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Summary, The vertical flux of horizontal momentum produced by small-amplitude steady- ' ?
state internal gravity waves, generated by flow over a line of mountains in an inviscid adiabatic
nonrotating atmosphere, is investigated. The mountain amplitudes and deviations from a constant
mean spacing are treated as random variables with rectangular probability distributions and the
following effects are investigated: (1) interactions between wave disturbances generated by -
neighboring mountains, (2) the effect of an upper stable layer, e.g., a stratosphere, (3) -the
-orientation of the mountains relative to the basic current. . : -

The results show that the effect produced by the interactions depends on whether the mean
mountain spacing is less or greater than the shortest internal gravity wave. However with increasin o
randomness in the mountain sracing and/or increasing distance between mountains the effect

- of the interactions diminishes. In general an upper layer with a high static stability (e.g., a
stratosphere), reduces the stress below the value in a reference isothermal atmosphere. An excep-
tion may occur when a wave, whose horizontal length is in phase with the mean mountain spacing,
has a vertical wave length which is in phase wi1:_h the interface (or tropopause) height. Other
conditions being equal the greatest stress arises from flow over a ridge or line of closely spaced
mountains oriented crosswind; and the maximum value occurs when the principal Fourier
components of the mountain (or ridge) coincide with those of the wave solution.
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L. Introduction. Attention has been directed recently to the importance of in-
ternal gravity-wave motion as a mechanism for the transport of energy and momentum
within the atmosphere. Hings (1960, 1963) has proposed that many of the observed
~ irregular motions in the upper atmosphere, particularly at meteor heights (approx- '
imately 80-115 km above the earth), may be interpreted on the basis of internal
gravity-wave motion. He suggested that these waves, originating from disturbances
in the lower atmosphere, propagate upward undergoing a selective reflection and
refraction which depends on the large-scale wind and temperature distribution through-
out the atmosphere. ELIassEN and Parm (1961) have investigated the concept of
reflection and transmission of steady-state internal gravity-wave motion generated
by flow over small-scale orography. This gravity-type mountain wave transports
wave energy upward from the source (the mountain) while its phase progression is
downward. As a consequence momentum is transported toward the mountain from
aloft. SawvER (1959) has estimated that this vertical momentum flux (or stress), arising
from gravity-type disturbances, is the same order of magnitude as the surface frictional
stress under similar conditions of wind and temperature. SAWYER’s estimate was based
on a simple two-dimensional model in which the parameter B2 =guy,~2dInf,fdz was
assumed constant throughout the atmosphere. '

In this paper the flux of momentum by internal gravity waves, generated by a line
of mountains of irregular amplitude and spacing, will be investigated. We shall
primarily be concerned with the effects produced by:

(1) the interactions between wave disturbances generated by neighboring moun-~
tains,

(2) a stable upper layer, e.g., a stratosphere,

(3) the orientation of the mountains relative to the basic current in a three-
dimensional atmosphere.

The stress at the surface will be computed by a method similar to that used by
SawyEr (1959), who also made a rough estimate of its variation with height. However
it is sufficient to study only the constant stress exerted on the atmosphere by the ground
since Er1assen and Parm (1961) have shown that, when internal momentum sources
are absent (e.g. rotation, friction), the stress is independent of height in layers where
the basic current does not vanish. In order to apply small perturbation theory we shall
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assume that the characteristic ratio of the mountain height to its breadth is of order
10~* and that all the air flows over the mountain. Our results therefore will be of limited -
value, since the blocking effects of steep mountains is not taken into account. How-
ever the linear analysis is mathematically tractable and serves as a useful introduction
to more realistic models.

2. First-order system of equations.

2.1 Dufferential equation. The system of first-order or perturbation equations gov-
erning inviscid and isentropic flow in a stratified rotating atmosphere has been derived
by Queney (1947). QUENEY’s equations will be modified by making the following
additional assumptions: : -

(1) The basic motion u, which flows parallel to the x-axis may depend upon height
z but is otherwise uniform in space and time. _

(2) Only disturbances of small horizontal scale (L~10 km) unaffected by the
earth’s rotation will be considered.

With a change in notation QUENEY’s equations may be written in the following
form:

' ou du dp
2.1 Uq— w_.2=—-._
@y . %% dz | ox
@.2) - u 20— _ 0P
_ Ox dy
| ? ?
@23 Uo=—( —+T \p+6y
Ox 0z
8 du 8
(2.4) . TR SR NECL N (N ) W
O0xcy” Ox dy \oz
2.5) | uoa—e—+w—dﬂln805=0 :
dx dz

If we denote zero- and first-order quantitites by the subscripts zero and one respec-
tively then: -

(uy0,w) = pgV2(uy,0,,20,), where po is the density and (ul,vl,wl) are the components of
velocity in a rectangular Cartesian coordinate system

p = py~Y2p,, where p, is pressure '

0 = py*0,0,%, where 6, is potential temperature .

r =g6 2+ 1/2dInpyfdz, where g is the acceleration of gravity and

Co = (¢,f0/c,00) V2 1s the adiabatic sound speed, assumed constant; and c,/c, is the

ratio of the specific heats.
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We shall assume that the first-order variables may be expressed by Fourier integrals.
of the form

(2.6) C weey2)= [ Wzk DIVl

=0 —ad

Then taking the Fourier transform of equations (2.1) through (2.5) and eliminating

all the variables but W, we obtain the following equation . ¥
2
W K+ ¥ iuo zrdl;wa c;r T
uy dz z z .
2.7 + 2 _ i\ 1+ 2 : =
( ) dZZ kf2 ﬁ k kfz _[_12 W=0.

 Here (£'%,8'%) =(1 — u?[cy?) (k%,%), where f%=gu,2dInfy/dz. Since uy?fc,2<1 and the
terms containing I' are much smaller than $2 (2.7) may be simplified to

' 1 d*ug
' 2 2, 72
(2.8) d 14 k +[ ﬁz k2 +u0 d22 W=0.
P k2412

- Crapper’s (1959) equation (31) is equivalent to (2.8) except for small terms containing
the zero-order density, However (2.8) is a more convenient form in this investigation,
since it incorporates the transformation p,/2¥,.

2.2 The boundary conditions. The kinematic boundary condition at the earth’s surface
is, to first-order,

(2.9) w(x, y,0)=pl Py dh(x, y)jox, z=0

* where A(x, .¥) denotes ground profile.

In this investigation we shall only treat atmospheric models which make the coef-
~ ficients in (2.8) constant. Therefore in an unbounded upper layer it is possible to use
the condition derived by Eriassen and Paim (1961), which eliminates the solution
transporting energy downward from infinity,

(2.10) (PW)ae>0, Z—=00

where ( ), denotes an average over one wave length.
In the case of two-dimensional motion (8/dy =0), an interface between two layers
will be defined as a discontinuity in the parameter :

2

(2.11) 12=ﬁ2-—l d u2°= constant
Uy dz

Then if we assume that u, and p, are continuous across the interface, the kinematic and
dynamic boundary conditions require the continuity of vertical velocity and pressure
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respectively. Following Eriassen and Parm (1961) we shall assume that these conditions
can be approximated by requiring that at the interface

(2.12) w and dw/dz'"? continuous .

Conditions (2.9) and (2.10),.'_and (2.12) when applicable, suifice to determine a
unique solution of (2.8).

3. The drag: method of solution. The total x-component of the force or drag.
exerted on the atmosphere by the ground due to the first-order motion is denoted by

B0 D= — [[uwdxdy=uw
A

where the limits of integration are defined by the horizontal extent of the disturbance.
A similar definition holds for the J-component, D,. Later it will be mathematically
expedient to extend the limits of integration to + 00, but this does not violate our scale
considerations since the disturbance is assumed to be restricted to the area 4. SAWYER
(1959) has computed the surface drag (3.1) for the case of a constant basic current
~ flowing over a two-dimensional ridge in an isothermal atmosphere. We shall present

a more general method to compute (3.1). This method may also be used, for example,
to compute the drag as a function of ‘height when rotation and/or friction are added
to the problem. The method will be illustrated by rederiving SAWYER’s expression, -

but its application to other models is straight forward,
The differential equation (2.8) reduces to

- | d*w
( » ) . ’ dz?.

+(B*—kHW=0
The solution which satisfies (2.9) and (2.10) is

(3.3) w(x, z2)=pg*u,Re 9 [F(k)e™ 4 = Reia. (F(x, z; k)dk
‘ 0x; dxo

where F () is the Fourier transform of k(x) and A2 = B? —&*. Next the continuity equation |

(2.4) is used to determine u(x,z). However to be consistent with the derivation of
(2.8) the terms containing ¢,2 and I'in (2.4) will be neglected. Now we form the product

(3.4) ~ReuRew=—4] | [AF(0)~ 14 F4(kY] x L&)~ () dEdk
00

where (1*,%%*) denote the complex conjugates of (1,%) and ¢ is a dummy variable.
_ Next we integrate over «, changing the order of integration and extending the limits
of integration to + o to take advantage of relationships of the form (SwEpDON, 1951)

! The latter relation has been derived from the dynamic condition by neglecting the jump in
duy/dz across the interface, which is assumed small.

S £ E A5 1 o L AL o et
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(3.5) ‘ 2nd(E—-k)= [ &“7%dx..
8(¢ —k) is the Dirac delta function, which has the property that

(3.6 T s 1se-Rdz=100.

The range of integration need not be from — o to + co but may be over any domain
surrounding the point £ at which the delta function-does not vanish.
Making use of (3.5) and (3.6) we obtain

o, |
3.7 D, =mnpeul | |[F(O)|"ky/ B> — K dk
: ‘ . [+

since all the terms containing z cancel. Comparing (2.7) to (2.8) we see that the form
of (3.7) would be unaltered, except for a suitable redefinition of f and £, if the terms
containing T and ¢,? had been retained. '

4. The Model, When there are 2 number of mountains over a finite area the
drag will be affected by interactions between neighboring wave disturbances. If the
mountains are far apart the interactions will not be important since the wave ampli-
tudes would have damped considerably before reaching the next mountain downstream.
When the topography is composed of tightly spaced ridges, for example, phase rela-
tionships exist between neighboring wave disturbances. In subsequent sections these
remarks will be illustrated by considering various atmospheric models in which the
earth’s topography will be represented by a number of mountains whose amplitude
and spacing are random variables. The procedure followed is an application of a
method used by MacFarrane (1949) to investigate the noise arising from the fluctua-
tions in the repetition rate and amplitude of a succession of pulsés. :

4.1. Finite number of mountains. This model consists of an isothermal atmosphere
flowing at a constant velocity over a finite number of ridges, each extending infinitely
far in the y-direction (crosswind). The total #-distance between the first and last ridge
is assimed small enough so that the earth’s rotation and horizontal variations in the
basic current may be neglected. Then the drag exerted on the atmosphere by the ground
may be computed from (3.7) when F(£) is specified.

Suppose the vertical velocity at the earth’s surface is represented by N +1 doublets
of equal strength a distance # apart; then the surface is composed of N +1 point de-
formations of finite cross-sectional area el and

N
4.1) . : F,,(k)=£' Y e
T n=0
where the product of the amplitude z and length L also measures the doublet strength.
It follows that - ' -
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2 N
R0 =(%) | e -

' '(N+1)+2Ncoskn+2(N—-1)cosqu+ + +2cos Nky

(4.2)

which may be proved by induction. When (4.2) is substituted into (3.7) the drag be-
comes B

,; |
4.3) | D,=poaln [ kn/ B — K2 x
| _ _,0
[N +1)+2N cos kg +2(N — 1) cos 2kn+ --- +2 cos Nky]dk .

The first term in brackets represents the individual contribution to the drag from each
of the N+1 mountains; the next represents the 2V interactions between neighboring
- mountains, ie., (ugwy +uywy) + (U, +ugiwy) + + -+ + (un 1wy +uptoy_,). The remaining
~ terms are interpreted similarly, It should be noted that since |Fn(k)]2>0, the inter-
action terms cannot produce a net upward flux of momentum from the surface. ,
In general if we assume that there are N+ 1 mountains of different sizes and shapes
not spaced the same distance from each other, then | -

(4.4) . g’f Fn(k)l 2=I Z H (ke ik(mr+¢,,)|2
' ‘n=0

where. H,(k) is the Fourier transform and ni + ¢, the position of the 2™ mountain.
For the present we shall assume that there are N1 point deformations of .equal
length L in order to isolate the relative importance of variations in the mountain
amplitude and spacing, Then : '

(4.5) o H(k)=a,Lin

To esﬁmate_ the effect produced by a variety of diﬂferc_nf spacings we shall assume
that the deviation ¢ from the mean spacing 75 is a random' variable with a mean of -
zero and a probability distribution p(¢). A mean or expected value of f{¢) is defined as

‘ﬁmax

(4.6) AfDawe= [ S D)p(d)dg

min

where the limits of integration extend over the range of ¢.
Similarly the amplitude g, is expressed as a constant mean value & plus a deviation:

(4'7) ay = a+ (d,, - d)
where
4.8) i [ aq(a)da




8 WILLIAM BLUMEN Vol. XXVI.

l‘p'| —\L LPZ—“;} ‘-Pa—‘l( | (Pz, . _‘L

e )

—sx 1 2M 67
Fig. 1. A schematic representation of 2 line of point deformatlons with 1rregu]ar amplitudes and spacing.
4 denotes the mean amplitude and g,. represents the deviaticn frcm the mean spacing #.

and g¢(a) is the probability distribution of ¢. The model is shown schematically in
Fig. 1.

The probablllty distributions p(¢) and q( )-could be estimated for different moun-
tainous regions. This will not be done here since the model is not realistic enough in
other respects to warrant a more precise determination of these distributions. Rather
the purpose is to see if the choice of distribution is a critical factor in the model and
to obtain some quantitative information concerning the stress when the mountams'_
are distributed in random manner.

The form of the probability distributions is limited by the fa.ct that the variations
in the amplitude and in the deviations from the mean spacing are bounded. The simplest
continous distribution which may be used to satisfy these criteria is a rectangular distri-
bution, This implies that all values of the amplitude and spacing occur with equal
probability within their réspective ranges of variation. The reason for using the rec-
tangular distribution is to introduce as much randomness as possible. This will provide
one limiting value for the stress, the case of equal spacing (¢,=0) and constant am-
plitude (a,=4) the other. If we had reason to believe that small-scale mouritains are
usually spaced close to some mean value then a triangular type probability d1str1but1on
might be more realistic.

The probability distribution for the deviation from the mean spacing is

4.9) o p(¢)=1/2a | when - ]¢| <a
and '
(4.10) p($)=0 when  |¢|>«

where o is the maximum distance from the central point zy. Likewise thc probability
distribution of the individual mountain amplitudes is

(4.11} gla)=1/(a,—a;)  when a,<asda,
and '
(4.12) g{a)=0  when = a<a, or a>a,

where a, —a, is the range of amplitudes permitted in the model.
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Uéing (4.4) through (4.8) the expected value of the drag is given by

F ()| aweken/ B — K2l

~ 8
(413) ‘ {Dx}aue=np0u{§ j-{

The indicated averaging process has been carried out in Appendix A with the following
result :

(4.14) {]F,,(k)

~~(Z)[(x {cosk(nn+¢,,)}a,,e) (2, ek 40|

+ 3. (005 (-4 6} 5. ({cos -+ 6}

+ 3, (0K + )} 3 (i 1+ )+ (O 1)(9";)2] '
n=0 : n=0 - .

Uéing the probability distributions defined by (4.9) through (4.12) we obtain - .

@415 T (-m-) (& k“)z[(Zsmknn)z
(o o (3242

Substituting (4.15) into (4.13), makmg the Cha,nge of variable k =g¢ and dividing by
the total distance over which the mountains are distributed Ny +L, we obtam the
expected value of the stress '

— { x}aue 2 -1 N+ 1 L*l 2
4.16 ok 27 % 1—
( ) {Tx}aue N L P u a’ L (N+L*/11 ) é'\/ 6

{Nl (Sm*&) [(N+1)+2Ncosn*£+2(N—1)0052n*f+ +H2cos Nip*e]+

+I\ a*é
f iy otk _ o k\2
w1 sma.f +_1_ a,*—a, de

o*E o\ o
where (a*, L*, o*, 4*) =B(a, L, , n). The contr1but10ns to {'cx}a,,e are from: (a) the
N +1 individual mountains of mean amplitude 4*; 2 (b) the interactions between moun-
tains randomly distributed about a mean spacing 7*; (c) the “notse” due to irregularity
in spacing and (d) amplitude, which always act to increase the drag. We note that
terms (a) and (b) differ from the correspondmg terms in (4.3) by the factor (sina*¢/o* )2

arlslng from the variability in spacing. The i Interpretation of this term will be discussed
in the following section.
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Choosing the characteristic values gdlnf,/dz =4 x 10~% sec~2 and #, =20 m sec~1, we
obtain =1 km~". For convenience we shall now drop the asterisks from the non-
dimensional variables (a*, L*, o¥, #*) since they are numerically equal to the cor-
responding dimensional quantities. Since ¢<{1 we shall assume, for the present, that
¢=1 {(a maximum deviation of +1 km from the mean spacing) and make the series
expansion

o fsinagN 1.2 020 . 1
“.17) (af ) R o o

When (4.17} is introduced into (4.16) integrals of the type

. 1 .
- (4.18) JE L 1T cosmpfdl, (m=0,1,2,..)
¢

must be evaluated. This may be accomplished by making the transformation & =cosx
and using the definition of the Struve function H,(ny) (Warson, 1944, § 10.45).
Next wesintroduce the stress due to one point deformation, of mean height &=0.3
and length L =2z, ‘ - _ : !
: 22 .
(4.19) g, =P L a0 dynes om?
‘ 3

as a normalizing factor.? Then we obtam the expected value of the stress in nondi-
mensional form"

(4.20) , EN(rx)gi'%}_a_w=
) (N+1 )5{ 1~3a2+ 16 4____]+
. | N+Li/qll 15 1575
b) 3n r2 N(Ho(ﬂ) 2H1(’7)) +2( N— 1)(H0(2?7) 2H1(271)) 1.
2AN+1)L n 2 (@)
2(H0(N n)_zHl(N g))_ f [2 N(Ho(’?; H1('1)) $oee
Ny (Nm) 3 7 1
2(H0(Nrf)__ 2H1(N;1))] +az[2 N(ngn) Hz(n)) 4ot
Nng (Nw) : 3 n )

Z(HI(NZ) - 4H2(N;1)):| + higher order terms:l +
(Nn) (Nm)

2 Although a point deformation is not a realistic profile, since T, increases with decreasing #,, it
does serve to bring the important parameters of the problem into focus -
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{c) o 3—__1_6_052.{_... + . o .
15 1575 |

@ ' | i(“z;“i a2
| 1\ 77

The function H,(n#) has been evaluated from RoOBINSONS (1948) tables and the
contributions to Ey(z,) are presented in Table 1. ' ' -

From (4.20) we find that the contribution from the individual mountains (a)
is positive and approximately equal to L[n. However the interactions, which primarily

Table 1. Contributions to the expected value of the surface stress Ey(t.). The following numerical values have been
used : L=2m, a==1, a—a,=4=0.3.

" N 5 10 15 90 95
a 0.801 0.79¢ - 0792 0.791 0.790

7 atb 0.736  0.733 0.733 0732 0.732
at-bic 0.848 0.844 0.844 0.843 0.843
atbtotd - 0.924 0.920 0.919 0.918 0918
a 0.715 0702 0.608 ' 0.69 0.694

8 atb 0.769 0.754 0.749 0,746 0.744
atbic 0.869 0.853  0.847 0.844 0.842
a-t-btotd 0.937 0.920 0.913 0.910 0.908
a 0.646 0.630 0.624 0.621  0.619

9 atb 0.647 0625 - 0617 0.614 0611 :
atbie 0.736 0.713  0.705 0.701 0.698
atbtoid 0.797 0.773 0.764 0.760 0.757
“ 0.588 0.570 0.564 0.561 0.559

10 atb 0.571 0552 .  0.546 0.542 0.541
atbic 0.653 0.632 0.625 0.621 0.619
atb-totd 0.709 0.686 0.679 0.674 0.672
a 0.539 0.521 0515 0511 0.510

1 ath 0.472 0452 0.445 0.441 0.439
a+bte 0.548 0.525 0.517 0.513 0.510
a-tbtotd 0599 0575 0.566 0.562 0.558

e 0.478 0.460 0452 0449 0447

4 b 0.364 0.339 0.328 0.324 0.322"

b 0.431 0.403 © 0.392 0.387 0.385
at-btcid 0.476 0.447 0.435 0430 0427
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depend on the phase relationships between neighboring mountains, may transport
momentum either upward or downward. This effect can be seen by comparing (a)
and (b) in each four-line group. As noted earlier the “noise” terms, (c) and (d), always
increase the stress. The computations presented in the Table also show that Ey(z,)
15 essentially independent of N for N>10. This fact enables us to eliminate the variable
N by carrying out a limiting procedure, thus simplifying the expression for Ey(t,).

4.2 Limit for N— co. Dividing the expression in (4.16) by (4.19) and taking the
limit N-» co0, we obtain

4.21) Lim Ep(t)=E(z)=

N—~w

ool oend ()5 e

From LicaTtairL (1959, § 5.4, 43) we have

4.22) | 1+2 2 cos nyé = —2— Z 5(g _Zrnn)
f

Hm=—cw

where (¢ —2mxn/x) is the Dirac delta function. Putting (4.22) into (4.21) and carrying
out the details of the integration (in Appendix B), we obtain

- (423) | E(t,)=
. Si’HZmﬂ:a 2
@ 3£l2_"§2ﬂ" T Y
' r,-l N.m=0 ¥ n 2mmy

(i) fe/ 1—62[1—(““ “é)z]d&
0 74

| 1/a,—a, zl
(iii) 3_6(7_) ]

where M is the largest integer satisfying 1 —(2M=n/%)2>0. Term (i) in (4.23) corre-
sponds to terms (a) and (b} in (4.16); while the noise terms (ii) and (iii) differ from
(c) and (d) only by the factor (N+1/N +Ljxn) ~1.




No. 2, 1965 MOMENTUM FLUX BY MOUNTAIN WAVES 13

- Suppose, for the moment, that « =0, and @ =g, then

: . M T A N2
(4.24) B(z)=322" y 277 1-(2’""’) .
B #m=0 4

n

This expression is the stress due to flow over an infinite number of mountains spaced

a mean distance n apart. We first note that if
(4.25) n<2n=L,

the stress vanishes. This result means that the interaction terms produce 2 net upward
flux of momentum which exactly cancels the downward flux due to the individual
mountains. If #> L, there is a net downward flux of momentum toward the ground.

08 | ,
&) | |
T | CONTiNUOUS /— ,
%41 SPEcTRUM =
| LINE
SEPARATION
02 f ‘ /’/
2
51
] 1 H 1 1 1 L L
0.2 04 (115 ) 0.8 i0

—_—

Fig. 2. Continous and line spectrum of internal waves which contribute to the stress for the model
described in the text.

The function f(¢&) =§\/ 1—¢2, displayed in Fig. 2,‘répresents the continuous.spec-
trum of internal waves which contribute to the stress. The line spectrum

Z,O(Zmzt/n)\/ 1-Q2mazjy)?,

with envelope f(£) and line separation 2y, corresponds to the discrete number of
internal waves which are exactly in phase with the mountain spacing #. For example,
if Li<y<<2L,, then M =1 and there is one internal wave of length s which is exactly
in phase with the mountain spacing and reinforcemént occurs.® A similar argument
follows for M>1.

5

# If §=2L_ the waves of length L; and 2L are in phase with the mountain spacing, but we note
from Fig. 2 that the stationary wave Ly(é=1) does not contribute to the stress.

R A A
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There is no discrete contribution when (4.25) is satisfied since the critical wave
length L, is the shortest internal wave. Therefore all the internal waves must be out of
phase with the mountain spacing and, as noted above, the net effect of the wave inter-
actions is to produce a zero stress. |
~ The significance of the term (sin2mna/n/2mnafn)? is best illustrated by an example.
Suppose #=16 and o =4. This means that each mountain has an equal probability
of being located within and including +4 km from its mean position. Since 2L, <5 <3L,
there are two waves of length 8 and 16 km respectively which are exactly in phase
with the mean mountain spacing #5; but the stress due to the shorter wave is zero since
(sinm/n)2=0. In other words the shorter wave has a zero probability of being in phase
‘with the mountain spacing, since there is an equal probability that the center of the
mountain (the point deformation) is located at any point over a distance equal to
8 km. The contribution from the longer wave is reduced by the factor (sinz/2/n[2)?
~0.4 since the phase relationship is not as pronounced as in the case when «=0.
It should be noted that this latter effect is distinct from the *““noise” due to irregularity
in the spacing, given by (ii) in (4.23). The “noise” is continuous and affects the complete
spectrum of internal waves. |

Table 2. Contributions to the expected value of the stress E(z,) . The same numerical values
used in the construction of Table 1 have been taken.

n a 1 _ 2 3 4
i 0.726 0.282 0.252 0.014
7 ipii 0.833 0.640 0.607 0.717
ivitai . | 0908 0.715 0682 0792
i S 0.729 0.365 0.081 0.000
8 itii 0.823 0.678 0590 0615
P gt i  0.889 0.743 0.655 0.680
; | 0.620 0.364 0.125  0.011
9 iti 0.703 0.642 . 0.577 0.558
it . 0.762 0.700 0636 - 0616
; 0.507 0.332 0.147 0.032
10 itii -0.582 - 0.582 0.554 0.524
ipiitddi ©0.634 0.634 0.607 0.576
i 0411 0.291 0.153 - 0.050
BIRTE 0.480 0.519 10.523 0.498
i | 0.527 0.566 0.571 0.545.
P 0.299 - 0.230 0.144 0.067
4 i 0.359 0,430 0.468 0.459
i iidiii . 0.400 0.471 0.509 0.500
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The numerical computations of E(z,), given by (4.23), are presented in Table 2.
"The values in the first column («=1) are the limits which are approached by the cor-
responding terms in Table 1. The small discrepancies between the values in each table
arise primarily because it was necessary to truncate the. series in (4.20b) when Ny
reached 25. B . .

. As the mountains become more randomly distributed (increasing «) the effect
produced by the phase relationship between the wave length and mountain spacing
diminishes. At the same time the “noise” component (ii) increases, and when o =2
terms (i) and (ii) are approximately equal in magnitude. As a increases further the
discrete contribution becomes negligible and the “noise” due to irregularity in the
spacing approaches the value ' :

@.26) o E(z,)=L}y

which is the stress due to an infinite number of individual mountains spaced a mean

distance 7 apart. For the range of amplitudes chosen in this model, ay~a; =d, the
“noise” contribution from (iif) is about 10 percent of the sum of. (i) and (ii).

5. 'Expected value of the stress in a two-layer model. Under actual atmos-
~ pheric conditions the parameter 2= p2—y;ld2%;/dz® is not" constant with height,
Therefore we shall investigate how a more realistic distribution of /2 modifies the re-
sults presented in Section 4. For this purpose the distribution of 2, computed by Parm
and Forpvik (1960) for a pronounced lee-wave situation, will be approximated by a
two-layer atmospheric model. In each layer we assume that -

¢n I =(8*—uy 'd*u,/dz?),= constant

where n=1, 2, referring to-the lower and upper layers respectively. Moreover the upper

layer is isothermal with a constant basic current and we require that /,2> /2. Since
the basic current does not, in general, decrease with height in the lower stratosphere
‘during. lee-wave situations the condition [,2>1% represents an abrupt increase of
static stability at the tropopause. As a consequence partial trapping of wave energy
takes place in the lower layer, while the energy reaching the top layer is transferred
upward by internal wave motion. In all other respects this model is the same as the
model in Section 4. o ’

Following the procedure used to derive (4.16) it is possible to derive the expected
. value of the stress in a two-layer model which satisfies (2.8) through (2.12). The ground
is situated at-z= —H (H is the mean depth of the lower layer) and we.again use f~'=
I km as a unit of length. Alfter a straightforward but lengthy computation we obtain
in the Jower layer. o '
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| _ mpoih
52 o= x
652 (@ o= VoL

,[fl{lﬁ.,’(E)lz}m RS dé+
0 1+ 2H2(Sm\ﬂ1 EZH)

\/F’. PZH

L '

T{FAE Yave B8 _

Lo {2 62 H? sink, /&2~ 1H
\/!éz_ liH

2} ve 18 defined by (4.15), e2=[2—l2and (a, L, H, a, 1, £, ll, [,) are non-
d1mens1ona1 variables. A similar computation in the upper layer again yields (5.2)
because the interface conditions (2.12) imply that the constant stress is continouus
across the interface.

The first integral in (5.2) represents the contr1but10n from all the internal waves
in the range 0<<tk</;; while the contribution from the internal waves which occur
in the upper layer (/;<<£<l,) when external type waves exist below is represented by
the second integral. When /,—1 and either /-, or H-0, (5.2) reduces to (4.16).

We shall again use (4.19) for normalization and take the limit N-»co to obtain

1.0 €200

08

02

1 1 I i ! 1 1 1 1 1 1 1
2 4 6 8 10 12
H
Fig. 3. The stress due to an isolated point mountain as a function of the nondimensional interface height
' H, Each curve has been drawn for a different constant value of &2,
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where M, is the largest integer satisfying lf—(2Mﬂ:/f;)2>0 and ‘M, must satisfy
li —~ (2Myn/n)2>0. Taking into account the above interpretation of the integrals (and
hence the summations) the various terms in (5.3) correspond to the terms in (4.23).

The stress due to an isolated mountain (N=0=a;—4,=0) has been computed
from (5.3) and is presented in Fig. 3. The results show clearly that the upper stable layer
always acts to decrease the stress below the stress in an unbounded isothermal atmos-
phere, E(z,)=1. This occurs because vertical motion is inhibited at the interface

e e L e i e L e o P
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Fig. 4. The cxpcctéd‘ value of the stress as a function of H for the indicated values of mean spacing #
and deviation ¢, Each curve represents a different constant value of £2.
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as ¢* increases (and approaches zero as l,—» c0). As a consequence the characteristic
tilt of the wave disturbance (e.g. QUENEY, 1947)) becomes less pronounced and there-
fore less momentum is transported vertically. Some characteristic values of & are
presented in Table 3. The computations have been made assuming a surface tempera-
ture of 285 K and mean basic velocities of 20 m sec! and 30 m sec-! in the lower
and upper layers respectively. The curvature of the wind profile was considered negli-

gible and the lapse rates y* =y/y, (v, is the dry adiabatic lapse rate) were interpreted
as mean values,

Table 3. Characteristic values of 2=12,—I2,.

H i 0.6 0.7 0.8
8 0.20 0.50 0.88
9 0.22 0.52 - 0.0
10 0.23 0.54 0.92

The complete expression in (5.3) has been evaluated numerically and the results
displayed in Figs. 4a through 5c. (Some intermediate curves have been omitted to
enhance the graphical representation.} One of the most striking features is the large
amplitude of some of the curves for small values of « and it is possible to have E(1,)> 1.
This may be explained as a resonance effect which occurs when the vertical wave length
of the discrete wave &=2mn/yis in phase with the interface height H. Mathematically,
the resonance occurs when the denominator of the first summation in (5.3) is a mini-
mum, i.e., when

' (5.4) ' AeH=nm  (n=1,2,..)

where /’i,,,,z\/ll2-——(2mn/n)2 is the vertical wave number of the mth discrete wave.
Letting D, =2n/2,, we obtain

| H n

D, 2

(5.5)

as the condition for resonance. However we note that when n=8 and £=0.8, 1.0
- (4,2=0.6, 0.5) no resonance peaks appear. For these values of the parameters internal
waves only exist in the upper layer and the type of resonance discussed above can not
occur, since the upper layer is not bounded from above. '

With increasing « the “noise” due to irregularity in the spacing becomes the dom-
inant term and the resonance effect diminishes. When =4, E(7,) is approximately
equal to L/y times the stress due to an isolated mountain; or equivalently, the stress
due to an infinite number of mountains spaced a mean distance 1 apart.

Finally, the “noise” due to irregularities in mountain amplitude is, in general,
small compared to the sum of the other terms. An exception occurs in the case when
internal waves do not exist in the lower layer (I, <<k<{l,); then this “noise” effect is
comparable with each of the other contributions when H~ 3.
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6. Expected value of the stress in a three-dimensional atmosphere.
Crarrer (1959) has obtained an approximate solution of (2.8) when u, and 2 are
independent of height. The basic current is parallel to the x-axis and flows over the
circular mountain

200 [

[ Jexp[—r/k+ 12+1(kx+ly)]dldk

(x2+y2+r2)3"2 ﬂnw o

ar?

6.1 ‘ h(xs y)=

* where r is the radius of the mountain at height a[2%2, The character of the solution in
planes parallel to the basic current ( y = constant) is very similar to the two-dimensional
wave solution over a bell-shaped ridge; however since the disturbance has an extra
degree of freedom the wave amplitude decays rapidly in the crosswind direction,
but the rate of fall-off depends primarily on 7.

- Crapper’s model will be used in determining the expected value of the stress®
for a line of circular mountains oriented (a) parallel to the basic current and (b)
crosswind. ‘The wave interactions which occur in (a) are similar to the two dimensional
case studied in Section 4. However the introduction of a more realistic mountain
profile produces a damping effect on the motion, which reduces the magnitude of
the stress below the value in (4.19) as well as insuring that the stress approach zero
with #,. The principal feature which distinguishes case (b) is the effect produced
by the infinite spectrum of internal waves which spread out laterally from each moun-
tain. Since there is no physical mechanism for the generation of a critical wave,
these waves which differ in phase interfere and account for the rapid fall-off of wave
amplitude in the crosswind direction.

6.1 Mountains oriented parallel to the basic current. The center of the first mountain
is situated at the origin of the coordinate system (x =0, y =0) and its profile is given by
(6.1). As in the two-dimensional case the ath mountain downstream is similar in form
to (6.1) but is situated at a distance ny + ¢, from the first. The radius 7 will be the same
. for each mountain but the amplitude 4, and deviation from the mean spacing ¢, are
random variables with rectangular probability distributions given by (4.9) through
(4.12). The procedure used in Section 4 will now be followed.

The expected value of the drag, in dimensional form, is given by

—2rV R2EE
[ AR

“Yavek®s/ B2 = —K*
bk - o JE*+ P

(62) {Dx}ave—zn Polig I{]Fn(k)

where {|F,(£)[?} s is given by (4.15) with #2 replacing L. Making the change of variable
! =ksinht we obtain, with the aid of WaTson (1944, § 6.22, 5), -

4 It.can be shown from (2.1), (2.2), (2.3) and (6.1) that the Fourier transform of u(x, D 2) z) is an

odd function of the y-wave number l. Therefore integration over [ in the computation of 7,= —uw yields
zero and we need only compute 7, :
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Yok P = IR o(2rk)dk

. ~ - B —_
(63) S {Dx}ave =47T'2p0u(%6r{|Fn(k)

where K is the Bessel function of imaginary argument of the second kind.
The “effective area’ of the circular mountain will be defined as

(6.4) A=t }o | }; '

Along the perimeter of this circular area, of radius \/27, the mountain amplitude is
approx1mately 1/5 its maximum value. When there are N +1 mouniains the “cffectwe
area” dlsplayed in Fig, 6 by the dashed curve, is given by B

(6.5) A,,—2r(\/_ N+ i)~ N2/2rm |

Fig. 6. The dashed line defines the “‘éHective area’ of a line of circular mountains spaced 2 mean
distance # apart.

The stress due to an isolated circular mountain (N=ua "'ﬂz a; =0) may be found;_
from (6 3) and (6 4) by leftmg k = pcosx and usmg WATSON (1944,§13.72, 4—) We obtam

66 1 —Pouoazfzﬁ [Io(ﬁr)Ko(ﬁr) —L(BNKA(BA]

where I is the Bessel function of i 1mag1nary argument of the first kind. Recalllng tha.t
B =vyfuty(v5® = gdInb,[dz) we may rewrite (6.6) as

(6.7) - : = Tx/Po= CDVOZ

where Cp, = (r*2/8} (1, (r*) (r*) I a(1*) Ky (r*)), r* =ruvy/u, and the characteristic VClOCltY
is Vy=av,. In this form the quantities a and v, are held constant in order to display the

dependence of 7, on 7 andjor u, In the following we shall continue to use f§=vy/uy
to nondimensionalize (g, 7, «, 77); however the asterisk designation will be retained as.

a reminder that both u, and each of the aforementioned quantities may vary.

The dlmensmnless quantlty C) is presented as a function of r* in Fig. 7. The maxi-,
mum in the curve reflects a “resonance effect” which occurs when the principal.
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. r*
Fig. 7. The nondimensional coefficient C, as a function of r¥=7y,/u, for 0;=2 X 102 sec71. The maximum
occurs at r¥=1.6.

Fourier components of the mountain are in phase with those of the solution. CRAPPER
- (1959) found that the maximum wave amplitude occurs at 7* =0.6 in the plane y=0;
but for increasing values of I yl the maximum amplitude decreases and at the same timé
occurs at larger values of r*. This explains why the stress, an 1ntegra_tcd quantity,
has its maximum at 7*>0.6. For py=10-3 gm cm—%, ¢ =300 m and v,=2 x 10-2 sec,
the maximum value of 7, is approximately 16 dynes cm~2, This value, which is consider-
ably below the value in (4.19), reflects the damping elfect of a more realistic profile.
than a point deformation. In addition, values of the stress computed from (6.7) are
about the same order of magnitude as estimates of the surface frictional stress over
“rugged terrain”, which have been compiled by Sawver (1959).

Using (6.7) -as a normalization factor we obtain the expected value of the stress

(6.8) : E('c,,_.)—"“=2 J2r X

Sin2m:rwc* 2
(@) 2_’.’% 2mz 2\/1— 2mm\'ye (22 n
#H¥m=0\ #* wx )0 n* 2mm* | ¥
. n*
Il 1 - .5 *
(i jer/imeraaref () s
T \/ﬁ—r* 1 (az*-—al*)z

2 g 12\ a*

(i)
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Fig. 8. The expected value of the stress as a function of the mean spacmg ¥ and dcv:atxon a* for the
indicated values of r*
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We note that damping due to the mountain, represented by Ky, is the primary difference
between (6.8) and the corresponding terms in (4.23). The results of the numerical -
computations of E(z,) are displayed in Figs, 8a-d. '

The increase of E(z,) for small values of #* and large values of o* represents an
increase in the “noise” due to variability in the spacing which becomes more pronounced
as r*[y* increases. When the mountains are widely spaced (r*/#* small) this effect is
negligible since E(z,) is essentially independent of o*. The ratio r*/y* also affects the
discrete contribution (i) and the effect is most noticeable when o* is-small. However
when o* is large and +* constant, E (1.) decreases approximately like 1/m*.

6.2 Mountains oriented crosswind. The only difference between this model and that
used in (6.1) is the orientation of the 2N + 1 mountains (crosswind). However before o
letting N— o we must first show that a limit is approached for relatively small values -
of N. It is sufficient to consider only the contributions from the individual mountains o
and the interactions between them, since the “noise” terms are essentially independent
of N.

An analysis similar to that developed in Section 4 will be followed. The drag due
to 2N 41 circular mountains spaced a mean distance i apart is represented by

B — o e—Zr}'m‘
©9) D=2n*pout [ 2/ B2~ | |FL (D[ s dldk
0 — k41
where
. 2v2] n=N
(6.10) |F,,(1)]2=(5‘_’L) Y e M=
I n=—N

(2N +1)+2(2N)cos Ip+2(2N —1) cos 2+ -+ +2cos 2Nly .

The interpretation of (6.9) and (6.10) may be found in the remarks following (4.3).
The stress due to 2N +1 mountains, derived in Appendix C, is given by ‘

_x 2f 2 1 ) CDED o (D
(6.11) ['rx],,——z-—;t-* {1+2N+1c<,?>[2NC” +N-DCP + | +CY ]}
where _ . _
6.12) cs*’=%[Io(x(n))Ko(x(n))—Iz(x(n))Kz(x(n»]

and x(n) :\/ r*2 4 (np*(2)2. There is a one-to-one correspondence between the terms
in (6.11} and those in (6.10). The results of the numerical computation of (6.11) for
™ =1 are presented in Table 4. The limit approached by [1,], is given by the column
N =, computed from (6.13) with o =g, —a,=0. The last column represents the
stress due to the individual mountains. We note that the effect produced by the inter-
actions decreases quite rapidly with increasing p.
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Table 4. Values of [v.], for 2N+1 circular mountains, N= oo and when no interactions are presént. r¥=J, .

MOMENTUM FLUX BY MOUNTAIN WAVES

N : o
10 15 20 25 - =

M*' ' o VQ ﬂ*
T 1.295 1.311 1.317 1.322 1.344 0.706

2n 0.415 0.418 0.418 0.418 0.422 0.353
3m - 0.249 0.249 0.249 0.249 0.250 0.235
dp 0.180 0.180 0.180 . 0.180 0.181 0.178

~ Since [1,], is relatively mdependent of N we may proceed as before and obtaln
the expected value of the stress

(6.13)

2n 2
ﬂ*m=1

1
(i) e f1=eyg
4]

(iii)

1

. 2mua* 2

1 62/1 EZ

2mmx*

e

= exp[ —2r*\ /& 43 ]

J52+w
n\/_r*

a,*—
o

[ sina*ys

a*iyy

%\ 2
as
" .

y o] -2 fers f*T"”‘ﬂd“
o

There are two contributions to £(z,) in (7): the wave Wthh is 1ndependent of a*(y=0)

and the infinite discrete spectrum of internal waves which are in phase with the mean
mountain spacing u*. The contribution from the wave i =0 is produced by the same

Fourier component of each mountain: a ridge extending infinitely far along the y-axis

with a bell-shaped variation along the x-axis. This component generates a downstream
wave witn no » variation and therefore is unaffected by variations in.the mountain

spacing®. The latter terms in (i) also make a nonzero contribution since the “cut-off”

in the internal wave spectrum is absent. In addition the “noise” due to irregularity
in the spacing (ii) is a function of the infinite spectrum of internal waves; however

of x.

% The wave £==§-1%=0 does not contribute to the stress since this Fourier component is independent
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the “noise”” due to randomness in the amplitude (iii) is independent of the wave number
spectrum and does not differ from the corresponding term in (6.8).

When o* is small the “noise” terms are of order 10~ compared to the contribution
from (i). As the irregularity in spacing increases the “noise” due to this effect also
increases while the contribution from the discrete spectrum diminishes rapidly. How-.
ever the contribution from the wave ¥ =0 remains the dominant term throughout
the range of 7% and * used here. Therefore (6.13) has only been evaluated for o* =1,
To facilitate the computations (sine*y/a*y)? was expanded as in (4.17), making it
possible to perform the integrations explicitly and evaluate (ii) from a finite number of
terms of a convergent infinite series. The numerical computations of (6.13) are presented

in Table 5, with smallest mean spacing restricted to be the diameter Qﬁr* of the
“effective area” (6.4).

It is significant that the values of E(z,) in Table 5 are greater than the corresponding
values in Figs. 8a-d and become relatively large when the mountains are closely spaced.
"This result does not seem surprising since the crosswind orientation (particularly the
¥ =0 component) presents a greater “barrier” to the flow. The role of the interactions
between neighboring wave disturbances, for both types of orientation, may be clearly
seen by comparing (6.11) with (4.20), for the case a =0. (ny)-2(H,(ny) —2(nn)*H,(nn))
oscillates about zero; hence the interaction terms in (4.20) produce both positive and
negative contributions. The interaction terms in (6.11) however always increase the
stress. '

Table 5. Expected value of the stress for a line of circular mountains oriented
crosswind. a¥==1 and p*_; =2 V2r*.

r¥ . . 7
. t 2 3 4
pe 1.453 —~ - _
27 0.455 1.488 - —
3= 0.271 0.611 1.093 —
4n 0.195 0.418 0.698 1.066

7. Goncluding remarks, The present calculations may be briefly summarized

as follows: _ . ) B

(1) Under the same conditions of wind and stability the stress produced by a ridge
or tightly spaced mountains oriented crosswind is greater than the stress produced
by a line of mountains oriented parallel to the flow.

(2) In addition the maximum value of the stress occurs when the principal Fourier
components of the mountain (or ridge) coincide with the principal components
of the wave solution. _ _ '

(3) Ifaline of mountains (or ridges) are spaced a mean distance # apart in the down-
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stream direction, the effect of the interactions between neighboring wave disturb-
ances depends on the ratio of the mean spacing to the critical wave length L.
It #/L>1 there are one or more internal gravity waves which are in phase
with the spacing and reinforcement occurs, producing a net stress. However, if
n/L;<1 all the internal gravity waves are out of phase with the spacing (except
the critical wave which does not contribute to the stress) and the net effect of the

~ wave interactions is to cancel the stress due to the individual mountains, producing
a zero stress on the atmosphere.

(4) As the mountains become more randomly distributed the critical phase relation-
ships become “blurred” and the stress arises primarily from the individual moun-
tains. This latter result also occurs when the mountains are spaced widely apart.

(5) In general an upper layer, in which 7,22, (see 5.1), acts to diminish the stress
below the value in a reference isothermal atmosphere. However if #/L.>1 there
is a resonance effect which occurs when a wave, whose horizontal length is in
phase with the mountain spacing, has a vertical wave length which is in phase
with the interface (or tropopause) height. Under these conditions the stress may
be greater than that produced in the isothermal atmosphere. .

If more representative values of the wind and temperature distribution had been
incorporated into our models, principal features of the wave solutions would be re-
tained. Therefore it is felt that the results presented above could apply to a wider class
of atmospheric conditions than have been treated here. However there are important,
features of this problem which should be evaluated. In particular, little is known about -
the effect produced by the flow of air around obstacles; and the flux of momentum
- during the transient stage of wave development may be of importance, especially
in situations where steady-state conditions are never realized. Finally, if the mountains
- are distributed over an area comparable to the scale of the basic motion the earth’s
rotation and horizontal variations of the basic current variables should be taken into
account.
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APPENDIX A.

. S -
The expected or mean value of | Y, a,e™™*™*4)|? i5 denoted by
n=0 '

——"——-N.--_'_-/ .
. . ) N N . M .
(AI) {I Z ane—zk(m] té,) Iz} . :{ anexk(mp+¢ﬂ) ame—lk(mrrl-qu)} —
. n=0 e . (n=0 T m=0 ) ave

av m=
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@, COS k(ny + ¢,;) cos k(mn + qb,,,)} +
o - ' . ave

CNOM ' :
{Z 2. a,a,sink(ny +,)sin k(m11+'¢m)} .
n=0m=0 ) _ ) ave

. Using (4.7) and assuming statistical independence between the deviations from the

mean, i.e., (g, — @) (@»—@) =0 when m==n, we obtain -

(42) {I Y e“”‘“"*“'é’l’} =@2{[§¢OS k(m1+¢,.)]2} n
: . . n=0" Jave [} =0 - . ave .

it

The following notation will be used:

o N ' N 2y
(43) ner) =] 3 eoskonron]]

-]

™=

0sin k(n}; + ¢n):|2}ave-+ (N + 1)(a::;z”)2 o R

il

n=0 ]

N . N 2 '
{gotgn(qb,,)f} = £ omed)] |

Then we proceed as above, expanding f, and g, into a mean plus a deviation and as-
suming statistical independence between the deviations. The first term becomes

and

e

wo  {suear) = 3 U0h [ +{ 3 800~ 00h0], =

dve

ave n=0

| [ﬁo{ﬁ(%)}aceﬁr{éﬁ[ﬁ,@ﬁ} 3 T

= ave

N
It follows that { > [g,,(qb,,)]z} may be expressed similarly. Returning to the original

notation we obtain the result shown in (4.14).
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APPENDIX B.
- The integral

(B.1) jf (Smgf) ) 5(5—2_”"2‘)&

will be evaluated. First we define a function g(&) such that

g (§)=I€Jr—?(8i:§€)z | when 0 <¢<1

lG " when ¢x>1

(B.2)

Then interchanging the order of integration and summation and using (3.6) we obtain.

2

: ' ' : S SiPZmno;
(B.3) jg(eg) 3 5(5—2m“)d§ f (2"””)_ %% '-1_(2"’”‘_)2 1
1 m=0 -1 1 2mmo
| n

‘where M is the largest integer such that 1 —(2M=fn)2>0.

- APPENDIX C.
~ Substituting- (6.10) into (6.9) and carrying out the integration over ¥ = -, yields

, _ .
(C.D Dx=4n2p0u§a*2r*4fcfz\/1—§2 X
4]

{(2N+'1)Ko(2r*¢)+2(2_N)K0(2\/ r*2+(%*)2¢)+ AN

accordmg to Macenus and OBERHETTINGER (1949, p. 118). The 2N +1 integrations

in (C. 1) may be performed with the aid of WaTsow (1944, § 13.72, 4). Then if we
def.me [z.]. as the normalized value of the stress due to 2N +1 mountams, we obtain
the expression in (6.11). '

PRINCIPAL SYMBOLS USED

effective area

a mountain amplitude

ay — a4y maximum range of amplitudes

Cp . nondimensional ceefficient defined by (6.7)
Co adiabatic sound speed

D,,D,  x,ycomponents of the drag



q{a)
,

Uy
U, v, W
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expected value of the stress

Fourier transform of A(x, y)

acceleration of gravity

Struve’s function

interface height

lower boundary profile

Bessel functions of imaginary argument

%,y wave numbers

doublet length

critical wave length =2r/g

B? —uy~d?u,/dz? ' '
probability distribution defined by (4.9) and (4.10)
probability distribution defined by (4.11) and (4.12)
radius of the circular mountain at height /232
zero-order basic current _
P2y, 01, wy), (uy, vy, 03) denoting the first-order velocity components

W(z; k, I) Fourier transform of w(x, y, z)

x,_'y, Z
o

r

;
5(¢—F)

2

g—\
2]

oS e

f}ﬂﬂe

On*kh)

rectangular cartesian coordinates

maximum deviation from the mean spacing 5 or p

&leg® +1/2dInpy/dz

vofty = critical wave number

Dirac delta function _

ly* — 1% = difference in /2 between the upper and lower layers respectively
mean spacing between mountains oriented along the x and y axis respectively
(gdIn6y/dz)*'? = Brunt-Viisila frequency ' :
Bt (k1)

zero-order -density

%, y components of the stress

deviation from the mean mountain spacing # or u

integration defined by (3.1)

probability average defined by (4.6)

probability average detined by (4.8)

B¢ = nondimensional variable
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