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Abstract. Two simple classical models of shear flow are re—exarriined in this note, namely
(¢) a layer with constant shear between unbounded irrotational layers and having equal density
jumps across the boundaries, and (i) a symmetric jet consisting of two adjacent layers with
opposite shear of the same strength between unbounded irrotational layers, having equal density
Jumps across the boundaries and a different density jump across the center. The main characteristics -
of the instability of the flow in these models, indluding the spectral range of unstable waves and .
the structure and rate of growth of a typical wave in the region, are derived by elementary semi-
intuitive considerations without resort to the more laborious conventional analysis of the normal
modes of the models. - S :

1. The homogeneous shear layer. By way of introduction to the main topic
we consider Lord Rayleigh’s classical homogeneous model with the same density in
~ the layers. The unbounded outer irrotational layers have the relative translation 2U,
and the shear layer between them has the depth d and hence the constant vorticity
g=2U/d. S | | S

Let the boundaries of the shear layer be given equal small amplitude sinusoidal
deformations with the ordinates z,=4 sin kx and with the upper wave a -quarter
wave length downwind from the lower wave. We shall call this wave structure the
c-staté of the wave. From Stoke’s theorem the vertical velocity at the nodes of these
deformations has the magnitude ' - ' |

+ap _+ : : .
w=qd | ;mkxdx=EA' 7 .
- 21rx d ‘

Both waves move upwind relative to the outer fluid with the same intrinsic speed C

which is found from the streamline slope at the nodes in a frame which moves with the
wave, '

* The research reported in this paper was sponsored by the National Science Foundation under _
- grant G22557. : !
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w/C=kA=(U/Cd)A.

; The waves move intrinsically upwind in the c-state with the speed C=Ujkd. In
particular the wave with the wave length L=2rd (kd=1) is stationary relative to
the fluid in the middle of the shear layer. However, the component field from the Iower
wave makes the amplitude of the upper deformation grow at the rate

(1.1) ' _A=e""dw=(U/d)e__1A; ‘ o (kci=1) .

and the upper field makes the lower amplitude grow at the same rate. Thus, the
symmetric (kd =1)-wave is stationary relative to the fluid at the center of the shear
layer (the symmetric frame) when the upper deformation is a quarter wave length
downwind from the lower deformation. In this stationary ¢-state the wave amplitude
grows at the exponential rate n=Ulde. With U=5ms1, and -d=600 m, the ampli-
tude doubles every 3.75 min.

~ Let next the symmetric wave have equal deformatlons in opp031te phase We call
this non-tilting state the b-state of the wave. Here the upper and lower fields have the -
. same phase, so the vertical velocity amplitude at the interface nodes is

w=_g(1 +e ™A=AkC,.

Both the upper and the lower waves move intrinsically upwind with the speed
=(Ulkd)(1 +e‘“"") In part_lcular the wave whose wave number £ is given by

(1.2) - | kd=1+e™M=12785.. - (L=49d)

is stationary relative to the fluid in the middle of the shear layer The wave amplitudes
do not grow, so this wave has a stationary neutral b-state. Longer waves move in the
symmetric frame upwind through the &-state and start growing, shorter waves move
downwind and start decaying. The wave in (1.2) with the stationary neutral s-state
therefore marks the boundary between the longer unstable and the shorter stable waves.

The (kd=1)-wave in (1.1) with the stationary growing c¢-state has the most favor-
able tilt for effective growth. In the spectral interval between the stability boundary -
and kd=1 the waves have stationary tilts between the b-state and the ¢-state, so
they grow at a slower rate than the (kd=1)-wave, both because their tilts are less
favorable for growth and because the exponential reduction of the fields between
the boundaries is greater. The longer (kd <I)-waves have tilts between the c-state
and the a-state (deformations in the same phase), again less favorable for growth.
But here the field reduction between the boundaries is smaller than in the (kd=1)-
wave. The fastest growing wave is therefore somewhat longer than #£d=1.

These qualitative results are confirmed by Lord Rayleigh’s lincarized theory. The

i
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wave number and growth rate of the fastest growing wave* are given by
ki=1—e *=0.8; n=A4/A=04U/d.

It is 20 per cent longer and grows 9 per cent faster than the (kd=1)-wave. It t11ts
63° 30" downwind from the lower to the upper crest (wave length =360°),

- The spectral position of the stability boundary (1.2) and the position and .growth
of the wave with the stationary ¢-state (1.1) were obtained with little Iabor. These -
items alone give a fairly good idea of the stability properties of the shear layer.

2. The homogeneous four-layer jet. There is no motion in the two unbounded
~outer layers. Between them is a symmetric two-layer jet of finite depth d with the fluid
in the center of the jet moving with the speed U relative to the fluid in the outer .
layers, so the two layers of the jet have the same constant shear (vorticity) 2U/d in -
opposite directions above and below the center level All four layers have the same
density.
' Let the boundaries of the jet have small-amplitude smusmdal deformations with

- the same phase and the same amplitude 4, and the center interface a sinusoidal

deformation with the same wave length a quarter wave length downwind from the

boundary deformations and the amplitude A, As in the shear layer, we call this

~ the ¢-state of the wave. The vertical velocity amplitudes at the nodes of the deforma-
tions are

Boundaries: W, =.g (1+e ™A, =Ckd,,
Center: : Wo —%TAO = C(,k'A0 .

| Thc ‘boundary deformations propagate intrinsically downwind rclatlve to the outer
fluid with the speed C,. The center deformation propagates mtrlnsxcally upwind with
the speed C,. These are determined by the slopes of the deformations at the nodes,
as indicated. Let us choose the wave length for which the sum of these speeds is the
speed U in the center of the jet so the center and boundary waves have no relative
- motion. With the use of the abbreviations

(2.1) | k=kd; a=e M=¢"",
the wave number of the wave with this stationary ¢-state is given by
(2.2) C,i+Co=U=UQG+a)/x; k=3+a=3.05. -

The wave is stationary in a frame which moves relatlvc to the outer fluid with the
* See Appendix A (4).
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speed C, which may be written

(2.3) C=Ji[cs+(U—co)]=Jz~(1—1”°‘) ey,
; 3ta 3

We call this frame the characteristic frame of the wave. It plays the same role in the jet
as the symmetrlc frame in the shear layer.

The wave is stationary for arbitrary values of the deformation amplitudes. How-
ever, only when the amplitudes are the same, A;=A4,=4, will the interactions be-

tween the center and the boundaries be the same and make the amplitudes grow at
the same rate, 4 =2 \/a (U/d)4, so the wave as a whole grows at the exponential rate

(2.4) - n=A|A=2Ja(Uld)~2] Je(Uled). (k=3+a)

It is about 20 per cent faster than the (x=1)-wave in a shear layer: with the same

- vorticity (see 1.1). The jet is more unstable than the shear layer.
In the b-state of the wave the center deformation has opposite phase to the boundary

deformations and the fields have the same phase. The vertical velocity amphtudes '

at the nodes are then /

- ga tot2fa)A=CkA,

Wo ={%(2+2\/E)A= CokA.

The deformations have the same amplitude to make the interactions between the center
and the boundaries equal. The wave number of the wave which has a stationary 4-state,
as in (2.2), is given by

25 - k=3 ta+4.fa =3 67 (stability boundary) '

' The wave is stationary in a frame which moves relative to the outer fluid with the
speed '

(2.6) | C=%[Cs+(U_Co)]=%(1_“1"°‘)U 1+°‘+2\/—
K

3+m+4¢”

The characteristic frame is related to the wave length by the same formula as for the
wave with the stationary c-state in (2.3). Using the same formula for all wave lengths
it is readily seen that waves longer than the stationary wave in (2.5) move sym-

metrically upwind in the characteristic frame through the b-state and start growing,

shorter waves move symmetrically downwind and start decaying, The wave in (2.5)

with the stationary b-state is therefore the spectral boundary between the shorter

stable and the longer unstable waves.
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By the same considerations as for the shear layer it is evident that the fastest growing
wave in the jet is somewhat longer and grows a little faster than the wave with the
stationary ¢-state. The precise values are obtained from the linear wave theory in
Appendix B. They are

wave number: k=3+a—8x/(1+0)=245,
U U
max. growth rate: n=2.[u(l—0)/(1+ “)3 = 0.4952 ,
tlt: cos20,=2 Jaj(l+a); 20,=57°.

Again we note that the position of the stability boundary (2.5) and the position and
growth of the wave which has a stationary ¢-state (2.4) give a fairly good idea of the
stability properties of the jet. ’

3. The stratified shear layer Let now the fluid above and below the shear

layer in section 1 have different densities. The unbounded layer below the shear layer o

has the constant density p, and the unbounded layer above the shear layer has the
- smaller density p,, while the density in the shear layer is the arithmetic mean of these
densities. Tt will be assumed that the density difference across the boundaries is a small
fraction of the mean density, so the klnematlc effect of the density difference may be
" ignored.

The static stablhty of the shear layer is measured by the non-dimensional para-
meter

(3.1) } S=(.02“P1)/(92+P1)<<1

The Richardson number of the shear layer, that is, the non-dlmensmnal ratio between
static stability and shear, is defined by the formula,

(3.2) ' p=2%sqdfU?,

-When this shear layer is disturbed, the “overweight’ associated with the slopes of

the boundaries gives rise to sliding vorticity changes along the boundarles Let at a
certain time the upper boundary have the sinusoidal deformation

zs= Asin kx, _ (uppc‘r deformation)
and along the deformed boundary the sliding vorticity distribution
ut —u” =(2U[d)A,sin (kx+f).

For short we call this sliding vorticity field a gravity wave (see Fig. 3). Its intrinsic
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Fig. 1. Stability diégram for stratified shear layer.

local change is govérned by the slope of the statically stable boundary in accorda:r_ice‘
with the dynamic condition, : .

oz,
=

d, +
—(u" —~u")=s
8t( ) gax

 which, with the above values subsfituted, gives ' BN
E(Ag cos £)=0; i(‘Agrsin B=kUuA,
dt dt

or more explibitly

@3  Aj)4,=ptanp

(3.4) , pA,=kUpAcosp. | ;

- We note that the growth and propagation of the gravity wave is determined locally
by the amplitude and phase of the boundary deformation, so these equations apply
to the gravity waves at both boundaries. In particular, the gravity wave is stationary

in the symmetric frame (ﬁ =kU) when its amplitude has the value 4,=p4 cos B.
Consider now a simple ¢-state of a symmetric wave with the upper deformation

EEEn
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a quarter wave length downwind from the lower deformation, and the gravity waves
in phase with the shear waves (§=0) so the gravity waves are instantaneously neutral.
To make this wave stationary in the symmetric frame both the gravity wave and the
shear wave (the boundary deformations) must be stationary, The gravity wave is
stationary when its amplitude has the value 4,=ud, so the vertical velocity at the
nodes has the value w=(U[d)(1 +u)A. The shear wave is stationary when thc wave
has the wave lcngth which makes

(3.5} w=(Ufd)(1+u)A=UkA ; rc=1+ﬂ.

However the wave will not remain stationary in this state, for the deformation amph—
tudes grow at the rate

(.6) | - AlA=a(1+p)U/d)

while the gravity wave is neutral. In the next instant 4,<pud, and therefore from

(8.4) f> Uk, so the gravity wave begins to move upwind from the initial ¢-state.
‘At the same time the intrinsic speed of the shear wave is reduced (see 3.5), so the shear
wave begins to move downwind from the initial c-state. As the phase difference 8
between gravity wave and shear wave develops from these displacements the gravity
wave begins to grow at an increasing rate and its upwind speed decreases again,
while the initial growth rate of the shear wave is reduced by the opposing action of the
‘local gravity wave. Through these ad_]ustments the {x=1+4pu)-wave approaches a

‘stationary state with all wave amplitudes growing at the same constant exponential

- rate n which is less than the initial growth rate of the shear wave in (3.6),
6D o n=AJAd=A4,JA,~Uktan f< Uks.

' The gravity wave has now the amphtude 4, ,uA co$ ﬁ With 'y denotmg ‘the down-
wind phase of the shear wave from the mltlal ¢-state (see Fig. 3), the growth rate of

‘the shear wave is n=4/4 =a(U[d)[cos y -+pu cos B cos(y —B)] — (Uld) i cos B sin §. From
these we get one relation between f and vy,

(38) (1 +p)tan B +pusin B cos B =cx[cosy +p cos f cos(y—f)] .

A éccond relation comes from the kinematic condition ﬁt the node,
w=UkA =(U[d)(1+ pcos® f)A -+ oc(U/d)[sin.y +pcos fsin(y— )14

which gives | |

(3.9) , psin’f=afsiny +picos Bsin(y—pB)].

-

The three equations (3.7-9) determine the growth rate in the stationary growmg state
(the normal mode) of the (x=1+p)-wave, and the phase adjustments from the

¢-state to the mode. The solution is very simple if the shear layer has the static stability
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for which y=p, such that the gravity wave and the shear wave have equal displace-

ments upwind and downwind from the ¢-state. The wave number, phase, and growth

rate of this mode are
w=1+p=p>—a?=2.6204..

(3.10) N B=y=tan"*(af /x)=2°35
n=u./x (U/d)=0.1178(U/d).

Since from (3.7) B<a, we may for large p (strong static stability) develop the sines
and consines in series and ignore higher powers of the phase angles. Let the subscript
o denote the corresponding approximate values. The approximate phase adjustments
from the ¢-state are ' '

(3.11) ‘ : o= Jo L 27
o 1+2p B, . 1+pu 1+2y

and the approximate growth rate is

(1-}-11) U_ ax> - U
1+2u d m—-1d’

Gy . n=a

We shall examine the accuracy of these approximate values by comparing them with
the correct values which are derived below by a different method.

Let us first find the spectral boundaries between the unstable and the stable waves.
The waves on these boundaries are neutral and stationary in the symmetric frame.
The gravity wave is neutral when it is in phase with the shear wave (f=0, see 3.3),
and it is stationaty in the symmetric frame when its amplitude is 4,=pd (see 3.4).
The shear wave is neutral when it has no tilt with the deformations of the boundaries
in phase (a-state) or in opposite phase (b-state). The vertical velocities at the nodes
in these two neutral non-tilting states are - ! '

w=(Ud)(1+ p)(1+a)A=CkA,

where C denotes the intrinsic upwind speed of the shear wave. The two neutral waves
- which are stationary in the symmetric frame (C=U) have the wave numbers:

Stationary a-state: n,(1+@m)=1, n,=(1—o)fx

(3.13) _ ; ' -
Stationary &-state: m(1+u)=1. ny=(1+u)/x

The corresponding lines in a «,p-diagram are shown by the dashed lines in Fig. 1.
They are the boundaries of the unstable regmn Both lines have the same asymptote,
x =p-+1. The a-line starts from the origin with the slope 1. The b-line starts from
x=1.2785... with unit slope.

e L e e i b o e S e e o e S e L e e ettt
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Since there are two stability boundaries, the general growth rate equation must -
be bi-quadratic with a double root #2=0 on each stability boundary. In other words
it must have the form

[n2—1+na(1+,u)][n2—1+n,,(1+u)]+'Bﬁz=o'; (Uk=1)

where n_is the non-dimensional growth rate measured in units of Uk, The value of
B is found from the two limiting systems:

U0 —(0?/p-+n,)(n’ [+ 1) =(n?[1)(Bf) =0.
5200 n*+n’(B4n,+ny—2)+(1~n)(1—ny)=0.

The first of these gives the frequencies of the two families of gravity waves in the resting
three layer system, namely '

m \? n\? 3sg 1ta '
(kU) (k) S ()

rand shows that B is independent of p. In the statically neutral shear layer (see
Appendix A) one root of the growth rate equation is 7%= —(1 —n,)(1 —n), so the
other root is here 7%= —1.- The value of B is therefore (2—-n,)(2—n,), and the
. growth rate equation for the statically stable shear layer is o

(3.14) '[(1)2;1+(1—a)lfi‘][(-’?_)z—1+(1+a)”_”]+(1)2( —1‘_“)( -—1_+E)=05. |
kU K .kU K kU | K K

This is Goldstein’s growth rate equation for the shear layer which he derived in 1931,
For waves on the (k=1 +g)-line it has the simple form B '

. : 4 2 .
(3.15) ' : -(?f) +(-’-’ii) [2x—1)—a*]=a?x*. (k=1+p)
, U U : L

We note that the (x=u%—a?)-wave has the growth rate 7=g \/; (Uld), as derived
earlier in (3.10). For other (k=1 +yu)-waves the growth rates are shown by the solid
line in Fig. 2. The percentage error & of the approximate value 7, in (3.12), is shown
by the dashed line. The approximation overestimates the growth rate a little, but the
error is less than 0.2 per cent for all (k=1 + [)-waves. _ |

With the value of # known the value of the phase difference B between the gravity
wave and the shear wave is obtained from (3.7) and shown in Fig. 3. The corresponding
percentage error &(f) of the value in (3.11) is shown by the dashed line. Finally
with B known the phase adjustment 7 of the shear wave from the ¢-state is obtained
from (3.8) or (3.9). Using both we get -

p=tan”" M —{—.tan_1 _‘uw_
1+ pcos®g \T+p+pcos’g)’
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CREST OF GRAVITY WAVE,

0.4 Ygt- 20°S ;
: K= |+ , 1|
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10°

Fig, 9. Growth rate for waves on ¢-line. Fig. 3. Phase adjustments from ¢-state to growmg -
maode.

‘which reduces to the value in (3.11) when higher powers of g are ignored. The values.
predicted from the linear apprommaﬁons of the phase angles are surprlsmgly good for
all (k=1 +p)-waves. ’

4. The stratified four-layer jet. The layers have d1fferent constant densmcs
decreasing upward from layer to layer. The density difference between the outer layers -
is divided between equal density jumps Ap, across the boundaries and the remamder :
Ap, across the center of the jet,

Pz—P1='2APs+APo<Pz +P1.

The ratios of these double mean densities are the corresporiding non-dimensional
static stability parameters )

“.1) s=20, —]—ao<1.

-

The dynamic propertles of the stratified jet are determined by two non-dimensional
parameters, the Richardson number of the jet and the ratio between the static stabilities
at the center and the boundaries of the jet,

4.2) p=%sgd/ Uz_ . r=20,5.

With the same notations as in the shear layer (see 3.3-4) the local intrinsic changes
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of the amplitude and phase of the gravity waves associated with the static stabilities are
43 . A A =ptan B,
(4.4) | BA,=(kogd/U)Acosf.

Consider first a wave in a simple ¢-state with the center deformation a quarter
wave length downwind from the boundary deformations, and the gravity wave in
_phase with the shear wave (f=0). Let us choose the wave length for which this wave
is stationary in a characteristic frame which moves downwind with a certain speed C
relative to the outer fluid. The gravity wave in the boundaries is stationary in this

frame B.=kC, when its amplitude is

gs

A=29% _ual
UC c’

The gravity wave in the center is stationary, ,E?O =k(U—-C), when its amplitude is

o=J0gd Gogd AomZﬂUAol r
- UU-0) Uu-c

- The kinematic conditions at the nodes of the wave with the sta.tlonary c-state are there-
forc . ,

", =—5df [1 +uvg](1 +0)4,=kA,C,

(4.5)

2U 1—r .
Wy=— A, =kA(U-C).
0 .d[ H T C:I 0 | o(-‘ )

These give two expressions for the speed of the characteristic frame, namely

2ClU=(1+a){1+./1+4xprf1+a)],
4.6)

K(1—ClUY=1+,/1+2xu(1—1). E

Elimination of C gives the wave number of the wave with the stationary ¢-state, namely

4.7 2k—3—a=(1+0)/1+dxur/(1+0)+2./1+2kp(1—7).

The static stability ratio » may have any value between 0 and 1. For every value of 7
the wave number of the stationary c-state in (4.7) is represented in a x,u-diagram
by a line which we shall call a ¢-line (fig. 4). All the ¢-lines start from the point x =3 4«
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Fig. 4. Stability diagram for stratified jet.

‘on the x-axis with the slope dpld=(1 +a)/x. For larger x we may ignore o=
exp(—x) which comes from the interactions between the boundaries. The ¢-line is
. very nearly coincident with the algebraic curye

26—3=\/1+4xpr+2./ 1+ 2xu(1—7),

- which has an asymptote with the slope x/g=2—r+./8r(1 —7). The asymptote has
the maximum slope xfu=3for 7 =3-

In the jets with the limiting values of the statlc stability ratio the equation (4.7)
for the ¢-line has simpler forms,

The r=1 c¢-line: (£ —2)(x =3 —a) =xpu(l +a).
The r=0 ¢line:  (x—1—a)(x—3 —a) =2xpu.

They are shown in the x,u-diagram in Fig. 4. Apart from the slight a-inodification near
the Jower end they are very nearly hyperbolas with the asymptotes x=g+5 and
 k=2u+4.

The third ¢-line in Fig. 4 represents a jet with the static stability ratio r = (1 +«) /(3 +)
It has the equation

r={(1+a)}{3 +a) c-line: k={3+a)(1+p). \ (r~1/3).
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If we ignore the slight a-effect this is a straight line with the maximum ¢-line slope,
kfu=3, and the static stability ratio is very nearly one-third. That is, two-thirds of
~ the density difference between the outer layers is located across the center of the
jet, and the remaining third is divided in equal jumps across the boundaries. We shall

3
and to the right of the sector bounded by the ¢-lines of the (r=0 and 1)-jets.
When the center and boundary deformations in the stationary c-state have the
amplitude ratio

for short call this the [r= -—)-Jet. It is interesting to note that its ¢-line lies far outside

“8) j ‘ (ﬁ)2= 1+,LLUP‘/C ’
' A, 1+uU(1-1|(U~C)

‘they grow at the same rate

49) @=’is='zﬁg\/(1+uué)(1+uu'1‘r),

where C has the value in (4.6). The wave quickly adjusts itself from this state toward
the asymptotic state of the growing mode with all amplitudes growing at.the same
constant exponential rate. We shall examine this adjustment in some detail in the
(r= -g)—_]et' which in a way is quite similar to the corresponding adjustment in the

shear layer.

5. The (r=1/3)-jet. The static stability ratio in the jet is in fact slightly larger
- than one-third, r={(1 +«)/(3 +a). The jet may be defined as having the static stability
ratio r=C/U, where C is the speed of the characteristic frame of the stationary
¢-state in (4.5). The corresponding expressions for C irom (4.5) are

KCJU=(1+a)(1+1),
(5.1) *
| x(1—CJU)=2(1 4 p).

Elimination of € gives the earlier values

¢c-line: _ x=(3 -f-oc)(l +p); -
static stability ratio: r=(1+a)/(3+a) =C|U.

The center and boundary deformations grow at the same gate in the ¢-state when
‘they have equal amplitudes 4,=A4,=A. The growth rate is

A4=2 Jo (1 +0)(UJd).
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LREST OF GRAVITY WAVE,

K={3+a)1+u)

02 10°

0 0

ol

0 l-r_l},L'—r-

Fig. 5. Growth rate for waves on ¢-line. Fig. 6. Phase adjustments from ¢-state to growing
‘ mode.

After the adjustment toward the asymptotic state of the growing mode (see Fig. 6)
all amplitudes grow at the same rate ' :

G2 n=A]A=AA,=kCtan f,=k(U—C)tanfy.
Assume provisionally that the speed of the characteristic frame does not change sig- .
nificantly during the adjustment. The amplitudes of the gravity waves are then
A,=Apcos f. The kinematic conditions at the crests of the center and boundary *
deformations, using (5.2), are (see 3.8).
2[(1+ p) tan By + pcos fosin fo] =2 Ja[cosy+pcos f,cos (y— )] 4s/ 4o »
1+ -I;,u) tan B+ pcos Bsin B =2 \fu[cosy+ pcos By cos (y— Po)l4of4,. | '

To the linear approximation of the phase angles these give

63 A=Ay, and By=2Bo=2 \Ja(l+WI(1+24)
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and hence the approximate growth rate

G4 | ne=2.Jo

M. precisely as in the shear layer (see 3.12). ‘
f‘\f The right value of the growth rate for the x={(3+«)(1 +g)-mode in a jet with
- the static stability ratio r=(1 +«)/(3+«), as obtained from the quartic factor of the
frequency equation in Appendix C, is shown by the solid line in Fig. 5. The percentage
error ¢ —(n[, —n)[n of the approximate value in (5.4) is indicated by the dashed hne
The error is less than 0.4 per cent for all values of p. ,
With the growth rate known the right value of the phase adjustment g, is obtained
from (5.2). It is shown in Fig. 6 by the solid line marked B,. The percentage error
&(B) of the approximate value in (5.3) is indicated by a dashed line.
Finally; the phase adjustment y of the shear wave and the change of the speed
of the characteristic frame, C,,=C{(l +6), are obtained from the kinematic conditions
at the nodes. These conditions, to the second order of the phase angles, may be written

center: (12008, +8) = b 2E 2,
1+p
boundarics : (1+2u)(7B,—8)=1 ﬂ3 +4p 2
which give A )
(5.5) %- Y_a B 243 5 _ g

B " L+p 1424 9B, 32+3w)

The percentage change of the speed of the characteristic frame is an order less than the
phase adjustments. The right values of y, as obtained from the theory in Appendix C,
are shown in Fig. 6 by the solid line marked y, and the percentage error &(y) of the
value in (5.5) is indicated by the dashed line. The errors in the phase adjustments are
of the same order as the corresponding errors in the shear layer. Only for small values
of the static stability do they exceed a few per cent.

6. The (i'::l)—jet. This jet has no density jump across the center. The density
difference between the outer layers is divided in equal jumps across the boundaries
of the jet. The kinematic conditions in (4.5) for the wave with the stationary ¢-state
in this jet become

(6.1) KCIU=(1+pU[C)(1 +0)=K~2. .
The wave number is given by | |

(6.2) : (k=3—-a)(x—2)=xp(1+a). : (e-line) -
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When the deformation amplitudes have the ratio

- AolA,=/1+RUC,
- they grow at the same rate, namely _
AolAo=AJA,=2. [Jo./1+pUIC(U/d).

After the adjustment from this ¢-state toWard the asymptotic state of the_ growing
mode all wave amplitudes grow at the same rate as the gravity wave in the boundaries,

(6.3) n=Aofdo=A,/A,;=A,]4,=kCtanf.

where the grawty wave has the amphtude A, =(pU[C)A; cos B.

Assuming again that we may ignore the shght change in the speed of the charac-

teristic frame during the ad_]ustment the kinematic conditions at the wave crests are
(1+)(1+pU Otan f=2 \Ja [cosy+(nU/C)cos fcos(y— BYIA,/A,,
(1+a)[(1 +pU/C)tan B+ (1U/C)cos Bsin f]=(2 /@cosy)do/A,.

- To the linear approjcirhation of the phase angles these‘ give

(6.4) | AO/AS= 1+2uU/C;  p=2./al./1+2uU]C.

- and hence from (6.3) the approximate growth rate

1+pUJC U
6.5 1o =2
©5 - ° ‘/—\/1+2yU/Cd

During the adjustment the center deforma.tlon grows faster than the boundary deforma-

tions, whose growth is opposed by the gravity wave, so the amplitude ratio is largcr
in the mode than in the initial ¢-state,

“The right value of the growth rate, as obtained from the frequency equation in |
Appendix C, is shown by the solid line in ‘Fi ig. 7, and the percentage error ¢ of the

approximate value in (6.5) is indicated by the dashed line.

With the growth rate known the right value of the phase adjustment § is obtained
from (6.3). It is shown in Fig. 8 by the solid line marked #, and the percentage error
of the value in (6.4) is indicated by the dashed line,

The phase adjustment y and the change of the speed of the characteristic irame
C.=C(1 +9), are obtained from the kinematic COIldltIOIlS at the nodes. To the second
order of the phase angles they are

center: (14 pU[CYBy+ 8)=p*rU]C,
boundaries: (1+2pU/[C)(By—8)=p*uU|C.
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\ LCREST. OF GRAVITY WAVE,
\
i /—.N
e
) r=1 : 'l‘ - \T
. = y )
O4U/d ki (l+a) = {(k-3-a)(k-2) 20" “ *’ ]-(— ' "
1 )= K-3-0)(k ! /\ d
T ? {of
n B
Y
n
o2f - . 10°
/’ \\\ .
/ ‘\\\\/e = {n,~n}/n
fo2aw S~
| -
| .
0O | prp— O(t-)
Flg 7. Growth rate for waves on ¢-line. Fig. 8. Phase adjustments from ¢-staté to growing
' mode. ‘
These give :
vic 2 u/C o uU
6.6) Py RUIC 2+3uU/C. __#ujC

B “1+pUJC 1+24UJC° By 2+3uUJC

The percentage change of the speed of the characteristic frame is also here an order
less than the phase adjustments. The right values of 7, obtained from the theory in
Appendix C, are shown in Fig. 8 by the solid line marked y, and the percentage error
‘¢(y) of the value in (6.6) is indicated by the dashed line. The errors are quite small
except for small values of the static stability,

7. The (r=0)-jét. This jet has the entire static stdbility at the center. The thedry
is here practically the same as for the (r=1)-jet. From (4.5) the speed of the char-
acteristic frame of the wave with a stationary c¢-state is given by

(7.0) KCo/U=2(1+pU[C)=k~1—a, _  (Co=U—C)
and its wave number is given by

(7.2) (k—1—o)(xk—3—0a)=2Ku.
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When the deformations have the amplitude ratio

AJAg=/1+pU,C,

they grow at the same rate

Ao/Ao=/is/As=2\/°T\/ i+ﬂU/Co (U/d).

After the adjustment from this c-state to the growing mode all wave amplitudes
grow at the same rate as the gravity wave in the center

(13) | n=AJA,=AofAg=A,A,=kCotan .

This condition combined with the kinematic cond1t10ns at the wave crests, to the first
order of the phase angles, give

(7.4) AJAo=J1x24U[Co;  28=2./a/\/1+2aU]C,.

and hence from (73) the approximate gfowth rate

' ' ' ' “14pUlC, U
75 ‘ ne=2 fo B0 U
( .) . ‘/_\/1+2HU/CO d

- The kinematic conditions at the deformation nodes, to the second order of the
phase angles, give

where &, denotes the perce_ntagc change of the speed C, of the characteristic frame -
- from the ¢-state to the normal mode.

The right values of the growth rate and the phase adjustments, as obtained from
the theory in Appendix C, are shown by the solid lines in Figs. 9 and 10, with the errors
~ of the values from (7.4-6) indicated by dashed lines.

8. The stability boundaries in stratified four layer jet. The waves on these
boundaries are non-tilting neutral waves, with the wave on the boundaries stationary .
relative to the wave in the center. The kinematic conditions at the nodes of these waves,
as in (4.5), are -

U r U 1-r '
wy=140)=] 14+pU— [4,£2 Joo~| 14 pU Ag=kAC,
( )d[ H C:I \/_dl: H U—C:I 0

(8.1) : _
U r U 1-—r

Wo=+2 Joo—| 14+ puU—- A, +2| 14 pU Ao=kA;(U—-C).

0 \/ d[ H C] d[ L U C] 0 o( )
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Fig. 9. Growth rate for waves on ¢-line.

t

To make these the conditions for the waves on the stability boundaries the amplitudes

must be chosen such that the mutual interactions between the center and the boundaries
give the same contribution to the intrinsic wave speeds.

amplitude ratio as the condition for equal growth in the stationary c-state in

- namely

20°

o —»

Ao°

.ON THE INSTABILITY OF STRATIFIED SHEAR FLOW

¥

¥

LREST OF GRAVITY WAVE_,T
4

Fig. 10. Phase adjuStments from c-state to
. growing mode.

1+ pUr|C

| (AO)Z_
4,) 1+pu-niu—-C)
With this arhplitudc ratio the kinematic conditions in (8.1) become
kCIU=(1+a)(1+ pUP[C)+2 o /1+Ur[C- /14 pUA-N)(U=O),

x(l—C/U)=2[1+,uU(1—-r)/(U—C)]i2ﬁﬁ+uUr/C-ﬁ+,uU(1—r)/(U—-C); *

These equations d

of the waves on the spectral boundaries

{

This condition gives the same

etermine the wave number and the speed of the characteristic frame
between the stable and the unstable waves.

The positive sign for the interaction term gives a stationary b-state with the center

deformation in opposite phase to the boundary deformation. The negative sign gives a
stationary a-state with deformations in the same phase. '

(4"8) ’
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It is very easy to find the stability boundaries in a jet which has the static stability
ratio r =C/U, where C denotes the speed of the characteristic frame, They are given by

KCIU = (1 +a£2 /o) (1 +p) =1 — (2 £2 /o) (1 +1).
The stability boundaries are therefore | |
82 k=(+atd Ja)1+p),
and the static stability ratio is |

8.3 ' : r_—_'__;____;—_ )
®3) 3+tatd Ja U

These boundaries are shown as dashed lines in Fig. 4. The b-line starts from x=
8+0a+4 /o =3.67 with the slope dpfdic=(1 +a +2/./x)/x. The a-line starts from
_the origin along the parabola #2=124. Their common asymptote is the ¢-line of the

1 _ |
(r = -'3—)-jet, x =3(1 +p). It should be noted that the static stability ratio does not have .

a constant value on these stability boundaries. On the b-line the value is a little larger -

- than one-third, but only for small u is the departure of any significance. On the -

a-line the static stability ratio is less than one-third and for small u, as the a-line .

approaches the origin, the value decreases toward zero (r—3%x—0). Here the g-line

approaches the stability boundary of the (r=0)jet. o
The stability boundaries of the (r =0)-jet are determined by the conditions

kCo/U=2(1+uU[Co) +2. /o . /1+ uUIC,  (€o=U-0)

K(1—Co/U)=1+a+2 ﬁ\/l +uUj[C,.

~The ditference of these give one quadratic equation for C,/U, whose positive root is

4xC0/U=(1c+1—~a)+ J &+ 1—0)? +16xp. o 1(}»:0)'

The sum of the two conditions gives a quadratic équation for \/ 1+pU|Cy. The pos-
itive root substituted in one of the conditions gives a second expression for C,/U,

namely ‘ :
K00/U=K—1;I-Oliﬁ/2d(u—1+ot). T (r=0)

- Elimination of Cy gives the stability boundaries in the (r =0)-jet

(8.4) 2up=(c—1+a)k—3—0)+ /20~ 1+ o)[(x+1—a)°+ L6xp].

Their common asymptote is the hyperbolic ¢-line for the (r=0)-jet, 2xp=(x—1)(x—3).
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The b-line starts from x =3 +a+4./a. The a-line starts from the origin along the
parabola x®=12p.
The conditions for the stability boundaries in the (r=1)-jet are

xClU=(1+a)(1+pU[C) 22 /o /1+pU/C,
K(1—C[U)=2+2/a/1+pUJC.

The same procedure as above gives two explicit expressions for C, namely

AC{U=x—1+a+ \/(rc——1+oz)2-+8(1+a)rcu,
(L+@)kCU =do+(1 +a)(k —2) 2 S /da(l +a)(x—2).

From these, by elimination of C, come the equations for the stability boundaties in
the (r=1)-jet, ' '

440+ (L +0)(kc—2) £2. /o fat(L+a)e—2)]=
= +D[—1+0)+ JE—1+a)?+8(1 +oxu].

The common asyinptote of the stability boundaries is the hyperbolic sline for the
(r=1)det, xp=(x—2)(x—3). The b-line starts from x=3+a+4 /e. The a-line

starts from the origin along the parabola x%=6p.

The stability boundaries may be obtained from the theory in Appendix G, by

using the condition that the frequency equation here has a real double root,  m=C/U,

which makes the discriminant of the equation zero. However, the dertvation is more .

laborious and does not reveal the simple property of the amplitude ratio on the sta-
bility boundaries. _

The stability. boundaries for the (r=1)-jet and for the (r=1/3)-jet are shown in
Fig. 11. The broken lines between the boundaries are the corresponding ¢-lines. The
growth rates of the normal modes on the ¢-lines are shown in the left part of the Figure.
The jet is most unstable when the entire static stability is located at the boundaries
(r=1). The instability is weakest when two-thirds of the static stability is located in
the center of the jet. For intermediate values of the static stability ratio the growth
rate of the normal mode on the ¢-line may be obtained with an accuracy of a few per
cent by linear interpolation between these extreme values. | '

APPENDIX A -

Normal modes of the homogeneous shear layer

In an arbitrary state of a symmetric wave the boundaries of the shear layer have

the deformations:

Upper deformation: 2z, =4 cos (kx — ),
Lower deformation: =~ zy=Acos (kx +0).’
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P

sgd

2

-
u
M -

0

Fig. 11. Stability boundaries in the stratified jet.

With the notations d= depth of shear layer and 2U = relative speed of outer lajréi“s,
the kinematic and dynamic conditions at the upper boundary are

' o 0 U @ ta
wi=| —-+U— = —(Z;—e .
. (6t -ax)zl R )

: Substifute here the deformations and introduce the abbreviations
(A.l) kd=x, e “¥=q, n,=(1—a)fx; my=(1+a)/x.

The resulting evolution equations for the symmetric wave are

2 (4sino) i | _
: =(—n)kU="_tano+o=ntano, =0 (c=0).
Acoso A '

d
—(Acoso
dt( )

_ =(n,,-»1)kU=écot 6—d=ncota,= —a,(c=90°).
Asing A S _
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The phase speed ¢ in an arbitrary state is related to the speeds in the non-tilting
states by the formula

(4.2) o 0=0,c08%0 +0,5in’c .

The growth rate n and phase o, in the stationary growing state of the wave (the
normal mode) are related to the phase speeds in the non-tilting states by the formulas

(4.3) n*=—6,0,=—(1—n)(1—n)(kUY =[o* — (1 —)*J(U/d)*
(4.4) tan’s,=—0, 6;;  cos2o,=(1—x)fx.

- The fastest growing mode (dn/dx=0) has the wave number k=1—-a2=0.8, the
growth rate n=0.4U[d, and the tilt 2¢,=63°30". '

APPENDIX B
Normal modes of the homogeneous four-layer jet

We use the notations 4= depth of the jet, U= speed of fluid in center of jet
relative to unbounded .outer fluid. In an arbitrary state of the wave the center and"
the boundaries of the Jet have the deforma.tlons :

- Center: zg=A4 cos (kx —o).
Boundaries: z, =4 cos {(kx + o).

‘They have the same amphtudes to give equal interactions between the center and the
boundaries. : ~

With the abbreviations in (2. 1): x= kd o= e"‘, the speed of the charactenstlc
frame of the wave relative to the outer fluid (see 2.3 and 2.6) is

c=%(1—1;“)u.
K

The kinematic and dynamic conditions at the boundaries and the center are

Boundaries: W, = ..q — C.‘z]zs=

U 3
Y o —(14z+2 .
ER 3 [ +e)z+ \/Ezo]

kd ox

K 0 U o
Center: Wo=| = +({U—-0)— jzo=— —[22,-2 AR
| o=| ¢ C)ax]z." ra 22 Vazl
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With the value of C substituted the local changes in the characteristic frame are

K 0z, ,_azo
— S =d—=3—p) = +2
U ot (r )

x 0zo_
] —3—u +2 "———-
Rt ) Jal

Substitute here the deformations, and introduce the abbreviations
(B.1) o n,=0G+o—4 Jo)fx; n,=C+o+4 \/Ec_)/k.

Both equations give the same evolution equation for the symmetric wave, namely

g (Asing) i : . ‘
! =1(1—n)kU="tano+o=ntano,=c,(c=0)
Acoso A

(B.2)

d
—(Acoso
dt( 080)

: =l(nb—1)kU=fcota—6'=ncotas= —a,(6=907).
Asine A ‘ _

They are formally identical to the evolution equations for the symmetric wave in the
shear layer (Appendix A), only n, and n, are different functions of the wave length.
The growth rate #n and the phase o, in the stationary growing state of the wave
(the normal mode) are also here related to the phase speeds in the non-tﬂtmg states
by the formulas

(B.3) n’=—0,6,= —3(1—n )1 —ny)(kU)*= [4a—3(3 +a—x)* U/d)?
(B.4) tan’e,= — 0.0s  ©0820,=3(3+0~K)/ J o, |

The fastest growing wave (dnfde=0) has the wave number x =3 +o—8a/(l +a) =
2.45, the growth rate n=2 /o (1 —a)/( 1+a:)(U/d) =0.495U/d, and the tilt cos20,= -
2,/ /(1 +a), or 20¢,=57°.

Besides this unstable pair of modes the jet has a third stable mode with a node at
the center level and the boundaries deformed in opposite phase.

-

APPENDIX C

Normal modes of the stratified jet

We use the notations in section 4, and further z;= deformation -of interface
(1=1,0,2). (u*~u");=(2U/d)g;= gravity wave in interface. These are related through
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the dynamic condition
(C.1) L P Aot

In a frame fixed to the outer fluid the wave elements of‘the normal mode are
(C.2) | zpgi~expik(x—mUt);  (m=C[U+ infUk).
From (C.1) the gravity waves in the boundaries are |
G12=— (7‘/"")#21-,7.; (7':2%/9 .
and the gravity wave in the center of the jet is
go=2(1—n)f(1—m)uz, .
The kinematic conditions at the boundaries and center of the jet are

0z, U 0

VDZ1
o e U= —z1)ta(gs—2Zo)+ Jo 42z
Dt o~ kd 2 x[(gl 1)+a(gs—z;) \/ @0 o)]
Dz %Y Org, 2t ol —z)+ o (g;+2z )15
Dt ox kdox ' °
Dz oz

- (1— )U—f—wa—[(go+zzo)+ \/_‘(9'1“‘214'?2""22)]

- The frequency equation is obtained by putting the determinant of this system equal
to zero. It may be written in the form ' _ \

[xm—(i—a)(1+ %ﬂ):l[{xm—(1+a)(l +L u)}{xm—-x+2(1+_:—:-£1ﬂ)}+
e

It is the product of a quadratic factor which determines 2 pair of stable modes with a
nodal plane in the center and the boundaries havmg equal deformations in opposite
phase, and a quartic factor which determines two pairs of modgs with the boundanes
having equal deformations in the same phase.

For p=0 the quartlc reduces to a quadratic whose roots, m=C[U +in{Uk, give
the values of C and =z in Appendix B.
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For waves on the ¢-line in section 5 with the wave numbers = (3 +a)(1 + §) in.
a jet with the static stability ratio r=(1+a)/(3+a), the frequency equation has a
pair of complex roots with the real part C/U=r, as predicted in (5.1). The imaginary
part gives the growth n/kl/ which is shown in Fig. 5.

In the (r=1)-jet the quartic factor of the frequency equation becomes cubic.
For waves on the c-line of this jet, (I +a)xu=(kx—2)(x—3—a), it has a conjugate
complex pair of roots whose real part has the value C/U=1 ~2/x, aspredicted in.(6.1).
The imaginary part is the growth rate which is shown in Fig. 7.

Similarly in the (r=0)-jet the quartic factor of the frequency equation becomes
cubic. For waves on the ¢-line, 2xu=(x —~1—a)(x —3 —«), it has a conjugate complex
pair of roots whose real part has the value C/U=(1+a)/x in (7.1). The imaginary
part is the growth rate shown in Fig. 9.

LIST OF SYMBOLS

d Depth of the shear layer and jet.

U In shear layer, one-half of relative speed between outer layers.
U In jet, relative speed between center fluid and outer fluid.

k Wave number.

K

o

n

kd
e
- Growth rate of normal mode.
Ps Density of lower layer. '
P Density of upper layer.
$ (P2 —p1}/(p2+p1) '
J 15gd/U?, Richardson number.
Aps;  Density jump across boundaries of jet.
Ap,  Density jump across center of jet.

o5 Apy/(pa+py)

Oy Apo/(pz +p1)

r 2afs, static stability ratio in jet.

4,4, Amplitude of boundary deformations. ;
A,4, Amplitude of center deformation.

Amplitude of gravity wave.

C,C, Intrinsic phase speed of boundary wave. .
Co Intrinsic phase speed of center wave. '

C Speed of characteristic frame relative to outer fluid.
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