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Summary, A stationary, meso-scale, small-amplitude disturbance of a straight baroclinic -
air current on the rotating earth is studied on the basis of quasi-static linéarized equations.
It is shown that an undamped train of stationary, horizontal inertia waves will exist on the
lee side, representing a drain of wave energy downstream. The wavelength is proportional to the
‘current velocity and will thus change with height, producing a vertical shear which increases
indefinitely downstream. It is suggested that a transition to turbulence will take place at some
considerable distance from the mountain. - o

Introduction. Most of the extensive literature about mountain waves in the
atmosphere concerns waves of the internal gravity type, where the horizontal length
scale (and hence, the time scale) is sufficiently short so that the earth’s rotation can

be ignored. Also, long mountain waves of the Rossby type have been the subject of -
- several studies. However, neither of these theories is applicable if one wants to deter-

mine the characteristics of air flow over a mountain range of horizontal scale of the
order 100—1000 km, e.g. for the purpose of calculating the distribution of meso-
scale orographic precipitation. In this case, the relevant waves will be of the mixed
gravity-inertia type, and they are sufficiently long to be treated as quasi-static.

From the linear theory of such waves, A. Eriassen and Parm (1961, Ch. II)
established a relationship between the fluxes of wave energy, heat, and momentum
in a vertical plane normal to the current. This relationship is valid when the disturbance
vanishes far upstream as well as far downstream. ' a

Recently, Jones (1967) studied linearized gravity-inertia waves, and found that
rotation is important near the levels where the particle frequency equals twice the
angular velocity, since the governing differential equation is singular at these levels.

The present paper deals with the stationary disturbance produced in a baroclinic
current flowing across a meso-scale mountain ridge on the rotating earth. Using the
linearized quasi-static equations, and performing, as usual, a Fourier transformation
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of the variables, a singularity of the type discussed by Jones will appear at the level -

where there is resonance between the particle frequency and the inertial {frequency.
The singular level will change with the wave number. The main objective of the study
is to clarify what effect this singularity will have upon the composite disturbance pro-
duced by a mountain ridge. ' 7

The objection might be raised that possible short-wave baroclinic instability

(GREEN, 1960) is eliminated @ priori when the disturbance is required to be stationary.

If effective, such instability would make a stationary state impossible. However, the
author assumes that, for the scalés considered, such instability is too weak to be felt
within the adjustment time necessary for a transient motion to approach a steady state
within a limited area of the order 1000—2000 km.

2. Mathematical formulation. We shall consider a stationary wave disturbance
of a baroclinic current and assume the horizontal length scale of the disturbance to
be sufficiently large so that the quasi-static approximation applies. The equations
may then be written in pressure coordinates. On the other hand, we assume that the
scale of the disturbance is small enough so that the curvature of the earth may be ignored
and the Coriolis parameter f may be considered constant. These assumptions restrict
the wave spectrum to the band from wave length 100 km to 1000 km, approximately.

The basic current. Let x, y denote horizontal cartesian coordinates along and normal
to the current; let z denote height, p pressure, f Coriolis parameter, R gas constant, .7’
temperature, k=c¢,/c, specific heat ratio, and g, (=1 bar) a reference pressure. The
basic state is characterized by the velocity distribution U(p), assumed independent
of », and the distribution of specific volume «(y, #). These are related to the geo-
- potential ®(y, p) through the geostrophic and hydrostatic relations: ' '

fu=-22 - Q.1
v o .
a= -%‘E 22)

The distribution of potential temperature @(, p} in the basic state is obtained from

Po\P i

1/x ’
@(y,p)=5(£) «(3,p) @3

The bafoclinicity of the basic state is characterized by

x_200_dU - 2.4)

dy ©ady " dp




No. 6, 1968 - ON MESO-8CALE MOUNTAIN WAVES ON THE ROTATING EARTH 3

which is a function of p only. As a measure of the static stability of the basic state, we
take the quantity - _ -

® Jp dp «xp .

Although this quantity will vary with both y and p, its y-dependency is typically quite
weak compared with the pronounced variation with 2. For the sake of simplicity,
we shall here consider ¢ as a function of p alone. '

- We may express ¢ in terms of the buoyancy frequency (Viisili-Brunt frequency)

g 00\* 1dp RT
N= — i H=-—-_°"__"__:
( ) 52) and the pressure scale height Pz g

In this equation, the variation of H with height is relatively unimportant, so that &
may be considered constant. L
The linear perturbation equations. The disturbance will be assumed to Be independent
of the y coordinate. In the perturbed state, the velocity components in the s~direction
and y-direction are U(p) +u(x, p), v(x, #); the individual rate of change of pressure:
isw(x, p); the geopotential is ®( y, p) + g (x, ), and the specific volume «( y, p)— bp(%, )
(subscripts will be used to denote partial derivatives). |
The horizontal equations of motion, the equation expressing conservation of
potential temperature, and the continuity equation become after linearization: -

- Vu+¢)—fo+ U, w=0 (2.7)‘
(Uv),+ fu =0 ' (2.8)
(Udy)y—fUp+ow =0 (2.9)
u, +w, =0 (2.10)

P

In this system, Uand o are functions of p only, while f is constant.
Eliminating », », and ¢ between (2.7—2.10), we find the following fourth order
equation in @:

U0t f *w,p—2f 2%’ o+ (6 —UU, )0, =0 - (2,1 )

Boundary conditions. The elevation of the ground surface will be assumed to be in-
dependent of y. The simplest formulation of the boundary condition at the ground is
~obtained by ignoring the slope of the isobaric surface compared with the slope of the
ground, thus considering the ground as a given surface in pressure coordinates: '
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p=pe—P() @12)

where p¢ denotes a constant mean pressure at sea level. The linearized boundary
condition at the ground thenis

o(%,p)= — U(pe)P, (2.13)

To obtain a unique solution, we need in addition a radiation condition at the top
of the atmosphere. Since waves generated below will acquire a large amplitude as
they propagate upward through the high atmosphere, we cannot apply the linearized
equations all the way up to p =0. We must therefore leave out the layer above p =pr,
say, and apply the radiation condition at the level p=p.

3. Flux of energy and momentum. The wave energy equation is obtained by
multiplying (2.7) by u, (2.8) by s, (2.9) by 67%¢,, (2.10} by ¢, and adding:

I:%(uz 3v? +1¢§)U + d)u] +(¢pw),=U, qub,, ~U,uw 3.1
g x 2

Here 1(u?+22) is the kinetic wave energy and (1/2¢)¢,? the potential wave energy
per unit mass. The left-hand side of (3.1) is the flux dlvergence, and the rlght-hand‘-

side the rate of production of wave energy. In this context, “production’’ in reality
means transformation of basic current potential, internal and kinetic energy into wave
energy.

We shall consider the disturbance generated by a mountain rldge of finite extent
_in the a-direction, and assume that the disturbance vanishes far upstrcam, Le. for
x— — oo (we assume U(p) >0 at all levels).

We integrate the wave energy equation (3.1) with respect to x between — oo
and + co. With the notation

= J (32)
we find

(g(u2+v2)+§[—f¢§+¢u) +(¢co)p “f—vd)l, U,ua (3.3)
g .

provided that the integrals exist. The first term on the left is the wave energy which
escapes downstream. The second term is the integrated vertical flux divergence; hence,

F=jo | (34)

is the integrated vertical wave energy flux, reckoned positive downward.
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On the right, we have the integrated production terms. We note that wave energy
is produced (i) by horizontal eddy flux of sensible heat towards the cold side of the
current, and (ii) by vertical eddy flux of momentum in the direction of decreasing
velocity. Both production terms are seen to vanish in a barotropic current.

‘We shall derive another expression for the vertical wave energy flux. Introducing
the particle displacements in the J-direction, #(x, p), reckoned from their upstream
positions, we have in linear approximation

Likewise, we may write _ _
o=UTI, (3.6)

where I(x, p) is the change in- pressure for a particle from its upstream value. When
these expressions are substituted in (2.7), (2.9), and (2.10), these equations can be
integrated to yield °

Uuté—fUn+UU, =0 6D
Ud,—fUU+0UIl =0 (38
u - (U, =0 - (39

where the integration constants vanish since all variables vanish far upstream.
Multiplying (3.7) by o, (3.8) by ( flo)v, and subtracting, we find

. . 2
Uuw+ ¢w—£UU¢p= uLUUpnv+fU(nco+Hv)'— UU e
o o

, (3.10)
2 . .
= U(;_UUPWZ— quII+%UUI,H2)
o x
Integration with !respect to x yields
oo == —\ [ f? 2 2 ' :
F=¢o=U{ Zvp,~uw |- U 3_UU,,n —fUnll+300 11 (3.11)
a g xX=00

It 4, v, ¢, and ¢, all vanish, not only far upstream but also far downsiream, then
the integrated energy equation (3.3) gives ' '

F,=(30),= U,,(iaa,, —m)z- ﬁ[ U(Ir,ap _m)] - Ui(i
4 ap c op\ o

Moreover, if # and II vanish far downstream, we obtain from (3.11)

F=go= U(f,r,sp —izas) | | (3.13)
a .

v=Un, | )

:E;,-%) (3.12)

B L W 2T T T e T L fesi Dt D i s e i
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Under the conditions when (3.12) and (3.13) are both valid, it follows that

U_(ivqbp— uco) =0 | - (1
ap 7 '
so that '
F_f— |
E=_v ,—uw= constant with height - (3.15)
g

in a layer where U has no zero.

This theorem (or rather the more general theorem for the case 4/9y=-0) was proved
by A. Eriassen and Parm (1960). However, their proof depended upon the condition
U,#+0, whereas the above derivation shows that this condition is not necessary.

Using (3.8), (3.5), and (3.6), equation (3.15) may also be written

L (Fi=ww= constant with height (3.16)

U

The quantity on the right may be interpreted as the vertical flux of angular momentum,
shown to be constant with height by Jones (1967).

4, Fourier transformation of the variables. As usual in such problems, we in-
troduce the Fourier transform: '

w(x, p):Re?}&;(k,p)eikxdk 4.1)
: 0 . )

and similar expressions for the other variables.
From (2.11), we find the equation to be satisfied by :

( g2t )wpp+2——w +(o— UUFF)EJ=0 (4.2)

This equation has regular singularities at the level where U(p) =0 (the critical
level) and at the levels where U(p) = % flk. We shall assume here that U>0 at all
levels, so that there is only one relevant singularity, p =g, defined by

vip)=1 | 4.3)

_ k : ‘
Within the range of wave lengths considered (100—1000 km), f/£ is of the order 10 m/s,
so that the singularity will actually appear within the layer pr <p <pe for normal
values of the wind velocity.
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From the Fourier transform of (2.7), (2.8), and (2.10), we find the following ex-
pressions for #, o, and ¢ in terms of @: '

4= 4.4

i=-La, @)

o=t Kfz_uz)a +UU a;] 46)
kU \k? PR '

Wave energy flux. The integrated vertical energy flux ¢w may be expressed by Parse-
val’s formula:

F=$a=nRe [pa*dk 4.7
| 0

where the asterisk denotes the complex conjugate. A sufficient criterion for the vahdlty
of this formula is that the 1ntegrals j' Icﬁ!zdx and f |a)‘2dx both converge. Assummg

this to be the case, and using (4. 6) 1t follows that the contribution to F from wave
number £ is: ' o '

- rrgn WU f* |
F=nRe(dw¥) =nT(1 — 7 2)Im[wpa:o*] (4.8) -

where Im denotes the imaginary part. If u, v, ¢, and ¢, all tend to zero as ¥ — + oo,
so that no energy escapes downstream, then (3.15) is also valid; the corresponding
equation in the Fourier transforms is

th 1—-_—f2 Im[ @,@*] = constant with height | 49
U ok vzt | : )

Solution for a layer with constant U and N. In a layer of constant wind Veloc1ty U
and constant buoyancy frequency N, we substitute for ¢ the expression (2.6), Ignoring

the slow variation of H with height, the solutions of (4.2) may be written

wo=Ap*tiyppts | when k<l}ji (4.10)

o=Ap*t L Bpt-it  when k>% ' (4.11)
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where 4 and B are constants (functions of £), and
+2yr2
ﬂ2=-_,12=;£+1_\; B p>0, >0
[ _ye o (4.12)
k2

F.ro,m (4.9), the corresponding vertical wave energy flux is

27”1’ f 2 & f ‘ I

=T (k2 U );m[A B] when k<.i]— (4.13
fe A f? | 2 g2 | ‘ . _.f_ -

kU(U m_k") (]A| IB] ) when k>U (4.14)

Thus, when & > /U, $'** gives a positive (downward) and p?—4 5 negative (upward)
energy flux, :

5. Solution near the singularity U = f/k. At the singularity U =f/k in equation
(4.2), the particle frequency Uk becomes equal to the inértial frequency f. We shall
study the behaviour of the solution in the vicinity of this singularity. _

For this purpose, we may develop the coefficients of (4.2) in power series of p—p;,

s being the singular level defined by (4.3). Instead of p— p,, however, we shall here
use the non-dimensional quantity | '

-Mzbﬁ)—z | 5.1

Assummg U,+0 at the singularity, ¢ will have an ordlnary zero there When ¢ is in-

troduced as new independent variable, i.e.

d d d? d> d
= 2 +qpp"— . (5'2)

_._q g —
dp dg’ ap® d dg® Tdgq
equation (4.2} assumes the form
qq 1ife U, \~
g, +{ 1+2222 22 Wyt = ———22 =0 . 5.3)
aq ( p q q;; U2 U . - (
- = »]
If we write the coefficients as power series in ¢ and substitute o=¢" Y a,4" , we find

n=0
that the indicial equation has the double root r =0, A fundamental system of solutions
may be expressed as
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w=1+ Y a.q"
r=1
(5.4
532=cu1-lnq+ Y b.g"
n=1

The general solution of (5.3) (and hence, of (4.2)), valid where U(p) >0, may be
~ written h

&=A[(1+ F(@)) ln g+ G(q)] + B(1+ F(g)) (5.5)

where 4 and B are complex constants, and where the functions F and G are analytic
and satisfy the conditions

Thus, near the singular level ¢ =0, we may write

w=Alng+B+0(glng) (5.7)

From (5.1), we have
Ij; (=0, 4=201-0) =2 0~0""U, =200, 2) +06 68

and consequently we get, by differentiation of (5.7),
,,(ps)—-+0(1n 9 (5.9)

Substituting (5.7) and (5.9) into (4.4
the other variables:

i=2U A 16 (ng) (5.10)
f q :
= - 2U,(p)2+0 (ng) (5.11)
S q
$=%[A(Inq 2)+B]+0(glng) - (5.12)

Thus we find that & and ¢ have logarithmic singularities at g= =0, while # and 7 have
poles. :

These formulae hold on either side of the singularity. The question then arises
how the solutions on the two sides are to be connected; in other words, we must de-

F(0)=G(0)=0 (5.6)

.6), we find the corresponding expressions for

AR AR e ) L S LA
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termine the proper change of arg(¢) as we pass from one side of the singularity to the
other.

The analogous problem for the branch-point singularity U{p) =0 (the critical
level) has been dealt with recently by Booker and BRETHERTON (1967). They point
out that the solution of the corresponding initial value problem leads to the inversion
formula for the Laplace transform, taken along a parallel to the imaginary axis on
its posmve side, and that, in the Fourier wave number plane, this would correspond
to moving the singularity U =¢ away from the real axis by letting the phase velocity ¢
have a positive imaginary part. This determines the sense of the change in argument‘
from one side of the critical level to the other.

The same method applies in the present case; thus we move the singularity ¢ =0
to a point defined by

U=;+ici; O<g< <£ , (5.13)
(A0,
qs= e %21'?& - (5.14)

This means that ¢ in (5.7) and (5.9—5.12) must be replaced by [g—2i (k{f)e;]. For
g>>2(k[f )e;, we choose argl[g—2i(k(f)c] =0. As ¢ decreases along the real axis,
arglq —2i(k[f)e;] decreases.continuously from 0 to —=.

The assymptotic stationary solution for large ¢ is obtained by letting ci->0 from. the
positive side. Thus we have

0 when ¢g>0
arg(q)_{_n when g<0 G.15)
and
_|Injq , q>0 '
Ing |Injg|—in, g¢<O (5.16)

We are now in the position to calculate from (4.8) the contrlbutmn trom wave
number £ to the total vertical wave energy flux:

2r

F =—U EAT Im{[f +0(ln q)] [A*(ln q)*+B*+0(g1n q):l}
q .

or

[Cosoamann +0@ing’  when g0
p=l® (5.17)

l-zg U( ps)[Im(AB*) +7|4[*]+0 (g(In ¢)*) when g<0
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Thus the flux is discontinuous at ¢ =0. Since ¥ is reckoned positive downwards, and
since ¢ <0 below the singular level when U, <0, and above it when U, >0, it follows
that the term (2n2/k)U, |42, which appears for ¢ <0, is always dlrected fowards the
singular level. Therefore the jump in F across the singularity has always the sense
of a flux convergence, and we may write -

AF = F(p,+0)~ F(p,—0)=— %'UPHAF - (518

6. Effect of the singularity upon the solution. In the preceding section, we
have considered the Fourier-transformed variables as functions of p (or ¢) for a given
_k; in particular, we have considered their variation near the singularity p =g, (¢=0).
The constants A and B appearing in (5.7), (5.9—5.12), and (5.18) must be determined
from the boundary condition at the ground and the radiation condition at the top;
they will turn out to be functions of £.
To obtain the solution at a particular level, we must keep p fixed and perform an
integration over wave number as shown by (4.1).
We shall not attempt here to give the full solution of the problem, but only study

what conclusions can be drawn from knowledge of the behaviour of the Fourier- |

transformed variables near the singularity, as expressed by (5.7) and (5.9—5.12).
When (5.7) is substituted into (4.1), we obtain '

w=Re [(A(k)ing +B+0 (gln q))e"dk ' 6.1)
0
The integral is taken over all real positive values of k£ with p kept constant. As £

varies, the singular level p, defined by (4.3) will vary too, and coincide with the chosen
fixed p for k =k, (p), where

s(p)—i | | (6.2)

From the definition of ¢ in (5.1), we have

2 .
4k, p)== ks(p) | (63

Thus ¢ has an ordinary zero at £ =£,. :

We assume that 4 and B are bounded and absolutely integrable. Then the integral
(6.1) can be performed right across the singularity, and converges absolutely. Hence,
by the Riemann-Lebesgue lemma,

lim w=0 (6.4)

X o0
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By the same argument, it follows from (5.12) that

lim =0 65 -

X—+dJ- o0

The matter is different for  and », however. Substituting (5.10) into the Fourier integral
for z and using (6.3), we find

A(R)K?
K-k

u(x,p)=Re%} J [U;,(ps(k)) +0(In qj:lef*xdk (6.6)
) ,

where p, is defined as a function of £ by (4.3). The integral is ambiguous because of
the pole at £=£,. To overcome this, we invoke Booker & Bretherton’s argument
referred to above; thus, in accordance with (5.13), the singularity & =£, is moved to

k=S f (U+ic), >0 6.7)
U(p)—w-ic', U2+Ci ' i .

This shows that the integral (6.6) should be taken below the singular peint £=£,.
The integral (6.6) can, of course, not be evaluated without knowing the. exact
form of the integrand; but the information we have about the singularity suffices to.
determine the asymptotic form of u(x, p) for large Jx]. ' -
We consider the expression

@0
eikx

um<x,p)=Re},"-Up(p)A(ks)ksf dk ©8)

0 k—ks

Since, by (4.3) and (6.1), p,(k;) =p, it will be seen from (6.6) and (6.8) that u—u_
is defined by an integral which converges absolutely. Thus, from the Riemann-Lebesgue
lemma,
lim (u-u,)=0 - (6.9) .
Jxt=eo
and u(, p) may for large [x| be evaluated from (6.8).
The integral (6.8) is obtained by integration around a closed contour of the form
shown in Fig. la for x <0, and in Fig. 1b for #>0. For large |z, it follows that

0 when x<0
. 6.10
uco(xsp) = U (p) ) ) ' . ( )
—2n- ZZRe[A(k)e VP | when x>0
U(p) o
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In the same way, we find from (5.11)

0 when x<0

6.11

Uoo(x,p)= U . ( )
ZR-IFPIm[Ae“f"/U] when x>0

From (6.4), (6.10), and (6.11), it fol-

lows that all dependent variables tend to -

zero as x— — co, in accordance with the
assumption madein section 3. For x — + co,
o and ¢ tend to zero (thisis necessary for
the existence of the integrated vertical
wave energy flux ¢w), whereas there is an
undamped train of inertia waves in the
variables # and . '

It is noteworthy that although ¢ and
o vanish for large positive , ¢, and v, do
not; from (5.9) it follows

a)p,oo(xap) == évm(xsp)

Moreover, from (5.10) and (5.12) it will
‘be seen that

¢p,m(xsp) =

When these expressions are integrated with
respect to p, the result is zero by interfer-

Ut (5.1 6.13)

6.12)
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Im{k)}

S FRe(®)

!

N

/

a A /
/
74
7
”
Im(k)
L - ~ -
~,
. ~
w
b v \
\

\

\

ke i
7 > Re(k)

Fig. 1. Paths of integration in the complex £-planc.
a: x<0. b: x>0,

ence, because the phase varies rapidly with height for large positive x; thus, we find again

(6.4) and (6.5).

It will be seen that the asymptotic solutions for large p051t1vc x given above

satisfy the system (2.7 —2.10).

Wave energy flux. Clearly, the undamped wave-train for large positive x must
represent a drain of wave energy. This drain is represcnted in equation (3.3) by the

terms in the brackets on the left.

From (6.10) and (6.11), we find the following expression for the kinetic wave

energy escaping downstream:

U
"2-(“2 + vz)x= +w =27

ZEEAZ 6.14
24 6.14)
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It is interesting to compare this expression with the integrated vertical energy
flux convergence, which is the last term on the left of (3.3). -
From (4.7),

F=¢o= 0} F(ke,p)dk . (6.15)
0

It has been shown that # must have the form (5.17). In this formula, 4 and B are func-
tions of %, p, is a function of £ defined by (4.3), and ¢ a function of £ and p defined
by (5.1). F has a jump for g =0; in the integral over £, this jump takes place at &k =k,(p),
according to (6.2) and (6.3)- Thus we write

ks 0. )
F=dw= [ Flk,p)dk+ [ F(k,p)dk (6.16)
(1] ks
Differentiating with respect to g, we find .
-, dky 4 BON\GR
Fp=(¢w),=—[F(k,~0,p)- F (ks+0,P)]+( f+] )—dk (6.17)
dp 0  ks/Op

Using (6.2} and (5.18), and remembering that the jump in F is always a flux conver-
gence, we obtain

o~

F,=(¢w),=—2 2U§|A]2+ kf T dk | 6.18
A TIe B ) 619

We may look upon the first term on the right as that (negative) part of the vertical
energy flux divergence which is related to the singularity, whereas the integral to the -
right is a flux convergence which is present even without the singularity.

Comparison between (6.18) and (6.14) shows that the vertical energy flux conver-
gence due to the singularity equals the horizontal flux of kinetic energy far downstream.
Thus, as a result of the occurrence of the singularity, part of the wave energy escapes
downstream rather than being radiated to higher levels. ' :

Concerning the remaining terms in the energy equation (3.3); we may make the
. following brief remarks:

From (6.5), (4¢).-, =0. The term (U[2)($,%) 5 is seen to oscillate with wave .
number 2k;, but these oscillations are balanced by similar oscillations in the production
term U,(flo)vg,, considered as a function of the upper integration limit. On the other
hand, the momentum flux integral 7w occurring in the last term seems to converge
(however, the author cannot prove it): Note that the Parseval formula does not apply
to the two integrals on the right-hand side of (3.3). i

7. Final remarks. We have seen that the earth’s rotation will have a marked
influence .upon meso-scale mountain waves in a baroclinic current, causing a drain
of energy downstream in the form of an undamped train of inertia waves. To find the
amplitude of these inertia waves, one would have to determine the functions F and G
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of equation (5.5) for specified velocity and temperature prbfiles and apply the boun-
dary condition at the ground and the radiation condition at the top. No such solutions
are given in the present paper.

Certain conclusions may be drawn, however, even without carrying through the -

calculations in detail. :
According to (6.10) and (6.11), the horizontal wave length of the downstream

inertia wave is

L=2:P) (1.1)

If in (6.10, 6.11) we hold x constant and consider the variation of # and » with height,
we find that they oscillate with a “local” vertical wave length

M d(argA) U, x|7* 12)

dz2\ 2z | U L

For large x, this expression tends toward zero. Remembering that the amplitude does

not change with x, we conclude that the vertical velocity gradients will increase in-

definitely with increasing distance downstream. '
According to {6.13), a similar oscillation along the vertical is found in the tem-

perature disturbance, which is proportional to ¢,. Therefore, vertical temperature gra-

dients of both signs will exist, and their magnitude will increase indefinitely with x,

- Clearly, such a motion cannot exist as a stationary, laminar flow; at a certain
distance downstream, the vertical velocity gradients will have become large enough
so that the motion field is unstable. A transition of the wave motion into turbulence
would be a likely result. '

Tt seems likely, however, that quite a long distance downstream from a mountain
would be required for such excessive gradients to form. If in equation (7.2) we ignore
_the contribution from (d/dz)(arg A), and set UJU,~10 km, L ~600--1000 km, then
x would have to be several thousand kilometers before M is as small as a few kilometers.
Still, we cannot quite rule out the possibility that the mechanism described may in
certain cases lead to the formation of clear air turbulence.
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