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Summary. The response of the sea to atmospheric pressure fluctuations associated with a
turbulent wind is investigated. With a sudden onset of the wind over a limited area, the wave
height spectrum becomes dependent on both space and time, This dependency can simply be
expressed by an “influence function”, ' _ : o .

A formal solution’ for the directional wave height spectrum and the mean square height
is derived, It is shown that both Eckart’s (1953b) and PurLrips’ (1957) theoretical results can
be obtained from this solution. o : e

"Yhe case of an unlimited storm has been given special attention. Guided by some observations
of the pressure correlation, .the author finds that the directional dependency of the spectrum
is contained in the factor : .
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where a is the angle of wave propagation relative to the wind direction, # is the wind speed, ¢
is the phase velocity and « is a constant. The agreement between theory and data is fairly good.
Finally it is shown how the present model can bé modified to give exponential wave growth in
accordance with MiLEs’ (1957) theoretical results. '
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. 1. Introduction. In a review of 1956 UrserL summed up the knowledge about
Wmd-generated waves and drew attention to the unsatlsfactory theoretical understand-
ing of the actual processes behind wave-generation,.

Since then the insight into the dynamics of the generating mechanism and other
features of wind-generated waves has been extensively deepened, mainly by the works
of Eckarr (1953 b) PriLries (1957) and Mies (1957).

New methods in wave observation have given valuable information about the
statistical properties of wind-generated waves. One could here refer to stereophoto~
graphical methods (S.W.O.P. 1960) and the Wavc-recordmg buoy. (See LoNGUET-
Hicoms, CarTwricHT & Smite 1962).

In 1963 LoncueTr-HiceINs reviewed the achieved knowledge (from observations)
and some of the recent ideas.

The statistical properties of water waves are such that one could expect the linear
theories to be a very good first approximation.
~ The observed wave heights and slopes fit well with a gaussian distribution. The
relationship between frequency and wave number is found to agree well with that given
by the linear theory of free surface waves. Wave energy from distant storm is shown to
~ propagate approximately with the group velocity of infinitesimally small free surface
waves, All these facts are very promising in respect to the validity of linear thecries.
But the non-linear processes are not to be forgotten. As shown by PrrrLIps (1960) :
Loncuer-Hicems (1962) and HasseLman (1962 and 1963) they may lead to an appreci-
able transfer of energy between different wavenumbers, the tendency is to smooth
out the peaks in the spectrum, The wave growth is also limited by breaking. Observa-
tions seem to verify the asymptotical spectrum found by Prirrips (1958) for gravity waves.

As for the generating mechanism, we are now.in a position to say that it is a kind of
resonant 1nteract1ng mechanism even though the mutual coupling between air and
water motion, as in MiLes’ (1957) theory, or the forced water motion as in EcrarT’s
(1953 b) and Pamries’ (1957) theories, is the most effective one,

Possfbly, as Mires (1960) and others have pointed out, the mechanism is 2 combmcd _
one:

In the first stages the wave growth is forced by the random pressure fluctuations,
and the mean square height then grows linearly with time. As the waves gain height or
rather steepness, the mutual coupling may become more and more important, and the
growth is then exponential according to MiLes’ theory.

Observations made by LoNcuer-Hiceins (1962 a) are favouring MiLes’ theory,
but a considerable amount of measurements of the mean square height indicates a
linear growth with time until the sea has reached a kind of saturated state.

In this paper as well as in EckarT’s (1953 b) and PriLLirs’ (1957) we are concerned
with the forced water motion. The response of the water to atmospheric pressure disturb-
ances is determined through the linearized equation for the dynamic boundary condi-
tion. Friction is neglected, the water is assumed to be incompressible, the motion irrota-
tional and the depth infinite. .
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Because so little is known about the near sea atmospheric turbulence the mam
trouble is to define the pressure field. - N
Eckart (1953 b) assumed that the pressure field could be represented by a random
distribution of circular pressure gusts of a given characteristic radius L and duration 7'
moving with the wind velocity #, all parameters being taken as constants.
' Thus for a simple gust centred at origo at t=0 we have from Eckar™s work:

Po= COﬁSt. e"'é[((xl-m)’+x’=)lL"f1’lT”] ,

where ¥; and x, are horizontal coordinates.

EckarT considered a circular storm area and the gusts were given different Welghts

depending upon their position relative to the storm centre.
By assuming steady state conditions he calculated the wave helghts outside and in-
side the storm area.

For the mean square helght at a distance X (much larger than the storm radlus R)

from the centre of the storm in the wind direction EckarT obtamed

2
=107 2R’
XL
where pz is the mean square pressure given in water helght EckrarT concluded that

values of p? from experiments were too small in order to explain the observed wave
heights by this formula. :

Prmries (1957) in his model considered an unlimited storm area with a sudden.

onset of the wind such that the conditions were spatially statistically homogeneous.
He then applied Fourier-Stieltje integrals in his calculations. PriLiirs defined an ad-
vection velocity u for the turbulent eddies as the velocity of a reference frame in which
the eddies have their greatest characteristic time of development. The advection velocity
was assumed to be equal to the wind speed at a height comparable with the scale of the
eddies. If the mean square wave height and the pressure correlation in time are defined
respectlvely as :

W= [[$(k, ydkdk; ,

pp’ = { [n(k, ) cos (k- wr)dk,dk, ,

Pamrips’ result for large £ can be expressed as
d(k, Y=wit fﬂ:(k, fycos [(k- u—wg)t]dr,

where k (£, £,) is the wave number vector and wo—]/gk is the frequency of free grawty

waves. With a rough approximation for the integral and an estimated value of =
0.1p,2U*, Pumwries obtained results which did agree well with the observed values.
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~ In his comments PriLLIPs tried to explain what he called, “the probable reason
for the failure of ECKART’s theory to predict the magnitude of the wave heights generated
by wind” by saying: “His (EcraRrT’s) less precise specification of the pressure distribu-
tion has smoothed off the resonance peaks of the response of the water surface, and it is
the wave numbers near this peak that can contribute largely to the wave spectrum at

large durations”. This must be a misunderstanding. With the value of p? given by
Prrrrips, ECKART’s results are just as good as PuiLLips’ when compared with data.

The failure or success of both theories depend mainly on the ma.gmtude of the mean
square pressure.

As it is shown in paragraph 4c, the total energy input to the waves is only shghtly
dependent on the pressure distribution.

Even though the forced water model fails to explain the observed magmtude of the
wave heights it reveals much of processes in a wind generated sea.

+ Neither Ecxart’s (1953 b) nor ParLLirs’ (1957) model alone are suited for wave

prediction in a real ocean, EcKART’s model consists of a limited storm area but he claims
steady state conditions. — PrrLLIPS’ model is time dependent but it applies to an infinite
storm area. But combined, these two theories might prove useful in wave forecasting.

In the present paper a model is developed which takes into account the storm geo-

metry, fetch length and time of development as well as the displacement of the storm.

It is also shown that MiLEs’ (1957) theoretical result with couphng and exponentlal :

growth may easily be incorporated in this model.

In order to determine the pressure correlation, use has: been madé of some.recent

measurements by WiLLMARTH and WooLDRIDGE (1962). Itis found that in the reference
frame of least decay, the decay of the pressure correlation is nearly exponential in time
and the characteristic spectral decay time is a function of the wave number. This result
is derived from measurements in a wind tunnel at a wall beneath a thick boundary
layer, but it will be assumed that qualitatively it applies. to conditions in the open.

First of all the pressure correlation is derived without specifying any of the parameters
involved.

Following an idea by EckarT (1953 b) it will be assumed that the pressure field
associated with the turbulent eddies in the air can be represented by random distributed
pressure gusts. The gusts are assumed identical, of limited duration and advected with
the wind velocity. _

The gusts are distributed over infinite time and space but their influence will be
weighted in such a way that they are only effective within a certain limited area and
in a certain time. The water surface is assumed initially undlsturbed This is adequate
with a sudden onset of the wind.

2. The pressure correlation. A simple gust centered at the place. x; at the time
t; has a pressure effect at the sea surface given by

@21 - py= JA(k,0)e* T E s

Y,
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where dk=dk,dk;, x and k are horizontal vectors with components (xy, x,) and (k,, k).
The x,- and k;-axes will be taken in the wind direction. The 1ntegrat10n goes from
— oo to + co. The pressure correlation will now be defined as

(2.2 px, )p(x', )= Jq(x;, t;)p,;p;;'dx,dt;

where g(x;, #;) is a weight function which takes account of the geometry of the storm
and its duration and

(2.3) O pypy = JAK, 6)AME, o')eisdkdk’dado-’,
s=k"x'—k-x—o't' +ot—(k'— k) x;+(¢' —
. Th;s can be simplified by a change of the variables

Accordingly _
dk'dkdo’do=dkdmdode ,

(2.4) s=l;'re3'c+m-§—sf—m'x-+etj,

(2n)3A*(k a)A(k’ )= B(k G,m,c) .
The weight function has such a form that it can be written as a Fourler 1ntegra,1
q(x; ;)= § Q(m, g™ ) de

(2.5)
(2ﬂ)3Q(m, &)= [ q(x, t)e” ™™ idxds. |

Using this, the equation (2.2) takes the form
(2.6) pp'= § Bk, 0, m, &)Q(m, )e "= e+ imm =ty g0 it

Integration over x; and ¢; has been performed with the aid of equation (2.5). Now, since
the scales of the storm are much larger than the scales of the gusts, it follows that the
integrand in equation (2.6) is dominated by Q (m, &). The integrand is only significant
when & and m are small compared with the inverse values of the storm scales. It is then
evident that m and ¢ can both be put equal to zero in B and the integration performed,
giving B

(2.7 pp' =q(x,8) | Bk,6)e™* ™" dkdo . -

In the case of a circular storm of radius R and duration g, moving with constant
velocity v, a convenient form of ¢(x, £) is
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(28) q=e—(x-vt)2/2R=-ga/2g'g

]

and accordingly for the transform we obtain

Q=(27) 32R2G ¢~ (WRID -~ (mo= G2

which can serve to illustrate what has just been stated. The pressure correlation can
always formally be written as (2.7). But it is desirable to find an alternative and more
specific expression for the spectrum in agreement with experimental results. Measure-
ments have shown that the variation of the pressure correlation with timelag is least
when the correlation is taken in a reference system moving downwind with a certain
velocity u. This is defined as the advection velocity of the gusts and for most winds
except very light ones it can be identified with the wind speed. Accordingly the | pressure
correlation may be expressed as

(2.9)  pp'= fY(R)e* T ID(k, 1)dk

where u is the vectorial advection velocity taken in the r; direction, D(k, 7) is called a
decay function since by definition it is unity for t=0 and decreases with increasing
values of 7, ¥(k) is the spatial pressure spectrum, '

p*= f(k)dk .

For correspondence between (2.7) and (2.9) we must have;

Bk, 0)= -zinzp(k) [ D(k, D)@~ 9" g .

Unfortunately there are only a few measurements of the decay function and thosc'
we have are from flows in pipes and wind tunnels. Some measurements of the pressure

correlatlon at the wall beneath a thick boundary layer can serve to illustrate the prop-
erties of the decay function. (WiLLMarTH and WooLDRrIDGE (1962)).

A plot of the function D against kut/2n becomes quite remarkable when it is
transferred to a linear-logaritmic diagram. See figure 1.

The decay function can be very well approx1mated by a straight hne through the
points. Thus :

(2.10) D=g Wtli® = 5232

A consequence of (2.10) is

a

kqu

2(k u- 0')
(kyu)®

2.11) B(k, a)=i¢,(k\
F
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0 .

P . The straight line is given b
Fig. 1. The decay of the pressure raight fine is given by
correlation as observed in a re- - (ﬁ]q‘-’_") :
ference system of least decay. The
dots indicate values from ob- L a = 232
servations by WILLMARTH and o2

WOoOLDRIDGE. i
D (K,UT)
04 |
0-05 |-
0-0z}
0-01

3. The water surface response. The water is assumed to be frictionless and in-
compressible, and the motion is starting from rest. There exists then a velocity potential
for the motion which has to satisty the Laplace equation, Thus

G.1) | | 1=V, V2$=0.
The dynamical and kinematical boundary conditions are respectively (linearized),
32) 2 rgh=2hm gy (z=0),
' ot P
oh_[0¢
ot | 8z fz=0

=0 Z—C0

"The pressure is given in water height, % is the wave height reckoned from the plane of
equilibrium, 7 is the surface tension, p is the density of water, and

o
V2 =T_2+ T3
ox7  0x3
In order to satisty the infinite depth condition a solution of Laplace equation is
¢ — qlf)(t)ei(k-.\:+kz) .

In order to calculate the effect of a simple gust a corresponding form of hy; is

(33) hijz j' C(k, f, tj)eik-(x-xi)dk .

i ot
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Then we have from (2.2)
34) | C+0?C=—gk [ Alk,0)e™"*¢ "o
where w2=gk+(y/p)&® is the square frequency of iree surface waves. With initial condi-

tions C=0, C=0, for t=0, the solution of (3.4) is

_ . _
(3.5) C=— g—k'jj'A(k, o)™ 1%sin o(t—t)drdo |

X
The wave height correlation is defined as
(3.6) _ hh' = f q(x, t)hyhyy dxdt; .

By putting #' ==t and x'=x, we get the mean square height. Doing this, together with a
change of variables as in the 2nd paragraph, and integrating over x; and ¢; we abtain

=g § X B(k, 6, m, £)Q(m, )™ *[dkdodmde
[£211)] ’

I=%[fe i i"‘{co_sl:(w" —w)(t—1y) _o ;- a)Tz] - cos[(a)’ +o)(t—1y) - ol ; wrg]}d'cldtzﬂ

Here the new variables 7; and 7, are:
7y=31" +1), T,=7-71,

where both ¢ and ¢’ go from 0 to
By repeating the arguments from paragraph 2 we find that the integrand is domi-

nated by Q (m, &) which is only significant when
m=k'—ka~0 and g=¢"—o=0.
The following approximations are then valid for small m and ¢

B(k, o, m,&)~B(k, 0,0, 0) called B(k,0),
ki ok, 0o ~e®, o +ox2o,

, dw | dw dom-k
w —C!)%—ml-l—.__mz:.__ .

ok, | ok, =~ dk k

The last term of the time integral I turns out to be negligibly small in comparison with
the first and we will therefore only consider the first term. Thus, '

A 2 a 3
3.7 h=1ig*§ %B(k, &)Q(m, £)e™* = " o5 [(m - G)(t —1,) — w1, Jdkdodmdedt,dt,
a) .

where G==(dw/dk)k[k is the group velocity of {ree surface waves. By comparing (3.7)
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with (2.5) it is seen that integration over m and & can now be performed. Then (3.7)
yields

W= +h,
. 2 2 ]
(3.8) R, _ =gE 1] %B(k,, 0)g(x +G(t—1,),7.)e” "=k, do, dv, dr, .

‘The integrations over 7; and 7, can best be treated by considering figure 2.
The incegration has to be taken in two steps, for example over the triangles ABD
and BCD:

/2 21, 2t—1) t2 21,

.rF1(Tx)dT1 I Fydty+ IF1(T1)d‘51 | Fadt,= I [F(t )+ F(t—1y)]dry [ F,dr,.

—27 2 - L2t 1) —-27

The integration over 7, can now be pcrformed:

_ZI‘ ety dr, 31n2(a+w)'c
~23 otw

Since ¢ is assumed to be much greater than 1/@,, where w, is a characteristic. frequency
~of wind generated surface waves, of order 1 sek—1, the integrand will be dominated by
this term for most values of = except for the smallest ones. The contribution from inte-
gration over ¢ is largest when 6= T . The function is treated as a é-function and inte-
gration pcrformed o being put equal to Fo in B (k o) which is a slowly varying func-
tion of o.

Then we get
(39 W= I W&+maﬁﬂﬂﬁﬂkﬂm&
T T,
1 4
¢ 2 ¢ 'Y D
i
t
]
1
1
——— ]
i
B c
by t T A i T T,
1
i
i
t
Fig. 2, The area, ABCD, of inte- : '
gratxon in the two coordinate [
systems, N S .
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Since by definition
 BUk@)=(2m) [ 57 cos (k- r—ov)drdd®
it follows that |
B(k, —0)=B(~k, o),

B(k,0)=B(—k, —0) .

The integration over £, from — o0 to oo can then be substituted by an intégration _
from 0 to oo. Finally we get

| b =ng? [ ¢ 2B,(k) }g(x—(t—t)G,t)d‘cdk
(3.10)
+rg? ¢ 2B, (k) [ q(x +(t—7)G, 1)dzdk ,
0

where By(k)=(B(k,0)),-,, and By(k)=(B(k, —0)),~, .

The integration is over the right half k-plane. The last term gives the contribution
from waves going against the wind, but this term is negligible compared with the first
and can accordingly be dropped. |

The time integral in (3.10) will play an important part in the following analysis,
It will be denoted by the letter w and called the influence function,

(3.11) _ w= Itq[x——(t—‘c)_G, T]dz.
()] .

The final result can then be written in shortened form as

(3.12) W =ng” [ ¢ 2B, (kyw(x, t, k)dk .

The name ““influence function” has been chosen because w determines the time and
space dependency of the spectrum.

In paragraph 4 it will be clear that the integrand ¢ can be interpreted as a wave filter
since it determines the permissable range of wave numbers for a given x and &

5

4, Some special examples.

a. Moving storm. Thus far the result is general. Now we will proceed by taking some
special examples. The case of a storm moving with velocity » has earlier been mentioned.
This will be treated again with storm duration g3 #. From (2.8) we then have

—(x—ut)?/2R?

g(x,)=e
Accordingly the influence function, (see (3.11) and (3.12)), is
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Fig. 3. The case of a ’ N O (r-T) G
moving circular storm. :

t t
w= [q[x'—G(t—1),7)dr= fe F*®qr,
0 0

x'=x—~vt, F=[x'—(t—7)G|.

The contribution is greatest for small F; that is ¥ <R. Figure 3 illustrates the case.

Only waves starting from places inside the dotted circle at time = with appropriate
direction can give appreciable contribution to A2 at the place x at a later time ¢, pro-
vided that the time interval (¢ — ) is long enough for the waves to reach x. As the storm
- is moving along, waves are propagated from new areas traversed by the storm. We .
see that the wave energy is propagated with velocity G, the group velocity. The mean
square height of waves within the storm grows proportmnally with time.

b.- 4 stationary storm. The case of stationary storm is of some interest. If we further

let the time #— oo as well as the storm duration, we get the case which has been treated
by Ecxart (1953b). Thus,

0 : o0
w= J' e_[(x—Gt)EIZR_E]dT= e-— [x%sin®@/2 R%] J‘ e —[(Gt—xcosﬂ)*fZRﬂdt ,
o .

For x/R> 1 this is simply 7
’ 27?: Re_ x!ﬂﬂ/sz
dw T
dk |

wWRs

since # has to be small.
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Equation (3.10) now gives, after a change to polar coordinates,

ky=kcosa, x;=xcos¢, O=¢—u,

ky=ksino, x,=xsing,

_ _ o =f2 dCO -1 . \
B =1(2n)**Rg | jc‘z(ﬁ) Bie PR dkdy

0 —x/2
2 _w
.m(Zn)Z%\/g (B0 ok

Integration over « has been performed in view of the dominating exponential term,
and the relation w?=gk for gravity waves has been invoked. ‘
In order to carry out the last integration, the function B, must be specified. In
doing so, with
[-Bi]a= 5= Dpz e [k2L% + T —ukcosd)®]

where v is a constant depending upon the parameters L and 7" which are respectively
the characteristic radius’ and duration of the pressure gusts, EcKART obtained |

W a10p*—. for ¢=0.
xL
From the available data of the magnitude of the mean square pressure he concluded
that this equation gave wave heights which were much smaller than those obtained -
from observation. o '

- €. Unlimited storm. This is the case which has been treated by PmiLiies (1957).
The function ¢ is then equal to unity, w=¢ and (3.10) yields

4.1 R =tng® { ¢ ?B,(k)dk .

Remembering the way B, was derived, h: can also be written
(4.2) - h2=g% [ c~2Y(k)dk | D(k, <) cos (k- u—w)r)dr .
V] .

Since o?=g%~? for gravity waves, this result is in full agreement with that obtained by
Prriies, The pressure spectrum which he called n(k, 1) is here written as (k) D(k, <).
It will now be shown that this integral can be estimated without specifying the para-
meters involved.
From the second mean-value theorem for integrals we can formally write
® T(k)

I Dk, v)cos{((k-u—w)t)dr= [ cos((k u—w)r)dr,
0 . 0
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since D(k, 0)=1 and D(k, o)=0. Accordingly, after a change to polar coordinates,

we have
)ku T)
do,

where (k) has been assumed to be an isotropic function of wavenumber.
Since

(4.4) | ?=2n°fw(k)kdk

2le

. gtw a2 Sin((costx._
(4.3) W =2 [ y(k)kdk )
‘o -n/2
COS o —.

sla

it follows from the first mean-value theorem for integrals that

@5 P=LpR(k)

L]

2 oin [(cos o — (ﬁ) )(ku T)S:I
R(k)=L1 j /s d
' 2x (c) :
—-nf2 cos—| —
U s

and £, 1s a specific value in the interval (0, oo). .
‘The characteristic time, 7, might possibly be a function of «. In the discussion which

where o

follows 7" is regarded as a function only of £. But since T is always positive, the final -

result is expected to be valid in the general case. -

It is of interest to see the variation of R(£) as a functon of ¢fu and N=kuT[2n. The
last parameter may be interpreted as the characteristic number of periods of develop-
ment.

The maximum value of R for N> 1 is approximately

' 4] . 2
| R(k)max=R(-g.§)m_l. [ 2nENe ) g JoN .
u 2% —w o

Having established this upper limit the question still remains: “What is the most

likely value of £, and R(k,) ?”

The information we have about the pressure spectrum indicates that the maximum
is only slightly dependent upon the wind speed. Since the maximum of R(k) occurs
for k=g/u® we find that for wind speeds of order 10 m/sec or higher the main contri-
bution to the mean square pressure comes from the range of wave numbers where
¢fu<1 and R(k) is close to unity. The highest value of R(£,) is expected when the maxi-
mum of £y (), nearly coincides with the maximum of R(k), but this is only possible for
light winds.- The lower limit of R(%,) is therefore taken to be unity. :

et e Lt SR B e
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.
- '
R(5) -

Fan
3
2|~ *‘
1

A L

LY V] !
o ] R i

Fig. 4. The relationship between the function R and ¢/U for 4 different values of the parameter N.

Thus 1<R(k)<./2N for N>1.
R(k,) is seen to be smaller than 10 even for an extremely large value of ¥ such as 50. '
A more realistic upper limit seems to be 10 periods of development which indicate a
value of R(k,) of order unity.

. Then we get the interesting result

(4.6) h Ngfp—

Instead of referrmg to mean square height, it is oceanographic practlce to use significant
waveheight H defined by

H?>=8h? .
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If we take E: B2 paf )2 (utg?) it follows from (4.6) that

o ey

Comparing wiih data given by SVERDRUP and Munk (1947) and others, see RoLL

(1957), we must have
B>0.15

in order to explain the observed amplitudes by this model. However, measurements
of the mean square pressure made with the recording buoy indicate that fis much smal-
ler. Even though the forced water motion model fails to explain the observed energy
input to the waves, it might qualitatively give a good description of the wave spectrum.,

It has in fact been found thai the width of the observed spectrum corresponds well with
the theoretical resonance angle.

'd. The directional spectrum. In this paragraph the directional dependency will be
specified by use of (2.11). In polar coordinates, the mean square height is then given by -

nf2 ’
(4.8) | 2= [ kp(yak f asech ada .
, Coue a2 1+a2(1—-£sechcc)
u
The function
sech o

Fo)=p— - 5
.1+a2(1—...sech oc)
u

“has been plotted in fig. 5 for 3 different values of ¢/u and compared with data from
S.W.O.P., the STErRE0 WAVE OBbservaTioN Project (1960). The factor p, taking dif-
ferent values with ¢/z, is chosen so that the scale of F(«) fits that of the data, u is taken
as the wind speed at 10 m height, the constant a=4. The agreement is best for the longest
waves, that is for ¢fu > 1. But still more observations of the directional spectrum are
needed before any conclusion about the validity of the theoretical spectrum can be
made. :

In order to compare the directional spectrum with data obtained by LoNGUET-

- Hiceins (1962 a) from the recording buoy, the angular width ¥, of the spectrum has

been calculated where y; is defined as ' '

w2

[ o®F(e)de
V=
J Fa)da
0
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Fig. 5. The theoretical directional spectrum compared with data from the Stereo Wave Observation
Project. The angular distribution is shown for three values of ¢/U, or adequately, for three different
' wavelengths.

The result is shown in Fig. 6 where ; has been plotted as a function of /¢ instead of ¢/u
by use of the formula '

—=-—-—1D ——2 .

u uy 2nfu\"? 0=9%
— s =
c ¢ Q\c U,

This means that « has been obtained from the logarithmic wind profile taking the wind
speed at a height 2z/£ which corresponds to the scale of the eddies, Q has been chosen
as 2z - 1072, The resonance curve is given by cos Y, =c/u. The agreement between theory
and data is fairly good except for /¢ <0.1. The minimum angular width given by the
theoretical formula is 29° and ¥, is almost constant for /¢ <0.1. For large values of
#yf¢, ¥, tends to the resonance curve,

e. Wind blowing from a shore. Again by using (3.:10) we can easily treat the case with
wind blowing from a shore in any direction, but for simplicity we will choose the wind
direction normally to a straight shoreline given by x,=0,
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so'— ¥ _ + ‘o
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+) Calculated from observations by
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30— o | Longuetl — Higgins
! ———= C=Ucosy,
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’ .
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Fig. 6. The angular width v, of the spectrum. The resonance curve is also shown.

Assuming infinite duration time we must have in (2.7): :
g{x)=1 when &, >0, and zero otherwise. Accordingly in (3.11), by change of vari-

able from ' to (¢—1), we get:
g(x—Gt)=1 when %, —G;t>0 and zero otherwise. Hence,

I the wind has blown for a sufficiently long time we obtain

' 4] /2
_ -2
=g Jc kdk I B(k),
- dw cos o
0 ;ﬁ: /2 :

We see that the mean square height is directly proportional to the distance from the
shore and that the waves travelling nearly normal to the wind direction are given large
weight. Their contribution to the mean square height is somewhat suppressed by the
form of B,(k). The greatest angle for resonance waves is :
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o= arccos(c‘“‘“) , Cuin=23cm/fsek .
u
At short distances from a shore we are thus likely to observe pronounced shortcrested
waves travelling nearly normal to the wind direction (>3 m/sec). This is confir med
by observations. Cir. Rorr (1957).
1. Swell. The longer a gravity wave, the faster it propagates. Observmg waves from -
a storm we should therefore expect that the spectrum is changing with time, getting
broader as the shorter waves approach. This has also been confirmed by observation,
but has not until recently been properly explained. In order to investigate this case with
the aid of (3.11) and (3.12), we may start with a very simple configuration of a storm
area. The storm is defined by ¢(x) where ¢(x)=1 when [x|<R and zero otherwise.
Consequently . '

g(x—Gr)=1 when |x-—Gr|SR, O‘S‘r-<..t, and

zero otherwise.
This determines the integration time for = and imposes restrictions on G‘t=%l/;ng .
The limits of « are also determined by the above inequality. o
For a given ¢ we then must have for a specific value of « either

_ " ,
(1) Gt<S, thatis k;%_ and w=0,

2

I

or (2.} S,<Gt<S that is ——<k<— and w=t,

Fig. 7. Swell from a circular storm,
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2

or (3) Gt>S  thatis O<k<I' and w=31,
45 G -
where S =2/R*—=x*sin*(a—¢),

S,=xcos(¢ —oc)~\/R2—x2 sin’(a—¢) ,
S = Sl + S2 .
The mean square height at P can then be calculated from (3.10). In polar coordinétes,

the solution 1is
o az kg

(W), =ng* [ | c"zBl(k)%kdkdoc

2 O
4.9)

- kb

+7g? [ {e 2 By(k)tkdkde

e ke 4

where o, =¢— arc sinE ,
' X

. R
0y = ¢+ arcsin—,

X
“_gtz' k_gtz
=i s
2

When x/R> 1 the solution may be approximaced by

Rixky,

(B, =272g% [ [ 3(Byk)amy 2/ RP—x*a— §) k(i — )

—R/x O

The integration over « can then be performed and the result is

2k

o — R&™m
(4.10) (hz)l,=2nzg%? g k[ B1(k)1,= gdk ,
2
where m=g_t2 s
o 4x

k, being the highest wave number present in a wave record at the time ¢ On the con-
‘trary, from the wave record we should be able to locate the ofigin of the waves. The
‘result, equation (4.9), agrees also with the Cauchy-Poisson theory for propagation of
surface waves. ‘ '
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The actual wave propagation will of course be greatly modified by effects of vis-
cosity through dissipation and by the air resistance as well as other factors. The energy
loss is greatest for the shortest waves. Since the maxima in B, (k) is decreased and shifted
towards higher £-values as « is increased, it is obvious that swell can only be registered
at small angles with the wind direction (within 30°)

g. Model with exponential growth. As mentioned in the introduction, Mires’ (1957)
theoretical result for the wave growth (i.e. the exponential increase caused by coupling)
may easily be incorporated in the present model.

The actual change of (3.10) is then

— ' t -
W =ng*{ ¢ *B,(k)dk [ q(x~(t—1)G, 1)dr
. 0

when waves going against the wind have been neglected.

‘The only difference between the original equation and this equation is the expo-
~ nential factor ¢ in the time integral, M is a function of k, the two dimensional wave
number, and has to be calculated for the actual wind profile above the sea.

In the case of waves from a dlstant circular storm of radius R, the domain of ¢
and ¢ is given by

|x—-(t—1)G|<R, O0<r<t.

The solution in polar coordinates can formally be Written as

kg MSI,rG 1

(h*),=mng* j Ic"zB ®)° kdkdo:
(4.11)
zgkb M!‘_l
+g 2 [ [e™ 2B (k)" “kdkda
@ Ka M

where oy, o, S5, £, and &, are as defined in paragraph 41,

In the model with exponential growth, the storm area has to be limited by the cond1-
tion ¢g{x} =0 for x values outside the storm. Otherwise we should have to impose restric-
tions on the wind protile which would demand a much more complicated model.

The similarity between (4.9) and (4.11) should be noted. In fact when MS /G -0
and M¢—0 they become identical. As ¢is increased, &,—%, and only the first term is im-
portant.

5. Conclusion. It has been shown that both Eckart’s (1953 b) and PaiLLies’
(1957) theoretical results can be obtained from the present general model, eventually
modified to take account of the exponential wave growth as given by Mies’ (1957)
theory. This model can also be made suitable for wave forecasting. In the same way as
for the circular storm, it is possible to obtam a formal solution for the case of a moving
storm of any geometrical shape.
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It B,(k) is known, the mean square height can be calculated. The main issue is to
derlve this function. If thc directional dependency given by (2. 11) is acceptable,
B, (k) is determined as soon as ¥{k) is given. The pressure spectrum is known to be a
smooth function of wave number tending to zero as £—0 or £— oo. The water response
is not critically dependent upon the actual form of y (k). This suggests that a simple |
functional form may be chosen, for example:

Y~k R p>2

' The theory has to be tested by comparison with observations. Unfortunately, the bulk.
of available observations comes from fully developed seas. In order to isolate the non-
linear phenomena, observations from the primary stage of wave generation are highly
desirable.
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