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Similar formulas are obtained for the other combinations of I/ and W and we end.

up with
A2k,
ﬂ’h(k k) + A2k,

. (9.6) - E(k,t)=E(k, 0){ (1— cos k,,(c("“)—c("))t)}

where E(k,t) denotes the complete energy density in the bottom layer for wave number
'k and time £,
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9. The total energy in the bottom layer. ¢ and ¢ denote the dlsplacement
in the x- and z-direction, respectively. We then have

,(9' 1) G =~ Y. (=t
Applying the theory of Fourier Transform we Write

£,=Re DIO(UI + U,)exp (ikx)dk
0
.2
Re I(W1 + Wz)exp (zkx)dk

Where according to {5.15)

U, =ke a(k)z{(l +m3) exp(km,z) Qsin kmoh} exp(— lkc(n)t)

my(1—m3) dD/de ¢ _

m, exp (kmzz) Qsinkmyh) exp(— zkc(”)t)
1-m3 aDjéc c™—

n

U,= —2cha(k)2{
9.3) -

)
W, = —ike a(k)z (1+m2)exp(kmlz) Qsinkmyh] exp(—ike t)
1—m? oD/dc R

| n ' —<Cp

— il
 Wy=2ikeqa() Y {exp (km,z) Qsin kmgh) exp E,,) ike™p)
1—m; dDfac ),

The total energy in the lowest layer is twice the kinetic energy and is therefore given by

+ o0 4]

(9.4 j dx f E2+PDdz=n j j (U UL+ U UL+ U UL+ UzUz)dkdz

w 0

+7 j j (W1 Wy + W, Wy + Wy Wy + W, Wy)dkdz

Applying an expansion about k=k, and ¢ —cR,' as above, utlhzmg (8.6), (8.10) and
(8.11) we obtain

©9.5) (j) UIU;dz=~}k,,cﬁla(k)]2{ (L+m3)° }

3 2
ml(l '_"mg) c=cp

Ak |
(1-2 2 (1— cosk,(c™+ 1) — s
( Ren(k—k)? + A2k, ( 2
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We then have

2.2 2 -
(8.6) D= M sin kmoh((c — CR) + moco(k )(C ¢ ) mOCOQ(cR) . .
moch kucr "k, hegR (cR) : .

_k JJicgR'(cg) sin kmoh —c®)(e— c(" +1)).

MoCa ' o,
Furthermore,
3.7 c¢R sin kmgh (R coskmoh)
meODfoc |\ 8D[dc Jn+1
wby) . MaCH
2 cR(cf'”—cﬂ)(c("“*”—cn)(c‘ gt —2 °(k—kn))
Co knCR
k,hey : (c™TD _ )2
(8.8) ¢Rsinkmgh Rcoskmoh\
o Mo@D[3C Jysi\ 0DJdC Jn
(B W () mMgCo
I ) CS C,R_(C( +1?""CR)(_C( )_CR)(C _CR+ k" R(k kn)) | . | ) 7
k.hep . (c("+ 1 c(n)).z

We define 4, by

(8.9) 4= cRsin kmoh\ [ Rcoskmyh _{cRsinkmgh Rcos kmgh\
o "\ medDjoc )\ @DJoc )., \ mgdDjéc },..\ éDjoc /.

4

which with the above approximations takes the form - ;

— Cg' (c(n+ b_ CR)(C(") —cCp)

n=

k,h PO VO]
From (8.6) we find d
(8.10) O cpm el — Myflk— k) — G k=) + K] -
(8.11) c("+1)-_cR—_-cR[-/11/k,,(k-k,,)+(/12/k2(k—k,,)2+,1§/kf%h2)%]

where Ay and A, are defmed by (5. 13) and (5 14}, Insertmg these expressions in (8.9)
and (5. 11) and applying the relation

-

(8.12) =L pod
' 2B pocy

we end up with (5.12).
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where
(1.3) Bi=1-—ch/c?, Bi=1~cp/c?.

A,(k) and Ay(%) are found from the boundary conditions (6:=7:,=0 and { given
by (8.1) for z=0) to be '
2
Ayg= —(+Ba®

B(1—-p3)k
(7.4)
2ia(k)
A(R)=—
O
- ¢g are determined by
(7.5) - (14 53)*—4B,8,=0

Inserting '(7.2) in (7.1) and applying Parseval’s theorem, it is obtained that
(7.6) e=pucyB [ kla(k)|*dk
0

where '
po(HBDA+ED® 41+ | 21+5)

| 2B10-B BB B2 |

Since ¢pfc; and GR/caldepend'only on the Poisson ratio v, B is a function of v only;
For v=0,25, we find B=]/6,/3m3,2237.

8. Approximate evaluation of the energy flux when Zi~fk, and ¢~c; and
Polp is small. '
The determinant D may be written

(8.1)  D=R(c)cos kmoh+Q(c)sin kmgh

Now, | '

®2  RO~R(eR)(e—co)

@3 Q()~Q(cq)

84 cos kmomfi(cos kmgh),_, (c—cR)-f--a—(cos kmoh)oe . (k—k)
. e k=0 ok K=k} _

(8.5) sin kmyh~(sin kmoh);::;R B

For simplicity we neglect the subscripts ¢ =¢g, £ =k, when no misunderstanding is
possible. )
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When the seismic wave has passed the ocean region, the energy conveyed to the
oceanis lost for the seismic wave and therefore represents a kind of dissipation. A Fourier
analysis of the energy spectrum of such a wave therefore should reveal that no, or only
little, energy has been lost in the part of the spectrum corresponding to periods larger
than T,. For the periods about Ty, Ty, T, . .. (the periods corresponding to £ =£,,
k1, ...); however, the energy spectrum should possess typical minima. We do not know
if any such tendencies have been observed. However, according to EwING, JARDETZRY
and Press (1957), observations in the Pacific region show that waves with periods less -
than 12 sec (and larger than 1 sec, to be exact) suffer a great attenuation in typical
ocean areas. Thus, good agreement exists between theory and observations, the theory.
above implying that waves with periods larger than 11,8 sec (when £ =5000m) do
not lose any energy to the ocean. There is, however, also a discrepancy, since in the
present theory the attenuation of the energy will be very unequally distributed in the
energy spectrum, having distinct maxima for & =k, £y, £, . . .. Besides, the computed
maximum energy loss never exceeds 50%,. This energy loss would likely have been some-
what larger if friction in the fluid layer had been taken into account. It seems reasonable
that a small friction in the fluid layer will not change the main kinematical picture.
The dissipation due to such a friction is proportional to the square of the vorticity and
therefore proportional to £2 times the kinetic energy. We therefore get most dissipation
for k-values corresponding to large energy — which again corresponds to large energy
flux at the intérface. To compensate for this dissipation- the energy flux increases and
therefore the introduction of friction results in the largest increase of the energy transport
where it already has its largest value. In other words, in the part of the energy spectrum
where the transport is small, it should still remain small ; whereas, in the part of the
~spectrum where it is large, it should further increase. -

We have assumed above that the velocity of sound is constant with height. Taking -
into account the observed variation of the velocity of sound, our results will be somewhat
modified for smaller periods, : ' '

APPENDIX

7. The total energy in the Rayleigh wave. The total energy, ¢ in a Ray- B
leigh wave is twice the kinetic energy. Therefore
+ a0

0
(7.1) s=p | dz [ (E+{)dx.
It is easily seen that ¢ and ¥ have the form

¢=Re ? Ay(kyexp {kp z+ ik(x —cgt)}dk

(12) ) |

Y=Re [ A,(k)exp {kB,z +ik(x — cpt)}dk
) [H]
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It is noticed that for large values of time the energy spectrum for the bottom layer is -
‘reduced to half of its initial value for £ =£,, in agrecment with the result found by
considering the energy flux at the interface. In Fig. 5 the energy spectrum is shown
for the bottom layer at large values of time. The correspondence between Figs. 4 and
5 are given by the energy equation

(.18) | E(k,f)+nRe [ PW*dt=E(k, 0).
0

In the procedure above, we have integrated over a band of £-values and in equa-
tions (5.10) and (5.16) we have neglected the trigonometric terms, assuming t (or ?)
to be sufficiently large. How large must ¢ (or #) be for this approximation to be valid ?
There is no unique answer to this question, the time depending on the chosen width
of the band. This is again a question about the dispersion power of the instruments,

6. Discussion of the results. Conclusion. We have above considered the en-
ergy transport connected with a seismic wave travelling across an ocean basin. Our
model is taken to be a two-layer system, a bottom layer which is a perfect elastic me-
dium and an uppermost layer which is a perfect fluid. At ¢#=0, the fluid is assumed
to be at rest, whereas the bottom layer possesses a motion corresponding to a Rayleigh
wave (these initial conditions are thought to be the proper ones for the case of a seismic
wave travelling across a continent at £ <0 and across an ocean for ¢>0.) The energy
which, after a sufficient large span of time, has been conveyed to the fluid, is then
computed. It is found that waves with wave numbers less than a certain value, or,

equivalently, with periods larger than a certain value, lose only a very small fraction
~ (with our approximation nothing) of their energy to the fluid. More precisely, inserting -
characteristic values of ¢, and ¢, and putting £=>5000m (a typical value for the -
Pacific) we find that no energy is transferred to the fluid layer for wave numbers less
than 0,59/h or, equivalently, periods larger than 11,8 sec. For this wave number, the
energy transfer has an abrupt increase, and then very quickly obtains its first maximum
value for k=Fk,, (see Fig. 4). The energy transfer then decreases rapidly until it again
has an abrupt increase for a value of % a little less than k,. For £ =£k,, it has itssecond
maximum value, and so on. It should be noted that the values of £ for which the energy
transfer has its maxima, k=£kg, k;, ..., are the k-values for which resonance occurs
when the waves in the bottom layer are assumed to move independently of the occur-
rence of the uppermost layer, i.e. as a Rayleigh wave.

The reason for the discontinuous changes in the energy transport at the interface
is that all ¢™ (k) except ¢ do not exist for all £-values. In order to have any energy
transfer for a k-value, at least two ¢ (k)-curves must exist for this value of k. Where
only one ¢™(k) occurs, no energy transfer takes place. The most important feature as
to the energy transport is, however, not these discontinuities and the existence of only
one ¢™(k)-curve in a certain k-region, but the result that the energy transport is con-
centrated about k =k, &, ... for the characteristic values of the parameters applied.
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Figure 5. The energy in the bottom layer for large values of time as function of %k and the period T
when gofo = 1/3, v = 1/4, ¢y = 1500 m/sec, ¢, = 4500 mjsec. and % = 5000 m.

The energy flux at the interface may also be found by considering the energy in _

_ the bottom layer at various values of time. The displacement potentials ¢ and i
are given by (4.5) and (4.6). Retaining only the contributions from the poles and con-

sidering only the waves advancing in positive x-direction, in agreement with the proce- - -

dure above, the Fourler transforms of ¢ and ¥ are given by

o= &) 3 {(1 +m3)exp (kmlz) Qsin kmoh} exp(— 1kc("’t)

k m(1—m3) edDfoc |, ™ —cy

(5.15)

e sza(k)Z exp(km,z) Qsinkmoh) exp(—ikc™r)
kW 1- —mj  cdD|dc ™ —
In the Appendix, section 9, the energy spectrum for the bottom layer, E(k, t), is eva-
luated for various values of time. For £-values in the vicinity of £,, it is found that
E(k,t) iy approximately
Ak,
Azh(k k) + A3k,

- (5.16) E(k,H)=E(k, o){ (1—cosk,(c"tP—¢ ("))t)}

where E(k, 0) is the energy spectrum for the Rayleigh wave, ie. E(%, o) =E(k)
defined by (3.16). Integration over a small band of £-values makes the periodic term
in (5.16) tend towards zero when #— oo such that for large values of time

| - 2k,
1 k, )= E(k, -
(5.17) - EkD=K 0)( kT ik )

e
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Figure 4. The time-integrated energy transport at the interface as function of % The curves show this -

energy transport in proportion to the initial energy in the bottom layer. Moreover the figure displays

this energy transport as function of the period 7 when gofo = 1/3, v =1/4, ¢, = 1500 mfsec, -
tg = 4500 m/fsec and % = 5000 m. : -

somewhat less. In Fig. 4 is shown the energy transport integrated over time when the -
curves are obtained by using the approximate form (5.12) in the vicinity of &=k, S
“and evaluating the right hand side of (5.11) for some few values of & when the approxi- S

mation is not supposed to be good. |

- Itisseen from Fig. 4 that the energy transport integrated over time is a discontinuous
- function. For values of £ less than 0,59/h (corresponding to periods larger than 11,8

sec) there is no energy transport. For £ =0,59/h an abrupt change in the energy trans-
port occurs, the energy transport obtaining nearly its maximum value. For higher -
values of £ the energy transport decreases rapidly until it again obtains an abrupt -

- change for £=1,70/h (corresponding to 7 =4,1 sec). This picture will be repeated

over and over again for increasing values of £. The reason for this somewhat curious
behaviour of the energy transport is due to the fact that ¢®, ¢®, ... do not exist _
for all values of . For £ less than 0,59/h, ¢ does not exist, and ¢© alone is not o
able to perform any energy transport (since the streamline pattern does not have any
tilt), and therefore RePW* is zero for these values of k. For larger values of £, ¢®
~and ¢ together give positive energy transport which rapidly decreases for increasing
-values of k—ky. For £ larger than 1,70/h ¢(® exists and the main ehergy transport
is due to the waves ¢» and ¢ in the interval about £ =Fk;. For still higher values
of £ this energy transport decays, and the energy transport is mainly due to ¢®
and ¢® and so on. It should be noticed that discontinuities of this kind in the energy
transport always will occur when there are several waves, some of which do not exist

for all k-values. ' '
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05 10 15 20 kh 25
Figure 3 displays the approximate dispersion curves {(dashed lines) compared with the exact dispersiqn
curves (solid lines).

putting po/p =1/3. The approximation is seen to be rather good, and we shall appl};
these expressions for ¢®(£) in the neighbourhood of £ =£,.

According to the Appendix, section 8, the energy transport, valid in the V101n1ty :

of k=k,, isthen given by

‘ ' 2k,
5.12 xRe [ PW*dt=1E(k)
¢-12) I ( (k=K + 22k,

where E(k) is givenrby (3.16), and
(5.13) | Ay=3(1—c3fc})
(5.14)  B=(cofer)Qen)(1—chleR)exR (cn)-

It is seen that (5.12) has its maximum values for £ =£k,, and for these £-values the
energy flux integrated over time is equal to 3E(%,). Since E(k) is the energy spectrum
at ¢=0 in the bottom layer, this means that #he bottom layer has lost half of its energy at
k=Fk, when t is sufficiently large. For other values of % the energy transport will be

£
2
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are by far the most important ones, These terms have the smallest denominators being
the product of two differences. Furthermore, these terms have a slower variation with
time than the other terms, the frequency also being a difference. This last feature be-

comes important when the energy transport is integrated over time. Such an integration

shows that terms of type (5.7) will have denominators being a product of three dif-
-ferences whereas the other terms will have denominators being a product of one differ-
ence and two sums. Furthermore, it is seen that, when integrating over k, the most
important contributions are due to values of # and ¢ for which k~k, and € RUCR.
We may therefore with a good approximation retain only terms of type (5.7) and when
integrating over £, in the neighbourhood of %, take into account only the contributions
from ¢ and ¢**Y. Equation (5.6) then takes the form

sin k(c®* 1) — 0y

22 2
(5.8) RePW* = pocik?|a(k)| O
where | |
9 4= (cR sin kmoh) (R'cos kmoh) N (cR sin km, h) (R cos kmoh) .
mgdD/dc ]\ 8D[éc Ja+1 medD[0c  Jn+1 oDjdc  Ju

An inspection of Fig. 2 reveals that the error introduced by applying (5.8) instead of
(5.6) is less than 19, in the immediate neighbourhood of % =#, For k-values right
in between k, and £,,, the error will be somewhat larger. However, for these £-values
the energy transport is very small. It is scen that using (5.8) instead of (5.6) corresponds

to neglecting waves advancing in the negative x-direction in the solution (4.11).
The integrated energy flux from #=0 to f=t (¢ will be assumed large), is then
given by , :
(5.10) nRe [ P dy="PoReOf AL — cos k(e D —cVye)
| o (@@= e D= e Do)

. Integration over a small band of £-values makes the periodic term in (5.10) tend
towards zero when t-—oo0. This term will therefore. be cancelled. We thus have,
approximately.

npocfik!a(k)le,,
(e D= e (™=

(5.11) nRe [ PWdt=
0

which gives the energy transport as function of %. In principle we know this function
by using ¢® as a function of £ as found from Fig. 2. 4, 1is, however, a somewhat
complicated function of ¢” and to obtain an analytical expression for ¢ (k), we
develope D in a series about &=k, and ¢=cg, valid for small values of po/p (see
Appendix, section 8). In Fig. 3 is shown the approximate values of ¢ (k) obtained
by this procedure (dashed lines) compared to the exact ones. These approximate
curves are found by retaining only the leading terms in the development of D and







Fas
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By means of (4.11) we then obtain
_ Weoy {ika(k) exp (—ikct)egR cos kmoh} : | . .

, n (c—cgp)dD/dc
(5.3) |
-y ika(kyexp (ikct)cgR cos kmyh
" (c+cp)dDjdc " i
P——Y poka(k)exp (—ikctyegeR sin kmgh
" mglc—cg)0D/dc n
(54)

+7 poka(k)exp (ikct)cgcRsin kmph)
n mo(c + CR)aD/BC n

f

Furthermore, Parseval’s theorem may be written

+oo © 7
(5.5) | plow(o)dx=nRe [ PW*dk
' - ‘ ° _ _
where an asterisk denotes the complex conjugate. By means of (5.3) and (5.4) wé obtain

cR cos kmohsin kmgh\* 2sin2kc™1
mqdD/dc ™22

RePW* = — pocik? Ia(k)|2{2(

(5,6) o + 3 cRsin kmoh\ (R cos kmoh 5(1:: k(c(n)__; SM))I
) - B*m moaD/aC n 6D/ac m (c ".‘CR)(_C _CR)

o

sin k(c™ +c™t  sink(c™ + ™)t sin k(c™ — c™)t ]}
(=)™ +ep) (€ +edc™—cp) (P +ep)c™ +cp)

wheresubscripts z and m denote that ¢ is given the values ¢ and ¢ respectively.
The motion is, according to (4.11) (or 5.3) and (5.4)), composed of two different
wave systems, one advancing in the positive x-direction, the other advancing in the
negative x-direction. The initial conditions have been chosen so that they correspond SR
to a Rayleigh wave advancing in positive x-direction at #=o0. The part of (4.11) B
- advancing in negative x-direction therefore corresponds to a system of reflection waves T
which have been created since the initial conditions are not the proper ones for giving '
waves advancing only in one direction in the two-layer model. It seems reasonable that
this system is not very important with respect to the energy transport; which may easily
be demonstrated.
A discussion of the various terms in (5.6) combined with an inspection of Fig. 2
reveals that terms of the type

sin k(c™ — ™)t

P (P~ )™ ~cr)
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which is the secular equation for the system. It may be shown that this equation has
for fixed values of % a finite number of solutions, ¢=+c¢®. Applying Cauchy’s
theorem the contributions from the branch points are usually neglected compared to
the contributions from the poles, which is a good approximation for modera.tc values
of time. With this approximation, we find

7o z:{a(k) exp (ikct)cgR cos kmy(h—z)
c(c—ep)dD/dc },,

ane

.y {_a(k) exp (ikct)cgR cos kmo(h —2)
¢(c+cg)0D/dc }”

n

where the sum is taken over all positive ¢ determined from (4.10) and subscript
n indicates that ¢ is given the value ¢. It should be noted that neglecting the branch
points corresponds to considering only a slightly different initial situation than 0r1g1nally
specified.

In Fig. 2 is shown graphically the variation of ¢® as a function of %, found by
solving (4.10) numerically (solid lines), for the case of py/p =1/3 and for given values

of the other parameters. The system of dashed lines corresponds to the solutions of the

‘equations R=0 (i.e. ¢=cz) and coskmgh =0. In the case of no coupling, (4:11) -

has poles corresponding to the points of intersection of these lines. In the actual case,
no resonance occurs, and Z is therefore non-smgular for all A-values (the apparent
singularity for ¢=cy is really no singularity since then R is zero). However, in the
case of weak coupling (i.e. for py/p relatively small), the denominator is small for values

of £ and ¢ in the neighbourhood of the points of intersection. Therefore, when inte-

- grating over all £-values, the most important contributions come from such values of
- ¢ and £, This will be utilized in the followmg section,

5. The energy flux. We shall now compute the flux of energy from the bottom’

layer to the uppermost layer in the case of weak coupling. This flux may be written as
+0

[ po)w(o)dx where p(o) is the pressure and w(o) the vertical velocity at the inter-
face. Writing

p=Re [ P(k, z, {) exp (ikx)dk
J |

(5.1)
w=Re [ W(k, z, ) exp (ikx)dk )
. ¢
we find that i
W=z,
.2)

Pz =—poZy.
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01 ‘ 05 1 5 10 kh 50

Figure 2, The solid lines represent the dlspersmn curves in the consmlered two-layer model when
gofe = 1/3, v = 1/4, ¢y = 1500 mjsec and ¢, == 4500 m/sec. The dashed horizontal line corresponds
to ¢ = cg. The other dashed curves show ¢ as function of £ as found from coskmgh = 0.

Let us for the moment confine ourselves to the motion in the uppermost layer. The ver-
tical displacement { may be written

4.8) _ {=Re[Z(k, z, ) exp (ikx)dk

0 . :
From the relation {,=y,, we easily find the Laplace transform of Z. By means of
the inversion formula for the Laplace transform we then have

kega(k) Tt exp(sH)R cos kmy(h—2) ds

4.9 ' L= .
2 y-iw s(s+ich)D - -

The mtegrand has branch points for m; =0 and my=0, ie. for s=+ike, and
s = ke, Furthermore, the integrand also possesses a number of poles. Introducing
© ¢ given by s=tke (i.e. ¢ is the phase velocity) the poles are determined by

(4.10) D(c,k)=Rcoskmoh+Qsinkmoh=0
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T 122 =(s_ich)(1+ﬁ§)a(k)p | '
@, —k"mi® kBici(1—p%) (i) | E

T 2i(s— ikcga(k)

@2) ¥, — k*mi¥ e GO
X +k*miX=0
where
(4.3) mi=1+8l%c;, mi=1+s"k%cd, mi=—1—sYkPck
"The boundary conditions (2.9), (2.11), (2.12)’ and (2.13) gives _ '
X=0 -  z=h
PO~ 2D, — KB+ 2B, + KT} — ppsX =0  2=0
@4 2k®, —¥,,—k*P =0 z=0
5O, +iks¥ — X, =a(k) . z=0

Applying the boundary conditions, the solutions of (4.2) take the forms

= (el
©=C,exp (kmlz) kﬁl(l yvoun ikc.R)pr (kB,2)

dia(k)
k(1— p’g)(s+_ich)“xp (kh22)

X=C,sinkmo(h—2z)

45) : v=C, exp (kmyz)—

where C), G, and C; are given by
_ieg(l+ m%)a(k) Osinkmyh

Cl B 2 .
smy(l—m3) (s+ikcg)D
(4.6) C,= 2CRa(k2) Qsin kmyh
- s(1—m3) (s+ikeg)D
Cy= icga(k)R -

mo(s +ike)D
with
R=1+m3)*—4m m,
4.7) | Q= pom,s* [pmok*cs
' D=Rcos kmoh+Qsinkmoh .
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For k=5km, this means a distance /=1500 km, or about 15 degrees of longitude
along the equator.
For higher values of z, the damping is still more effective, We therefore conclude

that the effect studied above apparently is a very efficient damping mechanism for

short period waves, giving results in agreement with observations. It must however,
be stressed that the approximation introduced involving no coupling is a very rough
one and, for large values of time, must necessarily lead to erroneous results. The most
serious objection in this respect is that the approximation above incorporates the as-
sumption that all the energy in the bottom layer is available to be drawn from the bot-
tom layer to the fluid layer. This is, of course, by no means true, as will be demonstrated
" in the next chapter, where we shall consider the realistic case of weak coupling. Another
objection, which does not seem to be really serious, is that we have assumed that the
amplitude "a(k) is independent of time in the first part of the derivation and later have
considered it to vary with time, If the variation with tim«; is relatively slow, this may still
be a good approximation, : '

" 4. The case of weak coupling. In the case discussed above, we obtained re-
sonance for an infinite set of discrete k-values, leading to an. infinite sum of harmonic

wave trains located behind the moving corrugation. When the coupling between the

two layers are taken into account, this resonance vanishes. If, however, the coupling
- is weak, we shall almost get resonance, and, as mentioned above, for moderate values
of time the cases will be rather eéqual. For large values of time, however, the effect of

the coupling will be dommatmg "To obtain a problem which may correspond to a seismic.
wave entering -an ocean region, we shall assume that at =0, the uppermost layer

(the ocean) is at rest whereas the interface has a form given by (3.1), and the displace-
ments and velocities in the bottom layer are those corresponding to a Rayleigh wave.
" The initial values of ¢, ¥, ¢, ¥, are then found from (7.2) and (7.4), putting ¢=0.
Futhermore y=y,=0 at {=0. Thus we initially permit a discontinuity in the ve-
locities at the interface.

Applying Fourier’s theorem, we may write

b= Reo}' @(k,z, t) exp (ikx)dk
. . (1]

@y y=Re [%(k, 2,0 exp ik
1]

x =Re [ X(k, z, t)exp(ikx)dk
0

We shall also apply the theory of the Laplace transform. Let E)(k,z,s) denote the
Laplace transform of ®(k,z,¢). etc. We then obtain from (2.1), (2.3) and (2.4), taking
into account the initial conditions,
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It is noted that the energy transport (8.14) is given in the form of an infinite series, -
indicating that the energy transport takes place only for discrete values of . However, ‘
the energy store (3.15) is given as a continuous function of £, This is a discrepancy
which, of course, is due to the approximations implied by the assumption of no coupling.

Let us first notice that the energy transport takes place for A-values for which
k=k,=(2n+1)n/2Bsh. The corresponding periods are given by T,=2nlkcp=
4Bo4/(2n+1)cp. The largest period is seen to be Ty =4Bohjcg. Let us introduce
¢g =41 kmj/sec, ¢y=1,5 kmfsec and %=5km, (which is an average value for the
Pacific). We then obtain 7, =T, =192,4 sec. This means that with these typical
values of the parameters the energy flux takes place for periods of 12,4 sec and less.
_In other words, energy corresponding to periods of 12,4 sec and less are drawn from

the bottom layer and conveyed to the fluid layer (the ocean) and thereby finally lost
for the seismic wave system. This result is in good agreement with observations (sce
Ewing, JarDETZKY and Press (1957) pp. 172—174) where it-is pointed out that the
‘energy for periods less than about 12-sec is absent for waves which have propagated
longer distances across ocean basins. _

To get an idea of the order of magnitude of the damping mechanism, we replace
the integral in (3.15) by a sum of the same type as the right hand side of (3.14). This
means that we assume that the energy flux taking place at wave numbeér k=%, takes

its energy from a k-interval of width n{Byh. Furthermore, we assume that - a(k) is
a function of time, varying relatively slowly, such that it suffices to take its variation
with time into account only from now on. We then have, applying (3.16) and (3.14)

‘ 23
(3'17) E(E(km t)ﬂ,') — PoT chfa(k,,, t)z
_ , Cdi\ Boh B3h
or -
(3.18) ke Dfalky, = —ace/h |
with «, = pek,4/2p B,
Hence _
(3.19) a(k,, )fa(k,, 0)=exp ( —a,cpt/h). .

Let us introduce | n=0, p=3p,, v=0,25, ¢cp =4-,1'km/sec, ¢ =1,5 km/sec, which gives
‘y=0,01. Let [ be the distance the wave has advanced, i.e. /=czt. Then

alko, )/a(k,,0) =exp(—0,01l/h)  or
E(ky, D)[E(ky,0)=exp (~0,021/h).

Let us for example put {=300% which gives |
E(kq, D){E(ko,0)=e ®~2,51073,

Therefore, when the wave has advanced a distance [ =300%, the energy (for wave
periods less than about 12,4 sec) is reduced to about 0,25 per cent of the initial value.
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Cauchy’s theorem then leads to

® ka(— ik)sinhkgyh
=poc/B.I
(3.10) p(0) pocR/Eo m(J; cos hleh

exp (k(x —cgt))dk

+2ponckiBah Y, k,a(k,)sin k,(x~cqt)
. n=0
when x—c¢pt <0 and

| (3.11) _ p(0)=pocZ/Bolm | ka(—ik)sin hkﬁohﬁX

—k(x—cpxt))dk
o coshkfoh P(~kx=cxf))

when x —cpt> 0. \

It is noted that the pressure is non-symmetrical (in spite of the symmetrical form
of the moving corrugation), there being an infinite number of harmonic wave trains
‘behind the corrugation. That the wave trains are located behind the corrugation also
. follows from the fact that the group velocity is less than the phase velocity, This is readily
seen to be true from the expression for the phase velocity, ¢, for the free waves in the
fluid layer which is easily found to be given by '

(3.12) c=co{1+((2n+Dr/2kh)*}*
from which it follows that
(3.13) | cc,=cy

where ¢, denotes the group velocity.

We shall be interested in finding the upward flux of energy per unit time at the

- Interface. This is found from (3.8), (3.10) and (8.11) to be given by

0

(3.14) I p(oyw(o)dx=pon*cr/Bih 3, kia(k,)*.

. -0 n=9
The important question now is: What is the order of magnitude of this energy transport
compared to the energy store in the bottom layer? As pointed out above, the case of
no coupling, strictly speaking, corresponds to po/p »0. To get an idea of the order of

magnitude, we shall apply the formulas for realistic values of the densities, and thus °
we put po/p=1/3. Let e denote the total energy in the Rayleigh wave, and E(k)

the contribution to ¢ from waves with wave number % such that
(3.15) &= ;FE(k)dk.

We then have (sce Appendix, section 7).

(3.16) . E(k)=prc;iBka(k)*

where B denotes a coefficient depending only on the Poisson ratio v. For v =0,25,
B=)6./3~3,224.
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lm‘('k)

Re (k)

Figure 1. The path of integration.

With X given by (3.5), the pressure p and the vertical velocity, w, take, at z=0,
the forms , '

® fea(k) sin kfoh

3.7 | p(0)=—pocal BoRe exp(ik(x—cpt))dk

o coskpB,
| (3:8) : w(o)=—cgRe D}Aika(k) exp (ik(sc —cptdk .
' 0

It is to be noted that the integral in (3.7) is an improper integral, the integrand being
infinite for the values of £ corresponding to coskfh =0 (ie. k=k,=(2n+1)n/28,/
where n denotes an arbitrary integer.) Physically this is due to the fact that the problem
has been treated as a stationary one. If the problem had been attacked as an initial
value problem, the corresponding integral would have been a proper one such that,
as f— o, (3.7) would have been replaced by (compare for example Parm (1953))

ka(k)sin kBoh )

(3.9 p(0)=—pocx/BoRe IJ: exp(ik(x —cpt))dk

cos kfi,

where the path of-integration, L, is shown in Fig. 1. For simplicity, we consider only
. symmetrical elevations of the interface such that a(k) is real for real values of %.
When the path of integration is deformed as suggested in the figure, application of
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At the interface (z=0) the dynamic conditions require

(2.10) o, =—p, Tex=0 . z=0
or, by means of (2.4), (2.5) and (2.6),

@.11) P~ 2t 6D 2t} —put=0 20
@12 Mt V=0  z=0

Here p, denotes the density in the fluid layer. Furthermore, the requirement of

continuous normal velocity at the interface gives
(213) GutYa— 2= z=0

3. The case of no coupling. We now assume that the motion in the bottom layer
is independent of the occurrence of the uppermost layer. This assumption corresponds

to pe/p—0. Furthermore, only the Rayleigh phase of the motion is taken into account. .

The elevation, (o, Of the interface may then be written

(3.1) {s=Re f a(k) éxp (ik(x—cgD))dk

where ¢ denotes the Raylelgh vcloc1ty, k the wave number and a(k) an arb1trary,,7_

known, function of £ The boundary conditions take the form

| xe=0 ' z=h :
3.2) - | .
xz=C0t o z=0

After some time the motion of the fluid will be stationary in a frame of reference fixed '

to the corrugation of the interface. The velocity potential may then be written

(3.3) _ x=Re[ X(z, k)exp(ik(x —cgt))dk.
. 0

From (2.1) we find |

(3.4) | B X, +k*(cajci—1)X=0.

The solution of this equation satisfying (3.2) is

icga(k)sin kfy(h—z)
BocoskByh

(3.5 X=

where B, is defined by
(3.6) | . o=crlcg—1.

-
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2. Equations of motion and boundary conditions. As mentioned above, our
system consists of two layers, the uppermost layer being a perfect homogeneous fluid
and the bottom-layer being a perfect elastic medium. We introduce a frame of references
with the z-axis pointing vertically upwards and the x-axis coinciding with the inter-
face of the two layers. All the equations are linearized. Neglecting the effect of gravity,
the equation governing the motion in the fluid layer then takes the form

(21) Xxx+XZz—CEZXtt;0 *

where y is the velocity potential and ¢, the (constant) velocity of sound. In the elastic

bottom layer we introduce the displacement vector (£, {) and the displacement po-
" tentials ¢ and ¢ such that

(2'2) €=¢x_'l/z C=¢z+|!/x
We then have
| (23) : ¢xx+¢zz_cfz¢tt20
(24 Yxt Yo — €5 P =0

where ¢, denotes the dilatational velocity given by

. (2-5) ' o pcil =11;I-2‘u
and ¢, denotes the distOrtibnal velocity giveﬁ by
(2.6) | per=p

Here p is the density in the bottom layer and 1 and ,ur are the Lamé constants:

Let the normal stress and shearing stress acting:on an element oriented normal to.

the z-axis bé denoted by o, and 1, respectively. We then have

= A(qsxx + ‘nbzz) + 2”(¢zz + ‘sz)
Tzx= #(2¢xz + l»bxx - ll’:»:z) .

The boundary conditions at the free surface of the fluid layer may be writien

Q@.7)

298 . p=0 z=h

where p denotes the pressure and % the depth of the ﬂmd layer. (2.8) may also be
written

2.9) B ¥, =0 _ z=h -

* 1t should be noted that subscripts x, z and ¢ denote differentiation, except in connection with
the stresses where o, and 7,, denote the components of the stress tensor.
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To get some insight in the problem we will, as a first rough approximation, assume
that the motion in the bottom layer is not influenced by the occurrence of the uppermost
layer. The motion in the uppermost layer is then due to a (known) travelling corrugation
of the bottom, and the problem is rather easily solved. We will call this case the case .
of no coupling, in contrast to the more realistic problem in which the two layers are
considered as one (coupled) system which will be treated later in the paper. It will -
turn out that the degree of coupling depends on the ratio of the density in the two layers
such that a small density in the uppermost layer compared to the density in the lowest
layer corresponds to weak coupling. Furthermore, we consider only the Rayleigh phase
of the motion in the bottom layer, such that the bottom corrugation travels with a con-
stant velocity (the Rayleigh velocity) and without change of form.

The motion which is set up by such a moving corrugation of the bottom is in prin-
ciple well known. Let us for the moment assume that the fluid is incompressible. The
moving corrugation will then create a system of gravity waves (surface waves) in the
case of U< (gh)* where U denotes the velocity of the corrugation, g the acceleration
of gravity and % the depth of the fluid. These waves may be described as an infinitely
long harmonic wave train located bekind the corrugation. Since the wave motion is.
asymmetric with respect to the corrugation (even if this is symmetric), there will be
a net pressure force acting on the corrugation such that energy is continuously conveyed
to the fluid. The fluid will therefore, as time increases, receive an increasing amount of -
energy. A Fourier analysis of the energy will reveal that almost all the energy has a"-
definite period (corresponding to that of the infinitely long wave-train), This energy
.~ is transferred to the fluid from the bottom layer. In the case of no coupling, however,
the bottom layer has an infinite store of energy, and therefore the loss of energy does
not lead to any changes in this layer, _

When U> (gh)*, no surface waves will occur. Therefore the net pressure force
acting on the corrugation is zero, and no such energy transfer occurs. a

The Rayleigh velocity is much larger than (gh)*, and the gravity waves play no
important role in the present problem. Therefore, we shall henceforth neglect the effect
of gravity. On the other side, the Rayleigh velocity is also larger than the velocity of
sound for the fluid. Thus the corrugation moves with a supercritical velocity. It is, how-
ever, well known that a body moving with a supercritical velocity will initiate a wave
train behind the body, and thereby be exposed to a net pressure resistance of very
much the same type as that due to gravity waves discussed above. Taking into account
the compressibility of the fluid we shall therefore find that in the case of no coupling,
energy is continuously conveyed to the fluid. Since in this case (in contrast to the case
of gravity waves) we shall find an infinite number of harmonic wave trains, almost all
the energy will be located on an infinite set of discrete periods. : '

In the more realistic case, where the coupling is taken into account, the energy store
in the bottom layer is finite. The mathematical problem thereby becomes more com-
plicated, but, as we shall see, definite conclusions about the energy transfer may be-
drawn also in this case. ' ' "
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Summary. Seismic waves trav‘elling across ocean basins, will lose energy to the ocean.
This energy transport is irreversible and therefore represents a kind of dissipation. In the present
paper this energy transport is computed. It is found that for an ocean depth characteristic for
" the Pacific, only very little encrgy of period larger than about 11,8 sec is lost to the ocean, whereas
a seismic wave loses up to half of its initial energy of period less than 11,8 sec. Therefore, by
a spectral analysis of seismic waves which have travelled across an ocean hasin, one should
expect short period waves (less than about 11,8 sec) to have relatively less energy than longer
~ period waves. Therefore, speciral analysis of seismic waves which have travelled across an
ocean basin and seismic waves which have travelled across a continent should show a marked
difference in character for short period waves (periods less than about 11,8 sec). '

_ 1. Introduction. A seismic wave which starts on a propagation across ocean ba-

sins, will set the ocean in a state of wave motion. The energy thus conveyed to the
ocean is taken from the wave energy in layers below the ocean. When the seismic
wave afterwards starts on a propagation across the continents, the energy which has
been conveyed to the ocean, is lost for the seismic wave. This energy transfer therefore
constitute a kind of damping mechanism. It is our intention to examine in the present
paper this energy transfer, its order of magnitude and for which wave lengths (periods)
the transfer has its maximum intensity. A study of these problems obviously may throw
some light on the puzzling observational fact that short period seismic waves in typical
ocean areas suffer a much greater attenuation than longer period waves (see for example
Ewine, JARDETZKY and Press (1957)).

‘We will in this paper consider only the two-dimensional case. The real system con-
sisting of the ocean and the layers below will be replaced by a twoslayer model in which
‘the uppermost layer (the ocean) is a perfect fluid of uniform depth and the lowest
layer is a homogeneous and isotropic elastic-solid bottom of infinite vertical extent.
Both layers are of infinite horizontal extent, and there is no friction.
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