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Summary. It is shown that the gradual simplification of the equations governing the motion
of the atmosphere as presented by Lorenz (1960) agrees with the simplifications one would
make considering the magnitude of the different terms. A 24-hour forecast using the “W-balanced
system’ of equations is presented. The boundary condition leading to minimum kinetic energy of
the divergent flow is discussed. Finally the sets of equations are linearized, and by using a two level
model the speed and growth rate of the waves in the different systems of equations are discussed.

1. The sets of equations. We shall use the following definitions for the horizontal

velocity vector
- —

(1.1) v=k x V¥ +Vy =0y +0,
k is the vertical unit vector, ¥ the stream function, and % the velocity potential,
For an adiabatic and frictionless atmosphere the prognostic equations are:

1} The thermodynamic energy equation

d oz ?Va_z

+ow =0 (T.E.)

where g is the acceleration of gravity, z the geopotential height, p the pressure,

@ =%— the vertical motion and -

g ( &z 1-R/Cp _&_Z) _

T ST

R is specific gas constant and Cp is the specific heat at constant pressure.
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ii) The vorticity equation -

e -

(19) SV - V(T 1) +0 V30 (V¥ +)V -9 4k - Vo x3=0 (V.E)
where fis the coriolis parameter.
iii) The divergence equation
(14) V4V (- Vo) 4V ( p) —Hf 1) =V - fY¥ +gV22=0 (D.E.)
where ¥ denotes the Jacobian.

The continuity equation is
(1.5) VYt %‘; =0

We will rewrite the equations separating the terms (Lorenz 1960). The vorticity equa-
tion takes the form

(1.6) 0 —T%Vmp o V4o - YV £f VP +d{Vf - Vx}

—_
0 vy
+ VL +a)mvmp +V2OV2y +£ - Voo

b{ ap * Vo 51’}

The divergence equation may be written

(1.7) —%vzx = V- fVY V2 +BY - (i - Vo)

+a{7(x,f) +V - (- V?’-;), V- (wa_vx_) }

The thermodynamic energy equation becomes

gop — _o0 - 00
(1.8) O"-—'-‘ETP-'?U-F VEE— +ow +d{t’x . VFP“}

If -a—tw —0 and d=b=g=a'=1 we have the x-balanced system If EW =0 and
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a=a' =0 and d =b =1 we have the “Y-balanced system’. If inx'=0 a’=a=b=0and

~ d=1 we have the ‘geostyophic balanced system’. And finally 1f—V2x =0, ¢ =a=b=d=0

we have the SImpllhed geostrophic balanced system’ from Wthh one may derive the
‘w-equation’,
(19) Vo) Gl VP ) g {5 ‘;;}
One finds that this gradual mmphﬁcatlon done by Lorenz (1960) also corresponds to
simplifications one would make considering the magnitude of the different terms. Tests
on actual cases or characteristic scale studies show that the terms in the V.E. with an
a in front have an order of magnitude of 10~2%~2, while those with « & in front are of
an order of magnitude of 10~1s~2 and the rest of the terms are about 10-1%-2, In
the D.E. the terms preceded by a are of an order of magnitude of 10-1%~2, those pre-
ceded by 4’ of an order of magnitude of 10~%s~2, the term with & in front is of the order
of magnitude 1071%~2 and the rest of the order of magnitude of 10-% 2.

In a paper by PepErsEN & Grensker (1969) solutions of the three systems: the

‘x-balanced system’, the “¥P-balanced system’, and the ‘simplified geostrophic balanced |

system’ were studied. It was there found that while the ‘simplified geostrophic balanced
system’ and the “P-balanced system’ gave little differences in the amplitude of w,
the ‘y-balanced system’ gave an increased amplitude of w of about 30%,. The aim of the
present paper is to study the different sets of equations, using a linearized two-level
model. But before entering on this, the author would like to show that the boundary
conditions for the velocity potential applied in the paper by PEPERSEN & GRONSKEI
are those giving the divergent fields with a minimum kinetic energy.

2. Boundary conditions. A 24-hour forecast. We consider a region G with a
boundary curve §. We may consider the divergent ficld as made up of two parts, one,
11, determined by

(2.1) V2%, =V% in G and y;=0 on §.
The other part is given by

(2.2) V2y,=0 in G and Xz =xa(s) on S.
so that _

(2.3) Vi, +V2, =V2 in G

and the unspecified boundary value of y is x,. The kinetic energy ic_;f the divergent flow is
(2.4) ‘%!}(V(?h +42) )20 = %G (Vy1)%o0 —l_—%&f (.sz).zé_a + ngl - Vyab0

e
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Fig. 2. Observed 24 hour height changes of the 1000 mb level. Unit m.
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But the third integral on the right hand side of (3.4) may be written

(2.5) ij (41 Vxz) 80 — g 11 V2,60
or
_ ' 5 )
(2.6) IX1"‘5%55 — J 1. V¥xa00
: s G

which with the conditions (2.1) and (2.2) are seen to be zero. The kinetic energy of the
divergent flow is therefore 2 minimum when J(Vx2)?00 is a minimum, that is when
Xa(s) =0. ¢ '

As described in section 5 in the paper by PEDERsEN & GRONSKEL (1969}, the equation
(1.4) may be used prognostically. With the initial data used in that paper a 24-hour
forecast was made using the “P-balanced system’ of equations. The geopotential heights
of the 1000 mb level are shown in Fig. 1. Figs. 2 and 3 show the observed and computed
24-hour height changes. The latitude 51.3° N is the central gridpoint line in our area.
The observed and computed height changes along this gridline are shown in Fig. 4,

together with their ditference. The mean value of this difference is found to be 36 m.

It is seen that the error seems to have a wavelength of about half the latitudinal width -

of our area, that is latitudinal wavenumber 4 corresponding to a wavelength -at this
latitude of about 6000 km.

3. The linearized equations. The basic flow is a constant vertical shear flow,
the east-west wind being ‘

1 o0& dU
U= U(p) = —}‘.gy— 3 —E=COHSt.
We will apply the g-plane approximation
S=fo+Boy

The static stabﬂity o will be assumed constant. Linearization of the equations (1.6) -
(1.8) gives |

N Lo dU 07| _
' Oon _ v . e, AU o |

%op Ve S an TSy 0

- 200 6 00 AU 9% dU &y
(3.3) d{ b .@} =
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The geostrophic balanced system has been studied p=0
by many authors, see Garcia & Norscint (1970).
In order to treat the two other systems we will sim-

P w1ix15¢|iw1

plify to the two level model (see Prirrips 1951). The B WX, ;0 it
notations we will apply are shown in Fig. 5. We will
assume: ' Pr WXy %0,
b, @, o ® ' By = 2Pn
— —1 1_ %m 2 - . m .
(3.4) W =W =730 » op  bm B Op P’ - Fig. 5. Notations used in the text.

For the other variables the following notations will be used

Oy oty and =% _

5 m 9

We will require that the mean divergence is zero: y,, =0. For the sake of siinplicity we
will put U, =0 and denote ${U; —U,) =U. The equations now become:

2
(3.5) v, +U (pm) ~0
, I I oy’ o’
(3.6) Sy LUy, f(pm) +hgdpk- =0
(3.7) — VA, + V2D, ~9a’ (“’—) =0
Use Pm
(3.8) FAS AL R o ﬁ —-%—sz'
0 b aﬂ_ 2Om _
(3.9) a7 UG =0
(3.10) vy +2m 0
Pm
here 0,-0,
—'.pm m Oy 2@) .

We assume harmonic perturbations

o= O(,B”c (x—ct)gily
and we denote k2 +12=n?, '
From equations (3.7) and (3.9) one obtains
311y By _ —ik(UB,, +(1 —iB)c®’)
' D Y*(1 —2a4—iB)
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where

ke Bl
A=F'P—2 and B—F

By inserting into equatlons (3.5) and (8.6) from the other equatlons one may obtaln
two equations in @, and O’

. o Up o o U s
(3.12) {(1 —iB)e +(1 +a4 -zB)K—z—zb(l —zB)Fc,}CDm

b1 zB)— Lo —Bad(1 —iBe L

{ 20 (c —iB)S L

U
+(1 —224 —iB) U}c’l‘r =0

and

. - | 1 Uz, 1 U, 1 -
(3.13) {u(l — By +(1 - B)(1 —dB)F-—aAﬁzﬁFmaA—ﬁ“ F}U@m

+{(1 —4ad ~ B +2iadB)c +(1 —iB)¥(1 —idB)%—aA(l —53)%92—

o U 1 U,
-*-a.'A(l —ZB)"*I:J*O— ?C‘I‘( QdA—Z.B) }(I) O
here

vt f o n /1

—, Ny==, k=— and ¢, ="
2> 0 ’ I 2
g Y g n

From (3.12) and (3. 13) we get the followmg equation for ——

Uu
Ul (¢ \? s (iR . U2 1] ( ¢ \?
(3.14) aAUz (Ug) +{1 +&® —(iB +1dB +dB?) —2a AU‘*’ e (?0—)
N . Uz
+{2x2 +1—(iB +1dB +dB%) —ib(2 sz)y—Z TJ—K4 +adx?
. . 0
Uo 1 e

+{“ ) (qr) -

po| —

N

ot
o
&
S

&
<, Ly
S
e ot

[

<
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4. The effect of the a term. If we consider one-dimensional perturbations, that
is /=0, equation (3.14) reduces to

U [ 6 \* . U02_1(02
(4.1) _a?(Uo) —l—{l—i—x 2, xz} Uo)
U: U2l 11 C
2 Sl B 0
+{2x +1 +a R awg}ﬂkz 7,

+{(1 —x2) (—[(]E-) 24.712}:0

In this case it is seen that the equation becomes the same for the ‘simplified geostrophic’,
the ‘geostrophic’, and the “¥P-balanced systems’, namely

C\2 %+l C Uy o1
2 N =
(42) {1+x}(UO) At x)(Uo) =0

2
This equation is thoroughly discussed by Win-Niersen (1963). If we assume the
following values for the parameters:
y=50m/s, f=10"%"1, p=1.5x10"15"1m"?
we get 2y~ 2 x 107%m™1, corresponding to a wavelength Ly~3 x 10%m, and U, ~4 m/s.

A realistic value of U is about 2Uj. For this value of U equation (4.2) gives complex
roots for 0.52 <x <0.99 (see Fig. 6). In this range of x the terms in (4.1) containing

‘I_
=
U,
! |
1
2 45678 910 *

0 .' !
I 1
1 l
I 1
1 1
| I
|
]
]
1

-1 :
I
1
|
: -
1
i U o_
1 U,_,_z

2t

Tig. 6, The full drawn curves give the values
of ¢/U; when they are real,
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‘@” are found to be small compared to unity, thus giving rise to only minor changes in
the two roots corresponding to the roots of equation (4.2). Denoting the terms in equa-
tion (4.2) by

(4:'.3) onoz +Box0 +CG =0

and correspondingly the terms in equation (4.1) by

(4.4) AD (x4 +A%)? +( Ay +A4) (x5 +A%)% +(By +AB) (x4 +Ax) +C, =0
we find a first estimate of Ax by _ '
i ADxy® + AAxy® +ABx
4. Ax— — 0 AXg 0
( 5) . ] x ) 2A0x0 +‘BD ‘
In our case |
7\ 2
— (] —5H | ——
P 2x2 +1 Vl Al K)(Uo) '
O 26(1 +x2) —263(1 +x2) '
2 2 2 2
AAd = —Qagg—“}g, AB = (a%r@—a——U%-l—)—l—z and AD=—aILC;~—.
2 KR Y ¥ x/ K 7

For x*=0.5 or k=0.84 4x*(1 —«*) has its maximum value. For this value we find

xoz—%z ~1.00 +0.72

and
Xo+Ax=—1.0140.71z

as we see rather small changes. Also, for the amplitude of &,, as may be estimated from
equation (3.11) one would expect small changes, in contradiction to what we found
from the nonlinear equations. The result, however, is a small decrease in the growth
rate for x values larger than about 0.7 (AB equal to zero for ¥ =0.7) and a slight in-
crease in the westward propagation speed. For larger x values one would expect a
relatively larger change of the roots; we find for x=0.9:
¢ .

Xo =70' = —'0.89 i0.553

and
X +Ax = —0.90£0.54:.

We may estimate the third root of equation (4.1) from the expression:

(46) a8 = {1 -) () 4}

T 2
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which is an unthsiéal velocity of about 1000 m/s.
- When k— o we find that equation (4.1) has the same two roots as equation (4.2)

namely —£~= i-—g—. When k-0 we find that equation (4.1) has the root —C=0,
Us U, U,

while equation (4.2) has the root —z—]g— =~1,
_ 0

5. The effect of the b terms. It is seen that both B and ¢, have maximum values
for I=k. We will therefore assume perturbations of that form. With =0 equation
(3.14) becomes

(5.1) {(1 +1%) — (iB +idB +dB*} (U%) :

N . U2 ¢ 1 ¢
2 — 2] — Y T . | Sl
+{21c +1 — (1B +idB +dB?) rzb(2 iB) = T K }xg A

U\e 1 Uz U2 ¢
2 S St B G
{(1 K)(Uo). P dB(Uo) ’b.y2 Ug} 0

When x -0 we ﬁnd that B and ¢,— o as x; and when k- o we find that B and ¢, -0

as k. The roots of equation (5.1) as k — cc are therefore found to be i—é]— and as k-0
. U
we find the root zero, as for equation (4.1). For x values of the order umty we find that

2
B ~0.05 while -%— Tj— ~0.2. We may therefore expect to find an approximate value of
0

A:«:0 by putting .
U* ¢ , _ Uy\2 U2 ¢

AB = —2:b 7 UDK and AC= de(Uo ) —h— y2 A

U,

For ¥*=0.50 we find B=0,06 and
YZUO

=(.26, which gives

(5.2) %o +Ax = —0.94 +0.82;
The effect of the 4’ terms only would give
(5.3) %o +Ax = —1.03 +0.82¢

We find that the increase of the complex value arises from the 4’ ' term alone. The effect
on the growth of the perturbation is opposite to what we found for the ‘¢’ term, and
it is an order of magnitude larger.
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6. Discussion. That the effect of the ‘¢’ term in a linearized modeél is so small
might have been expected since the magnitude of the ‘4’ term in equation (1. 7)
is three orders of magnitude smaller than the largest terms in the equation. In a non-
linear model the effect of the ‘@” terms will enter. The effect of these terms on the
P-field is not large in magmtude in fagt it was found by Pedersen and Grenskei that
the difference

— — - — .
vy (¥-balanced) —z,| ~2|vy (3-balanced) — vq(¥P-balanced) |.

— -
However, the difference uy(y-balanced) — oy (W-balanced) was perpendicular to the
thickness pattern and thus the effect on the temperature advection was large resultmg :
in a marked difference in the w-values of the two systems.

Acknowledgement. The writer wishes to thank cand. real Knut E. Grenskei for
programming the forecast routine.
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