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Summary, The equations for a one-dimensional, homogeneous, incompressible, and hydro-
static fluid describing external gravity oscillations are integrated with different finite difference
schemes which smooth the solutions in different ways. Only two of the schemes, one conserving
total momentum in space and one conserving total energy in space, behave numerically stable
up to 80 days.. :

The spectral equations corresponding to some of the schemes-show that in the stable schemes
the shortest waves are continuously damped, and the aliasing terms are small, but in the unstable
schemes the dampening is small, and the aliasing errors and bad approximations to the wave

' numbers in the non-linear terms will make the solutions more unstable.

1. Introduction. Integration of the nonlinear initial-value problems in fluid dy-
namics and meteorology by numerical methods often introduces nonlinear instability
from the nonlinear terms of- the equations. PriLuies (1959), ARakawa (1963), LiLrLy
(1965), and Brvaw (1966) have developed finite difference methods for long-term

integrations which-are nonlinearly stable, by using quadratic conserving forms-of the
~advection terms. To make short and medium term integrations numerically stable,
different methods have been used. SHuMan (1957} and Pmrries (1959) smoothed the
dependent variables after a given number of timesteps; but using a smoothing operator
is always time consuming, and it is more convenient to include the smoothing in the
finite difference forms by averaging the dependent variables over different grid points
or by introducing artificial friction to damp the shortest wave lengths, which are most
computationally unstable. SHuman (1960) has made a study of the nonlinear compu-
tational instability of various finite difference forms of the equations. describing the
one-dimensional motion of a homogeneous incompressible fluid and found that only
two of them, the semi-momentum form, which is a quadratic conserving form, and the
filtered factor form, which includes continuous smoothing, were computationally

! This research has been sponsored by the Air Force Cambridge Research Laboratories through
the European Office of Aerospace Research, OAR, United States -Air Force, under Contract AF
61(052) —897.
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stable for short and medium term integrations. An artificial friction is incorporated
in the finite difference formulation of Lax and WENDROFF (1960) and in the “Euler-
Cauchy” form of A, EriasseN (1964). The friction coefficients are here determined by
the finite difference forms; but to study the influence of friction on the nonlinear in-
stability, an addition of a frlctmn term to the equation of motion, where we have the
possibility of varying the friction coefficient, seems to be more realistic.

Integration of multi-level primitive equation models of the atmosphere indicates
that the nonlinear instability occurs after 200—400 timesteps, when quadratic-con-
serving forms or smoothing are not used. The instability is on the shortest wave lengths
and shows first in the most convergent zones of the flow. This analysis is an attempt to
see if nonlinear instability in a divergent flow may be suppressed by smoothing the
advection field or by including friction in the equation of motion.

2. The model. The model used in this study is the same as used by SHUMAN
~ {1960), a one- -dimensional, homogeneous, incompressible, and hydrostatic fiuid. The
equations for this model are :

ou_ _ 6u oh o : @1) -
at Bx 6x , 7
oh : |
e e (hu ' 2.2)
7 ax( ) | (2.2)

where # and x denote the time and space variables. u =u(x, ¢) is the speed of the fluid
and =gz is the potential of the fluid where g is the acceleration of gravity, and
z=z(x, {) the depth. The flow is assumed to be periodic in the x-direction with wave
length L; u{x) =ux +L) and A(x) =k(x +L). From. (2.1) and (2.2) it follows that total

mass -

L ‘
M= j.‘ghdx y
o g
total momentum
L
B=| Phudx
0g

and total energy

L .
E= (P2 1 hyax
o 2g

are conserved in this model, where p is a constant density.
To control the nonlinear computational instability three different kinds of smoot}ung
have been used. First a friction term of the Fickian type is added to (2.1), and instead

of (2.1) we get
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a2
e T - @3 -
ot ox 0x éx
where v is the kinematic coefficient of viscosity.
Secondly the velocity is smoothed after each time step Af, and (2.1} and (2.2) may
-be written

Ou_ _g0m_oh 2.4)
ot Ox  dx
at ox  Ox '
_where
_ u
U=u+p—
ﬁ@xz

and § a smoothing coefficient.
Thirdly, nonlinear friction terms, where the friction coefficients are proportional
to Ju[ox and 0k[dx, are added to (2.1) and (2.2), and the equations become

- - : .
ou__ utad 4\08_Oh (2.6)
ot 0x“ Jo0x ox ,
~Z 2 .
AT P L P @7
ot ox” Jox x“ Jox

- 3. Difference equations and stability considerations. The values of u(x, £) and
* k(x, t) in the point x =jAx and { =rAt are denoted by « and %], where j and r are integers,
Ax is the space increment, and Af is the time increment. The derivatives at the point
(%, t) are approximated by | S :
| | o, 1 _

U w1

u; ) : G

ot 2At ?
ou; 1. ’
! 'a—szi-Ax Ujrr—Uj—1) (3.2)
Puy 1 . ’ ’
—xijzmz uj+1 +ui_1—2uj) 5 (3.3)

and the same for .
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To snnphfy the dlfference equations the followmg ‘nondimensional variables are

used; v

A
yF =—
At
j = x
Ax
. At
U =u—
Ax
h’_h( At)
Ax
2At
Vo=y__
(Ax)?
p= ﬁ(A_x 5
) i
o =o—_
™%

The difference equation for (2.3), (2.2), (2.6), and (2.7) in the point (r, j) may then
be written ‘ :

u.’ir+1 :a}r l_u’r(uj-i-l Jr— 0~ (hJ'+1 )+" (u1+1 +u1 1 Zu}") (3.4)
h}r+1 hlr 1__u.rr ;+1 h}i-_ 1)—}1 (u_;+1 ) (3.5)
u}r+ Y=uf —(u +o'(uy, Fuj_, —2uNufs —uj— 1) —(hieq h 1) (3.6)

h}'“=h}' _1—(u}’+a'(u}’+1+u}' 1—2u J")(hJH h"f 1) (3-7')
— (B} o' (hy  +RT- =20 U1 — i)

The difference equatlon for (2.4) and (2. 5) w1ll be cqual to (3 6) and (3.7) with ' =

and u" = replaced by a7 where

@] =ui +p'(ujy +uj_y —2uj) (3.8) .
As a starting point in the numerical integration a simple forward timestep is used.
For the first timestep, (3.4a) is then used instead of (3.4):
uf M =2u g Fulo ) —dui i —ui )
. (3.4a)
—~3(hi = hi.)— "(u1+1+”1 1—21‘")

and corresponding equations for the other variables.
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The stability conditions, in the von Neumann sense, for these equations are assumed
to be the same as the stability conditions for the linearized equations corresponding to
them (see Lax and WENDROFF, 1960). The linearized equations corresponding to (3.4)
and (3.5) are, when the primes are omitted, '

u;-+ ! =”;H1 — Uy~ D—c(hfe1—h;_y) +¥(u) 44 _'*'u;'—l —2u}” ) (3.9)
h;'H:h;_l_”(h;H _h;-l)—c(u:'+1'—u;—1) | (3-10)
- where '
_At
U=H—
Ax
and |
— At
c=./gH _.
g Ax

@i an average velocity and H an average depth of the fluid. When v =0, these equations
are numerically stable if 7 .

Juj+est (3.11)
: 'thre U and C are the maximum values of « and c. , | _ | _
. To find the stability conditions for (3.4) and (3.5) let us first look at the equation

du_ du 3 -
— =y N 3.12
_ ot dx? . _ -12)
As shown by Mivaxopa (1962), one stable différence approkimation for (3.12) is
Wit =al T +uil] =2 (3.13)

where the friction term is calculated at the time r—1.
If we substitute the Fourier term #"¢™/A% for u; into (3.13), where x denotes wave -
number, the equation becomes -

uti=yr 1(1 —4vsin? h—;‘j—c) , _ (3.14)
and the stability condition is
ll —4ysin? %‘-’3{\{ 1

or
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Another stable approximation for (3 12) is the difference equation

TARE S A 1+v(u1+1+uJ —2h (3.15)

where u at j+1 and j—1 is taken at the time 7, and # at j is taken at the time r—1.
Let us introduce a new dependent variable #}=u}"1. (3.15) may then be written
u'f+1=(1—2v)vj+v(uj+1+uj_1)

r+1 r
vy =,

(3.16)

Substituting the Fourier terms '¢™** and /¢~ for «} and ¢} into (3.16) the following
matrix form of the equations is derived : : |

‘ ur+ 1 u{- ’ .
(vr-Fl):A(vr) _ 3.17)
where : ' _
' ‘ 2vcoskAx 1-—2v
A—( 1 . )
The eigenvalues of A are
Al,zuvcosrch+\/(vcosrch)2+1 —2v. (3.18)

The stability requires that the magnitude of the elgenvalues do not exceed unity, which |
establishes the stability condition

v<}
To find- the stability condltlon for (3.9) and. (3. 10) we may write the equations in
matrix form. By mtroducmg two new dependent variables vj=u rl and g=r"1

and substituting «; by the Fourier terms z r¢*/%* and the same for o}, u}, and g}, the
equations are '

.ur+ 1 ' ur
U‘r+1 1 vr
hr+ 1 =D W ‘ : (3'19)
gr-l- 1 gr
where |

—2(iusinkAx—vcoskAx) 1—2v —2icsinkAx 0
1. 0 0 0
D= —2icsin kAx 0 —2iusinkAx 1
0 0 i 0

The elgenvalues of the matrix D may be found numerically. Fig. I shows the domain
of stability in a (lul, ¢) plane for various values of v. The results are directly comparable
with the results found by HoueHTON et al., (1966). '
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Unstable

Vv=0.0
V=02

2 Stable

1 _ ] 1 1

A 2 .3 4

B> o
> [Ze

141 = 11

Fig. I. The domain of stability for » = 0.0, » = 0.2 and v — 0.4 shown on a (Iu],

¢) plane. v = 0.1
corresponds in dimensional form to 1.6 - 10"m%ec-L. '

4. Initial conditions. In this study we will use the following initial conditions

N _
u;= Y disinnjAx ' . 4.1)
n=1 ’
and

N : )
hy= Y jicosnjAx o o (4.2)
n=0 ’ .
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" With these initial conditions it follows from the Fourier a.nalysis in chapter 6 that
the velocity «5 will always consist of a sum of sine functions in » and the potential £]
* a sum of consine functions in x. The total momentum in the region L will therefore always
be zero for all the integration expenments In the calculation the following values are
adopted

#,=0.075
4, =0 n=2,3...N
h,=0.18
i;n=0 | ﬁ=1,2...N

Af =6 minutes
Ax =240 km
L --40Ax

Ne= __L_ 90 (the total number of wave components in
2Ax the model.)

5. Results. To find the nonlinear instability of the difference equations the total

energy is calculated from (5.3), and the kinetic and potentlal energy of the dlfferent,_

wave components are found by a Fourier analysis of «} and #}.
" Equations (3.4) and (3.5) are integrated for 1500 tlmesteps, correspondmg to 6 days

with different values of the kinematic eddy viscosity coefficient v. The values of v

used arc: v=0.01, v=0.05, and v=0.1 (in units (Ax)2/2A¢=0.8 X108 m?sec™?)..
The results are given in Fig. 2. ' ' :
" For v=0.01 the total energy decreases in the first 300 timesteps, but the dampening

“ of the energy of the high wave numbers is not strong enough and nonlinear instability
develops. If v is increased to 0.05 the total energy decreascs rapidly and after 800 time- -

steps the total energy is only 1/10 of its initial value, but after 1200 timesteps the energy
again starts to increase. The same happens for v=0.1, even if the available energy has
been very small. : h

In the next experlment the velocity field is smoothed after each timestep by usmg
different values of g in (3.8). The results are given in Fig. 3.

The results in Fig. 3 coincide well with the results in Fig. 2, and in a divergent flow
it seems to be impossible to get rid of the nonlinear instabilities by using linear friction
or by smoothing the velocity field without damping the available energy considerably.

Equations (3.6) and (3.7) are then integrated with a=0, 1/8, 1 /6, 1/5, 1/4, 1/3,
and 1/2. « =0 corresponds to Shuman’s advective form, o« =1/4 to the filter factor form,
and a=1/2 to the semi-momentum form (SHUMAN, 1960). ¢ =1/3 is a total momentum
conservation form in space which gives | '
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Fig. 2. Total energy variation in time for different friction coefficients.
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Fig. 3. Total energy variation in time for different smoothing coefficients.
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E %q | (5.1)

and the semi momentum form is a total energy conserving form in space for this model,
which gives !

%.? - E(}: %( rzhr hrZ)) (5_2)

att

Tn Table 1 is shown the time of occurrence of the computational instability for different

values of @, and we see that we have to choose x> 1/4 to integrate (3.6) and (3.7) '

for more than 800 timesteps, corresponding to little more than 3 days. These results

are the same as those found by Shuman.
’ /

Table 1. Occurrence of compulational instability

a Number of
time steps
0 350 :
1/8 ' 500 not useful
1/6 650 '
1/5 800
1/4 6000 .
1/3 " =20000 useful
1/2 >20000 -

In the linearized system corresponding to (3.6) and (3.7) we might for each wave
component have one real physical mode and one spurious computa,tlonal mode if this
is not eliminated by the initial conditions. The computational mode will give a spurious
single timestep oscillation of the real solution of #; and &} and also of the total energy

E=4Y (uiH;+h}) (3.3)
i
(MikvagoDa, 1962; LiLLy, 1965).

If we look at the energy distribution in time for the nonlinearized system (3 6)
and (3.7) we have for all a’s spurious oscillation of the energy with not only the single

timestep frequency, but also of lower frequencies. As long as the solutions are stable

the amplitude of these oscillations is small, but when we integrate for a very long time,
‘the amplitude seems to increase with time.

The advective form, o =0, becomes unstable after 350 timesteps. Fig. 4a shows the
value of the potential, 4, and the velocity, u, of the fluid at that time. (The potential is
symmetric about the midpoint, and the velocity is asymmetric about the midpoint
so only the right and the left halves of the curves are drawn.) The solid curve is drawn
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through the even grid points and the broken curve is drawn through the odd grid
points, and we see that the potential and the velocity are characterized by very short
waves superimposed upon long waves. The total energy distribution at the different
wave numbers is shown in Fig. 4b, and this shows that the largest part of the energy is
at wave numbers ! to 4 and at wave numbers 15 to 20. :

These results are compared with the results of the integration with the semi-
momentum form (x=1/2). After 350 timesteps the results are the dotted curves in
Fig. 4a, and we see that the potential 4 and the velocity u seem to have the same long
waves as the advective form, but the short ones are missing. The same is also shown
by the energy distribution in Fig. 4b. Since the integration of (3.6) and (3.7) with the
advective form and the semi-momentum form gives almost the same total energy at the
low wave number, the instability of the advective form has to come from the increase
in total energy at the high wave numbers. | :

In Figs. 5 and 6 we have made the same comparison between the results of the
integration of (3.6) and (3.7) with «=1/6 and a =1 {4 with the results of the integration
with «=1/2, and we get the same results that the energy at the low wave numbers is
approximately equal but when the instability occurs for ¢ =1/6 and 1/4 the energy
at the high wave numbers increases strongly. S

If the integration with o« =1/2 is continued for a long time, we find that the energy
of some of the high wave numbers is increasing, and Fig. 7a shows the potential, 4,
and ‘the velocity, u, after 18500 timesteps, where the curves are drawn separately
~‘through the even and odd gridpoints. Since there is no coupling between the even and -
odd grid points for & =1/2, we have to expect separation of the solution, and Fig. 7b
shows that the separation comes from an increase of energy at wave numbers 15 to 19.

6. Integration of the spectral equations. The two main sources of error in our
integrations with finite differences are due to the fact that the derivatives in space -
and time are approximated by truncated Taylor series with a second order accuracy
and that instead of an infinite wave spectrum we have a limited wave spectrum. Let
us for ] and £} in (3.6) and (3.7) use the following Fourier substitutions.

+N . .
wy= X de ™ : (6.1)
R== .
and
N AL s - Y
Wi= 3, ke’ - (6.2)
n=—N .

where n is the wave number. 4 and £’ are the time dependent amplitudes at wave
‘number z, and N, as before, is the total number of waves or the highest wave number
which can be represented in the model. -
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Introducing (6.1) and (6.2) into (3. 6) with « =0 gives us the following differeﬁce

equation for the amplitude #, when n>1
7 N ~N4(n—-1) .
it =gt 2ibisin—n—2i Y, d_,d;sin LT g can+ry g S10 —K (6.3)
N k=—N+n N k=—N N

where the last term is the aliasing term, which we have to include when we have a
finite wave spectrum. For a finite wave spectrum

i(ﬂ:/N)(n - 2N)j= i(ﬂ:/N)nj

and if a wave with wave number # —2N is generated it 1s reflected back to wave num-
ber n. |

From (6.3) we also see that the nonlinear term for all #2>1 consists of a sum of
2N +1 products, and that wave number 1 has no aha.smg error. After some rearrange-
ment, (6.3) may be written

. N
= =2k sin X —2i 3 il sin—(n—k) + sin—k
N k=n N . N

(6.4)
" . . T . W
+1 > (ﬁ;_kﬁ};—z‘t'_N+,,_ku’_N+,,)(51n—(n— k)+sm—k)]
k=1 ‘_ a N . N
Using (3.7) the corresponding equation for /:j is
P a_ N 2 Py . ) T
B =n 7t 2d Y (ki dph )| sin—(n—k)+ sin —_k
k=n N N (65)

-+ Z( -khk—ﬁ—zwn i N+k)(3111ﬁ(" k)+81nﬁk)]

Since {6.4) and (6.5) are the spectral equations corresponding to (3.6) and (3.7)
with & =0, an integration of (6.4) and (6.5) with the same initial conditions will give
the same results as shown in Fig. 4. To test the influence of the aliasing terms on these
results, (6.4) and (6.5) are integrated without the aliasing term, and the results after
350 timesteps are shown in Fig. 8. This shows that there is no significant total energy
at the high wave numbers, but the total energy at the low wave numbers is a little
higher. But when the integration is continued we get a piling up of total energy at the
high wave numbers, and the solution becomes unstable. The results after 550 timesteps
are shown in Fig. 9. The exclusion of the aliasing terms from the advective form will
not prevent instability in this model but will only delay its development.

From the initial condition used in the experiments it follows from (6.4) and (6.5)
that 4, always is imaginary and h always is real. Therefore '

d =il =—id, . o (6.6)
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20}k
I - n=20
] n=i5
- n=10
1.0 '
_ n=5
Yt n=|
00 . k
5 10 0
L _
! f SIN (n k)+sme
-10}
Fig. 10. f = sin(n/N)(n — k} + sin(w/N)k for different values of n.
and /
h=h",
where #, is real. Putting (6.6) into (6.4) and (6.5) gives for n=20
__ | =0 | (6.7
and ,
a z 19 n T 7 .
o' =h3e" +8 Z ﬁ;o_,;h;sin-ﬁk _ (6.8)

If the aliasing term is excluded from (6.5) the only change in (6.8) is that we only get

half of the last term.

If the absolute value of %! is bounded and the solution stable, the correlation
between B! and the sum in (6.8) must be negative. There is, however, no reason to
expect this, and in this integration the correlations are positive with a generation or
trangport of energy to the high wave numbers.

B e T
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It the velocity «} and the potential 4} are expanded in infinite Fourier series (con-
tinuous space),

E Ar l(,n'f:N)nJ
n=—o

(6.9)

+ o0 .
W= i’rei(x,v‘N)nj ,
2
the spectral equations corresponding to (2.4) and (2.5) are, when dimensionless vari-
ables are used,

o nAf 4 < - '
— =i A b+ Y AL Tl 6.10
AP S 4 ] NGO
ahr ‘ L r 7
6t—_lﬁn Z( khk.+ﬁkh k)+ Z thg— 1t _ (6.11)

‘In (6. 10) and (6 11) the ahasmg terms are missing, and instead of s1n(1t/N)
and (sin(n/N){n— k)-l-sm(n/N) ) in (6.4) and (6.5) we have the wave number
@/ ¥)n. a T "

The value of (sin(n/N) (n—k) +sin(n/N}k) for different values of z is given in ..
Fig. 10. :

For k£ <,

(sin_n (n—k)+ il k)
N N - _

is a better approximation to (z/N)n then sin{z{N)n, but when k>n the approm-
mation is less, and for £> (N+n)/2 its value becomes negative. To avoid this misre-
presentation, which is greatest at the low wave numbers, # and i have to be small
for n > (N/2). : C

To get a stable solution and a right representation of the low wave numbers the
amphtudes of the high wave numbers have, therefore, to be damped. Multiplying the
sums in (6.4) and (6.5) with sin2(n/N)zn when n > (N/2) seems to give a stable solution, -
but the integration was not performed for more than 2000 timesteps. A multlphcatlon'
with sin(z/N)n did not give a sufficient dampenmg and the solution became unstable.

Integration of (3.6) and (3.7) shows that to get a solution which behaves stably
for more than 800 timesteps we have to choose ¢ > 1/4, and the semi-momentum form,

o =1/2, gives the most stable solution. The spectral equations corresponding to (3. 6) o

and (3.7) with ¢ = 1/2 are

U;;H b —213111“1\7"[”'*‘ Z kuk+2 Z (un—kﬁr';+ﬁr—fv+n—kﬁ"—nr+k)] (6.12)
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N ) n—1 R ; N
Bt t=hyt 213111— [Z un—kizl'::'}'ﬁ;h;—-k)'_":kzi(ﬁ;—kh£+ﬁ:N+n—kh"—-N+k)i| (6.13)

The wave number (z/N)z is in these equations approximated by sin(z/N)a,
which will damp #%! and A"}! strongly when z>N/2, and compared to (6.4)
and (6.5) the aliasing terms have changed sign. Since the aliasing terms in (6.4) and
(6.5) scem to make the solution more unstable, they should in (6.12) and (6.13) act
to stabilize the solution. If the amplitudes #7-and h} are small for n> N/2, the aliasing
terms at the wave numbers n > N/2 also become small, and when N is large, the semi-
momentum form should for the lowest wave numbers, except for time truncations, give

a good approximation to the real solution.
' The other difference forms which are used are a combination of the advective
form and the semi-momentum form. Using (6.1) gives ' ‘
N

Wito(ule, i —2up= Y, zi,':[(l—ch)-l—zoccos_:-rn]e’:“’N" , (6.14)
n=-N : ' .

and we see that the filter factor form, a=1/4, for example, is the arithmetic mean
between the advective form and the semi-momentum form. If the advective form is -
unstable, we also have to expect the other difference forms with a< 1/2 to be unstable.

- It a staggered grid is used only one of the solutions in Fig. 7 is obtained, but the
aliasing terms are now formed by reflection of waves with wave number n > Nf2
back to wave number — N +n. From

I(E/N)"J___( 1),} in/N(—N-+n)

follows that the aliasing terms will change sign for every timestep when we are shifting
between the even and odd grid points, and the solution will get this single timestep
oscillation.

7. Concluding remarks. Theé experiments with this model show that only the
semi-momentum form may give a computationally stable solution, When the gravity
oscillations are not completely damped out.

The semi-momentum form contains non-linear friction or smoothing which will
prevent rapid increase of energy at the shortest waves, and the aliasing terms become
small as long as the amplitudes of the shortest waves are small. It is not only the aliasing
- terms which make the other difference schemes unstable but also the approximation
to the wave number (z/N)n in the non-linear terms. ’

To damp the high frequéhcy oscillations in time and the separation of the solution
in the long time integration, it is necessary to include an artificial friction term in the
equations also when the semi-momentum form is used.
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