniform, about 580 m.
Determination of temperature and salinity were made hourly at different depths, and
at the same time current measurements were taken to determine the tidal currents.
The temperature readings proved at once that internal waves of tidal origin were pre-
sent, but after 36 hours the observations were broken off owing to unfavorable weather
conditions.
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In July 1934 a new expedition was undertaken and measurements were made in

Herdlefjord near Bergen. A map of the fjord is shown on Fig. 1. At the south-easterly.

end there is free communication with a larger fjord system, while the north-westerly
end is nearly closed by the small island Herdla, and the communication to the fjord
system outside s only through narrow and comparatively shallow openings. The tidal

currents then have free acces at the south easterly end, but in the other end the currents-

are cut off in the deeper layers. This will favor the formation of internal waves. -

~ The measurements were taken at three different stations. At station I, which is
near the northern end of the fjord, the observations were started on July 13th 20" 40™,
The depth was 231 m. The first three series were taken to find the detailed distribution
of temperature and salinity from the surface to the bottom. The first series D comprised
the depths 40, 50, 60, 75, 100, 150, and 200 m. Series.E at 21* 20™ was taken at the

depths 6, 8, 10, 12, 15 and 20 m. At 21" 50™ a series F with the depths 0, 1, 3, 5, 7, 9,.

11, 13 and 15 m were taken, Then the series 32 to 45 were taken hourly. It was then
decided to take temperature observations every half hour, while salinity samples were
taken only every hour.

The observations at this station were @ntinued for 80 hours. The temperature and

salinity values are given in table I (Part II). A graphical representation of the tem-

peratures is given in Fig. 2 and the salinity in Fig. 3. The points representing the in- - ‘

dividual observations are connected with straight lines, and the curves have been
smoothed by taking means over four hours by means of a planimeter.
In the following table we give the results of the harmonic analysis of the observations.

Vol. XXV.

Table 1. :
Depth Ry °G Kt | Ry Ks R, - Kg
5 e 0.265 200° 0.376 14° 0.344 140
10 e 0.399 227 0.302 48 0.306 50
15 iiiennnn. 0.354 228 0.281 38 0.272 42
20 iririiiiins 0.142 243 0.197 38 0.158 43
30 iriririninns 0.0132 65 0.0784 49 0.057 44
100 «.eeennnn. 0.0145 226 0.0097 14 0.0087 | 18,

* The mean values of temperature, salinity and density are given in the following table:

Table 2.
Depth T,,°C 1 8,20 Ctom

5 vernn.. 11.254 30.575 923.310
10 ....... 9.546 32.466 25.076
15 ooon... 8.197 33331 L 25.950
2 ....... 7.706 33.793 26.399
30 ....... 7.665 34.320 26.809
100 ....... 7.540 34.799 27.212
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We have also made harmonic analyses for single days to see how the conditions
change from day to day. The results are given in the following table.

Table 3. Results for single days.

St. T, 1934, -
Depth Ry Kt Rg Kg R, Ky Depth | scmfsec. |© K
245 | 2130 | 382 16° | . .344 90° | 10.4 965°
5m 241 219° | 236 310 238 34 5m| 58 998°
298 167° 511 | - 3560 450 359° 9.9 933°
448 939° 365 59° ] 361 58° ,
10 m 438 999° | 203 | . 46° 313 46° | 10m | 102 244°
312 913° 247 41° 243 41° 12.1 939°
401 938° 360 49° 354 500 8,1 9150
15 m 358 953° 239 510 219 57 | 15m 7.8 976°
304 195° | . 944 190 | 242 170 6.0 915°
- 189 | 2440 | 954 39° | 215 490 4.0 964°
0m 161 257° | .192 | s 148 622 | 35m | 3.5 955°
075 995° | .144 17° A11 19° 3.0 919°
0146 440 0966 48° 0709 49° 0.91 219
30 m 0150 96° 0753 50° 0518 50° | 50m 46 993°
- .0099 540 | 0.632 990 0481 310 1.01 991°
0130 | 236° 0118 27 | 0099 | 31° | |
100 m 0155 |  248° 0084 170 0077 92 | 100m | 1.20 121°.
0150 | 194° | 0089 | 358° .0085 0° .

Results of current measurements 1934.

Current measurements were made at the following depths, surface, 5, 10, 15,. 35.
50 and 100 m. For the surface observations and the measurements at 35 m depth electric
current meters of Sverdrup and Dahl’s construction were used. All other current measure-
ments were made with Ekman current meters. The single measurements show irregular
variations and the shots are mostly scattered in many compartments in the compass box,

The main direction of the fjord is SE-NW. We have chosen the direction towards
SE as the positive direction since it seems as if the internal waves are advancing in this

- direction.

The following table gives the mean values for 3 lunar days:
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Table 4.
I . Uy K X ‘ 7
5 ..., 8.68 245° —56°
10 ....... 11.11 241° —45°
15 ....... 6.02 - 241° —45°
35 ....... 3.51 243° —48°
50 ....... 0.88 216°
100 ....... 1.20 121°

The surface observations were so much disturbed by non-periodic currents that
no results could be found for the tidal current. |
To give an indication of the stability of the tidal currents we also give the results of
the analyses of single days (Table 3). In 100 meter the results are from 1 day only. -

Results from station II. 1934. .

The observations at this station covered a time interval of 30 hours and fell approx-
imately at neap tide, such that the waves were small and irregular.

In the following table we give the results of the harmonic analyses of temperature,
salinity and density. ‘

Table 5.
Ry Kp ' R Kg R, Kg -
5 ...... e . 0.1753 226° 0.2687 28° 0.1612 45°
10 o eeeen ey, 0.0682. 40° 0.0492 150° 0.0475 141°
15 v, . 0.0610 21° 0.0470 193¢ 0.0420 o197
20 i 0.0129 162°¢ 0.0835 1457 0.0635 144°
b ¢ 0.0117 179° 0.0543 160° 0.0406 159°
50 ..... e 0.0135 331° 0.0225 171° 0.0197 178°

The mean values of temperature, salinity and density are given in the followmg
table: '

Table 6. .
T | $ - O
5 ..., 11.26 30.973 23.632
10 ........ 9.36 32.543 25.177
15 .o...... 8.06 33.266 - 25.929
20 ........ 7.62 33.813 26.419
30 ........ 7.77 34.335 26.801
50 ........ 746 34,702 27.097
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depth. This is also evident from the comparison of the phase angles at 10, 15, 20 and

30 m depth.

‘The current measurements at this station give the following results.

Table 7.
v K
B e 5.4. 316°
10 ........ 5.1 329°
B T 2.9 3h2°
50 ..., 0.5 319°

The measurements with the electric current meter at 35 m depth gave no satisfactory

results. The only safe conclusion was that-the current was very weak.

The measurements at station I covered a time interval of 36 hours.
The analyses of the temperature and salinity measurements gave the followmg

¥

results.
Table 8.
Ry Ky Ry Kg R, Kq
5 0.3085 10°6 0.4599 172°5 0.4235 174°2
10 ...... e 0.3823 21°7 0.2442 201°6 0.2488 200°5
15 ..o, 0.1951 14°9 0.1375 183°2 0.1243 181°0
‘20 .............. 0.0260 22"4-_ 0.0784 208°7 0.0640 - 209°
30 i, 0.0196 250°0 0.0145 257°0
B0 e '

The currents at this station were very weak. The analyses give the following results.

Table 9.
Fil K
5 s 2.8 13°
10 oonnnn.. 2.8 91°
R 2.1 6°

From the mean distribution of density the theoretical internal waves may be cal-
culated. In the numerical integration we have used a vertical unit of 10 meters, and

the eigenfunctions have been adjusted such that
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. _
| putdz =103 -
; .

or with z =103
R
{putds=1.
0

’ The eigenfunctions are tabulated in tab. 25 and 26 for the 5 first orders of
internal waves. o

From the density amplitudes the coefficients of the internal waves have been calcu-
lated according to the method set out above.

In the present case we have only observations of o, for d=5, 10, 15, 20, 30 and
100 m. We have made a graph and interpolated values of ¢, such that the integration
from the surface down to 100 m can be carried through, but in this interval the eigen-
functions are not orthogonal, and the integrals

h d P
) w,,wmggdz

hi
are different from zero. The result is that we get equations which have to be solved with

respect to the coefficients g, and &,. ,
In the present case we get the following equations:

Cosfficients of normal equations st. 1. 1934. 7 _ -

r | 2 5 | a4 5 4 B
1,01611 | —0,01487 | —0,01798 | 0,02300 | —0,03148 9,0003 7,0935
—0,01487 | 0,97360 | 0,03168 | —0,03597 | 0,07648 | —1,6700 —2,4043
—0,01798 | 0,03168 | 0,97203 | 0,06636 | —0,08825 1,2419 —0,9420
0,02300 | —0,03597 | 0,06636 | 0,96289 | 0,18231 | —0,5137 —0,2706
—0,03148 | 0,07648 | —0,08825 | 0,18231 | 0,84442 0,7059 0,5830

Solving these equations, we find:

a= 89464 b= 6,9906 R,=11,3502 x,= 38°
g=—1,8237 by=—24708 R,=3,0708  ix,= 234°
a3= 1,7524 by=-05932 R,= 1,8501 1= — 19°
a,=—12756 b,=—0,7404 R,= 14749 x,= 210°
as= 1,7932 b= 12727 R,=2,1989. ;= 35°

With these values of the coefficients we find the amplitudes of { and o, which
are given in the following table:
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Table 10.
c K R, sobs. R obs. R

5 i, 50.7 ’ 19° 0.294- . 14° 0.344
10 ...ooois, 146.1 4{° 0.324 50° . A 0.'306
15 it 209.6 45° 0.258 ' 42° _ 0.272
20 ..., 220.2 46° 0.164 432 0.158
30 cetesasaes 228.3 _ 44° 0.056 44° _ 0.057
100 .......... 514.4 32° 0.004 - 18° 0.009

In the same manner we may express the observed tidal current by means of the
eigenfunctions #,(z). In this case it seems reasonable to include the zero order wave,
l.e. the ordinary tidal current.
- Let the current in the main direction of the fjord be
u =Fcosot +Gsinot
and _
F=fo+ Xfu,(2) |
where #y(z) =1. _' ' ' '
The coefficlents are then determined by the equations :

2 b
J puFdz=3%f, | puu,dz .
h1 7 hi ‘

The normal equations obtained are

0 1 2 3 4 5 F G
10.2646 | —1.06452 1.02638 | —.97553 74426 | —.69993 | 14.5653 | —20.5970
—1.06452 91451 09048 | —.08866 .05831] —.06112|  4.13866|  9.79710

1.02638 .09048 87055 .05918| —.05491 .07575{ --2.71485| —3.58017 :
—0.97553 | - —.08866 .05818 91486 05076 | =~ —.08875| —0.13741 —0.94397
. 0.74426 05831 | —.05491 05076 91188 09774 —0.28994f  0.53971
—0.69993 | —.06112 07575 | —.08875)  .09774 84233 |  0.50054| —0.18950

and the solution of these equations give the following values of the coéfficients.

fy=—0.702
fi= 4.005
fo=—2.750
f,=—0.269
fi=— 0.210

fi= 0.545

go= —0.261
g, = 11.005
g, =— 5.056
- g= 0.185
&= — 0.306
gs= 0.866

R,= 0.750
R,=11.716
R,= 5.756
R,= 0.325
R,= 0.312
R,= 1.024

Ky =200°
ry= 70°
Ky =241°
Ky =146°
K, =236°
K= 58°
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As will be seen only the waves of orders 1 and 2 have significant values. It is also
remarkable that the zero order current is very small such that the corresponding phase
angle is unreliable.

The waves of first and second order have phase angles which are not very different
from the angles which were found for the vertical oscillations. This i is an indication that
the waves are mainly of a progressive character.

If we compute the currents which correspond to progressive waves, usmg the coei-
f1c1ents a, b instead of f and g we get the following values:

Table 11.
vV K Vobs Kobs
0 ....... i1.7 - 203°
5 ..., 8.3 228° 8.7 245°
10 ....... 7.9 227° 11.1 241°
15 ....... 4.6 227° 6.0 241¢
35 ....... 1.8 206° 3.5 243°
5 ....... 1.3 203° 0.9 ©216° .
100 ....... 0.9 | 39 12 121°

As will be seen, the computed velocities are on the whole somewhat smaller than
the observed ones, and the phase angles also show a systematic deviation from the ob-- = |
served values. From the coefficients f and g we calculate the following values of the _
velocities. : - R |

Table 12. .

V K 7 Vobs Kobs

0 ....... 7.4 257° ‘
5 ..., 9.5 246° 8.7 245°
10 ....... 9.5 243° 11.1 . 241
15 ....... 7.2 242° 6.0 241>
35 ....... 2.4 234° 3.5 243°
50 ....... i.4 222° 0.9 - 216°
100 ....... 08 112 1.2 121°

The agreement is quite satisfactory. . _

For station 2 we have only observations between the surface and 50 m. The oscilla-
tions are much smaller and consequently the results are affected with larger errors.
For the vertical oscillations the normal equations are
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I 2 3 4 5 A B
0.94336 19117 —.14988 .11311 —.06362 —2.44892 1.45253
19117 7715 .25011 —.18365 .13545 2.60647 10956
—.14988 25011 .72643 24152 —.16580 .56993 —.02407
11811 | —.18365 24152 83012 .25680 —1.52529 .31286
--.06362 .13545 —.16580 .25680 77238 .89994 —.75844

and the solution of the equations results in the following values for the different internal
waves.

Gy=—45609 b= 12111 R,=47276  #,=165°2
g,= 6.0403 b= 04900 R,=6.0601 x,= 4°7
a;=—3.0370  by=—0.5772 R,=3.0914  x;=190°8
g,= 14263 b= 0.9207 R,=1.6977  x,= 32°.4
@5=—13976 b =—1.3981 R, =19762 1, =225°

The distance from station I to station II is 8.2 km. The first order wave gives the
phase difference 165°—38° =127° corresponding to 4" 23™,

By assuming a progressive wave proceeding from station I to station II the velocity
of propagation would be 52 cm/sec. This is somewhat less than the theoretical value
which is 61,9 cm/sec.

From the current measurements we fmd the following values of the coefficients,

. fand g

KO = 20

Sfo= 0457  g,= 0014 R,=0.457

fi=—4354 g, = 4.050 R,=5.946 K, =137°
fo= 1681  g,=-—0157 R,=1.688 Ky =355°
fa= 1207 g,=—0046  R,=1.208 Ky =358°
fi=—0420 g,=—1.034 R,=1.116 Ky =248°
fe=—0309 g,= 0717  R,=0.780 K5 =113°

Most of the coefficients are so small that no value can be attached to them.
‘The normal equations for station IIT give the following values of the coefhcwnts
a and b&.

K, =196°.1

a,=—5.6838 b =—16408 R,=5.9159

a,=—1.6322 b= 13192 R,=2.0986  x,=141°1
g= 0.1922 b;=—0.0638 R,=0.2024  1x,=341°7
a= 19661 &,= 01737 R,=19737  x,= 5°0
a5=—04265 b;=—0.1698 R;=04500  1;=201°.2

The distance from this station to statlon Iis 12.2 km. We then find the followmg
phase differences.
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I oo 196°.1— 38°=158°-—5"45
Im .......... - 141°.1--232° =269°—9.28 ' : -
I .......... 342° + 18°=360°—12"42 : - -
Iv ... 365° —210°=155°+360°=515°—17"77
Voo 201° — 36°=165°+360°=525°—18"11

‘The corresponding velocities of propagation are

_9822

=g —02:2 (619)
u= 928592_365 (34.0)
;F%xzm (23.1)
= =191 (17.2)
6= 9582252_18 7 (18.7)

The theoretical values are given in parenthesis. The agreement is excellent, but since

+ the waves of higher order have rather small amplitudes, no very high confidence can

be attached to the results from these. : -
A comparison of the amplitudes at the different stations show that the amplitudes

on station IT and IIT are much smaller than those found at station I. For the first order

we have had the values

11.72 4.72 5,92

respectively. To some degree the smaller values found at station II and III are due to -
the different phase of the moon, the observations at station II being taken approxi- .
mately at neap tide. From the harmonic constants M,, S,, K, and ¥, we may compute

an amplitude of 49 cm on the 14th of July, while the amplitude on the 18th when the
observations were taken at station I, we find an amplitude of only 33 cm. Another
cause is the geographic features of the fjord. -

The distance accross the fjord at station II and III are nearly the double of the
distance at station 1. The waves will be slightly diverging and consequently the ampli--
tude will diminish approximately inversely as the distance between the stations. -

If we assume that the amplitudes are proportional to the surface tide, the values
at station I has to be multiplied by a factor: .67 and a similar factor for the effect of
the widening of the fjord which will approximately reduce the amplitude to the value
found at station ITI. It will therefore not be necessary to take frictional resistance into

A e s s e s e s e e e T e e
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account to explain the diminution of the amplitudes. The result of these measurements
may therefore be taken as an indication that the observed oscillations of temperature
and salinity and also the tidal currents can be explained by the theory.

- The waves are mainly of a progressive character.

10. Observations in 1949. The observations from 1934 showed that the oscilla-
tions had very different amplitudes at the three different stations, the amplitudes at
station I being more than twice as large as those at station IIL. Since the observations
were not simultaneous it was difficult to compare the results from the three stations.
Particularly it would be interesting to see if the diminution of the amplitudes might be
explained by the different phase of the moon and the configuration of the fjord, or if
it would be necessary to take frictional influences into account.

It was therefore fortunate that in 1949 I had the opportunity to repeat the observa-
tions, and this time I had two vessels at my disposal, the ‘Armauer Hansen” belonging
to the Geophysical Institute, Bergen and the “Johan Hjort” belonging to the Direc-
torate of Fisheries, Bergen. I take this opportunity to express my best thanks to the
institutions for the generosity with which they placed the ships and observers to my
disposal. I also wish to express my gra.t1tude to the “Norsk Varekngsfors:knngs Fond”
for financial support of the expeditions.

The “Armauer Hansen” was anchored at the same place as St. 1 in 1934, while the
“Johan Hjort” was anchored at a distance of some 11 km somewhere between St. 2
and 3 in 1934. The measurements started on Aug. 8th 15" and ended on Aug. 13th 11*.

The program was quite similar to that carried out in'1934. ObServa.tions of tempera-
ture and salinity were taken at the following depths: 0, 5, 10, 20, 30, 50, and 100 m.
The temperature observations being taken every half hour, while water samples for
the determinations of salinity were taken only hourly. On board the “Armauer Hansen’”

the current near the surface was measured by means of an electric registering current

meter of Sverdrup-Dahl type, The apparatus did not work satisfactorily such that only
the results of two days registrations may be used. Two Ekman current meters of the
well known type were used, one alternatively in 5 and 10 m depth and the other in 15
and 30 m. Two mechanical registering current meters of Fjeldstad-Dahl’s construction
were used alternatively in 20, 40 and 60 m depth. From: these current measurements.
we can get four days of observations. On board the other vessel ‘Johan Hjort’ tempera-
ture and salinity measurements were taken after the same program as on board ‘Ar-
mauer Hansen’. Current measurements were taken with two Ekman current meters
and one Fjeldstad-Dahl current meter in 5, 10, 15, and 20 m.

The weather conditions during the whole time were very unfavorable with heavy

rain and strong ‘winds. The surface conditions were much influenced by this, This may
particularly be seen on the surface temperature which one day drops to the value or-
dinarily found at 5 m depth, indicating that the surface layer had been swept away
by the gale. Stationary conditions are consequently not obtained in the surface layers,
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but in the deeper layers the oscillations are very little disturbed by the changing surface
conditions. | -

The temperature variations at the different depths are shown in Figs. (9) and (11).
The single measurements show quite irregular variations, but the curve obtained by
smoothing over 4 hours show quite regular tidal oscillations, especially in the sub sur-
face layers. _

The variation in salinity at the surface is also irregular, but in the deeper layers we
find the same regular tidal oscillations of salinity as shown on the temperature curves.

The hourly ordinates of the smoothed curves have been measured after lunar time,
and by taking differences of six hours twice, we can analyse 3 lunar days. The results
are given in the following table for st. I, “Armauer Hansen”.

Table 13.
RT Kt RS ' Ks Oy Kg

L 0.1132 - 254° 0.4881 79° . 0.4230 78°
10 o.iveenn.... 0.2500 2449° 0.3334 53° 0.3038 T
20 oo 0.3438 . 255° 0.1789 70° 0.1887. 74°
30 ... 0.2574 261° 0.1051 77° 0.1381 80°
50t 0.0578 243° 0.0446 64° 0.0502 58°
100 ....... IREREE 0.0064 6l1°

The phase differences between temperature and salinity oscillations are approxim-
ately 180° as may be expected. ' 3
We have also made analyses for single days, to show how the oscillations vary with
time. The results of these analyses are given in the following table:

Table 14. Results for single days.

St. T 1949,
Depth Ry Kr Ry | Ks R, K,
1| 2444 9282° .7813 1132 6439 112°
5m ... 2l .2209 220° 1.0323 57° 8277 56°
3 1621 345° .1247 345°
4l 1557 202° .7681 30° 6131 99°
(1 2473 963° 2465 83 r 9313 750
0m ........ 2| 3388 943° .5942 450 5201 46°
3 2274 232° 2951 50° .2090 50°
L 4] .0929 193° 2199 38° .1816 37°
1 2191 253° .1209 -76° 1424 78°
Wm ..., 9l 3141 954° 1767 67° .1886 68°
3| .4873 260° .2293 750 9616 76°
L 4] 4933 9226° .2265 530 2660 51°
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Table 14. (cont.)
Depth Ry K Ry Kg R K,
(1 .1810 274° .1008 96° 1076 97°
30m ........ 2| 2115 251° .0978 71° 1044 71°
3 .3881 259° .1810 77° L1960 7 78°
l 4 .3294 - 217° .1706 38¢ .1868 o 39°
r 1 .0588 274° .0250 103° 0309 94°
50m ........ 2| .0696 254° .0509 65° 0501 61°
3 .0830 235° 0601 h9° .0598 56°
4 0666 204° 0472 26° L0453 26°
(1 .0235 237° .0068 83° .0070 750
10m «....... 2| .0144 218° .0071 64° .0055 54°
' 3 0136 218° :
. 4 L6239 213°

The results of the harmonic analysis of the observations from St. 2 “Johan Hjort”

are given in the following table:

Table 15.
: Ry Kr R Ks &, Ka
S 0.1205 11° 0.4510 196° | 0.3331 216°
10 ool 0.1270 34° 0.1229 207° 0.1162 213°
20 i 0.1877 13° | 0.0651 190° 0.0942 191°
80 .iiinenn. 0.0603 11° 0.0452 180° 0.0414 185°
50 \iieinnenn 0.0121 46° 0.0200 212° 0.0205 211°
100 .ovieinnennn. 0.0022 168°
We also give the results of analyses for single days in the following table:
Table 16. Results for single days.
© St. IT. 1949. R :
Depth Ry Ky Rg Kg R, Ky
[ 1 4575 13° .2999 211° 2625 210°
5 e 2 .1419 19° 2520 212° 2270 211°
3 .1004 358° 4366 209° 3643 208°
L 4 .1991 3@ 1.0091 182° 8179 183°
[ 1 2454 47° 1549 225° .1481 227°
0m .o ]2 1961 14° 2417 198° 2211 197°
3 0561 29° .6657 198° 0586 207°
L4 0564 41° .0965 227° .0820 225°
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Table 16. (Cont.)

(1] L1225 29° 0407 < 226° 0411 218°
0 e | 2| 2790 8° 0860 186° 1073 184°
3| 2362 | 16 0032 187° L1014 192°
[ 4] 3352 10° 1384 1779 1579 181°
(1] L0428 26° 0260 209° 0258 210°
S0m ... 2l 0819 | 3530 0737 157° 0681 157°
3| .0863 21° 0577 196° 0534 195°
L4 .1289 0° | .0749 172° 073¢ | 173°
1l o117 64° 0130 292° 0121 | 229°
501 .o o|  .0133 37° 0270 207° | 0245 | 208°
3 .0115 35° 0286 214° 0248 211°
L4 0127 170 0208 153 | 0187 152° .
i 0024 81°-
100m ........
" { 2 .0038 193°

A graphical representation of the current measurements is given in the Fig. 10
and 12. The single measurements give results which show irregular variations. Some
of these are probably due to lateral oscillations in the fjord. The change in the surface
conditions which is demonstrated by the temperature curve for the surface, has also
influenced the current distribution. This is particularly seen from the curve giving the_
current in 20 m depth. While the amphtude of the tidal current is about 6 cm/sec.
for the 3 first days, the last 24 hours give an amplitude of about 12 cm/sec. _

'The observations have been smoothed by taking means over 4 hours by planimeter.
By harmonic analysis of the north-south and east-west components it was found that
the currents were nearly alternating, and we therefore only give the velocities in the
longitudinal direction of the fjord.

" Table 17.
St L
Depth V K
Om....... 15.9 cm 261°
Sm.e...... 14.5 cm 280°
I0m....... 13.2 cm 275°
I5m ...... 124 cm 265°
20m..... . 55cm 254°
Nm....... 3.4 cm 204°
P0m....... 2.6 ecm 237°
60m....... 1.3 em 173°




No. 5, 1963

INTERNAL WAVES OF TIDAL ORIGIN

Results for single days (37 hourly values):

39

Table 18-
Denh I 11 11T v
P vV K |74 K vV | x 4 K

Sm....ivnn. 16.7 276° 12.3 286° 14.9 281° 12.4 271°
I0m ......... 14.2 276° 11.2 276° 12.6 273° i2.9 262°
I5m voeveennn 13.2 267° 13.2 262° 13.5 -255°
2W0m ..cvvenen. 4.4 261° 5.7 236° 6.3 261° 10.8 252°
0Om ..oovnn... 3.1 203° 3.6 220° 3.7 193°- 4.6 203°
40m ......... 3.5 225° 2.2 231° 2.4 254°

At st. II, “Johan Hjort”, the current velocities are much smaller, The analyses of
the current measurements in 40 and 60 m depth gave no satisfactory results, and the
only conclusion is that the tidal currents in these depths are very weak. In the following
table we give the results for 5, 10, 15 and 20 m depth.

Table 19.
Depth ¥ K
Sm..... 6.6 29°
10m..... 6.6 50°
Jdm..... 6.6 65°
20m..... 5.3, 78°
o
The results of analyses for single days are:
Table 20.
I IT I v
Depth :
Vv o} kK Vo | x v K 14 K
5m..iiaeen. 7.4 28° 4.9 3° 7.9 42° 7.7 1°
U« R 6.3 47° 7.2 36° 7.7 66° 6.6 18°
I5m ......... 5.0 75° 6.4 41° 8.2 76° 8.6 29°
20m ......... 6.1 114° 4.6 55° 1.7 81i° 6.5 41°

If we compare the corresponding phase angles from the harmonic analyses for
single days, we may form 59 phase differences; 19 from temperature observations and
20 from observations of salinity and density. The mean value of these differences is:

139°,7+3°,8 .
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From the analyses of current observations we may in the same manmner form 15
phase differences with the mean value: -

138°.9+9°4.

By assuming a propagation from st. I to st. II, we find a time difference of 4* 49™,
This corresponds to a velocity of propagation of some 63 cm/sec, which is near the
theoretical value for the first order internal wave. The phase difference for the tidal
current give a similar value, o

We may also compare the phase differences for the different depths. The results
are shown in the following table. ' '

Table 21.
.Depth Ax
Sm...... R 151°.8+13°5
10m......, 160°,04-6°.6
20m..... .. 126°.4--3°.8
0m....... 115°.14-5¢%.1
WM m....... 146°.04-4°.7

As we see there is a definite variation of the phase angles with depth. This indicates
that internal waves of different order must be present. _

From the mean density distribution we have by numerical integration determined
the eigenfanctions #,(z) and w,(z) for 5 internal waves. The functions have been nor- )
mated such that :

h
| putdz =102
0

or with the variable z;=z10-% which has been used for the numerical integration

B -
| putdz, =1
0

The functions w,;(z) and #,(z) are given in the tables 27 and 28. The theoretical
velocities of propagation are:

€,=99.8 cm/sec. ¢, =33.9 cm/sec. ¢3=21.7cm/sec.
¢y =17.1 cm/sec. ¢5=13.6 cm/sec.

As we see the velocity of propagation of the first order wave corresponds well with
value found from the direct comparison of the observed phase angle differences. It is
to be remarked, however, that owing to the wind conditions there was a non periodic
surface current, which to some degree might influence the propagation of the internal
waves. A current in the direction of the wave propagation would increase the velocity
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of propagation of the waves. A tentative numerical integration, assuming a current

of some 20 cm/sec at the surface and decreasing to nearly zero at 20 m depth, indicated -

that the velocity of propagation of the first order wave might increase by some 10 cm/sec. o
The coeffictents of the different internal waves have been determined in the same

manner as has been done with the observations from 1934, and the results for st. I

(““Armauer Hansen™) are the followmg

o= 5471 b= 14941 R, =15912  x,= 70°
4y =—4.095  by=-— 8528 R,= 9.460  i,—244°
2= 1.885  by= 1405 R,= 2.352  i,= 37°
4, =—3.682  b,=— 0266 R,= 3.692  x,=184°
as= 0.017  by= 0790 R,= 0790 = 89°

‘The vertical elevation { is then expressed by the formula:

{= 15.912w,(z)cos(at—70°) +9.460w,(z)cos(ct-—244°)
+ 2.352w;(z)cos(0t—37°) +3.692w,(z)cos(ot—184°)
+ 0.790w;(z)cos(6t—89°) .

The results of the current measurements have been analysed in a similar manner,
and we have also included the ordinary tidal current u, We find the following coef-
ficients:

fo= 0314  go=— 1626 V= 1.656  x,=281°
fi= 0416  g= 15068 V,=15074 = 88°
 fi=—4050  g=— 4842 V,= 6312  x,—230°
= 5.155 ~— 3. = 6273 x,—
5.1 g=— 3.631 V.= 62 . =325°
fi=—0084  go=— 1264 V,— 1264 1, =268°
fi= 0241  g= 92568 V,= 2579 1 = 85° L .

In the following table we have for comparison compiled the amplitudes and phase
angles for the vertical oscillation { and the horizontal current .

Table 22.
R Kg V K-
A 15.91 70° 15.07 a8°
2 i e, 9.46 244° 6.31 230°
5 J 2.35 37° 6.27 . 325°
N 3.69 184° 1.26 268°
LS T 0.79 89° 2.58 85°

From the table we see that the waves of first and second order give results which
are in fair accordance with the assumption that the waves are progressive. The waves
of higher order give results which are so uncertain that no weight should be attached
to them.
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‘The vertical oscillation, {, may also be found directly from the analysis of tempera-

ture and salinity, using the equations: - -
d T ' 7
=0,

and
. dSy
i+l =

From the temperature observations in 5, 10, 20, 30, 50 and 100 m we may determine
the coefficients of five internal waves by the method of least squares, and find:
R, =16.99 k= 59° '
R,= 4.79 iy =245°
Ry= 3.23 Ky= 19°
Ry= 0.58 x,=123°
R,= 1.01 kg = 24°

From the salinity observations in 5, 10, 20, 30, 50 and 100 m we find i in the same
manner:
R,=15.57 k= 64°
Ry= 4.90 Ky =245°
R;= 3.17 Kg= 77°
. R,= 1.41 K= 92°
R, = 4.47 ks= 87°

‘These results do not correspond exactly to the results of the analysis of density given
above, since the density values were given as the results of harmonic analysis of 3 days
after lunar time, while the results of the temperature and salinity observations are found
as mean values for four single days. This explains the different values of the kappa
numbers for the first order wave. The results of the temperature and salinity analyses
give two independent determinations of the first and second order waves which are in
good agreement. The higher order waves differ much and cannot be trusted.

Station 11, * Fohan Hjort™,

‘The internal waves at this station are much smaller and the results of the analysis
are consequently affected with relatively larger errors. The salinity observations from
100 m are incomplete owing to the lack of bottles for storing the water samples.

By graphical interpolation and integration from the surface to 100 m, and taking
five internal waves into account, we get the following values:

R,=7.10 K, =201°
R,=3.10 Ky= 20°
R,=1.76 Ky =224
R, =145 K= 49°

R;=0.98 - k,=176°
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A direct determination from the observations of temperature and salinity givesfor 7'

R, =8.36 Ky =195°
and for S:

R, =8.48 K, =192°

These values are found from the mean values of the results given in the table
(St. II) for four days, while the results above are from the analysis of three lunar days.

‘The current measurements gave reliable values only for the four depths 5, 10, 15
and 20 m. The depths are too few to make a determination of the coefficients of the
different internal waves possible, but the current amplitudes are of the same magnitude
as that found for the first order internal wave.

11. Comparison between the results from 1934 and 1949. St. I 1934 and st. I
1949 were taken at the same place, and it will be of interest to compare the results.
In the preceding analysis the kappa numbers have been related to the prinsipal lunar
component M,, since this was the simplest method. It would have been better to
take also the other larger components S,, N, and K, into account. But in this case
we have the possibility of comparing the results with the tide in Bergen harbour,
from which complete registrations are available. If we make analyses for single days
after the same scheme which has been used for the present observations, we get the
following results: ' '

Table 23. July 1954. Table 24. August 1948.

R K R K
i4th....... 49.6 cm 290°.5 9th ....... 56.0 cm 324.°0
15¢th ....... 48.2 cm 279°.2 10th....... 55.1 e 304°.2
16th ....... 46.3 cm 266°.6 Ilth....... 54.4 cm 287°.2
17th ....... 43.2 cm 262°.5 12th ....... - 54.6 cm 284°.5

The kappa number of M, in Bergen is 298°. This means that to get comparable
results the kappa numbers given in the table of results for single days in 1934 should
be increased by 8°, 19° and 21°, and correspondingly the kappa numbers in the table
giving results for single days in 1949 should be.corrected by —26°, —6°, +11° and
13° respectively. ' ,

By making an analysis of mean values for three days of the results from 1934 and
four days in 1949 with the kappa numbers corrected in this manner, we get the following
results for the two first order waves:

1949
R =12.13 ;= 56°8 R =17.36 x,= 56°2
Ry= 400  x,=245°9 R,= 623  «,=236°1
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This means that the internal waves appear in the same‘manner every summer when
the hydrographic conditions are the same. ~

12. Energy of the internal waves in Herdlefjord. In chapter 4 we have de-
duced the formulae; , -

1 '
Eﬁgg[(p@)h -4 ngde],

and
1 h
E,=- | putdz .
2
If we put _
{=2%Zw,(z)cos(at — %)
and :
u=ZVu,(z)cos(ct—x,) , |
we get |
E, =%gEZ,,2cosz(at —K,) ( (pw,?), — 0} w,,zd—zdz)
and
1 h
E, =§2 V,2cos® (6t — k) Oj" pu,’dz .

We have:
| h h d fi
[ pu,idz =g[(pw,,2)h oy w,ﬁ—dz] 103
o o dz

and taking the mean over one period, we find:
E,=2505Z,2
and
E,=250%V,2 .

‘The potential energy of the ordinary surface tide is:

360 Ze =250Z,7,

where Z, is the amplitude. :
From the analysis of the observations from 1934 we have Z,=11.473 and this gives
E,=32900 crgs/cm? The total energy of five internal waves is 38500 ergs/cm?,
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- The simultaneous registrations of the tide in Bergen harbour give an amplitude
of 48 cm, and the potentlal energy is then 5.76 108 ergs/cm?2. The ‘potential energy of
the internal waves is thus only 1/15 of the surface tide.

The kinetic energy of the first order internal wave is: £, =250x11.7162 =34300 ergs/
cm?, or about the same as that found for the potential energy.

From the observations in 1949 we have found Z,=15.912, which gives E,=
63300 ergs/cm?, which is about twice the value from 1934. At the same time the tlde
registration from Bergen give an amplitude of 56 cm, and the potential energy is then
7.84 105 ergs/cm?2. '

13. Concluding remarks. Comparably little has been done to investigate the
occurrence of internal waves in the open ocean. The theory as given in “Interne Wellen”
has been applied to observations taken by the “Snellius” expedition in the East Indian
waters and treated by L. Lex [8], and observations by “Atlantis” in the southern
North Atlantic treated by H. SetweL [10]. Both found that the observed oscﬂlatlons
. could be very satisfactorily represented by the theoretical internal waves.
~ But most oceanographers still try to apply the boundary wave theory to a two layer
ocean. In my opinion this is not satisfactory. Even if the thermocline is rather sharp,
and approximates to a discontinuity, the distribution with depth of the density will
be very poorly represented by a two layer ocean.

It is hoped that the study of internal waves will be given greater attention in the-
future. The task is by no means simple. The research vessel has to be anchored, because
the wavelength of the internal waves is so short that a displacement of a few mlles will
affect the phase of the waves. _

To obtain satisfactory results a cooperation of several ships is highly desirable.
Current measurements and repeated series of temperature and salinity observations
are necessary.

An international cooperation might be planned a.nd set into effect under the auspices

of SCOR or I0C.




Table 25. Theoretical internal waves w(z). 1934.

wy Wy . W, Wy ws
) S —0.075 —0.047 ~0.033 —0.026 —0.019
U 1.898 3.964 5.363 7.212 6.917
2 ... 3.671 7.045 8.199 8.012 5.308
3 i 5.295 9.096 - 8.599 4.575 —0.947
N 6.778 10.279 7.318 —0.564 —6.924
5 erenians 8.131 10.776 5.010 —5.635 . —10.348
6 .. 9.367 10.703 2.171 --9,573 —10.826
y A 10.502 10.233 —0.847 12,194 -.8.948
8 i 11.547 9.453 —3.825 —13.467 —5.506
B 12.508 8.433 —6.613 —13.532 —1.253
10 .ooun..... 13,391 7.226 -9.106 —12.494 3.172
10 vovenen... 13.391 7.226 —9.106 —12.494 3.172
12 oinnnnn. 14.941 4.429 —12.988 7.958 10.636
14 ooeeen... 16,237 1.361 —15.307 —1.627 14.584
15 oo 16,800 ~0.209 —15.898 1,733 15.051
16 .......... 17.312 —1.777 —16.138 5.029 ' 14.582
18 vuvurne... 18.193 —4.848 —15.679 - 10.994 11.304
20 e, 18,907 —7.766 ~14.190 15.685 5.920
22 ... 19.481 —10.484 —11.942 18.879 ~0.382
24 ... 19.942 --12.990 —9.194 20.663, —6.670
26 v, 20.315 —15.295 —6.149 21.263 —12.384 -
p2: B 20.616 —17.411 —2.947 20.894 17233
30 eiinnn., 20.859 —19.352 0.318 19.744 —921.087
1) B 20.859 —19.352 0.318 119,744 —21.087.
35 tiiiiennns 21.302 ~-23.505 8.386 14.421 —26.265
40 i, 21.492 —26.811 15.828 7.127 ~26.035
45 e, 21,525 —-29.454 22,477 —0.875 —21.972
L) 21.429 —31.477 28.137 —8.827 —15.236 -
55 i 21.222 —32.934 32.788 —16.208 —6.908
60 vuvrrnn... 20.922 —33 881 36.404 —22.670 2.055
60 ..enn... 20.922 —33.881 36.404 —22.670 2.055
70 e, 20.101 —34.511 40.823 —32.227 19.045
80 ...oon.... 19.079 —33.932 42.352 —37.779 32.495
90 vevernnnn. 17,952 —32.981 49.244 —40.722 42.497
111+ 16.774 —30.729 41.268 —42.161 50.092
111 16.774 —30.729 41.268 --42.,161 50.092 -
110 ....un.... 15.565 —928.984 39.767 —49.631 55.903
120 ovnunn... 14.338 —27.120 37.933 —42.456 60.404
130 .......... 13.097 --25.161 35.824 41,726 63.672
140 .......... 11.834 --23.113 33.460 —40.456 65.652
150 .......... 10.577 —20.983 30.854 —38.657 66.292
160 ..ooo..... 9.299 —18.770 27.997 —36.285 65.403
170 ... 8.007 —16.458 24.840 —33.212 62.538
180 .......... 6.701 —14.036 21.359 —.29.348 57.347
190 .......... 5.381 —11.521 17.551 — 24671 49.680
200 .......... 4.047 —8.870 13.444 —19.235 39.625
210 .......... 2.704 —6.204 9.098 —13.179 27.582
220 ..iuinnn. 1.354 —3.454 4.585 —6.698 14.148
230 .iininn... 0.000 —0.673 0.000 0.000 0.000




Table 26. Theoreticol internal waves, u(z), 1934.
U Uy Ug Uy Uy
1 S —1.1934 —1.4080 —1.3802 —1.5014 —1.3537
R —1.1435 —1.1999 —0.9717 —0.7045 —0.3762
2 .. —1.0540 —0.8461 —0.3402 0.2840 0.6800
L S --0.9621 —0.5304 0.1360 0.7842 0.9191
4 ... —0.8790 —0.2724 0.4432 0.8974 0.6692
5 s —0.8016 —0.0682 0.6169 0.7852 0.2604
6 e —0.7347 0.0877 0.6935 0.5738 —0.1154
7P —0.6761 0.2043 0.7052 - 0.3401 —0.3846
8 i, —0.6225 0.2938 0.6715 0.1150 —0.5434
9 ...l —0.5728, 0.3642 0.6176 --0.0888 —0.6111
10 ceviennnn. —0.5252 0.4176 0.5366 —0.2625 —0.5932
10 coennnnnn. —0.5252 0.4176 0.5366 —0.2625 —0.5932
12 ... —0.4405 - 0.4841 0.3586 —0.4885 —0.4048
| —0.3671 0.5101 0.1790 —0.5758. —0.1313
15 couennn... —0.3341 0.5129 0.0987 —0.5756 0.0011.
16 .ovenenn.. —0.3031 0.5089 0.0172 —0.5538 0.1250
18 ..., —0.2470 0.4895 —~0.1174 —0.4627 0.3116
20 ... —0.1998 0.4593 —0.2210 —0.3393 0.4144
22 .. —0.1602 0.4244 —0.2929 —0.2110 0.4407
24 iiveian. —0.1297 0.3899 —0.3378 —0.0994 0.4171
26 .., —0.1049 . 0.3579 —0.3629 —0.0070 0.3649
28 ..., —0.0854 0.3278 —0,3752 0.0673 0.3000
30 ..., —0.0684 0.3067 —0.3779 0.1276 0.2291
30 viiiiinn.. —0.0684 0.3067 - —0.3779 0.1276 0.2291
35 teiiainn. —0.0353 0.2438 —0.3616 - 0.2253 0.0605
40 ..., —0.0131 0.1944 —0.3274 0.2680 —0.0642
45 iieinail ] 0.0044 0.1521 —0.2872 0.2768 —0.1484
50 iiiian... 0.0190 0.1125 —0.2396 0.2658 --0.2113
55 viiiiann.. 0.0317 0.0774 —0.1928 0.2385 —0.2376
60 ournnn... 0.0423 0.0451 —0.1445 0.2038 - 0.2471
60 «.ennnn. 0.0423 0.0451 —0.1445 0.2038 —0.2471
70 vivennn.. 0.0583 —0.0042 —0.0639 0.1272 —0.2116
80 ..ovvn.... 0.0674 —0.0346 —0.0121 1 0.0684 —0.1578
90 ..evennn.. 0.0717 —0.0484 0.0141 -0.0359 -0.1198
100 ..ovu..n. 0.0741 ~0.0573 0.0297 0.0149 —0.0905
100 .......... 0.0741 —0.0573 0.0297 0.0149 —0.0905
| 0.0754 —0.0614 0.0388 - 0.0021 —0.0706
120 .ooen.... 0.0764 —0.0654 0.0456 —0.0079 —0.0534
130 o.oue..... 0.0773 —0.0678 0.0517 —0.0172 —0.0364
140 .......... 0.0781 —0.0713 0.0575. —0.0264 —0.0181
150 o...oo.... 0.0788 —0.0733 0.0629 —0.0355 0.0008
160 .......... 0.0796 —0.0769 0.0693 —0.0464 0.0248
170 o......... 0.0804 —0.0797 0.0766 - —0.0595 0.0548
180 .......... 0.0814 —0.0838 0.0843 — 020734 0.0882
190 ...oenn... 0.0822 —0.0866 0.0916 —0.0871 0.1223
200 .......... 0.0829 —0.0901 0.0979 —0.0991 0.1531
210 ..ono..... 0.0834 —0.0917 0.1026 —0.1082 0.1765
220 .......... 0.0838 —0.0937 0.1054 —0.1140 0.1911
230 . ..an..... 0.0839 —0.0937 0.1064 —0.1156 0.1961




Table 27. Internal waves. 1949, -

W, w, - W, , W, Wi
0 vevrennnn. —0.073 —0.036 -—-0.017 - —0.015 —0.015
05 oueunn. 0.933 1.516 : 1.708 2.501 3.813
S 1.932 3.034 3.342 - 4.805 7.132
L5 .vien.... 2917 4,486 | 4.801 6,702 9.503
y 3.881 5,840 6.010 8.034 10.610
2,5 ceiei.s 4,818 7.067 6.905 8.687- 10:310
K 5.721 8.141 | 7.440 8.608 8.642
3,5....... .. 6.584 9.039 7.587 7.804 5.830
4 ... _ 7.401 9.741 - 7.340 6.344 2.947
4 ... 7.401 9,741 7.340 6.344 2.247
5 ..... e 8.875 10.504 5.735 1.994 —5.294
6 v 10.117 - 10.418 - . 2,998 —3.026 —10.426
r AU 11.190 9.782 —0.148 . —7.512° —12.297
8 ... . 12.145 8.823 —3.292 —11.060 —11.648
L 12.997 - 7.634 —6.238 —18.500 —9:136 "
10 oeeeen... ‘ 13.765 6.287 —8.875 — 14,857 —5.451
10 cvein... 13.765 6.287 —8.875 —14.857 —5.451 - .
12,5 covvnns. 15.415 2.580 —14.091 -~14.786 5.254 -
15 cevnnenn.. 16.781 —1.295 —17.374 —11.352 14.365 -
17,5 ceuennn.. - 17.916 —5.113 —18.892 —6.084 19.802
20 ol - 18.871 —8.787 —18.967 ©0.098 21.276
20 ..... e 18.871 —8.787 —18.967 0.098 21.276
25 i 20.324 —15.408 --15.768 11.893 14.769
30 ... 21.286 —20.889 —9.693 20.398 1.358
35 i, 21.856 —25.186 —2.243 24,474 —12.749
40 ... 22.114 —28.339 5.477 23.988 —23.540
45 ..., 22.132 —30.568 12.774 20.730 —29.417
50 ciiiiian.. 21.959 —531.947 19.290 14.796 —30.822
50 ieniiins : 21.959 —31.947 19.290 14.796 —30.822
60 ...ooe.... : 21.361 —33.584 30.525 '1.497 ~—26.131
v\ 20.590 —34.374 39.983 —12.119 —17.078
80 .....u.... 19.708 —34.611 47.871 —24.594 —6.064
90 ... - 18.719 —34.241 53.782 —35.872 5.562
100 ...o...... 17.650 —33.435 57.978 —44.819 16.700
110 o eeennn... 16.495 —32.103 60.052 —51.648 26.435
120 ......... 15.281 --30.432 60.504 ~55.637 34.149
130 .oe...... 14.006 —28.365 59.157 ~—57.598 39.573
140 .ooee..... . 12.696 —26.090 56.653 —57.021 42.554
150 .....o.... 11.338 —23.489 52.553 — 54,632 43.134
150 ..o...... 11.338 —24.489 52.553 —54.632 43.134
170 ..., 8.551 —17.855 41.866 —44.855 38.233
190 .......... 5.699 —11.721 28.763 —30.921 27.778
210 coieen... 2.819 5474 14,573 —15.116 © 14.664
230 ....eo.... —0.070 0.825 0.048 1.249 ©0.701




Table 28. - Internal waves u(z), 1949.

Uy U Us Ty Us
A —1.2037 —1.0553 —0.7567 —0.8721 —1.0638
0,5 covnnann. —1.1995 —1.0439 --0.7369 —0.8353 —0.9951
| —1.1870 —1.0099 —(.6787 —0.7280 —0.7905
1,5 cvvennnn. —1.1662 —0.9541 —0.5851 —0.5594 —0.4832
2 e —1.1374 —0.8777 —0.4611 —0.5439 ~0.1121
25 ..., —1.1008 —0.7825 —0.3131 —(0.0995 0.2736
K S —1.0566 - —0.6704 —0.1489 0.1529 0.6226
35 ... —1,0050 —0.5440 - 10,0229 0.3923 0.8887
: —0.9466 —0.4060 ©0.1933 0.5984 1.0369
4 ... —0.9466 - —0.4060 0.1933 0.5984 1.0369
5 (e, —0.8108 ~=0,1073 0.4955 0.8460 0.9209
6 ..., —0.6859 0.1378 0.6610 (.8345 0.4624
A —0.6039 0.2762 0.6948 0.6972 0.0662
- —0.5423 -0.3688 0.6687 0.5142 —0.2333
9 ..., --0.4838 0.4320 0.6125 0.3277 —0.4362
10 ...a.... —0.4344 0.4775 0.5359 0.1439 —0.5548
100 oviiueen, —0.4344 0.4775 0.5359 0.1439 —0.5548
125 ..., ~-(.3580 0.5202 0.3695 —0.1374 —0.5649
15 ..., —0.2965 0.5243 0.2044 —0.3127 . —0.4118
175 ......... —0.2489 0.5101 0.0660 —0.4031 —0.1814
20 ..., —0.2068 0.4809 —0.0528 —0.4224 0.0121
20 oo, —0.2068 0.4809 —0.0528 —0.4224 0.0121
25 LL.0iae... —{(.1424 0.4109 —0.2128 —0.3545 0.2920
30 coeiiieee. —0.0897 0.3298 - —0.3035 —0.2105 0.3885
35 ... -0.0479 0.2508 —0.3363 —0.0565 0.3412 -
40 iiiiinnns —0.0155 0.1812 —0.3307 0.0686 0.2194
45 e 0.0111 0.1183 —0.3004 0.1661 0.0835
50 ..., 0.0269 0.0789 —0.2702 0.2088- - —0.0183
5 .......... . 0.0269 0.0789 —0.2702 0.2088 —0,0183
60 .......... 0.0430 0.0391 —0.2246 0.2314 —0.1123
70 ..., 0.0496 0.0170 —0.1892 0.2253 —0.1491
80 .......... 0.0561 —0.0026 —0.1502 0.2045 —0.1672"
9 ..oiiaenn 0.0616 —0.0201 —0.1103 0.1741 —0.1663
100 .......... ' 0.0665 —0.0365 —0.0680 0.1356 —0.1453
110 .......... 0.0709 —0.0512 —0.0269 0.0921 —0.1288
120 .......... 0.0745 —0.0638 0.0109 0.0503 —0.1002
130 .......... 0.0773 —0.0736 0.0418 0.0118 ~-0.,0668
140 .......... (0.0758 —0.0830 0.0732 —0.0264 —0.0343
i50 .......... 0.0818 —0.0899 0.0964 —0.0583 —0.0021
150 .......... 0.0818 —0.0899 0.0964 —0.0583 —0.0021
170 ..ot ... 0.0845 —0.0999 0.1320 —0.1062 0.0469
190 .......... 0.0858 —0.1046 0.1494 —0.1299 0.0734
210 c.ieenn... 0.0863 —0.1064 0.1563 —0.1393 0.0842
230 ..., ... 0.0863 —0.1066 0.1574 —0.1407 0.0861
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APPENDIX

Influence of eddy viscosity on internal waves. In internal waves the velosities

change rapidly with depth, and this will increase the friction. On the other hand internal
waves are intimately connected with the stability, and we know that the stability tend
to reduce the coelficient of eddy viscosity. This makes it desirable to investigate the
influence of eddy viscosity on internal waves. -

In the following we consider the simplest case when the influence of the Earth’s
rotation is disregarded. We may then write the equations of motion in the following

form:
o 1o Lo
ot " p ez p oz\loz/) >

19
g+?"é'2":"_0:

ﬁu Jw

0z =0,
6,0 ap_
7 w ={.

Making the same assumptions as earlier, we put

p=po(2) +p1,

ok
p=po+g | podz+py, w=—y

where p; and p; are small quantities. The equations then take the form:
B Lon 12 m

8t py 0x  p, 0z Tz
du o
o T =0

d,
gp]. pl _0: 1+C po

Assuming now -
. u, 5’ P; and p ~ ei(ot—kx)

we get
. op 1 d @)-
tou zkpo o dz( Nz -
—tku +io‘d—C=0 s

dz

dl T

P S AL T T T TR Tt T i T




No. 5, 1963 INTERNAL WAVES OF TIDAL ORIGIN

and eliminating p,, we get the equation

From these equations we find
o d
and
0’2 dC o0 d [ d¥
=gt tE dz(”dzz)
giving '

6% d /14 to d® [ d¥{ dp
FE}E(”"E) Waz—z("@) =8l

"The boundary conditions will be

{= 0, U= =0; z=0

oL _
k dz

at the bottom. At the surface the shear stress disappears giving
a*

"z =0-

‘The pressure condition at the surface - po when z=h+{ gives
gPol —1 =0

or

o d{ o d [ d?%
2P, T E(ﬂgzg) —gpol =0 ‘;' z=kh.
The problem is thus to find an integral of the differential equation
d¥ .1 d o dty gk d
o) i () —io | () -0
- satisfying the boundary conditions:
_ i )

and 2
4
Tz~ =0 -

(3) |
d{ d¥ d k
1) - [”di‘g 2’0‘:]: et

61
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The subscript zero has been dropped, and henceforth we shall use it to designate
the value at the bottom, z=0. -
At the first we shall treat a special case where the density and the coefficient of eddy
viscosity are given by the formulae:

P=Po(1_°‘z)”2 )

1 =141 —az)??

In this case the differential equation can be reduced to an equatlon with constant
coefficients. :
We shall prefer to write the equatlons in the form

,02_}90 ——(Po —p4?)

- _ﬂ)3 |
n no(pﬂ i

dp _ _p—ps?
dz - 20k’

and
Then

and if we introduce as independent variable

we get N
fi Potpy’
dz = 2hp

The differential equation may then be written in the form:.

4y ; ,.2 2 L3 o '
(5) d*  ich [dC+k_g,popPC]=0
0

dzt vy | dz® ' o

where

PR =lo
pot+py’

The boundary conditions are




No. 5, 1963 INTERNAL WAVES OF TIDAL ORIGIN 63 -
and
- % pp—py dl
LAl S Y
dx? Py dx

B doh[dl B e ] o

3
dx Vo

Since the differential equation is of the fourth order with constant coefficients it -
will be equivalent with two second order equations of the form -

d*w
Pz
where y is a root of the equation
o , 4;i“"'2( 2 B ,M;) _
®) | e R !

The equation and the boundary conditions may then be satisfied if we take two solu-
tions satisfying the surface conditions

Po—P1 iw_
po o dx

+ 72w =0
-and put
. __wy{x) __wa(%) :
Nde /o \dx/, o
The bottom condition d’g’ [dx =0, is then automatically satisfied, and the other bottom -
condition {=0, then gives the equation
_wy(0) » w,(0)
@ () s
dx_ 0 . dx - 0
'This equation together with equation (6) determines the eigenvalue £.
In the actual case we find

=0.

, _acoshy(1 —x) +ysinhy(1 —x)

_ v (asinhy + ycoshy) -
where
4= Po— 01
‘. _ £1
From equation (6) we get
' - iah?
P pl=

Yo
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and . :
iohs Po—P1 -
Pt = — -gh . .
_ _ Yo Py :
Since ¢h'3[v, is ordinarily a large quantity, we see that the absolute value of one root,
say y,, will be large in comparison to the other, and corresponding to this root we have

approximately

€T X
wz(x) o~ :

Y2 :
~This function will decrease rapldly with %, and therefore the influence will be restricted
to the bottom layer. -

The function w,(x) correspondmg to the other root y; will then be responsible
for the effects of viscosity in the upper laycrs where the rapid change of velocity with
depth causes shear stresses. This is the reason why the approximate solution in section
5 may give some indication of the influence of eddy viscosity on internal waves,

Proceed ing now to numerical examples, we have made two calculations with the values

2 2
M 799 and 2 _osg .

Vo - Vg

For ah’z/vo¥ 242 we get the following values of y; and y,:

Y1 Ya

0.0019-+i 0.0792 |11 (144)

LR = O

0.1512+i 3.1923
0.26314i 6.6121
0.2871+i 9.9386
0.2469+413.2078

11.2237--i10.7364
11.9611-+42 9.9708
13.31514-¢ 8.8695

15.2882+ 1 7.7027

The eigenvalues £ are then given in the following table as k¢/s, where ¢ is the
velocity of propagation in the frictionless case.

1.0228—10.0245
1.0443 —:0.0715
| 1.0451—:0.1369
1.0547—10.2439
1.0918—1i0.3826

BN = o

Corresponding to the value o£’?/vy =722, we get the following values of y, and y,:

Y1 Yz

B 0 R = O

0.0011-+7 0.0785
0.08624i 3.2272
0.1661 7 6.4579
0.2311-7 9.6991
0.27204:12.9482

19 (144)
19.1301 -+ 18.8562
19.5288+18.4308
20.2197-+i17.7431
21.2359-1i16.8336
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In the following table we then give the values of £¢fa.

1.0132—:0.0138
1.0261—:0.0348
1.0258—i0.0561
1.0264—:0.0915
1.0279—:0.1410

BN = O

In the case just considered the eddy viscosity was chosen in a manner which is in
accordance with the hypothesis
7292
P p
dz

In the general case we shall have to solve the differential equation
d® { d¥ . dy dt k% d
©) | “;z“;(”az“) —to [@(PE) oz }

with the boundary conditions

d2t
Tz~ =0, _
d{ d% . dt  gk?
and
(=0, %:0; z=0,

The solution of this problem is greatly simplified by the introduction of the hypotesis
above. '
In fact, consider the equation

d{ dw dp
(10) E(pdz) ~ =0,
or
p dPw  dw _ -
@Zg"{‘*&%——lw—o.
dz

Differentiating this equation, it may be written in the form
1d[pdw]
p dz|dp dz? dz
B dz

=0,
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or if we put
P &

—_— e — q
&~

dz
d( dzw) Je2h dw

dz\"dz2

+gpdzm - DY

and

& ( dzw) fczli( dw)=0

2\"# )+ g dz iz

or

(o)
c;lz;2(]':laiz2 T Y

Comparing this with equation (9) above, we see that W is a solution of (9) if:

213 2 .
(1) ﬁg)—'wa(z—gﬁa?) ~0

The differential equation (9) is then equivalent to two equations of the form. (9)
if A is a solution of the second order equation (10). We may then put

{ =Aw,(z) + Bw,(z) , .

and the surface conditions are satisfied if o

The bottom conditions then give

dw, dw,\
A(F), (%), =0
which is satisfied if the determinant

,(0) w(0)

=0,

(d_w“) iy
dz /, (75_) 0

This equation determines the complex eigenvalue k. The problem is thus reduced
to the integration of the differential equation

d{ dw dp
(12) -32( d—z) — ™ —0
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with the surface condition

E“‘lﬁ):O .

Since 4 is complex, this cannot be done by a direct numerical integration, but we may
express w by a series of eigenfunctions w,(z), which are solutions of the differential
equation ' ' ]

| 4/ dw, d
3) H(r ) - =0
with the boundary conditions
dw, A dw,,_ .o
dZ —.'ﬁnZUn—-O_, Z—h, 72——0, Z—O.
Let '
w(z) =Ay+ 2A,w,(2)
and let
"® d
L(f) =(pf)u— [ fopdz
0
then ‘
L(w) =(pw)y— | 0%z = (o), —1p 22 |
p h 0 dz h I'{p dz 0 -
_1 _dﬁ) _
_A(‘o dz [,
and

By a combination of the two equations (12) and (13) we get i
, B k
dw dw, | dp
P [WU“E B :l =(A-8) ww,,Edz »

0
U -

this gives

(A—p) L{wm,) = ( pugr) -
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Applying these results to the series we get
Liw) =4,L(1),
Lww,) =4,L(w,?) ,

or

which gives

or
_(dw\ [1, o B.(pw,)ew,(2)

T (7‘;‘—)0 [I 50 fﬁn) ]

If we take -
dw
(&),

we get |

w,(z, 41) =-T11 + X 5:;&»@(’2)21;“()2)

.wz(za As) =Ai2 + X 2 "d(_jp(a;):) i’%n()z)
and

) 1 Bo(p10,) ()
%1 ==~ ) [ Ty Xy~ Baa + ) +ﬁ,,2)]

but since A, and 1, are roots of the second order equation

n 2
mﬂ(ldﬂ) -0,

7 | i
we have
108 tof k2
Ay FAy= —f? s Ayhg = “‘ﬁ’é’gmofz

and

Vol . XXV, -
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i n(X—ﬁn zﬁ,, )
where _ .
og gk?
“par A=
The bottom condition then gives

* (X B+ ”’")

The equation may be solved by Newtons method.

The theory has been applied to the conditions at St. 1. 1949, We have calculated
six eigenfunctions corresponding to the eigenvalues 0.222, 0.63, 1-38, 2.87, 4.86 and 7.00.

Since we have only retained these terms in the series, it is inadviseable to compute
more than the two first roots of the equation.

‘T'wo alternative solutions have been computed, one with the assumption

f2 =¢=6.9 and the other with «=27.5.
T'he first value corresponds to an eddy viscosity which has the value =2 in the surface
layer, but which increases rapidly with depth. The other assumption gives values of the
eddy viscosity which are approximately one fourth of the values in the first case.
With «=6,9, the equation which i 1s to be solved is

0.001 1.22465 3.64895 +
X t¥-022 +10.00714 T X -0.63 +10.05752
5.47883 + 2.36629 +
X —-1.38+10.276 ° X —2.87+41.19375
2.81725 5.49237

=0.

X—4.861:3.42313 T X—71:7.10144

‘The zero order root X,, corresponding to the ordinary tidal wave, is very small,
and will not be considered here. For the first order root X1 we find the value:

2
X, =8 ~0.29151 -i0.02076
Since
(2 .
k=—(1—ip)

where .x is the velocity of propagation, we find
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£=0.03556 and x=57.93 cm/sec.

When friction is disregarded, the corresponding eigenvalue is 0.275 and the velocity
of propagation is ¢=>59.76 cm/sec. :
The approximate solution indicated in chapter 5 gives

0.275°

X= 0275—Tgm——

from which we find
_ $=0.01992 and x=>59.745 cm/sec.
The second root X, =0.92042 —:0.15669, giving
$=0.08450 and K= 32.85 cm/sec,

The corresponding elgenvalue without iriction is 0. 857 and ¢=33. 55 cm/sek The
approximate solution then gives: ‘ .

p=0.06186 and x=33.44 cm/se'c._'

The exponent of damping seems to be too Jarge since even the approximate solution -
would give a reduction of the amphtude of 239, when the dlstance 15 10 km.
The second assumption, «=27.5, gives the equation:

0.001 1.22465 3.64895
X Tx— 0222 +i0.00179 X _0.63 +0.01443
5.47883 . 2.36629 S
T X -1.38+:0.06925 T X —2.87 +10.09052 |

- 2.8172 . 5.49237 0. -
¥ 486 +10.85880 T X—7.00471.78182

From this equation we find
X;=0.28983 —i0.00551
giving £=0.00950 and x=58.21 cm/sec.

The approximate solution would give
$#=0.00500 and & =59.76 cm/sec.
The second root is
. X, =0.91516 —10.04060
giving $=0.02217 and x=32.75 cm/sec.
‘The approximate solution gives here

#=0.01588 and x=33.85 cm/sec.
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The approximate solution would give a reduction of the amplitude of some 7.39,
over a distance of 10 km.
The hypothesis
_fep?
dp
£dz ,
seems to answer well to the conditions in the upper layers where the density gradient
is large, but gives too large values in the vicinity of the bottom. In the approximate
solution the two surface conditions are satisfied and one of the bottom conditions. The
other bottom condition, #=0, can not be satisfied, but the bottom friction is probably
rather small, and so the error will also be small if we allow slipping motion at the bottom.
In this manner there will be soine compensatlon for the assumed large value of the
eddy viscosity in the bottom layer.
At last we shall deduce two formulae which give expressions for the energy and the
dissipation when friction is included.
The vertical oscillation is a solution of the differential equation

d2 [ d2 . d
E("%) “"E(sz’:) + XC—“O

Consider now the conjugate imaginary function ¢ Tt will be a solution of the cor-
responding equation ,

a2 { d% . d( odry ——dp

v\ vieg{vl) ~io XL

If we multiply the first equation by ¢ and the second by { and subtract, we geb the

equatlon |
) ) R vt e

. = b dp
= —ig(X +X) 6[ Cc_‘,gdz.

Integrating the left side by parts and taking the boundary conditions into account, we.
deduce the equation

ia(X+X’)[(pc‘c‘)’ J'cc“’”dz] 2io § fl L iz

2 2
or since X:"(’;iz, X= gk and u=—

d{
= T Wesget )

.

_ _ h —dp _h
G +k2)g[(ﬁ’€:§)h - CCEJZ]=2H£ { puidz .
. : ;
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The expression

[(pco f cc—”dz]

represents 2E,, where E, is the potential energy of the wave, while

h

| puadz =2E,
0 _

where E, is the kinetic energy.
In a similar manner we get

HE[‘%(@—E) B ( jﬁ)}{dzz( Zﬁ) ' dz.( ji)]}dz

. o b =dp
=ig[X —X] Oj Céggdz
From this equation we deduce the formula

. _ _ h —d ]
W(XHX)[(,OCC);,— OICCd—zd] [{ d_C i dz

or

h
2o (i~ ) E, =24k M@ﬁ %dz

If we put k=%(1 —ip), E:—Z—(I +1p) , we get
20pE,= (1 +p)F
where

"dud_
2F= J'data’

-represents the dissipation function, and

(1=pAE,=(1 +p1)E,
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