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Summary. This work deals with the flow of a perfect fluid over an isolated barrier. Of
interest is the time development of the free surface for an impulsively started obstacle and the
analysis for a steady flow about finite amplitude barriers. We show how for some obstacles
no steady shock free flow will develop from the initial value problem. In these cases upstream block-
ing occurs altering the basic flow state. By including the non-linearities in 2 lee wave theory the _
study of lee waves is made compatible with the actual experimental evidence. This is contrasted - ) N

with the linear theory which predicts lee-waves for all subcritical flows, , ,

1. Introduction. Infinitesimal amplitude approaches to the description of the
flow of a homogeneous or non-homogeneous fluid over an isolated barrier invariably
show the existence of lee waves whenever standing free oscillations may occur. Such
is not the case with a flow of finite amplitude as no steady flow about an arbitrarily
high obstacle need exist even though infinitesimal standing oscillations are possible.
Lone (1954) has derived general criteria for the existence of a steady flow regime in
one — and two — layered fluid systems. Finite amplitude models of certain stratified
fluids have been shown by Lone (1955) and Yz (1965) to also have a critical obstacle
height above which no steady flow exists. They have established the criterion that if
the obstacle is larger in amplitude than the height of the lowest nodal surface of the

- free oscillations then no steady solution exists.

This result of Long and Yih has been shown only for stratified fluid models which
are described by a liniear equation. Such as may be derived if we assime an incom-
pressible fluid whose kinetic energy far upsiream of the barrier is independent of altitude.
In such flows no energy is fed into waves by shear in the basic flow. For an adiabatic
fluid or for more general incompressible models such criteria have not been obtained.
It is possible that the criteria differ in these more general models. '

In this paper we discuss the flow of a perfect fluid with a free surface about a sub-
merged barrier. The flow is examined first by numerically integrating a hydrostatic
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model for an initial value problem and second by studying the formation of wave trains
in a non-linear steady flow example. Before proceeding with the analytics it is worth-
while to examine the critical features of experimental observations. These experiments
are réported by Lone (1954) and the reader is referred to his article for complete details.
The experiment consisted of pulling at a constant speed an obstacle along the bottom
of a long narrow channel containing water. Initially both the fluid and the obstacle
~were at rest. The obstacle extended completely across the channel and was -of gentle
shape to minimize boundary layer effects. In the following the obstacle speed, ¢, is
given in terms of the Froude number, F?=c¢%/gH, where g is gravity and H the initial
fluid depth. The obstacle amplitude is measured in fractions of the initial fluid depth.
Long observed that for very small Froude numbers and after transient disturbances
had propagated away from the obstacle the free surface was only slightly depressed
over the obstacle. As the Froude number was increased the depression of the free surface
over the obstacle deepened. Further increases in Froude number, for sufficiently small
obstacles, led to the generation of lee waves behind the obstacle. The waves being
stationary relative to the obstacle. However, for a given obstacle there existed a critical
Froude number above which the transient disturbances ceased to propagate free of
the obstacle, but instead developed into hydraulic j jumps. For all obstacles this critical
Froude numbers is less than unity. : '
For very high Froude numbers the transient disturbances were left behind the '
‘obstacle and the fluid crossed the obstacle maintaining a constant fluid depth. That
is, the free surface followed the obstacle. As the Froude number was reduced the fluid -
continued to follow the obstacle, but at an increased amplitude. This amplification
of the obstacle shape continued until some critical Froude number — greater than
unity — was reached where a shock free flow no longer existed as an asymptotic state,

The cited experimental evidence shows that by far the most important feature of

the flow is the development of hydraulic jumps. Thus it is necessary that any attempt

at an analytical description of the time dependent problem involve non-linearities

which permit waves to develop into breakers. If we assume the flow is absolutely
hydrostatic, this requirement is met as it is known that any finite amplitude hydrosta.tic'
wave of elevation must steepen in front as it. progresses.

~ Section 3 of this paper is devoted to the hydrostatic model. The equations are inte-
grated numerically for the initial value problem of an impulsively started obstacle.

The integrations show how a non-steady state evolves when transient disturbances
cannot propagate away from the barrier quickly enough. Steady hydrostatic flows
are also considered as they form the background for the lee wave problem discussed
in section 4.

The possibility of wave trains may be introduced into a hydrostatic model 1f we
permit some departure from a hydrostatic pressure field. Friepricas (1948), KELLER
(1948), and WeunauseN and Larrone (1960) have derived equations which are valid

“for long waves of small but finite amplitude. The leading terms in their expansion are
the hydrostatic equations. The next term involves the curvature of the free surface. -
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In both of the derivations it is assumed that the second derivative of any quantity
is at most of the order of magnitude of the quantity squared. With this assumption,
which we shall call the solitary wave assumption, they expand in the amplitude of the
disturbance retaining terms of first and second orders Solitary and ¢noidal waves are
contained in this set of equations. :

Such a restriction placed on a relationship between derivatives and amphtudes 1S
not necessary. Accordingly we shall expand the equations of motion solely in terms of
wave number, retaining fully the non-linearities. It might be argued that such an’
approach is in reality no more valid than the usual amplitude expansion for the solitary
wave since disturbances of large amplitude tend to have sharpened crests. Consequently
higher order wave numbers must be considered. This is true for free waves but ncar a
barrier the amplitude of a disturbance may be large without sharpening, particularly
so when the free surface is depressed over the obstacle. The consequences of making
the solitary wave assumption are discussed. This type of approximation procedure can
be generalized to non-homogeneous fluids and thus its consequences in this problem
are of interest.

2. Development of the governing equations. We adopt a coordinate system
-with % in the horizontal direction and y in vertical direction. The corresponding
fluid velocities are # and ». The fluid density is taken as unity and all quantities are
- nondimensionalized on H, the initial fluid depth, and g, gravity. Fo example, all
velocities are measured as fractions of (gH), ie. u= uphmcal/ (¢H)*. The time, ¢,
is measured in units of (H/g)%. .

Assuming irrotational motion of a perfect ftuid, the Eulerian equations of motion
are equivalent to Laplace’s equation

Vip=0. @.1)

The veldcity potential, ¢, is defined as u——--—d;x, o= —¢,. Subscripts are used to
denote partial differentiation ‘throughout this paper.
At the free surface y=1 +11(x t) the fluid must obey the kinematic condition

- ¢’y + ﬂxd’x ) (22)

and the surface pressure condition

n=¢,—3(@2+62). - (2.3)

We have taken the surface pressure to vanish and assumed that at some time the
free surface displacement, #, vanishes.

At the obstacle and along the channel bottom the fluid must obey the kinematic
condition

-

¢y ==—8+ ¢.xsx ’ (2'4)

where y=s(x,t) is the shape of the lower boundary,
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The most general solution, Lams (1932), of (2.1)is

2 4

(b Gl(x3 t) - _Glxx + EGlxxxx"]' iy yGZx(x= t) y_GZxxx '5—'GZxxxxx . (2'5)

where G, and G, are arbitrary different functions of x and ¢ This series approach
to long wave problems has been used successfully by Long (1963) in his study of the
development of solitary waves. Subst1tut1ng (2.5) into the boundary conditions we
obtain

¢

1+5)° (1+r:r)262 _(1+n)*

He=14+mGCye— T 7

Glxxxx G2x +

GZxxxxx

(2.6)

1+ 1+5)* 14+7)° '
"']'ﬂx{Glx ( 2:1) GZxxx+( 4’7) Glxxxxx+(1+ )GZxx ( —|3-:1) GZxxxx}"'""

( +11)5 ‘

1+%) t4+n)*
( +71) ( +71) (1+ﬂ) G2xxxt+ GZxxxxxt

Glxxxxt+(1+ )sz .

n= Glt Glxxt"'

(2.7) :

141)? 1+m)* 145)° 2
"%{Glx_( 2'7.') Glxxx+( 4 ”) Glxxxxx+(1+q)G2xx ( 3'11) GZxxxx}

(L+n)® @ty

Glxxxx + GZJ:

- 2
—%{—(1-+n).G1-xx+ GZW} -

and

s st ' s* 52
GZx"“EGZxxx EGZxxxxx'i'SGlxx ‘_:',;—Glxxxx St+Sx{Glx '2—G1xxx o

(2.8)
54 . S3
+ Z"!“Glxxxxx + SG2xx - '?,_!'GZxx.tx} + -

Differentiating (2.7) with respect to x and introducing U= —G,, into the equations
we find after some rearrangement

-

) 3 \2
L R

@9

5 4
+{""(1+n) Uxxxx_(1+") G2xxxx} Frees
51 4! x
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2! 2!

X 1+n)? 147)2 '
U= —nx-—UU,+{( Yt U4 1)Gpt CED YU+ (1) UGy 31 47) 2 -

4 3 .
Ay DG, 2.10)

Aty | At
41 31

4 ' xxxt

GZxxxt

~36L—(1 +n)U,,GZx} -{

3
Ux GZ xxx

4 - 2 4 3
fAEYy s Qe A4y (Y o A+

8 ] 2' xx. 31 xxx2x "¢ 2'

_(L+p)?
21

x

GZxGZxxx} + oy
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G U U Cu+L6 Cu 156 @A)
2x= =8 —US;,—S§ x+{'3—! xx+i'2xx}x_{‘5—! xxxx+2“!‘ Zxxxx}x'['"" ( )

Physically U represents the fluid velocity at the bottom of a flat channel.

Now we assume that derivatives of higher order than three are negligible (equi-
valent to retaining the leading two terms in an expansion in wave-number) and we
eliminate G, using (2.11). This yields the pair of equations :

3_ 3 ' : ;
m=sr—{(1+n—s)U+(S§—-—,L”)—?Un+§;(s2—~(1+n)2)Gx} , @)
A : L S4x : :i
- and
7 . R UZ 2 ! 2 .:
V;=-{n+-2—-—(1 20~ w+6 -0y, (14006, 410417 | o
(2.13) |
+%G2+(1+q)UxG} : |
‘where
G=—s,—(Us),. (2.14)

It is desirable to eliminate the time dependence on the right hand side of (2.13).
This may be done by successively approximating for U/,. This yields.

2 x

Equations (2.12) and (2.15) are the governing equations whose solutions are con-
sidered in the remainder of this work. No assumption on the amplitude of the obstacle
of free surface displacements has been made. The limitations of these equations are
discussed in section 4.

U2 Qn)? - 24012
U=—dn+—+ 5 et (L) U= (141G~ 1+ UG, +3G* +(1+n) UG .(2.15)

P
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3. A hydrostatic model.

3.0. Introductory remarks. This section contains three major subdivisions, In the first

. we discuss the types of solutions to be expected of a hydrostatic flow when the motion
~ is steady. This section contains little new material but is included because the analysis
forms the basis for the discussion on lee waves in section 4.

The second part of this section contains the numerical results of integrating the
hydrostatic equations for an impulsively started obstacle. In the final section we discuss
a method of approximating, in the non-steady reglon the asymptotic solutions of the
time dependent problem. :

Retaining only first derivative terms in (2.12) and (2.15) we obtain the system

= —(hU), @1

and
U2 '

where h=1+y—s is the total fluid depth. Note that to this order of approxnnatlon '
the veloc1ty, U, is uniform throughout the fluid depth. -

3.1. Steady flows. In a coordinate system moving with the obstacle and for steady -.
motion the time derivatives in (3.1) and (3.2) vanish. Integrating the steady forms of
(3.1) and (3.2), we have the equations :

hU:KI N ’ ) (3.3)
and
U? . |
h-l-?-l"s(x):Kz: (3.4) .

where K; and K, are constants. The first equation, (3.3); is immediately recognizable
as the continuity equation and the second, (3.4), as the energy equation. :

If in the coordinate system moving with the obstacle we take the fluid to flow from
right to left and assume that the upstream depth is unity, the constants K; and K,
have the values —F and 1+F2?/2. The fluid is assumed to approach the obstacle
at a Froude number F, and it is assumed that the obstacle vanishes in the upstream
direction. Using these values for X; and K, and eliminating U between (3.3)
and (3.4) we find

VTR 2
hs—(1+fé-4—s(x))h2+%——0 _ (3.5).

The roots of this cubic determine the evolution of the free surface.
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Af(h)

Fig. la. The cubic (3.5) as a function of total fluid depth for sub-
' critical flows,

When the obstacle, s, vanishes the cubic has the roots

hl =1 ?
_ 72 |
) ha ="Z+%(F4+8F2)*, -
3.6
2 .

hy =%_—%(F4 +8FY),

The root %, corresponds to uniform flow. The root 3 may be shown to be negative
for all Froude numbers and is physically uninteresting., The root £, -is greater than
unity if F>1 and less than unity if F<1. Tt is well-known that for a given energy
and volume flux two states of motion exist. Classical bore theory is a result of combining
the two states of motion having equal momentum and volume fluxes, The root, £y
corresponds to that alternate state having the same energy and volume flux as the basic

flow of unit depth and Froude number, F. The momentum fluxes in the two states are
different,

-V
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The behavior of the roots of (3.5) is shown in Figs. la and 1b. In these Figures the
ordinate is the function f(A)=hs—(1 +F22—-5)k2+F%2. In Fig. la, f(k) as a
function of % is illustrated for F less than unity. No particular scale is used in the
Figures. ' _

The Figure illustrates that as the obstacle amplitude increases the total depth of the .
fluid decreases. A calculation of the roots of the cubic shows that in all cases the de-
crease in the fluid depth is greater than the obstacle amplitude. It follows that the free
surface is depressed on crossing the obstacle. However a limit exists to maximum
obstacle size, denoted by s,, permissible if the flow is to be described by (3.5). For
obstacles of amplitude greater than s, no physically acceptable roots of the cubic exist.

In Fig. 1b, f(#) is plotted as a function of % for F greater than unity. -

From Fig. 1b we see that for supercritical Froude numbers the total depth of the
fluid increases above the obstacle, 1t follows that the free surface is elevated above the
obstacle. As in the subcritical case, a lirnit exists on the obstacle size if the cubic (3.5)
is to have physically acceptable solutions. Note that the: rise of the fluid over the ob-
stacle in supercritical flow is much greater than the corresponding fall of the free sur-
face in subcritical flow. '

Fig. 1b. The cubic (3.5) as a function of total fluid depth for-
" supercritical flows. _
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When the obstacle amplitude is greater than s_. the flow must be unsteady some-
where as no steady solution exist. Thus we have imposed an impossible flow problem
by assigning the values —F and 74 F /2 to K, and K, Some alteration of the
basic flow must occur before the fluid motion can be described by an equation of the
form (3.5). : '

The dependence of the critical obstacle size on Froude number may easily be found
as the critical point occurs when the cubic (3.5) has two equal roots. This condition
isthat F and s, be related by '

F2—3F*3=2(s,-1). _ . (3.7
The corresponding roots are
hy=h,=F*3,
, 3.8 -
h3 == ‘%‘les . .

At the obstacle maximum the local F roude number, F, is

FI=_=_=1' (3.9)

‘Thus the occurrence of multiple roots of f(k) is equivalent to the flow having a local
Froude number of unity at the obstacle crest,

Because hydraulic jumps can occur only if a fluid is forced to change from a super- -

critical to a subcritical state, the boundary of the steady flow regime should correspond
to a local Froude number of unity at the obstacle crest. For if we consider a fixed
obstacle and slowly begin to increase the F roude number from some small value, the

local Froude number at the obstacle maximum will continually increase. This follows .

. from (3.11) as % is observed to decrease. If F increases beyond unity then as the

obstacle amplitude decreases on the lee side, the flow must change from sipercritical

to subcritical. The corresponding argument for supercritical flow begins with 4 high
F, slowly reducing it as the Froude number decreases. In both cases it is clear that an
unsteady flow regime will result from too large an obstacle. Long (1954) derives (3.7)
on the basis of the above argument. Equation (3.7) is shown in Fig. 2,

3.2. The initial value problem. In this study the fluid is assumed initially at rest and -

at ¢=0 an obstacle, s(x,0), begins to move at 2 speed F' along the channel bottom.
The same smooth function 5(#,t) =4 sech®(4(x — F1)) is used in all calculations. We

report here the resulis for an obstacle of maximurg amplitude 0.1, The factor of
~ is included to give the obstacle a width of approximately 40 grid points. The distance

between each grid point is 0.2 of the fluid depth. This allowed for a reasonable time.

range without excessive computer time.
For numerical purposes it was found convenient to use a modified form of (3.1)

R
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and (3.2). Introducing ¢=1+75-s, the speed of propagation of a free disturbance
on a fluid of depth 1+4#—s, the equations are transformed to '

aild

ct+ch;|-§Ux=0,

U,+2cc,+UU, = —s;.

-

(3.10)

(3.11)

Apparently when this form of the equations is used, round off errors in the machine

are less serious.
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‘The computational procedure uses a three step calculation to evaluate quantities’

at time - ¢ +A¢ from the known quantities at time ¢, The method is illustrated by the
equation _ '

y=f(). ' _ (3.12)
We write '
yl(t+%f)%y(r)+%tf(y(t)), | (3.13)
. and .
_yz(r+%f)=y(_r)+%{f(y(r))+f[y1(r+%)]}, G
then '
Y(t+A)= y(t)+Atf[y2(t+’z)]. | . (3.15)

- In the actual computations a fixed region of space is defined through which the

obstacle moves. For points interior to the region centered space differences are used -

- and for boundary points one-sided derivatives are employed. For example, at interior
points (3.10) is approximated by '
U(x

cr(x)= - oA

) Gy U
E;{U(x—!-Ax) U(x—Ax)}.

- No difficulties are encountered by disturbances reflecting from boundary points -
. as they are observed to simply propagate out of the system. Initial tests of the method

on a sinusoidal progressive wave — flat channel bottom — predicted the same time for
breaking to occur as the analytic methods (Stoker 1957). The factor At/Ax was taken

as % in all reported results. Decreases in the size of the time step led to identical re- -

sults.

Solutions are shown for the development of steady flow (relative to the obstacle)
in both subcritical and supercritical regions, F less than and greater than unity. Also
shown are two non-steady flows, one subcritical and one supercritical” The free sur-
face profiles are illustrated in Figs. 3—6. Dashed lines in the Figures indicate where
the numerical results have been smoothed, Violent oscillations tended to develop
in shock regions and these oscillations have been smoothed (free hand). The solid
curves are drawn directly from the computer output. '

The Figures encompass the entire computation region, 250 grid points, and show -

clearly the lack of interference from boundary points. The time axis in each figure is

){c(x-l-Ax)—c(x—Ax)} | ' C(3.16)
X : o o
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- Fig. 3. Numerical results for a Froude number of 0.5 and an obstacle of amplitude 0.1. The grid spacing
' is 0.2,

positive downward and the slanting line shows the location of the obstacle maximum
as a function of time. For comparison each Figure shows the obstacle and the initial
fluid depth drawn in the same scale as the free surface profiles. :

Fig. 3 contains the results for a subcritical regime of Froude number 0.5. As
predicted by the analysis in section 3.1, steady solutions exist in this region and are
indeed approached asymptotically in time. The steady solution, computed from the
roots of (3.5), is the lowest curve in the Figure. '

Initially it is seen that the free surface is pushed up in front of the obstacle and de-
pressed in the lee. These initial depression and elevation waves then propagate away
from the obstacle at their natural speeds. After propagating away only the depression
wave over the obstacle remains. The initial wave of elevation has insufficient amplitude
and fluid to develop into a breaker within the computation region. '

In Fig. 4 the results for a Froude number of 1.5 are shown. The steady solution
computed from (3.5) is shown at the bottom of the Figure. As in the subcritical case,
initially the fluid is elevated in front of the obstacle and depressed in the wake. In this
case both freec waves are left behind the obstacle, The wave of elevation then steepens

t
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Fig. 4. Numerical results for a Froude number of 1.5 and an obstacle of amplitude 0.1, The grid spacing

is 0.2,

and develops into a bore behind the obstacle. This bore however has insufficient ampli--

“tude to keep up with the obstacle. This phenomenon was observed by Lona (1954)
in his experimental studies. o o
Flows for which a steady solution is mot expected are shown in Figs. 5 and 6.
Fig. 5 is for a Froude number of 0.7. As in the last two cases initially the free surface
is elevated in front of the obstacle and depressed in the lee. Part of the initial depression
wave is observed to propagate away behind the obstacle. The wave of elevation in
front of the obstacle appears to be continually strengthened by fluid forced forward
by the obstacle. This eventually leads to the upstream bore. In the lee the depression
does not appear able to catch up with the obstacle, as it did with F=0.5, but instead
begins to steepen and form a breaker. This is an excellent example of a blocking process.
In the asymptotic state it is expected that a new upstream fluid level results and a
hydraulic jump exists in the obstacle lee. The calculation time is, however, too short to
show this new upstream level. We shall return to this question in section 3.3.
Fig. 6 illustrates a supercritical unsteady flow regime. Again we have an initial
‘¢elevation wave ahead of the obstacle and depression wave in the wake.. Unlike the

o e o Lt 3 b 6 02 8 b 0 e a0 e vt
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Fig. 5. Numerical results for a Froude number of 0.7 and an obstacle amphtude of. 0.1. The gnd spacmg
is 0.2,

‘high speed case where the elevation wave moved back over the obstacle to give the
steady solution, the elevation wave here obtains a large enough amphtude to maintain

itself ahead of the obstacle. The inevitable breaking then occurs which leads to the

upstream flow shown. Because the numerical 1ntegrat1on does not follow accurately
the discontinuities, the free surface immediately in front of the obstacle is not ade-
quately .described at large times. :

The downstream depression wave steepens into a bore and begins to fall behind
the moving obstacle. In an asymptotic state a new fluid level, depth less than unity,

would appear in the lee. A lee jump is then required to return the fluid level to the

original unit depth.

In each of the illustrations it is clear that the numerical oscillations which developed
near Jumps did not affect the over-all solution. However, if solutions are desired for long
times it is necessary'to use a numerical method which follows discontinuities and satisfies
the normal hydraulic jump conditions across these discontinuities, One possibility
is to use characteristic methods but with a moving obstacle this could prove to be rather
time consuming.

" After completion of the calculations reported here the author discovered that
Houghton using a Lax-Wendroff method was investigating the same problem.
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Fig. 6. Numencal ‘results for a Froude number of 1.2 and an obstacle amplitude of 0.1.
The grid spacing is 0.2.6.

In Houghton’s results numerical oscillations occurring at jumps are damped. The
effect of this damping in other parts of the field is currently being investigated.

3.3 The non-steady flow regime. Even in the non-steady flows the free surface shape -
in the immediate vicinity of the obstacle reaches a steady shape. It follows that the
free surface must be described by cquatlons of the form (3.3) and (3. 4). The constants
of integration K, and K, are not, however, easily related to the upstream conditions.
because of the unknown asymptotic state of the upstream conditions,

Some further understandmg of the non-steady solutions is obtained if we look at
the behavior of the local Froude number, This number is defined relative to a coordinate
system moving with the obstacle and based on the actual fluid depth. In Figs. 7a
and 7b the local Froude number is shown as a function of time for several positions
along the obstacle.

We see from 7a and 7b that at the obstacle crest the local Froude number approaches
unity. The dip in the curve in Fig. 7b for large times appears to be a result of nu-
merical instability at the upstream jumps. The asymptotic state before the onset of this
instability is clearly indicated. Thus it appears in all cases of unsteady flow that the
asymptotic state of motion is such that the local Froude number is unity at the obstacle
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Fig. 7a. Dependence of the local Froude number, £, on time for an obstacle speed of F = 0.7.

crest. This condition could also be arrived at by intuitive reasoning, for if we examine o
the experimental and numerical results, we see the non-steady regime is characterized -
by an asymmetrical free surface shape. The surface is elevated in front of the obstacle
and depressed in the lee. Thus hydraulic jumps are required if the fluid is to go from
- unit depth far ahead of the barrier to a greater depth immediately in front of the bar-
rier, then to a small depth on crossing the obstacle from which it must return to unity
some place in the lee. The flow will be subcritical immediately in front of the barrier
and supercritical behind the barrier. The transition must occur at the obstacle crest
as the local Froude number decreases only with an increasing- obstacle amplitude.
When looked at from this viewpoint Figs. 7a and 7b show the accuracy of the nu-
merical calculations. - o
Combining equations (3.3) and (3.4) we find ' : 2

- 2 . g
13— (K, —s())h? %=o. o G.17) !
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| - - Fig. 7h. Dcpcndencé of the local Froude number, F}, on time for an obstacle speed of F = 1.2, .

In section 3.1 we show that the condition that the local Froude number be unity .
is for the cubic (8.17) to possess a double root at the obstacle maximum. This condition -
is easily found to be ' '

Kz—smax=%K§’3. | | (3.18)

and the roots at §=s,,, are '
hi=h,=Ki?,  hy=—3Ki". ' ' (3.19)

From the definition of the local Froude number it immediately follows that this number -
is unity at the wave crest. Combining (3.17) and (3.18) we find the free surface is
described by

2

h3-(-;Kf"3+smax«-s(x))h2+%-_—0. I 7 (3.20)

Physically K, is the volume flux over the obstacle. As an upstream bore is equivalent
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‘Fig. 8. Ilustration of the asymptotic shape of the free surface for flows in the unsteady regime. Thcl'

unsteadiness is concentrated in the two bores. No particular scale is used in the Figure.

to some of the fluid approaching the obstacle at infinity not reaching the obstacle, it

follows that K, will be less than F. Thus the only unkndwn is the actual amount of
fluid which crosses the obstacle. ' '

Figs. 7a and 7b, in addition to showing the local Froude number at the obstacle )
crest, show Froude numbers before and after the crest. The trend in both cases is towards
high Froude numbers in the lee. The curve in Fig. 7b for F=1.2 shows the effect of

unsteadiness in front of the obstacle. This unsteadiness is real for times less than 20
but after that appears to be numerical. '

Should the bores move away from the obstacle then we can calculate the value of
K; as follows. Using the notation illustrated in Fig. 8, we can calculate ‘using classical

bore theory the relations between C,, the speed of the upstream bore relative to the

obstacle, C,, the speed of downstream bore, and the fluid depths before and ‘after the -

obstacle. These depths are also given by the roots of the cubic (3.20). A final relation
between the parameters is obtained from continuity. The fluid crossing the obstacle
is the incoming fluid less what does not reach the obstacle because of the upstream bore.

These relations are too complicated for analytical solution and no attempt is made in
this report to construct the solutions graphically. The equations are 5 relations between -

5 variables and thus yield a unique result. It is possible that for some situations the
hydraulic jumps will occur over the obstacle. This will complicate the analysis.

4. Lee waves. We have shown in the previous section that a hydrostatic theory
possesses almost all the features observed experimentally, In fact the only feature missing

from the hydrostatic theory is the development of small amplitude lee waves at low’
speeds. In a single fluid system the observed lee waves are of very small amplitude and -
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thus relatively unimportant but in a layered system the amplitude of lee waves can be-
come very large. It is with the problem of lee waves in a layered or even a stratified
system in mind that we devote this section to a study of non-linear effects due to a finite
obstacle size on the occurrence of lee waves. _ :
For steady flows in a coordinate system moving with the obstacle (2.12) and (2.15)
may be integrated to yield : ' '

A+y=s)U +%(s3 —(1 +11)'°')Uxx—-51—'(s2 —(1+n)*)Us),=F, 4.1
zind
- 2 2 2
1 +1.;..= 147 +% +(1 ';") fe A+ U+ +NUUS) o+ 2 UDE— (1 +mU (Us),. (4.2)

The constants of integration have been evaluated from the upstream flow. Equations

(4.1) and (4.2) may be combined if we successively approximate for U in (4.1) ob-

taining a single equation for U in terms of 4. Substituting this value for U into
(4.2) we obtain ' ' '

4h2- S‘?‘z ,zhz 4., ol p21,2
h 5-+hs+—2—~ +f h{ —1s mz—-hs VRt —-Eh —2hs+s A F h;+

' 2 .
+ —_f;ff’——ths----s2 thxsx—l—'_h—--—gh&-isz F2s? = 4.3)
3 2 3 6

o 2. 2 . 2y~ |
=K K- 1+F_-—s h2+.F_ ~{h* h_+ks+s_ +EF"h3 -
_ 2 2 2 2/ 3
- Equation (4.3)T is to be solved with the initial conditions

a) upstream of the obstacle s vanishes and % is unity, and
b) upstream of the obstacle %, vanishes.

Before considering the numerical solution of (4.3) it is instructive to strip the equa-
‘tion of all of its non-essential features. First we shall linearize the coefficient of /7,
“and second we neglect the terms £,% A5, 5% Furthermore we shall assume a very .
long obstacle and neglect s,,. With these simplifications (4.3) ‘becomes |

-

2 2 2 .
(%——%-)hxx-_: —h"l:hz' -(1 +%__-s)h2+f.;..:|. | 44)

The right-hand side of this equation is proportional to the cubic equation (3.5) which
occurs in the hydrostatic theory. The qualitative behavior of (4.4) is seen if we examine
~ the cubic shown in Figs. 1a and lb. '
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First in a subcritical flow the initial conditions are at the root h=1. indicated in
Fig. la. If we now quasi-statically increase the obstacle amplitude we seée that the
value of the cubic is positive for 2 fluid of unit depth. It follows from (4.4) that 4,
is negative and the fluid depth will begin to curve downward. This curving trend
continues until the value of depth is decreased below the root of the cubic whereupon
the depth begins to curve upwards. This argument may be continued for further
increases in the obstacle size. It is clear that provided three real roots of the cubic
exist the solution of (4.4) will tend to follow the largest root of the cubic. Should the
obstacle exceed in amplitude the critical size, then for positive % the cubic is positive
everywhere and it follows that the fluid depth must decrease until it reaches the only
real root of the cubic. This root being negative indicates that no steady flow exists.
Thus we see that as the fluid begins to cross the obstacle it follows more or less a hydro-
static flow regime. On the downstream side the fluid depth again increases but now, due
to non-hydrostatic effects, a wave train may develop in the lee. :
~ Second in the case of supercritical flow the initial conditionsbdrrespond to the root
iy =1 in Fig. 1b. Now as the obstacle amplitude is increased the cubic again is posi-
tive and consequently %, is negative. Unlike the subcritical case, now as £ decreases .
the cubic remains positive and the solution of (4.4} will not tend to follow the interesting -
root of the cubic. Negative values of % are quickly reached. A phase plane analysis-of
(4.4) would show that k=1 is a stable node if the flow is subcritical and an unstable
node if the flow is supercritical. If the term involving s,. is included, the above dis-
cussion is only slightly modified. '

In Fig. 9 we show a set of numerical solutions of (4.3) for the obstacle 5(x) =
(0.1) sech? (x/4). ' ' o

The equation was solved numerically by a central difference method with an itera-
tive procedure convergent to at least 1/10000. The obstacle drawn to the same scale as - .
the free surface displacements is shown at the bottom of the Figure. The flow is left to
right. Here we see that over the obstacle the fluid tends to follow the hydrostatic
prediction, that is, a root of the cubic. In the obstacle lee, wave trains containing waves
of very small amplitude are observed. The Froude number of 0.62 was the largest
for which solutions could be obtained. All larger Froude numbers led to oscillations.
about a negative fluid depth. _

As the Froude number is increased the displacement of the free surface over the
obstacle increases and the amplitude of the lee waves is observed to increase. The term
involving s,, has the effect of moving the minimum in the free surface depression -
behind the obstacle maximum. The critical obstacle size is almost in_agreement with
the hydrostatic prediction. The departure being due to the inclusion of higher order
terms, ‘ '

The limitations of equation (4.3) may be found if we measure the wavelength of the
calculated lee waves. These waves in nature obey the Stokes frequency equation and
a measure of the correctness of the over-all solution is the agreement of the wave-
length. Since the waves are of very small amplitude, a linearized version of (4.3) may
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Fig. 9, Wave trains resulting from an obstacle of amplitude 0.1. No steady flow exists for Froude numbers
greater than 0.62. ’

-

be used for the free waves. If we set =1+ and neglect all quadratic terms, we find -

(%—%z)wx,.—_(ﬂ-i)m. (4.5)
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‘The obstacle is neglected as we are interested in the free waves. Equation (4.5) has a
sinusoidal wave solution with the frequency equation
6(1—F?) ,
=l " 4.6)
3—F* : (4.6)

where £ is the wave-number. In the derivation of (4.3) we neglected all wave-numbers
higher than k%, thus it is consistent to approximate (4.6) by ‘

FP=1-k%3 . : 4.7

It is easily seen that (4.7) contains the leading terms in the expansion in wave-number -

of the Stokes freciuency equation F’= l.c{ tanh k.

In Fig. 10 we plot (4.6), (4.7) and the Stokes frequency equation. In all com-
- puter runs on (4.3) the wave-length of the waves in the wave trains agreed with (4.6),
and consequently we see that the results for the free waves are valid only for Froude
numbers near unity. However near the obstacle, the region of major concern, (4.3)
is valid for all Froude numbers provided the obstacle is long enough. ' '
This points out one major difficulty which occurs when the Froude number is far
- from wunity. As two scales of motion exist, that of the obstacle and that of the free .
waves, an approximation scheme based on a long obstacle if extended to the free sur- -
face profile can only be valid if the flow is near critical. Yet such an approximation .
scheme may be used to test for the existence of lee waves at all speeds even though it is -

“known that the wrong wave-lengths are predicted. Strictly, equation (4.3) is valid only .

for very small obstacles as it is only then that the critical Froude number is near unity. -

As the solitary wave approximation procedure may be extended to stratified systems
it is interesting to examine the result of such an approximation on (4.3). The solitary
wave assumption is equivalent to linearizing the coefficients of 4, ‘and Sex, Deglecting
first derivative terms and retaining only quadratic terms in o, #=1 +®, in the driving
term. This results in the equation '

1 Fz 1 2 2 ) 2 S, 2 | .
{I——= WDy = —5— 2+5—F Sex—O(1 ~F*+45) + EF —4Jo”. (4.8)
It is easily 'demonst-rated that with s=0 this equation has the solution

w=asech’bx, ' (4.9}
where

(F*-1)

_EFZ ,
3

b= (4.10)
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Fig. 10. Diagrams of the three frequency equations discussed in the text.
and ,_3 (a-F) | S |
) ‘ ) 4,11
2 (EF2 -4) _ ( ‘)
2 o
Expanding (4.10) and (4.11) in a series in the amplitude we find
b* =-§a , - 4.12),
and | , ‘
F?=1+4a, , | (4.13)

the usual solitary wave formula.
With respect to our problem the more interesting feature is the quadratic

5

f(a))=w2(_iF2—4)—a)(1 ~F*45)—s, '(4.14)

obtained from the right-hand side of (4.8) if the obstacle curvature i neglected. First
let us compare the interesting root of (4.14) with that of (3.5), From (4.14) we find

2 2 2 "
oy = Fs 3 F%s 4o, (4.15)

TO-F) 2u-Fy
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and from (3.5) we have

—F% 3 F%?

(1—F% 2(1 F2)3+ (4.16)

hi—1=

These two roots are observed to agree to the order of s2. In comparing the second root -
of (4.14) with the other positive root of (3.5), agreement is found only in the leading
term. Thus a solitary wave approximation is an approximation of the cubic (3.5)
by a quadratic.

Furthermore, by comparing the critical obstacle size as predicted by (4.14) with that _
predicted by (3.7) both equations are found to have the expansion

F2=1+(65,)*. . 417

Thus for small obstacle amplitudes we predict the correct critical obstacle amphtude
Consequently the use of a solitary wave approximation scheme is justified if the flow
is near critical. ' '

5. Concluding remarks. In thlS discussion we have been concerned only with
the flow of a perfect fluid over a submerged barrier. Lone (1954) has observed that
layered systems behave very similarly to a single fluid system. Thus the ideas set forth
here are easily translated to a layered system even though an actual analysis is much
more complex. For example in a two-layered system the analogy to (3.3) is a sixth

order equation. For a n-layered fluid system the équation is of order 3n. Equations

of such large order are very difficult to handle and thus we restricted ourselves to a
simple system in which results are more easily interpreted. From the experiments it "
appears that the only new phcnomenon introduced in a layered system 18 the poss:blhty
-of hydraulic jumps down. ‘

The results of this work are twofold. First it has been shown how the non-lmear
development of free waves in the initial value problem influences the asymptotic state
of the system. If a shock-free asymptotic state exists, it agrees with the steady prediction. -
Second we have shown how the existence of lee waves depends on the obstacle size.
Lee waves are found for subcritical flow and only then if the hydrostatic theory predicts
a steady flow. -

One feature of the experlmental observations which is not explained is the develop-
ment 6f undular hydraulic jumps. Such phenemena which occurred only in subcritical
flow and for obstacles slightly larger than the critical size should be contained in the
full time-dependent equations. Unfortunately no stable method for numerically inte-
gratmg these equations has been found. It is not expected that the undular hydrauhc
jumps can be obtained from a steady analysis.
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