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Summary. By assuming the divergence to be locally constant - we have developed a closed
system of equations in the four variables: the velocity potential, the stream function, the time
derivative of the stream function, and the vertical velocity, This system of equations is solved
by relaxation procedure. The method has been tested on an actual situation and the convergence

. proved to be fairly rapid. The solutions of the vertical velocity and the stream function obtained
are compared with solutions of the vertical velocity and the stream function obtained from the
usual w-equation and the simplified “balance equation” called the y-equation, It is found that for

~ this case the vertical velocity computed by the present method is significantly different from the
solution of the w-equation. The maximum value of this difference reaches a value of 309 of the
“maximum value of the solution of the w-equation. The difference between the two stream functions
are found to be rather small.

L. The set of equations. We shall use the following definitions for the horizontal
velocity vector

- - -

(1.1) v=kxVp+Vy=0v,+0v,
k is the vertical unit vector, v the stream function and y the velocity potential.
For an adiabatic and fricticnless atmosphere the prognostic equations are:

i) The thermodynamic energy equation
3 az

| .
(1.2) - gﬁggrgv-végwmo (T.E.)

where g is the acceleration of gravity, z the geopotential height, p the pressure, w =%}

the vertical motion and

o

R is specific gas constant and Cp is the specific heat at constant pressure.

o—s ( #z  1—R/Cp g) _
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11) The vorticity equation

Py
-

(1.3) -—%V%u +; - V{V2yp +f) +cua—pV21p + (V2 +f)V v+}; « Vo x-gg-:O (V.EJ)
where f is the coriolis parameter.

iii) The divergence equation
(1.4) a—atvz,g +Y (0 Vo) 4V - (wa_p) —Ff0) -V - fVp+gVi2=0. (D.E.)

where 7 denotes the Jacobian.
iv) The continuity equation

(L.5) Vi + 22 =0. (C.E.)

In order to obtain a balanced initial velocity field, we ignore the first and second

local derivative of the divergence

9 e P o
We then obtain a “balance equation”
(L.7) V- (o- Vo) +V - ( ap) —Hfx) ~V - fVp+gViz=0 (BE.)

and a time derivative of this equation which we will differentiate with respect to pres-
sure '

9 9 0 T o B (v D )
(1.8) SV Vv))+ap(Vw 3 ap") 5

a .
AL +gvatap“0 [atap (BE)]

With suitable glven values of z and appropriate boundary COIIdlthIlS the five equations
(1.2), (1.3), (1.5), (1.7) and (1.8) form a closed system in the dependent variables

W i and iEJ_z
?P’ x’ > atw at ap'

. Jd a
The variable — -—z appears only in two terms and is easily eliminated. It is con-

3t 9p

venient to do this ehmlnation in the following way

(1.9) | (TE)—fap(VE) = a1!,(1-‘.14:) =0
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We will try to find a convergent relaxation procedure to obtain solutions of the

~

vartables ¥, v, —g«w and  from the equations (1.5), (1.7), (1.3) and (1.9). In order to

do this we shall rewrite the equations separatmg the terms (Lorenz 1960). The
balance equation takes the form

(1.10) V(o Vo) —Vif - Vo —fV2p + gV

AV oy, - Vo ) +V - (v (v, Va¢)+Va) va (f, )

a,
w—é—ﬁ-V 21 -+ Vi V: ( va) =0,

- The vorticity equation may be written

i
)

a -
iy atv w+v,,, V(VEy +f) +o, - Vf+fV3y

e
-

d e oy
. 2 20y V2 2 . et
+o, - V(V @,W wa—F-wapV p+k-Vox 5

-

ov
+;€ Vw X?’T=O

Finally we get the equation (1.9) in the form
(L12) Vzl(acu) +gv? (5 ;--V%) .+gV2 (; : az)
' AR R
9 . 2 3 gy 40
—f@(% V(V2y+f) —fa—p(vx V) +f e

faf,,(* V(YY) 4V v
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'—@ (V . "ng M Vl)x) —@V : (Z)x . V“a?v‘h)

a(Vw 939 ):0.

) 33,
The dominant terms in this equaticn are those giving the well known w-equation
: ~ az
20°0 2 — g2
(113) Vi (o) = F g YTy )) ~g¥ (3 VL)

Luckily the most important terms containing « have coefficients independent of
the other variables, and the dominant terins in y are only slightly dependent on w;
this we may utilize in our relaxation procedure.

As a first estimate we take w =@ =0 and from equations (1.5), (1.10) and (1.11)

' . . 3
we obtain estimates of ¥©@, @ and ET])(O).

We now use equation (1.12) as an equation in @ where the differential operator
has the form

2 il

(1.14) L(w) =V%(ow) +f 8p2

and where all the other terms are approximated by the above estimates. With the new
value 0¥ of @ we repeat the procedure.

Since the solution of the balance equation (1.10) is rather tlme-consummg, we have

applied an alternative procedure in the computations described in a later section.

2. The relaxation procedure. The dominant terms in the balance equatlon
(1.10) are those containing the stream function. A simplified form of this equation is
then

(2.1 V- (vy* Vou) =Vf - Vp—f V29 +gV22=0

We will now run through the procedure outlined above, retaining the solution
of the stream function ¢® obtained from equation (2.1) until solutions for w, y and

-égqp(‘” are obtained.

As a point of consistency in our simplification which reduced (1.10) to (2.1), we must
also omit the last three terms of equation (1.12). The values of w and y thus obtained
are then introduced in the balance equation (1.10) to obtain a new value of the stream
function, but in order to have a two-dimensional equation in ¥® we approximate
the term
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2.2) Vo -

‘The procedure is then repeated retaining all terms in equation (1.12).

As a reference we compared our w-values with those obtained as solutions of the
“ordinary w-equation” (1.13), which was used in the first scan; therefore the
38, = o . .
E;-gﬁ[v " (2 - Vo) —Vf - Vo] terms in equation (1.12) were omitted temporarily.

3. The numerical model and the boundary conditions. The geopotential
' heights, z, are given at the pressure levels 1000, 850, 700, 500 and 300 mb. The values
are given in a quadratic grid with mesh size equal to five degrees of latitude at the
equator on a Mercator projection. The area used in the computations extends from
5°N to 74.68 °N and from 125 °W to 50 °E. The initial values of z are adjusted so
that they satisly Rellich’s condition (see c.g. Courant HILBERT 1962) for a solution
of equation (2.1) . ' -

S 8o, 1 vy o H
(3-1)‘ 7 §+}V3>}.Vf Vw——ayfk_

where u, is the zonal velocity, which we estimate by its geostrophic value.
When Rellich’s condition is applied to equation (1.10), we find the following
relationship: ' ' S

-

Fofon Loy 1o 1 o % 17 1 9

which form the constraints on the initial values of the field Variab_les. If the balance

condition gvzx =0 is used, instead of %V%:_O, the last two terms in the relationship
(3.2) should be omitted. But if the condition —g\?“’z =0 is chosen one needs an estimate

of -%sz in equation (1.12).

In our case study we found that the maximum adjustment of z occurred at the 300
mb level and had a magnitude of 13 meters,

The upper and lower boundary conditions for the vertical velocity, o, were taken
to be '

(3.3) ©=0 at p=1000mb and at =150 mb
At the vertical boundaries we ‘Z‘put '

(3.4) 7 w=0 and y=0,
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and

(3.5) | _a;‘z}*a“@;_

where s is a line-element of the boundary. The boundary condition for ¢ is the same
as that used by Boriv (1955). This combination of boundary conditions for the velocity
potential and the stream function is not the usual one. Since there is a flow through our
area, no boundary condition of the usual type are given; i.e., 7, or v,=0, where
and v, are the respective tangential and normal velocity components.

4, Results of computations. As a test case we have chosen the date used by
PepERSEN (1963), 28 November 1958, 00 GMT. The geopotential heights of the 1000,
500 and 300 mb levels are shown in Figs. 13,

The solution, 3@ of equation (2.1) at the previously noted levels are shown in

Figs. 4—6. On these Figures we have also shown the values of |oy,|—[7,| where 2,

is the geostrophic wind. The units for y are 9.8 x 108 cm?/s and for (|;¢(0)| —Bg[)m/s
This variation appears to be what one would expect considering the difference between
gradient wind and geostrophic wind.

The solution of equation (1.13), denoted w®, is shown for the levels 925, 600 a,nd
400 mb in Fig. 7—9. (Unit baryes/s). The areas of negative values of »¥ are in good.
agreement with the positions of fronts, precipitation, and cloud areas. The conVCrgencc
of the relaxation procedure was fairly rapid, so that after f1ve scans the changes in w
[0® __w(4)|

were less than 0.025 barye/s, i.e. >0.01. These values of the vertical velocity,

w'®, are therefore considered to be the solution of the vertical velocity with the balance
equation (2.1).

The difference 0'® —w at the levels 925, 600 and 400 mb is shown in Figs. 10—12.
The difference is largest at 400 mb where the divergence field is strong, see Figs. 13—15,
and where the difference between the geostrophic vortciity variation and the true vor-
ticity variation is relatively strong. The maximum value reaches one barye/s. Generally
this difference appears to be about 309, of the @™ values. Tt is interesting to note that
the »® values are somewhat smoother than the o™ values. About 809, of this difference
was reached already after scan two, that means that o® is a fair approximation to
«®, The velocity potential z® at the levels 1000, 500 and 300 mb is shown in Figs.

13—15. The divergent velocities, z;;, are, as expected, strongest at the upper and lower
levels. At 300 mb z;; reaches a maximum of 5.3 m/s, and at 1000 mb the maximum value

of v—; is 3.8 m/s. At 500 mb the divergence field is rather weak with a maximum velocity
of 1.6 m/s. '
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The stream function, ¥, obtained from equation (1.10), with 0® and »® as esti-
mates for the vertical velocity and the velocity potential, is not much different from
the stream function 9. The differences @ — @ for the levels 500 and 300 mb are
given in Fig. 16 and Fig. 17 respectively. At the lower levels the velocities of this

difference field are weaker. At 500 mb the velocity field 2(,®_,) is strongest and

reaches a maximum value of 3.5 m/s, that is 89, of the maximum value of 2,\? at this

—

level. It appears that at this level the term Ve - -%vp—"’ is about as large as the sum of

the other terms in equation (1.10) containing o or %.

At 300 mb the velocity field 17 (40—, ) reaches a maximum value of 2.5 m/s, that

is 4% of 9@ at this level, Tt appears that condition T’;’%sz =0 gives a somewhat dif-

ferent result for ™ than the condition__%sz =0, especially at 300 mb.

With values of »®, 4® and @ we obtain from equation (1.12) a new value of

the vertical velocity which we denote D, The values of 030 show increasing ampli-
tude relative to . The difference jo™? —©| reaches a maximum value of 0.4 b/s.

After nine scans of the set of equations (1.5), (1.10), (1.11) and (1.12) the maximum
residue in w becomes less than 0.02 b/s, and the values of 99, D and O are con-
sidered to be the solutions of 9, w and y. The values of ©®? at the 600 mb level are

shown in Fig.'18. At this level the difference (02 —w®) is largest. We find that there

is an amplitude increase in w at this level of 309, relative to @@, The velocity field

—y

o{yp® —9©) reaches a maximum value of 5 m/s,

5. A balanced prognostic model. With the assumption that V2y is locally con-
tants we may apply equation (1.10), after differentiation with respect to time, as a
prognostic equation for the geopotential height. This we have done at one pressure
level. The prognostic values of the geopotential heights at the other pressure levels

are more quickly computed from the thermodynamic energy equation (1.2), These

computations are currently in progress, and will be published at a later date.
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