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Here N is a positive integer and @ is defined by

(2.59) O=n(}~Vi-ro).
The solutions of equatlon (2.56) for values of % satlsfymg the conditions (2 58) are T
, 1 f sm2y '
In + 2n+Dmi} and -
(2.60)

.1 . isin2y, )
o= In —= + 2nmi
@A\ s "

respectively, where # is an integer or zero, These solutions are seen to be good approxi-
‘mations to the solutions of equation (2.39) if |j] <1, i.e. if :

__ | uy
(2.61) Iy <1

For a given large value of y, only a finite number of the solutions (2. 60) can be accepted. R
The values of ¢ correspondmg to the above solutlons are found from the definition- O

equation (2. 38) of j. It obtains

Y _sin 2y : -
= 2n+1 n+iln and -
(72 +kHn (4)12)( ( ) sin ®) ‘

(2.62)

: ¥ [ ']sin 2}:_])
= —2nn4-il .
¢ (7*+kHIn (4'112)\ i sin ®@

From these expressions for ¢ the transition to instability waves should occur when
(2.63) |sin2y}=sin®©.

That means that in the considered interval (2.58) all contingent instability waves will
appear for the same value of 2y. This is not correct. The next approximation, which
will not be included in our discussion, will show that the transition takes place princi-
pally in the same manner as for 7,=0, i.e. for a discrete set of y-values. In the case here
considered all instability waves originate from singular solutions. No special solution
exists.

For interpreting our results in the k-space we will draw attention to the fact that
decreasing values of £ correspond to increasing values of 7. :
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For y given by

. ' _1_ 2y Tz
(2.53) 7tln(ilry Ysin 2y = 3’

which corresponds to the transition between the region where no instability wave
occurs and the region where we get one instability wave with ¢, #0, it is easily verified
that £=0, i.e. ¢,=0, is a solution of equations (2.46). This transition value of 7, there-
fore, represents a solution with singularity (singular solution).

A new instability wave originating from a singular solution will occur each time y
passes the values given by

@54  Zinysin2y =g+,

with ¢ an integer. This continues until ﬁlin(4y2) sin 2y reaches its maximum value at
2y approximately equal to (2N-++)n. As y then increases further, In(4y?)sin 2y will
decrease. The number of instability waves occurring will decrease by one each time y
passes the value corresponding to a singular solution. Again for 2y shghtly less than -
(2N+1)n we have no instability solution. When

(2.55) h 2y=(2N+Dn,

a special solution will occur. Further increase of y leads to a repetition of appearance
of new instability waves with ¢, 0 in the same manner as explained above In addition
we now also have an 1nstab111ty wave with ¢,=0.

O<ro<i

In this case we put ¢=0 as a first approximation of eq. (2.39). Putting ¢=0 on the.
right hand side of the equation, we obtain as a next approximation : -

jin 47 — Sin 2')’
sin (3~ ~ro)

This equations has solutions with ¢,> 0 only when

(2.56) | e

2.57) - _ sy |
o [ sinn(3—/E—ro)
We notice that this condition cannot be fulfilled for 7o >i— ‘That no instability waves
exist for 7,> % is in accordance with a more general result obtained by MiLes (1961).
The above condition (2.57} is fulfilled when

@AN-Drn+0O<2y<2Nrn—© or
(2.58)
2Nn+0<2y<@N+Dn—-0O
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Fig. 1. The solid drawn part of the graphs of £(5) represents
acceptable solutions of the last of equations (2.46). Choosing, for

lutions, as indicated in the diagram.

]
w
A

S S Y

(2 p— %)n <—1—In(4y2)sin 2y<@p+iHm or
T
(2.49)
' 3y 1 2y A
- 2p+-£ n<—In(4y")sin 2y < —(2p—1%
T

Here p, of course is a positive integer or zero. |,

We may now discuss the solutions for arbitrary values of y. Choose a positive integer

N and consider y in the region given by 2Nz <2y <(2N+2)x. For 2y==2Nn we have
the special solution with ¢=0 discussed in section 1. This value of 2y gives the transition

“from a region with one instability wave with a velocity of propagation equal to zero
for 2y less than 2N, to a region with no instability waves with zero velocity of propa-
gation. For the special solution we have

(2.50) In(4y*)sin 2y=0.

As y increases, In(4y?) sin 2y will increase. As seen from the relations (2.49), we have
no instability wave when '

@51 | ?1[1n(4y2)sinzys_

When y increases further there i is one instability wave with ¢, 0 when v is in' the
region ' -

: 1 2\ . <on
(2.52) | 2<ﬂln(4y )sm2y—3

instance, %In(4yp%)sin 2y=3.25x, we obtain two acceptable so-

B
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and no real solution for positive real values of j when
(2.43) INE<2y<(@N+)=.

Here N is a positive integer.

A positive real value of j gives (see eq. (2.38)) ¢,==0 and ¢,> 0 Le. an instability
wave with a velocity of propagation equal to zero. Thus in the region given by equation
(2.42) we have a solution representing an instability wave with a velocity of propa-
gation equal to zero, whereas in the region given by equation (2.43) no instability
wave of this kind exists. The transition from one of these regions to the other is given
by j=0 when sin 2y=0, i.e. the special solutions discussed in section 1.

" In order to find contingent instability waves with a velocity of propagation different
“from zero we put :

@44) jlndy*=¢+in,

in equation (2.41). Separating into real and pure imaginary parts we obtain

. 1 .
e*(é cosnp—ysing) = —-—7;111(43:2)3111 2y,

(2.45)
-npeosy+Esiny=0.

From these equations we find
§=—ncotgy,
(2.46)
- i —1 cota ___1- 2\ .1
fp=—¢ =—In(4y*)sin 2.
siny n

The latter of the last equations may easily be solved graphically. In the diagram Fig. 1
is shown the behaviour of {(y) as a function of #.

From the diagram we conclude that equations (2.46) have an infinite number
of solutions. In order to make ¢,> 0, however, we must have ¢> 0. Hence, only solu-
tions with '

(2.47) n+PHr<y<n+ l)n/ -

are acceptable. Accordingly we have only a finite number of solutions (which satisty
our requirements). Since - A

(2.48) Hm+Pat=(-1'(n+dn
it is easily seen that we have p acceptable solutions when
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A - 275! e o Nj_ —A(l + é'j.x_. Cj... -
(2.35) (€.8,)e BEAD L 2L) -0 (22 e ML 0.
TG+m+)LG—m+j) T\, ¢
Substituting the values of {; and {, given by equations (2.31) it obtains
(2.36) 2nifdy*(1—cH} ezivc+_e—inj(1+C>jezw_etuj(1—C>je—2sr___0
I'G+m+HI'GG—m+j) Al—e 1+c/ :
where _ _ |
(237 Y =r—ry—k?
and, due to the definition (2.8),
2, 42
(2.38) Jj= ——ic?'+k , . m2=é—-r0—c2(y2+k2). '

Equation (2.36) may be written

gimer__T@+m4)TG—m+))
i

(2.39). sin(?.yanj—ij]nlig).

—c
Since the asymptotic expansions implied finite values of |/| and |m], it is seen from equa-
tions (2.38) that we must have |¢|<1 when y > 1. By taking ¢=0 as a first approxima-

“tion, the next approximation can be found by putting ¢=0 on the right hand side of
equation (2.39). This will be carried out later considering the case that 0<ry <.
We will, however, first discuss the instance that :

i‘0=0.

In this case the right hand side of equation (2.39) tends to infinity as ¢ tends to
zero. We therefore write the equation in the equivalent form

P nar TG +m+)IG—m+))

4 ' j
@0 ! w(k—m+))

sin (2}:—::]'— if lnﬁ) .

1—c¢

We may now choose ¢=0 as a first approximation, and the next approxima-tion
may be found by putting ¢=0 on the right hand side of equation (2.40), This approxi-
mation will then be given by the equation ) '

(2.41) jelA < ~-j—£sin2y.
We first niotice that this equation has a solution with a positive real value of j when

(2.42) @N—Dn<2y<2Nm,
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Accordingly we may substitute the solutions (2.25) in the frequency equation (2.24).
Using furthermore the asymptotic expansions (2.21) and (2.20), and retaining only
the first term in (2.20), the frequency equation approximates to

' o GV —sc-, (G s -
' (2.28) L 22 72 =a)+ 21 3 -0,
. {4 2
Substituting the values for {; and {, from (2.12), this equation may be written as
(2.29) (_%_—_C__)z":e TR,
—1—=

This equation has no solution satisfying the assumptions made above in order to use
our asymptotic expansions. '

We will then assume
(2.30) . ry—ro>k?

The values of /,’1- and {, may then be written as
(2.31) (i =2e7" D (ry —ro— k(1 +0), (=26 (r;—ro— kP (1 —0).

With the same assumption of ¢ as before, we find

(2.32) —g<argé’1_<0 O<arg62<g.
In this case, we notice that Z,({,) cannot be given by the last of equations (2.25).
We have to return to equation (2.23) in order to find Z,({). given by the Whittaker
functions valid in another region. Taking the lower sign in the last of equations (2.22),
solving it together with the first of the equations with respect to M, and M;_, and
substituting in the last of equations (2.23), we find '

2mi
IG+m+NHTE—m-+j)

(2.33) Z,(O)= ¢ i Wil +-e Zniiw_ j,m((: e Y.

_ valid when 0<arg{<n.
Substituting equation (2.25) for ZI( {1, Zx(¢,) and Z;({,) and the above equation
for Z,((,), the frequency equation (2.24) may be written

2ni . -
W'.m C W'sm C +e"lﬂ} W'sm C W':m Ze-m
- eiﬁj I/Vj’ni(gleiﬂ) Wj:m(‘CZ) = 0 *
Again we find an approximation to the frequency equation by use of the asymptotic

expansions (2.21) with (2.20) retaining only the first term in the last equation. This
approximation may be written

(2.34)

e ey o S T Ty L s e o o T e sty i e oy e
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VW},m(O=Cj8_%ij(C): ' IargCI <n,
2.21) | |

W_;Ce" =™ et (=0,  |argCet™)|<m,

The relations between the Whittaker functions and our confluent hypergeometric ~ ﬂa" :
functions M ,, (formula 2.11) are given by

: I(—2m) 1"(2m). ,

W. =-— - M. _ M. _ =<
J’m(C) r(_%.,__ m _j) .J:m(C)‘i' 1_,(%_[_ m -—_]) i m(C) when ]arg Cl T,

{222) _ '

I'(2m)

I'(—2m) M- n(De tin(s—m)

M (e 4

W - Ceﬂ:fﬂ —
e I'G—m+j) . FG+mzj)

when farg((e* )| <.

As liﬁ-'eiarly independent solutions of equation (2.9) we now choose

T(—2m) F(2m) .
Z,()=——""—M; —M,; _
l(C) ]__‘(%- _ m_}) J,m(C) + 1_,(% +m —-j) Iy m(C)
_(2.23)
F( - 2m) 'i';:(i-+m) I'(2m) (L =m)
Zy(()=——" M ; —_— M, _ .
Z(C) r(%_m -I-J)e J,M(C)—i—r(é-—i—m—[—j)e 5 m(C)
The frequency equations becomes : '
_(2-24)7 o Z;(Cl)zz(‘:g)“21(52)22(61)=0 .

The valués of ¢, and {, are still given by the relations (2.12).
The solutions Z,({) and Z,({) as defined by equations (2.23)} are valid for all values
of arg {. Introducing, however, the Whittaker functions given by equation (2.21),
we find o
Z (D) =W; () valid when —n<arg{<n
(2.25) |
Zo)=W_ ;™  valid when —2z< arg{=<0

Putting ¢=c,}ic,, it is a known fact that |¢,| <1 when ¢ 3-0. Restricting ourselves to
discussing instability waves, we must further have :

(2.26) : ¢;>0.

Assuming first k2 +7,> 1y, we see from (2.12) that

(2.27) —n<argl,<—2, -2

3 3 <argC2<q.
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- (2.15) [ri—ro| <1, k<1, : -
Then the frequency equation (2.14) reduces to

' —1—c\*™ -
(2.16) | (TJ:) 1
‘where in our approximation, we ﬁay write
(2.17) ' m=(}—ro)t

The frequency equation encountered here has been discussed previously by one of
the authors (1953c). The result of the discussion may be briefly resumed thus:

For
) 7'02 _%,:
no instability waves with exponentially increasing amplitude occur.
For ' ‘ ‘ S
ro>%
ordinary stability waves occur. For
1"0 < _% 3

a finite number of ordinary instability waves will appeaxj. ' _ |
c. Large values of |(y] and |{,]. For large values of |¢,| and |{sl, which implies o
(2.18) = —ry>1, |

we may expand our solutions in asymptotic series. With this in mind we introduce the
Whittaker functions defined by the asymptotic expansions (|{[> 1, finite values of | Jl
and [m|) - o . T

W=t 40, Jarg]< 2
(2.19) |
W (&™) =™ et £, (~0), |arg(ce®™)| <%ﬂ
where o o _
2_.¢: 2 .2 . 2
(2.20) IO=1+ 3. e ) }';'{CT “-ptd} -

The asymptotic expansions are inconvenient for arguments in intervals in the
neighbourhood of the upper and lower limits. In the following” we will consider the
expansions in a more narrow region than that given above in order to get a valid
approximation by retaining only one or a few terms of the series. With this aim we
write ' C '
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a1 ic{r—ro) 14,
(2.6) Z +[ P :0 ;2)%C+{r1+cz(r1-ro)}zz-]2—0.
Here | .
@n n=r),  ro=r(0),

are Richardson’s numbers at the rigid planes, z=+1 and at =0 respectively. The
primes now denote differentiation with respect to {.
With the abbreviations '

. 1e(r;—ro) 2 1 2
@9 i a0,
we obtain finally as dlfferentml equation for Z
. . . _L 2 :
(2.9) L z”+|:-—l+1'+"*—-—-]z=o.
‘ _ 4 { 2

This is Wrrrraker’s form (1962) of the differential equation for confluent hyper-
geometric: functions. Its general solution, assuming 2m different from an integer, 1

(2.10) Z() =AM, (0)+ BM,,_,(0)

with. 4 and B arbitrary constants and M; () given by

$rm, 4L I'{il4+2m) & I(p+i+m—j) v
IG+m—j)p=0 p!T(p+1+2m)

In order to obey the kinematic boundary conditions Z must Vamsh at the rigid planes
z==—1] and z=1I, or for

(2.11) M;(O={

2.12) =203 +ro—r ) (=1=0), L=2K+ro—r)}(1—0).
Thus '
@13) Z(t)=2()=0.

These equations together with cquatlon (2.10) then give the general frequency
equation

@14 Myn(EOM - nC2) =M COM jC2) =0.
In the following we will limit our discussion to the cases that 1) |{,] and |{,| are
small; and 2) [{,] and [{,] are large. ,

b. Small values of |{,] and |{,|. From our expreséion (2.11) for M;,, we see that for
sufficiently small values of |{| and for values of [j] of order 1, we may retain only the
first term of the right hand side of (2.11). These two conditions imply that we must
have - _
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with # given integer values satisfying the relation

(1.28) (n+Hn<xh.

According to Tormien (1935) the existence of a neutral wave in a shear flow of an
 inviscid homogeneous-incompressible fluid implies that exponentially instability waves
will occur for wave numbers slightly less than that corresponding to the neutral wave,
Previous work by one of the authors (1953b) indicates moreover that for the harmonic

velocity profile exponentially instability waves occur for all £-values smaller than that

corresponding to the largest £-value giving a neutral wave, excepting the discrete set
of k-values corresponding to neutral waves. The discussion is carried through for
k = 0 and for varying height of the layer. '

It scems improbable that a sufficiently small gravitational stability, i.e. a sufficiently
small value of a in equation (1.20), should cause a disappearance of the instability
occurring for homogeneous fluid (¢ = 0). It may also be reasonably assumed that a
similar instability will also occur for the case considered in our first example when
neutral waves occur. In the next section we will show this last assumption to be true,

2. The stability of Couetteflow of a fluid with a variation of static stability
given by a second degree function of height

~a. The general solution. Putting in equation (1.6)

@.1)  Beaz+b, U—oz,
we obtain |

: , ‘.
(2.2) le_(kz_g az +b2)z=0-

(xz—c¢)
Introducing here the Richardson number 7 given by
g8 _g(az’+b)

(2.3) r(z) =i Tz

our equation takes the form

M@ 7 0.

=) '

We may conveniently choose % as the unit of length and a-! as the unit of time.
Introducing further a new independent variable given by i

2.4 _ A .

@.5) =20y —re— kD)),

equation (2.4) may be written
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For ¢ = 0 this equation has the solutions
Z, = Acos(i® +ag—k*yz

(1.21) ,
Z,=Bsin(x*+ag— k*z .

Instead of the relation (1.13) we now obtain as a necessary requirement for special -

solutions satisfying the boundary conditions,

122 | ag> —i?.

Thus with the velocity profile (1.18) special solutions satistying the boundary

conditions are possible also for gravitationally unstable stratification. -
When

(1.23) P —
2\/x2+ag

we do not have any solutions of the considered type of our boundary—valfue problem.

When

(1.24) - I 52

Vil +ag 2/x +ag

T

we have only one solution (the Z;-type). '
When
3n ShE o

(1.25) _ 2
2\/rc2+ag \/K2+ag

we get one solution of Z;-type and one of Z,-type, and so on.
The wave numbers giving special solutions are in the interval given by

(1.26) 0= kz<§(x2+ag). :

For the quantity ¢ equal to zero we have a shear-flow of an incompressible and
homogeneous ideal fluid with a harmonic velocity profile. Neutral waves of the special
type will exist when 4 is larger than or equal to half the wave-length of the velocity
profile. The corresponding wave numbers are given by '

3

' (1-.27) | | ' k? =’ _((____n + %)n)z
h
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while the second solution Z, satisfies the boundary conditions when
m’n?

2—-
(1.12) W=

m=12,...,

In order to obtain special solutions satisfying the boundary conditions we see that
the quantity a must necessarily be positive,

(1.13y ' a>0.

. Thus we must have gravitationally stable stratification. We further see that # must
satisty the relation

1.14) - - .
(1.14) | _ ngag

if special solutions of our boundary value problem shall be possible. For

(1.15) | L

Vag  2/ag

we have only one solution (the Z,-type).

For

371_>h‘2 —,

2 /ag Jag

we have one solution of the Z;-type and one of the Zy-type, and so on. The wave hum—
bers giving these solutions must be in the interval given by

(1.16)

-

- (1.17) , 0< k2<§ag. |
As another example put
(1.18) | U=agsinkz,
which implies .
(1.19) U'=-xU.

Keeping the relation (1.7) unchanged, our equation (1.6) becomes

rr . 2 .
(1.20) : Z"—(kz—fc2 v _-99U )ZxO. :
U—c (U-0)*
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Disregarding the kmcmatlc effect of density variations (Boussinesque’s approxima-
tion) the equation governing two-dimensional perturbatlon (in the xz-planes) of the
basic flow is easily shown to be given, by . -

ot ox x/dx

' 0 0 272 1 w 62‘// 7
( — — PV — Z2) g =
(1.4) ( +U - ) U (5t+ U@ ) —B( ) 0.

. . ) o
Here  is the stream function of the velocity disturbances, U = o and g is the
acceleration of gravity, ; < : :

Attempting a solution of the form

w = Z(2)e D

we obtain for Z the equation , . ‘
) : ‘ » 5 _

1.6 | (kz v . __ b 2)2:0.

‘ : U=c (U ) :

If this equation has real Eigen—values ¢ such that U at some level z = z, in the fluid
equals ¢, the corresponding Figen solution will in general have a singularity for z = z;.
In special cases, however, this singularity will riot appear. We then obtain _special
solutlons without singularities and with real values for ¢. For instance, if wé put’

an ﬁ=aU2,
and
(1.8) ' : U=uz,

i.e.-Couettef'low? our equation (1.6) takes the form

(1.9) z"—(k2 agU” )z=0.
(U-c)?

For ¢ = 0, this equatibn has special solutions which may be written

Z, =Acoslag—k? *z,
(1.10) |
Z,=Bsin(ag —k*)*z. -

The first solution Z, satisfies the boundary conditions when

hz (n+}_)2 2
ag—k?*’

(1.11) n=0,1,2,...,
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Summary. The equation governing perturbations of a linear flow of a stratified fluid is
shown to have ‘special’ solutions without singularities in special cases of density distribution and
velocity profiles. For such cases a stability criterion is suggested (see also HorLanp 1953a) in anal-
ogy with thg criterion valid for lincar flow of a homogeneous fluid when ‘special’ solutions occur.

The perturbation equation for a special model (linear Couetteflow and a second degree
expression with height of the static stability) is solved. By use of asymptotic expansion a frequency
equation is developed and discussed. ‘The stability criterion suggested is confirmed for the model.
It is also shown that when 1io special solutions exist, instability waves may occur.

Introduction. In two earlier reports (HorLanp 1953 a, 1954) one of the' authors
of the present paper took up an investigation of the effect of a continuous variation of
gravitational stability on the stability of a linear flow of a stratified fluid. Sections 1,
and 2 a and b of the present paper present essentially a review of the results of these
investigations. In section 2c a correction is glven of the frequency formula in Horranp

(1954) for asymptotic solutions of our governing equation. The asymptotically correct
frcquency formula is discussed in some detail. :

1. Some special solutions of the perturbation equation

Let the basic motion be given by

Ly - _ ' - U=U(@),
in a fluid eontained between rigid horizontal planes at the levels -
1.2) _ z=—h, z=h, -
Let further the density in the undisturbed state be given by

-—foﬁ(z)dz -
(L.3) p=pee .

and the fluid be considered incompressible.
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