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Abstract. The theory for unstable waves in a single baroclinic layer with a constant entropy
gradient which was developed by Eapy in 1949 [1] is generalized in this paper to bounded, verti-
cally symmetric three-layer models with constant entropy gradients in each layer. With the use
of the quasi-geostrophic approximation and the Bousinesq approximation, and with the planetary
vorticity gradient of the earth ignored, the evolution of laterally unbounded symmetric waves
in these models from arbitrary initial states, and the ultimate asymptotic approach of the long
unstable waves to their stationary tilting state of the growing normal mode are described. It is
shown that in all the models the longest waves have the same simple kinematic structure and
the same limiting growth rate which are determined by the mean kinetic energy of the zonal ther- -
mal wind. The position of the spectral boundary between the shorter stable and the longer un-
stable waves and also the position and rate of growth of the fastest growing mode are moderately
influenced by the vertical distribution of the entropy gradient. Models with parallel isentropes
become 'more unstable when the buoyancy is concentrated near the center level, the maximum
instability occurring when the entire entropy change is concentrated in a frontal discontinuity
in the middle. Models with the same thermal wind in the layers become more stable when the
buoyancy is concentrated near the center level. This apparent paradox is explained by simple
energy considerations. The modifications of the instability of the model with the variations .
of the entropy gradient along the vertical are not very large except in extreme cases which do
not resemble observed conditions in the atmosphere.

1. The model. The model is shown schematically in Fig. 1. It is bounded below
by a rigid horizontal plane (the ground), and bounded above by another rigid hori-
zontal plane (the tropopause) at the height 2h above the ground. The field of entropy
is continuous and has a constant meridional gradient in the center layer, namely,

- Center layer: Vind= —1j+ok (z and o positive and const.)

and a different constant gradient in the outer layers, namely

Outer layers: Vinf=—1,j+o,k (t; and @, positive and const.)

* The research reported in this paper was sponsored by the National Science Foundation under
grant G 22557. : |
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Fig. 1. Baroclinic three-layer model of the atmosphere.

The center layer has the constant depth 2d, and the meridional slope,

Center layer slope: dz_nu-—t

dy oy~0

We shall consider conditions near a center latitude (y=0), where the center layer
is in the middle, and we shall ignore the variation of the Coriolis parameter f with
latitude. The model is completely defmed by the parameters of the center layer and
the three non-dimensional ratios :

w s=(i-d)jd, R=mfr, r=vaJo=N/N, - (N=~/E) -

where N denotes the buoyancy frequency :

In the undisturbed state of the model the meridional entropy gradient is balanced
by the proper zonal wind shear which, within the accuracy of the Bousinesqg-approxi-
mation, has a constant value within each layer, namely -

(1.2) fU,=gz.

The zonal wind has no variation with latitude in the model. We shall use a frame
of reference with the origin (z=0) at the center level and moving with the air at that
level. In this ‘symmetric’ frame the model has dynamic and kinematic vertical sym-
metry with reference to the center level and latitude. The zonal wind speed at the
boundaries of the center layer has here (from 1.2) the value .

(1.3) |z|=a: - U=gddff,

which we choose as the basic velocity parameter of the model. The zonal wind speed
at the rigid boundaries of the outer layers is -

(14) || =h: . U, =U(1+6R).
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If we ignore the density variations within the model (consistent with the Bousinesq-
approximation) the kinetic energy of the balanced zonal motion in. the symmetric
frame is

S

1

d h

=d [(zU}d)*dz+(h—d) [[U+RU(z—d)[d]?dz,
1) d

which gives

(1.5) U2=%U2(1+35+3R62+R253)/(1+6).

The velocity U may be regarded as the zonal wind in an isentropic two-layer model
which has the same kinetic energy as the baroclinic three-layer model.

2. The quasi-geostrophic, adiabatic wave equations in a layer with con-
stant entropy gradient. We now superimpose on the balanced undisturbed model
in section 1 a small-amplitude wave disturbance, which has a sinusoidal variation in
the zonal direction and no variation in the meridional direction. Associated with the
wave motion are sinusoidal deformations of the isentropic surfaces, so the entropy field
in the center layer has the distribution

, (2.1) ) 1n6=11190—‘c(y,'—Y)+{5'2,

where ¥ denotes the meridional departure of the isentropic surface from its equi-
librium latitude. With £ =2=z/L denoting the wave number of the wave, the velocity

- and entropy deformation of the wave may be erttcn

v=1Im. part of ¥(z,t)exp (th) ui+ vj+wk.
(2.2)
Y =1Im. part of 4.(z,7)exp(ikx).

During the evolution of the wave the physical changes of the air particles are adiabatic,
so the isentropic surfaces are material surfaces containing the same air particles at all
times. Thus, individual time differentiation in (2.1) gives the adiabatic equation

(2.3) -ow=1(v—DY[Dt).3

Next introduce the quasi-static and the quasi-geostrophic approximations in the
equation of motion. The latter approximation implies instantaneous adjustment of
the motion to geostrophic balance, and the accelerations during the adjustments
ignored. Within the accuracy of the Bousinesq approximation, the vertical derivative
- of the quasi-static-geostrophic equation (using 2.1) is

S i+e)=kXVin0=g1(i+Yj).
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The meridional component of this equation, usmg (1.2), gives the geostrophic thermal
wind formula ,

Q4 Y,=0,/U,,

which shows that the quasi-geostrophic wind shear is parallel to the isentropic contour
lines. :
The remaining dynamic principle which governs the motion is the conservation
of potential vertical vorticity. The linearized vertical component of the vorticity
equation has the complicated form

@5 f—t(f+vx>—fwz—~c[§$+(vz+ff)_w—f(v—zvz)]=0

where F =28 cos ¢ is the horizontal Coriolis parameter. However, the kinematic terms
in the brackets are multiplied by the meridional entropy gradient, and hence are
ignored by the Boussinesq approximation. From the adiabatic equation (2.3) and use
of the geostrophic equation (2.4) the convergence w, in (2.5) has the value |

ow,=7(v~DY[D1),= —DY,/Dt.
With this value substituted, the vorticity equation takes the form

§Ef+vx+f(r/a);;]=0.

The quantity in the brackets is a geostrophic vorticity invariant.

With the latitude variation of the Coriolis parameter ignored, the zonal derivative
of the geostrophic vorticity invariant, using (2.4 and 1.1,2), gives the differential
equations for the meridional velocity in a meridionally unbounded disturbance of the
three-layer model, namely )

IZI <d: v,= _(f/N)zvzz;
(2.6)
|z!>d vxx-—- —-(f/rN)zvzz
Since the model, to the accuracy of the Boussinesq- and- (B= 0) approximations, has

dynamic and kme_matlc symmetry along the vertical with reference to the center level
and latitude it is of interest to examine the behavior of symmetric waves in the model.

3. The evolution of symmetric waves in quasi-geostrophic three-layer
models. We introduce for the wave in (2.2) the non-dimensional wave number

(3.9) x=kd(N[f),

and write the equations in (2.6) for the wave in (2.2) in terms of the correspondingly
scaled height variables :
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,Z[ <d: ' v=(d[K) 0 =0 E=(x)d)z

|zl>d: i’=(d,"7”€)2l’zz=v;§- {=(rx/d)(z—h).

A symmetric wave which satisfies these equations has from an arbitrary initial state
the evolution

z<d: v=1Im. part [ A(f) cosh £+ iB() sinh £ [¢** = V sin (kx +6).
(3.2) | |
z>d:  v=Im. part [A,()cosh{+iB()sinh {]e** =V sin (kx+0).

where the real time-dependent amplitudes 4, B, etc. are determined by the boundai:y.r :
conditions. The condition of zero vertical motion at the rigid top of the upper layer
(from 2.3,4) is represented by the equation ' :

z=h: v=Y,+U,Y,; RUY,=dv,=rxv,,
of with ¥ eliminated ' |
z=h: RIr) Vv, =(0,+ U, v,),.

With the upper boundary values of » and its derivatives substituted from (3.2) and
U, substituted from (1.4), the condition becomes

G4 (RIP) Ay =k[B/(KU)+i(1+R5)B, ]

The condition of continuity of the motion across the upper boundary of the center
layer is represented by the two equations - '

z=d: Aw=A[t/o(v—Y,-UY,]=0; Av=0,

where A denotes the differen_ce between the values above and below the boundary.
With Y eliminated, using (2.4), the Aw-equation takes the form

(3.5) z=d: (r—R[NUv,=xr(v,+ Uv,)s— k(v + Uv,), ; Av=0.

With the boundary values of » and its derivatives substituted from (3.2) these are two
homogeneous equations in the amplitudes 4, B, 4, and B, and their time derivatives.
From these 4, and B, may be expressed in terms of 4 and B, and substituted in (3.4).
The real and imaginary parts of the resulting equation arc the evolution equations for
the amplitude and phase of the center layer meridional velocity (the, vorticity field)
of the symmetric wave in (3.2). They may ‘be written non-dimensionally in fairly
compact forms, namely

\ p(kA,—b'B),=gq tanh «(xB, + aA), .
(3.6) _ ' (kU=1)
p(xA,~bB)= —qtanh k(xB,+d 4),,
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where we have introduced the abbreviations
p =r tanha+tanhx, P=1+rtanhatanhx, & =drk=—{(z=d),

q =r 'tanha+cothx, Q#l—l—rtanhoccothx, K=x(1+46R),
CN)) _

a

_Kp—pP+(p—1) o _Kp—pP+{p—1)y/x

, ; =R/r?,
gtanhx gtanhx p =R

y Ka-pQ+(=1) | Kq—pQ+(p=1yix
pcoth:c ’ pcothk

, 9 =K—prtanha.

These evolution equations in (3.6) are greatly simplified when applied to models where

the isentropic surfaces are parallel in the three layers. In these models R=7% or p=1,
so, from (3.7) _
(3.8) R=r* a=a"=cothx(Kp—P)/q; b=b'=tanhx(Kq—Q)/p,

and the product of the two equations in (3.6) gives

pA(icd,— bB), +¢*tanh® k(kB,+ ad)? =

which is satisfied by the simple 11near evolution equations

(3.9 A/B= b/": B[A=—afx.

The symmetric waves which have this evolution in models with para.llel 1sentr0pcs are
examined in the next section.

4. The evolution of symmetric waves in three-layer models with parallel
isentropes. The evolution equations in (3.9) for waves in these models are easily
derived directly from the boundary conditions in (3.4) and (3.5). The conditions in
(3.5) are here greatly simplified, because the boundaries of the center layer are isen-
tropic surfaces, so the thermal wind is continuous across these boundaries. The con-
ditions-in (3.3) are therefore here

z=d: o= ; Av=0,

or with the values of » substituted from (3.2)

Ay = A(cosh o cosh x + rsinh asinh x) + iB(cosh ¢ sinh k + rsinh e cosh ),

(4.1)

iB,= A(sin]i acosh x+ r cosh asinh k) + iB(sinh « sinh « + rcosh x cosh ).

With these values substituted in (3.4), the real and imaginary parts of the resulting
equatlon, with the abbreviations in (3. 7) and (3.8), are in fact the two evolution equa-
tions in (3.9).
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With the amplitudes 4 and B of the sine and cosine waves replaced by the amplitude
and phase of the resultant wave, as indicated in (3.2),

4.2 "Acosh&=V cos@, Bsinh §= Vsind,

and the dimensions restored, the evolution equations in (3.9) become

(Vsin6), — _(E’.‘)a tanh=(In V) tan 6+ 6,=c,(=0),
Vcos0 K :

43)
(V cos 0),
Vsind

These give the evolution in the center layer of the symmetric wave from an arb1trary
initial state. In the nop-tilting states, § =0 and 90°, the wave is instantaneously neutral,
and it moves through these states with the phase speeds ¢, and ¢, indicated in (4.3).
In terms of these, the growth rate and phase velocity of the wave in an arbitrary state are

(Uk)bcothé =(InV),cot 0 —0,= —c,(§= 90°)
K

6,=c,cos> 0+c,sin’ 4.
(4.4) ‘

(V) ,=4(c,—cy)sin26.

The time derlvatwe of the phase velocity equation is

(In8),=—(c,—¢,)sin 20,

which, combined with the growth rate equation, gives

“5) (8,7?),=0

Thus, at every level the wave energy transport relative to the symmetrlc frame remains
constant during the evolution of the wave. 7 :

'The evolution is determined by the parameters g and 4 in (3.8). The parameter b
is positive for all wave lengths, so all waves move downwind through the non-tilting
b-state (§=90°). The parameter g, on the other hand, is positive for short waves and
" negative for long waves, and is zero for the (Kp =P)-wave. This wave has a stationary
- neutral a-state (§ =0) with a non-tilting wave trough. It represents the spectral boundary
between the shorter stable waves, which move progressively downwind at all times,
and the longer unstable waves which move upwind through the a-state.

The wave number «, of this stability boundary wave is, from (3.7,8), determined
by the transcendental equation

(4.6) a=0: K(1+6r*)(tanh x,+r~ " tanh«) =14 rtanhotanh, (a=drrc,).

The wave number «, of the gravity wave with the frequency fin the same model (see
Appendix A) is given by -

(4.2) tanxg=rcote, (o =20rKy) .
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Fig. 2. Stability boundary in three-layer models with parallel isentropes.
Lé is length of gravity wave with frequency f.

The ratio of these gives the wave length L, of the stability boundary wave in units of
the wave length of the gravity wave with the frequency fin the model. It is shown by
the three lines in Fig. 2 as function of the buoyancy ratio r=N,/N for three different
models with the depth ratios é = (A —d}/d=1,2,4. ,

For the limiting models with isentropic center layer (N =0) and with isentropic
outer layers (N, =0) the stability boundary equations are '

N,=0: | K, tanhws 4+ 6 =1, Kg=CotKy[d.
4.7) o

N =0: #tanh (6 —1)=1—3542, Ko=1m[5.
where r$=rrc=kd(N1/f),

When the three layers have the same buoyancy (N =2N,) the model is the one-layer
model with a constant entropy gradient between the outer rigid boundaries which
was investigated by Eapy. Here the stability boundary equation reduces to Eapy’s
equation [1] -

K tanhK =1, - K=x1+0)=kh(N/f)=1.1997.
(4.8) N=N,: ' -
tan g =cot dx, ; Koy=xy(1+0)=koh(Nff)=1ix.

The stability boundary in Eady’s model is at L, =1.31 L,.
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The general rule which is illustrated in Fig. 2 is that the stability boundary moves
toward shorter waves and the model becomes more unstable as the buoyancy is con-
centrated in the center layer, while the overall static stability, as measured by the
speed of the gravity waves, remains constant.

5. The evolution of the short stable (x >xé)-waves Here the phase velocities
¢, and ¢, in the non-tilting states of the wave have the same sign (see 4.3) so, from (4.4),
the waves shorter than the stability boundary wave move progressively downwind at
all times. Their evolution is governed by the unchangmg energy transport in (4.5),
namely

62 =c. V2=V i=V,Vi ety

or with 0, substituted from (4.4) ' :
: ' 2 . N2 ' :

5.0 (Vco_sﬂ) +(Vsm9) 1 @>0)
Va Vs . _

The evolution of amplitﬁde and phase of the short stable waves is represented in a
polar amplitude-phase plane by an ellipse, which is traced with constant areal velocity

with the period T=2n/\/ ¢,y or, from (4.3), with the wave frequency
L (5.2)  m=2nT=ve,c,=vab(Ukjx). - (a>0)

For the very short waves the parameters ¢ and 4 in (3.8) have the same hmltmg positive |
value, namely '
Koo ! p—=g—1l+r7t; P—Q—1+4r; = a-b-K=x((U,/U).

‘The shortest waves are neutral waves which move downwind in the symmetric frame
with the frequency m =£U,.

6. The evolution of the long unstable (%< x,)-waves. These waves move
downwind through the 5-state (#=90°) and upwind through the a-state (8 O) In
either case the evolution is governed by the constant energy transport, |

8,V 3i=cV or cbe

From an arbitrary initial state the wave approaches asymptotically a statlonary tilting
state with the phase 8,, which, from (4 4), is given by

(6.1) tan” ;= —c,/c,=(—a/b)tanh® &, - (6,=0)
The evolution from the a-state toward this state is represented in the amplitude-phase
plane by the hyperbola ;T
. 2 : 2
(6.2) _ (Vcosﬂ) _( Vsmﬂ) ~1, (a<0)
' V,- V,tan§; '
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which is traced with the constant areal velocity 1c,¥,2 as the wave moves upwind from
the g-state. As the wave approaches the stationary state with the a.symptotlc phase 8,,
the wave ultimately, as 8,0, grows at the constant exponential rate in (4 3), namely

(6.3) (In V), =n=+ —c,c,= —ab(Uk/x). | (a<0).

The stationary growing state of the wave in (6.1,3) is the growing normal mode of
the three-layer model. The model has also a decaying normal mode which has the
stationary downwind tilting phase 6, in (6.1) and decays exponentially at the rate #
n (6.3). If the wave has an initial state very near and upwind from the state of the
decaying mode, its evolution is represented by the amplitude-phase hyperbola through
the a-state. As the wave moves upwind from this state the hyperbola is traced with
constant areal velocity, and the wave decays to the minimum amplitude and maximum
speed in the a-state, and from there continues upwind with growing amplitude and
diminishing speed toward the asymptotic state of the growing mode.

For the very long waves the values of the parameters 5P and ¢,0 in (3.7) w1th
R =r? to the order of x? are

pmic(1+5); }CQ‘=1+-§K2(1+33); :
x—0:

P=1+Rox> ; 0 =1+R5+-§K2(R5-—R253);
and the values of the parameters ¢ and & to the same order are

a=—1+x*(1+25+R5%)
K—0:

b =—;1c2(1 +354+3R5° +R"'5"‘)/(1 +8)=(xU/|U)

where U? is the mean kinetic energy of the undisturbed balanced zonal motion in the
symmetric frame (see 1.5). With these substituted in (6.3) we see that the growth rate
of the very long waves has the value n=£U. It is governed only by the mean kinetic
energy of the baroclinic zonal wind shear and the wave length. It is not affected by
the buoyancies and the depths of the layers. We shall show in Appendix B that the
very long waves have the growth rate £U in any baroclinic layer with arbitrary distri-
bution of wind shear and buoyancy between the rigid boundaries.

The growth rate of the normal mode in (6.3), measured in units of the inertial
frequency f=%k,C, (see Appendix A) is .

(6.9) - nlf =N —ab(U[Ox)T/Cy),

The ratio U/U in (1.5) and the non-dimensional wave number «, of the gravity wave
with the frequency f (see A.2) are functions of the model parameters R, 7, § in (1.1)
and hence are characteristic constants for each model. The parameters ¢ and & in
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F1g 3. Stability boundary and growth rate in ‘models with paraliel isentropes and equal depths of the
layers. L, is length of gravity wave with frequency f.

(3.8) arc also functions of the model parameters and the non-dimensional wave num-
ber x. If further the mean kinetic energy and the overall static stability are specified,

* the growth rate n/f is obtained from (6.4) for each wave length L/Ly =«y/x. The values -

are shown in Fig. 3 for four models. All four have equal depths of the three layers
(6=2), and the same kineiic énergy and static stability given by U 15ms—1 and
Cy =40ms~*. The models are:

(1} Eady’s one layer model (N=N,). Here the parametcrs a and bin (3.8) r_educe to

Eady’s values

P=qtanhrc=1+_tanhrctanh5}c, a=KtanhK—1,
N=N,: ' : K=K(_1+5)=~fkh(N/f).
O=pcothx=1+cothktanhdx, b=KcothK—-1, '

And the wave number of the gravity wave with the frequency f, asin (4.8), is given by
r=1: tankg=cotdr,: K0.=1€0(1+5)=k0h('N/f)=%n.

The stability boundary in the Eady model (see 4.8) is at L,=1.31L,. The wave
number of the fastest growing wave is given by

i(ab):O:. K,,,=—-S—"311£"—=0.803; L /Ly=195.
3+cosh4K,,

The parameters ¢ and b have here the values, a = —0. 465 b =0.206, so from (6.3,4)
the maximum growth rate is

n,=0.310(U,k/K,) ; n,lf=0341(0/Cy).

(11) Adodel with isentropic outer layers (r=0). Here thc.pararheters' in (3.7} have the
values , : ,
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K=«x, . ofr=dxk, P=0=1
N1=O: . .
p=0dx+tanhk; g=0K+cothk
and the parameters ¢ and 4 in (3.8) are
xtanhx+ & —1 x coth x+ 6 —1
N,=0: = ; b= - .
1+ dxtanhk : 1+dxcothk

They reduce to Fady’s one-layer values as the depths of the outer layers go to zero.
The model with the depth ratio § =2, whose growth rates are shown in Fig. 3,
has the stability boundary at -

N,;=0,6=2, a=0: - ®,=(1—5k]) coth x,=0.5877.
The wave number of the gravity wave with the frequency fin this model is
N, =0, §=2: Ko=0 ~'cot 1o =0.6533. |

The ratio of these glve the wave length of the stability boundary at L, =1.11L,.
The energy ratio’in (1.5) is 7 \

R=0,6=2 (U/U)2=7/9, which gives: x,0/U=0.576.

In this model both the stability boundary and. the fastest growing wave have shorter

wave lengths than in Eady’s equivalent two-layer model, and the unstable waves have
a faster growth. It appears that the instability is augmented by concentrating the static
stability buoyancy toward the center of the model.

The maximum instability comes when the depth of the center layer shrinks to zero.
With 0, and 0, denoting the potential temperatures of the remaining outer isentropic
layers, we have then

d—0:  6d—(0,—6,)/(6,+96,), x—0, 51? =(klkog)*=4"1.

The corresponding lnmtmg values of the parameters ¢ and b in this i 1scntrop1c two-layer
model are

d—0: o a-(1=-D/(A+); b—Kk®-0,

When substituted in (6.3,4) these give the well known growth rate for the waves in
the isentropic two-layer model, namely

d—0: nos 21 Uk; ——\/ -t .see HoLmsok [5].

A+1 it(l+1) c,

This growth rate is shown in Fig. 3 as a thin broken line above the four other n-lines.
The stability boundary is at L, =L,, and the fastest growing wave at

L,=(/2+ DiL,= 1.55L; has the growth rate
ol f =(2— DT |C,=0.414T/C; .
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It represents the limiting growth rate in a baroclinic model with given static stability
and kinetic energy. \ _

(iti) Model with weak bugyancy in outer layers (r=13). Here the parameters in (3.7)
have the values

a=x, K=3x/2, p=3tanhk, g=cothx+2tanhx

"P=1+1tanh’x, Q0=3/2.

and the (g, b)-parameters in (3.8) are

2 _stanhk(9x—tanhwx)—1

Nj= N,6=2: ; b=x(tanhx+1cothx)—1%.
1=3 1+2tanh 2k ( ‘ )=%.

The wave number of the gravity wave with the frequency fis

N,=%N,§=2: . tan?xy=1, Kxo=0.6155.

The energy ratio in (1.5) -is _ ,

R=1, 6=2: (UJU)*=7/6, which gives x,U/U=0.664.
The stability boundary is here given by

N;=1N, 6=2, a=0: rcs:(zcothxs%tanhxs)/9=0.5190,

s0 it has the wave length L, =1.186L,. As should be expected, the waves in this model

have growth rates between the values in Eady’s one-layer model and the isentropic

outer layer model. : o '
(iv) Model with strong buoyancy in outer layers (r=2). Here the parameters in (3.7)

have the values '

r=2: o =4k, p——_;tanhx+~5~tanh4x, P=1+2tanhxtanh4x

§=2: K=9, g=cothx+%tanhdx, - Q=1+2cothxtanhdx.

The stability boundary is given by '

Kp=P: , ks=(1+2tanh, tanh 4x,)/9(tanh x,+ 4 tanh 4i,) = 0.2453 .

The wave number of the gravity wave with the frequency f'is given by
tanxytan 4k, =2, . x0=0.3478.

- The stability boundary wave has the wave length L = 1.42L,,.

‘The energy ratio in (1.5) is

R=4,5=2: (U/UY*=20.3, which gives «,U/U=1.567

The growth rates of the unstable modes in this model, shown by the lowest z-line in
Fig. 3, are smaller than in Eady’s model with uniform buoyancy. The instability of the
model is weakened by concentrating the buoyancy toward the boundaries of the model.




14 '~ JORGEN HOLMBOE ; © . Vol. XXVIIL

7. The kinematic structure of ‘the growing modes in three-layer models
with parallel isentropes. In an arbitrary state the symmetrlc wave has the center
layer meridional velocity field in (3. 2) namely - '

‘z|<d. , v:Acoshfsmkx—l—.Bs111h§coskx=Vsin(kx+0).

Associated with this field is a geostrophically balanced deformation of the entropy
field, so the isentropic contour lines havé the meridional slope in (2.4), namely

iz|<d: (U/ijx=v = A sinh & sin kx + B cosh & cos kx =(U[k) 4 k cos (kx — ).
‘: .

The amplitude A(¢) is the meridional velocity dmplitud_e at the certer level. Let us

relabel this amplitude, and the amplitude ratio of the cosine and the sine wave as
follows ' -

an AD=V,0); B(O)JA()=R().

With these notations the meridional velocity field and the entropy field of thé syrm-
metric wave in the center layer are ‘

v=V,(f)secHcosh Esin (kx+8), - tan @=tanh &- R(t)
[z] <d: .
(UK/ :c)Y Vo(f)Coseco smh &sin (kx —0), tan o =tanh £/R(1).

W1th A, denotmg the streamline amplitude of the resultant field, the ratio of the

contour amplitude to the streamline amplitude in the center layer is
(12) |z|<d: o C/Av—(gtanhg)cosejsina

An arbitrary initial state of the symmetric wave is defined by initial values of the
center level amplitude ¥, and the amplitude ratio R. These in turn give the initial

phase, tan 6 =R tanh &, and the initial amplitude V=V, sec 8 cosh &, at every level .
of the center layer. The evolution of the wave from this state, as we. have seen, is

represented in the amplitude-phase plane by an ellipse for the short stable waves, by
a hyperbola for the long unstable. waves, which are traced with a constant areal
velocity from the initial state.

The unstable waves, from any initial state, approach the stationary state of the
growing mode with the growth rate » in (6.4) and the wave elements

p=V,e" cosh Esech, sin(kx+6,), tanf,=+/—a/b tanhé.

(7.3) |z|<d: | - (a<0)
(Ukfi)Y =Vye" sinh & cosec o, sin(kx—oy), tano,= «/ —bja tanhé.

The vorticity wave tilts upwind, and the temperaturc wave tilts downwind. The tilt

of the temperature wave comes from the growing inflation of the entropy lamellas in
the region of convergence. The contour amplitude has the simple height variation
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a

<d: | Ac=Aco\/1+(1—9)sinh2§. - (a<0)

The upper layer field is obtained from (3.2) with the values of 4, and B, substitu{ed
from (4.1). With the origin of the helght variable { shlfted from the top to the base of
the upper layer: ‘

(74) o n=lra=TNz-d), , (see 3.7)
the meridional velocity field in the upper layer becomes

z>d: v=A(cosh x cosh#+ rsinh x sinh#) sin kx +
(7.9
+ B(sinh kx cosh # + r cosh k sinh ) cos kx=V sin (kx + ).

The iéentropig contours of the geostrophically balanced temperaiure field have ‘(from
2.4) the meridional slope
z>d: (rU[x)Y,=v,=A(cosh ksinh n+ rsinh x cosh ) sin kx +

+ B(sinh k sinh -+ rcosh x coshn) cos kx =(r U/ KAk cos (kx'— o).

With the amphtudes A4 and B replaced by the center level amplitude and the amphtudc
ratio in (7.1), these upper layer fields of the symmetric wave become

v="V,(t) secH(coskix coshn +rsinhx smh #) sin (kx + 9) )
(7.6) z>d: '

(rkU/[x)Y = V() cosec a(cosh « sinh i+ r sinh x cosh #) sin (kx — o) ,

where the phase angles have the values

tanh x+rtanhy RO rtanhx+tanhy R().

(1) z>d: tan =

tan o=
1+ rtanhxtanhyg _ r+tanhktanhy

The lower layer fields are symmetric images of these upper layer fields. With r=1
and x +4 =¢, the model is Eady’s one layer model, and the outer fields are uniform
continuations of the center fields. '

The ratio of the contour amplitude to the streamline amplitude in the symmetric
frame in the upper layer is

r_Itanhr;+tanhrc_c039 .

z>d: AfA,=(k+rn)
o/ 4= m1+rtanh11tanhx sin ¢

" The asymptotic stationary fields of the unstable modes in the upper layer are ob- |

tained from (7.6,7) by substituting

V() - Voe™, " R(t)-—>\/ —afb ' : (a<0).
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At the r1g1d top of the upper layer where 4 =a, the phase anglcs m (7.7) for the growing
mode are given by

z=h: tan85=tanhx-g-- /—E 3 cotasmtanhrc-—q°\/—£ .
PV b pV b

and the contour-streamline amplitude ratio is

z=h: A [A;=(Kp[P)(cos O,fsinc,)=sin (0, +05,),

so the horizontal streamlines at the rigid boundarles are parallel to the contours at
the contour nodes.

8. Relation between the divergence field and the vorticity field in merid-
ionally unbounded waves. When the wave has no variation with latitude the

horizontal divergence is given by 4, = ~w,, and the vertical vorticity equation (2.5)ina -
local frame, which moves intrinsically with the air c at the level we consider, has the form,

V= — fity.

Let the wave trough be located in the region of convergence w1th the phase ¢ upwmd :

from the divergence node,
8.1) v=Vsin (kx+¢) ; - u=—Dcoskx.
With these substituted, the vorticity equation becomes
(V cos ¢),sin kx+(V sin ¢),cos kx= fDcos kx,
which gives '
(8.2) " (InV),=f(D/V)singp=¢,tan¢ .-
| o= f(D{V)cosé.

Here ¢, is the intrinsic upwind phase speed of the vort1c1ty wave through the air. It
is the sum of the upwind speed 6, in the symmetric frame and the speed of the air in
this frame, namely

z<d: . Qb::et'l'Uk(E/K)s
(8.3) ‘ -
z>d: =0, +Uk(1+rn/x).

The equations (8.2) show explicitly that the growth of the vorticity amplitude is gov-

erned by the convergence in the wave trough, and its intrinsic propagation through -

the air is governed by the convergence at the vorticity node.

ey
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Fig. 4. The kinematic structure of the fastest growing wave in four baroclinic models
with parallel isentropes.

In an arbitrary state of a symmetric wave in a model with parallel isentropes the |
growth and propagation of the vorticity ficld are known from (4.4), and the amplitude ‘f
and relative phase of the divergence field is then obtained from (8.2). In particular, in : |
the stationary state of the growing mode the relative phase of the divergence field is 1‘

z<d: tan ¢, =~/ —abfE, : i
(8.4) L n=v—ab (kUJi).
z>d: : tan¢s=\/—ab/(x+rn).
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And the divergence- vortlclty amplitude ratio in the growing mode, by elimination of

¢ in (8.2} is
|zj<a: D/V_-_-(ezz—ab)%(U/Nd).
(8.5 ~
]z| >d: | D/V='[(k:+rn)2—ab]%(U/'Nd).

The kinematic structure of the fastest growing wave in four models with the same
overall static stability (Cp=40ms™') and the same kinetic energy of zonal motion
(U =15ms1) is shown in Fig. 4. The upper model is the two-isentropic-layer model
with the entropy change concentrated in a sharp frontal surface in the middle. The
third model from the top is Eady’s one-layer model. The remaining two models are
three-layer models with equal depths of the layers (§ =2), one with the outer buoyancy

one half of the center buoyancy, and one with the outer buoyancy twice the center

buoyancy. The growth rates for other wave lengths in these four models are shown in
Fig. 3. All the four models have a remarkably similar structure. The wave trough tilts
about a sixth of a wave length upwind (toward the west) from the lower to the upper
‘equivalent’ levels where U(z) =U. The divergence field has a much greater upwind

tilt to keep the wave stationary (see 8.4), while the temperature field tilts gently

downwind in response to growing inflation of the isentropic layers in the region of
convergence. The warm air to the east of the wave trough is rising and the cold air to
the west of the trough is smkmg, resultmg in release of potential energy, whlch is
needed to keep the wave growing.

9. The normal modes in general symmetric three-layer models. The evo-
Iution of symmetric waves in the center layer of these are governed by the equations.
(8.6), where (from 3.2) the amplitude functions 4 and B are related to the amplitude

and phase of the.vorticity field by
(9.1) ' ' A cosh E=Vcosl; Bsinhé=Vsin§. (see 4.2)

In a state of statlonary phase (6, =0, 8 =6,) the amplitude change (from 3.6) is governed
by the equations

pxV,—(aq tanh €)V =(pb +xq tanh x)V,  coth £ tan 6, ,

gV, —{bpcothx)V = —(qa’+xpcoth )V, tanh & cot 0, .
These have solutions of the form ¥ ~¢™, where the growth rate z is a root of the simul-

taneous quadratic equations

pxn® —ag tanh k =n(pb’ +xq tanh k) coth £ tan 4,
9.2) : : (n=n/kU)
gkn®—bpcothx= —n(ga +xpcothx)tanh & cot b,
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or with 6, eliminated, # is a root of a bi-quadratic equation which, with the parameters
a, b, etc. substituted from (3.7), takes the form

1 93) n®x? + 0’ i +a'b —(p—D)py—x)(p* +‘.q‘1)']+ab=0'-

In the special models with parallel isentropes, R =72, p =1, ¢’ =a, b’ =5 this bi-quadratic
equation becomes

(ﬁ2+1)(x2nz+ab)=0. - P (Uk=1)

The second factor gives the growth rate of the normal modes in (6.3).

In the more general (R #r%)-models the stability boundary wave is given by the
equation ¢ =0, and the longer (a <0) waves are unstable.

For the very long waves we introduce the abbreviations

(9.4) E%sz(R—rz)és ; 0(x*)=order of x*.
‘The parameters in (3.7) and (9.3) for the very long waves have the vé,lués"

=—1+x*(1+25+R6%) +e+0(x*), a=a—e+0(x%),
" (9.5)  k—0: b=xU[U¥+0(xc*), b'=b—&(1+8)" " +0(x*), (see 1.5)

a‘b’=ab+a(1+5)‘1+0(x4), (p—D—r)p™ +¢47)=e(1+8)"* +0(x*).
With these substituted, (9.3) becomes

xk—=0: K2n* +n’[x* +ab+0(*)]+ab=0, - (n=n/kU)

which, to the order of x2 has the solution

9.6) x—0: (enfkU)? = —ab=(xU/|U)?.

Thus, in all three-layer models the longest waves have the limiting growth rate n =£U,
independent of the buoyancy and the details of the thermal wind distribution in the
layers. _ .

The physical reason for this simple behavior of the very long waves may be seen
from the kinematic structure of these waves. From the upper equation in (9.2} the
stationary phase 6, of the center layer vorticity field in the normal mode is given by

a_xqtanhk—p(nx)’fa )

(0.7 tan B, = — tanh €. . (n=nfkU)

xn  xqtanhx+ pb

For the very long modes, using the approximations in (9.5,6), we have nk =~/ —ab
and pb’ =pb +0(x®) so, with higher powers of « ignored, the, vorticity phase of the
very long modes is given by o .

k=0 tanf,=+/ —a/b tanhfoz/Ud.
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To the same approximation the center layer vorticity field, as in (7.3), is

x—0, [é!<d: v="V,e" secO,sin (kx+0,). tan0,=Uz/Ud.
The isentropic contours (from 2.4) have the meridional slope

k—0, lzi <d: Y. =(d/Uy,=(V,/U)e" cos kx=A kcos kx.

To this approximation the temperature field has no zonal tilt and its amplitude is
mdcpendent of height. The contour-streamline amplitude ratio in the long modes is
A,=A sin 8, so to this approximation the streamlines are parallel to the contours
at the contour nodes at all levels, and the isentropes are advected horizontally by the
meridional component of the wind. This explains why the stratification (the buoyancy)
has no influence on the growth and evolution of the wave.

The upwind phase of the center layer wave trough from the divergence node in
the long growing mode (from-8.2) is given by

cot ¢p,=(Uk/n)(z/d)=Uz/Td=tanb,, B+ s =90° .

The divergence field has precisely twice the upwind tilt of the vorticity field. The
divergence-vorticity amplitude ratio in the long modes (from 8.5) is

k=0, |z |<d DIV =T+ U(2) |f
with the center level value (D/V),=kU/f=n]f. Since higher powers of x ha,ve been

ignored it follows that the kinetic energy associated with the divergence field is negli- -

gible compared to the kinetic energy of the vorticity field in the very long waves.

It is shown in Appendix B that these simple rules for the very long modes in a
three-layer model of the atmosphere hold for any baroclinic layer which is bounded
by rigid horizontal planes and has an arbitrary distribution of buoyancy and thermal |
wind shear along the vertical. -

The spectral boundary between the short stable and the long unstable modes
(from 9.3) is given by =0, or (from 3.7) more explicitly

(9.8) n=0: | Kp=pP+(1—p)yfic. : Stability boundary.

This equation gives the non-dimensional wave number x; of the stability boundary
mode as a function of the three non-dimensional ratios 6, R, r in (1.1) for the model.
The wave number x, of the gravity wave with the frequency f for the same model is
obtained from (A.2). The corresponding wave length L in units of the wave length
of the gravity wave with the frequency f is shown by the dash-dot line in Fig. 5 as a
function of the buoyancy ratio r=N,/N in models with the same thermal wind in the
layers (R=1), and with equal depths of the three layers (6 =2). We note that here .
the stability boundary moves toward shorter waves and the model becomes more
unstable as the buoyancy is concentrated in the outer layers, while the overall static: -
stability, measured by the speed of the gravity waves, remains the same. The same
tendency is reflected by the values of the growth rate, as computed from (9.3), for five
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Fig. 5. Stability boundary and growth rate in models with the same thermal wind in the layers, and
equal depths of the layers.

of these models with the buoyancy ratios r =2, 1.5, 1, 0.5, 0, all having the same static
stability (Cp=40ms~), and the same mean zonal kinetic energy (U =15ms™1). All the
five growth rate curves for these models approach the limiting asymptotic (n =£U)-

hyperbola, but the growth rate of the fastest growing mode is strongly effected by the
buoyancy ratio of the layers, in particular when the outer layers have the greater
buoyancy (r>1). This effect was also noted by Eapv (L.c.), who examined a thrée-
layer model with unbounded outer layers and the same thermal wind in the layers.

Eady’s unbounded three-layer model is stable for all wave lengths if the center layer

has the greater buoyancy Eady concluded that a necessary condition for baroclinic
instability is minimum buoyancy in the center region. However as we have seen, in
bounded systems this is no longer true. '

10. The kinematic structure of the growing modes in general symmetric -

three-layer models. The center layer meridional velocity (the vorticity field) in the
growing mode (from 3.2) is

(10.1) |z[<d: v=V,e™ cosh £ sec 8, sin (kx+6,), (a<0)

where n is the positive real root of the growth rate equation in (9.3), and 6, is the cor-
responding stationary phase given by (9.2), namely

prn® — dq tanhx

(10.2) |z|<d: tan 0, ==
n(pb +rcqtanhrc)

tanh = :1 ‘tanh¢ (kUzl).

"Fhe upper layer field in (3.2) with the amplitudes 4, and B, expressed in terms of
the center layer amplitudes 4 and B with the aid of the boundary conditions in (3.4,9)
may be written
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(i —y)v=A[x(cosh k cosh 7+ rsinh e sinh %) — (K + pr tanh {) sech o: cosh x cosh {

+r(p—1) cosh x sinh 5+ r(xB,/A)q sinh x sinh ] sin kx +
(10.3) z>d: - :
+ B[ x(sinh  cosh # + r cosh k sinh ) — (K + pr tanh {) sech & sinh x cosh { +

+7r(p—1)sinhxsinhn—r(xA4,/B)p cosh xsinh#n]cos kx.

Itis a smooth continuation of the center layer field at the upper boundary of the center
layer z=d, where =0 and {= —a. In the case of models with parallel isentropes,
with the values of 4, and B, substituted from (3.9), the field in (10.3) simplifies to the
upper layer field in (7.5). In the growing mode 4 in (10.3) has the value V™ in (10.1)
and the amplitude ratio B/4 has the value in (10.2). With these values substituted,
(10.3) determines the amplitude and phase of the vorticity field at every level of the
upper layer. With the vorticity field known the isentrope contour field is obtained
from the thermal wind formula in (2.4), precisely as in section 7: Finally the divergence
field in the growing mode is obtained from (8.2). =

Two examples of the kinematic structure of the fastest growing mode in models with

the same thermal wind shear in the layers and with equal depths of the layers are . |

shown in Fig. 6. In the upper model the outer buoyancy is one half of the center.
buoyancy. In the lower model the outer buoyancy is twice the center buoyancy. The
corresponding models with the same buoyancy ratios and with parallel isentropes,
* shown in Fig. 4, have been repeated in Fig. 6. All the four models have the same
overall static stability (Cyp=40ms~!) and the same kinetic energy of the zonal thermal
wind (U = 15ms~1). The wave structure and growth mechanism are fairly similar in the
four models in Fig. 6. However, while the instability of a model with parallel isentropes -
is only moderately affected by radical variations of the vertical distribution of the
entropy gradient, similar variations in models with a constant thermal wind shear
produce much stronger modifications in the opposite sense. The reason for this dif-
ference is discussed in the following section, -

11. The conversion from potential energy to kinetic energy in the growing
unstable modes. The kinematic structure of the growing mode is such (see Figs.
4 and 6) that warm air rises east of the wave trough and cold air sinks west of it, re-
sulting in release of potential energy, which is needed to keep the wave growing. To
examine this mechanism of potential energy release quantitatively we shall use a
simple model of air parcel interchange, which was suggested by Green [3]: If any
two air parcels in the undisturbed field in section 1 could be interchanged adiabatically
without disturbing the pressure field, their mass ratio would be the inverse of the ratio
of their potential temperatures, ' ' |

Mz/M1 =91/92 .
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Fig. 6. The kinematic structure of the fastest growing wave in two models with the same thermal wind
in the layers. The corresponding two models with parallel isentropes have been repeated from Fig. 4.

If the masses are very small, and their linear distance s is small, the release of potential
energy from the interchange of the parcels would be

—AP=gssin B(M , — M,)=M(N,)*sin f(tan acos ﬁ—ﬁin B,

where « is the isentropic slope and f is the parcel interchange ‘streamline’ slope.
The release of potential energy is maximum when B =1x, namely

~ APmax =3 M(Ns)*(seca—1)=M(4sN tan a)® +0(c*).

If this released potential energy were converted into kinetic energy of the two air
parcels in such a way that their speed would grow exponentially at the rate z, that is
v, =nv =ns,, or v =ns, their total gain of kinetic energy after the interchange would be
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| AK =2M(4v*) = M(sn)* = — APmas.
The corresponding local growth rate would have the value

(11.1) Parcel interchange: n=INtana=31fU,N. (tano=1/g)

In the three—layer models with parallel isentropes the unstable modes have the
growth rates in (6.3), which may be written

(11.2) Growing mode (R=7r?%): n=+/ —ab-Ntana.

The meridional streamline slope in the growing mode (from 2.4) is w/o = (1 —n¥/v)tan «
which, in models with parallel isentropes, {Irom 7.3) has the center layer value

(11.3) R=r% z=0: wo=(1+a)tana. (tan a=1/)

~ For the fastest growing mode in the four models with layers of equal depths which are’

shown in Fig. 4 the factors v —ab and 1 4¢ in these formulas have the values

5=2,r=R: O 05 1 2
(/ —ab)max: 022 0.24 031 0.1
 1+4a: 0518  0.504 0.533 - 0.510

In all these modcls the center level streamline slope in the fastest growing mode is
just a little over one half of the isentropic slope. Since the streamline slope decreases
uniformly from the maximum value in the middle toward zero at the rigid boundaries,

1t is nearly one half of the isentropic slope over a good part of the central region in the-

fastest growing mode. This is evidently the most efficient way the potential energy can
be released by a normal mode disturbance. In the one-layer Eady model (r=1) the
efficiency for the fastest growing mode is about 62 per cent of the maximum local value
from parcel interchange. '

The form of the local parcel interchange growth rate formula in (11.1) explains in
a qualitative way why a model with parallel isentropes (« = const) becomes more unstable
when the buoyancy is increased in the center layer, whereas a model with the same
thermal wind in the layers (U, =const) becomes more stable when the buoyancy is
increased in the center layer. :

APPENDIX A
The gravity wave with the frequency f in the three-layer model

Let C'L denote the limiting phase velocity of the long quasi-static gravity waves in
the three-layer model in section 1, and let £, =f£]C, denote the wave number of the

gravity wave with the frequency f As in (8.1) we introduce for this wave the non-

dimensional wave number

“an - wo=kod(N[f).
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The quasi-static equations for the vertical velocity in this gravity wave are

z<d: W=—(f/Nko)2sz= —Wee=Ac0s&,, foz(’co/d)z-

z>d: | w=—(f[rNko)*W,,= — Wy, =Bsin{, Lo=(ricold)(z—h)
The integration constants 4 and B are determined by continuity of the vertical velocity
and its derivative across the upper boundary of the center layer, which gives

(A2) tank,=rcotag. (oo ="0drxcq).

In the special case when the three layers have the same buoyancy (N=N,) the
model is a one-layer model, and the wave number of the gravity wave with the fre-
quency fis here given by '

(A3) r=1: tanxy=cot dr,, - or Ko(1+0)=koh(N/f)=1mn.

With the rigid tropopause 10 km above the ground (% =5 km) and a potential tempera-
ture increase of about 50 deg K from the ground to the tropopause the limiting phase

velocity of the gravity wave in this one-layer model is about 40 ms~1. In the more

general three-layer models the limiting phase speed of the gravity wave may be re-
garded as a measure of the overall static stability of the model, and we may take
Cp=40ms~1 as a typical value which reflects observed atmospheric conditions. The
corresponding length of the gravity wave with the frequency f in middle latitudes is
about Ly =2500 km. ' '

APPENDIX B

The long normal modes in a baroclinic layer which is bounded by rigid - -

horizontal planes

We use the same notations as in section 1. The layer has the depth 2h. We use a.

frame of reference with the origin (z=0) at the center level and moving with the center
of gravity of the layer. Consistent with the Bousinesq approximation the mean kinetic
energy of the balanced zonal motion in this frame is

+1 +1 . ‘
B.1) 172=%_I1 UHede; - —I1 U(€)dé=0. {=z[h:

The normal modes in this layer are small-amplitude sinusoidal wave disturbances with
the time dependency exp(nf), where the growth rate n may be real or complex. For

the individual time derivative of the wave elements in the normal mode we introduce ,

the abbreviation
B.2) ﬁ( Y=v( ), ; y=U@—infk, .

where £ is the zonal wave number. The normal modes we consider have no variation
~ with latitude, . ' :
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The adiabatic equation in (2.3), also using (2.4), may be written

ow=1(v—vY,)=1(v—w,/U,),

where the entropy gradients z and ¢ are here arbitrary functions of height. Substltutlon
- from (1. 2) of gt =fU, =fv, gives

(B.3) N’w= f(ov,—vp,)=~—f vz(v/v)z ~ N=+og.
The vorticity equation (2.5), within the accuracy of the Bousinesq approximation, is
(B'4) ' : vvxx+ﬁv= "kz(v_ UR)vszz L (UR-':ﬁ/kz)

‘Elimination of 2 from (B.3,4) gives the differential equation for the vertical velocity
in the quasi-geostrophic normal modes, namely

(B.5) | v [w(v?— Upn)™1],=K?w. - K=kh(N/f).

In the limit, for the vefy long modes, this equation has the integral

- (B.6) K—0: . : w=const.(v? —URv)e"‘”’" , (g z/h),',.- i

and a second mtegral between the rigid boundaries gives. the growth rate equation

+1

(B.7) K~0: - j(v —URv)dé 0.

" If the p-effect is ignored (Uz—0) this integral, with v substituted from (B.2), gives the -
growth rate n =kU, where U? (from B.1) is the mean kinetic energy of the zonal wind
in a frame which moves with the center of gravity of the layer. S

With w, substituted from (B.6), the vortlclty equation (B.4) gives the merldlonal
velocity in the very long modes. If the f-effect is ignored, the meridional velocity is
the real part of

K—-0, Ug—0: v=const. v " =V e"[ U(2)/U — i1e**,
which may be written '
K—=0, Uzg—0: ve= Voé"’ sec O, sin (kx+0,) ; tan 0,=U(2)/U .

From (2.4) the isentropic contours have the meridional slope

K—0, Ug—0: ' Y, =v,/U,=(Vo/Ue" coskx=Akcoskx.

The temperature wave has no zonal tilt, and at all levels it has the same constant
amplitude 4, =4, sin §; which grows at the rate of the meridional wind at the crest
(4., =Vye"). Finally from (8.2,3,4), which hold for all laterally unbounded waves, -
the relative phase and amplitude of the divergence field in the very long modes are

K—0, Ug—0: 6. =90°—0, ; DIV =kJT?+ U2) |f .
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The divergence field has precisely twice the upwind tilt of the vorticity wave and its
amplitude is negligible compared to the vorticity amplitude.

This simple theory for the long modes in arbitrary baroclinic layers is a generali-
zation of FjerTorT’s theory for a baroclinic Jayer with zero static stability [2] (the
so-called advective model). The long mode growth rate equation in (B.7) is identical
to Fjertoft’s equation (op. cit 31.4), which holds for all quasi-geostrophic modes in
the advective model. In summary then, we have shown that the very long modes in
an arbitrary baroclinic layer in the limit have an advective evolution. The temperature
field is advected horizontally by the meridional component of the wind. The vertical
velocity associated with the divergence field which keeps the tilting vorticity wave
stationary growing at the rate £U is so weak that it gives no significant contribution
to the rate of deformation of the temperature ficld.

When the dynamic effect of the planetary vorticity gradient is included in the
. theory for the long normal modes (8 :£0), the integral in (B.7) gives for the growth
rate z in these modes ' :

(B.S) K—0, B0: ¢ - (nfk=%iU?* =0 —4U3. (Ur=B[k%.

If the overall thermal wind shear U in the baroclinic layer is sufficiently great, this
formula gives a fairly good appr0x1mat1on in the spectral region of the special wave
number

(B9) _ K=4p/0< (f|Nk)*

The wave with this wave number %, in (B.9) then marks the spectral boundary between
~ longer stable modes and shorter unstable modes. The mode on this upper boundary
of the unstable spectral region is stationary in a frame which moves to the west with
the speed U relative to the center of gravity of the layer, and has in this frame the wave
elements

“k=k,: v=[U(2)+ U] A4, kcos kx, Y= Ac‘sin kx

u _ (kI H[U*2)—U*]4kcos kx

The longer stable modes and the shorter unstable modes near this upper stability -
boundary have the same kinematic structure as in the advective model. These have
been discussed by the author in some detail in an earlier paper [4].
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