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Summary. Numerical integrations are performed of the equations describing- air flow on
the rotating earth across a mountain ridge with a width of about 400 km.-The motion is assumed
to be hydrostatic and independent of the » coordinate (along the ridge). A nearly steady state
is reached after 34 hours, showing a system of meso-scale gravity-inertia waves which are strongly
damped downstream. In the case of relatively weak static stability, the maximum lifting of the
isentropic surfaces occurs on the lee side of the ridge at an-altitude of about 5 km.

1. Introduction. The effect of ground topography on the air motion presents a
problem with many aspects. Ground corrugations with a horizontal scale of the order
10 km give rise to the familiar short gravity mountain waves, which often lead to forma-
tion of lenticular clouds, or to modifications of the shape of pre-existing cloud layers.
On the other end of the spectrum, there is the long Rossby-type mountain waves set
up by the extensive continental mountain ranges. The present paper deals with the
meso-scale gravity-inertial mountain waves caused by ground corrugations of the scale
100—1000 km. These.waves are strongly influenced by the rotation of the earth, but
they are not quasi-geostrophic. They may be quite important for the distribution of
'orographic clouds and precipitation, and may also contribute significantly to the total
mountain stress. ' ' o ' :

To the aathors’ knowledge, only a few studies of mesoscale mountain waves have
been published. Some results concerning the flux of wave energy and momentum in the
linearized case have been given by A. EriasseN & Paru (1961), and the effect of the
critical wavelength, for which the particle frequency equals the Coriolis parameter, has
been studied by Jones (1967) and A. Eriassen (1968). .

In the present paper, meso-scale mountain waves in two dimensions are determined
by numerical integration of the time-dependent equations until the motion appears
to be stationary. : | o
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2. The equations in ©-coordinates. The problem under consideration is to
determine, for a straight horizontal flow, the disturbances caused by prescribed cor-
rugations of the underlying ground surface. The horizontal scale of the ground corruga-
tions and the disturbances are assumed to be of the order 100—1000 km, i.e. sufficiently
large for the motions to be described by the quasi-static equations, but still small enough
for the Coriolis parameter to be considered constant and the curvature of the earth
ignored. For velocities of the order 10 ms~2, the corresponding time scale is of the order
of a few hours to one day. This is too small for qua51-geostroph1c motion, but large enough
for the rotation of the earth to be essential; moreover, it is sufficiently small for heat
sources to be ignored. The air is assumed to be non-saturated, so that the potential
temperature @ is materially conserved. '

Using 0 as vertical coordinate, and horizontal Cartesian coordinates x, y, the equa-
tions expressing change of horizontal momentum, mass continuity, and vertical equili-
brium are

© Ju . Ou oM ' |
g g, o+ (1
o, 00, oM _ . -
8% op ap o
6t6®+6x( ao) +5(%‘@3) =0 N O
oM | .
i | S €
where Y R |
' I=c¢ (—) , y= — ' (5
. r po 'Y cp ( )
is the Exner function, and - ) ' ' "
" ' M=c,T+gz=110 +gz (6)

the Montgomery potential. o
The notation is as follows t time, , v horizontal Veloc1ty components S (=constant)
Coriolis parameter, p pressure, £, reference pressure ( =1 bar), R gas constant referred
to unit mass, ¢, spemﬁc heat at constant pressure, g acceleration of grav1ty, z height
above sea level.
The geostrophic ve1001ty components will be denoted by U and V:

oM oM '
a'“;fV: “aj;= ~fU (7)
The thermal wind equations are obtained by combining (7) and (4):

ol .oV oI - |
Ve - e | (8)
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or, in terms of p instead of YT
_[pOV H_ _fpoU g
ox yII d®’ & 9100

3. Reduction to two spatial dimensions. Generally, the dependent variables

are functions of x, y, ®, and £. We shall here consider the simpler, two-dimensional
problem of a horizontally uniform current in' the x-direction crossing a ridge in the
ground surfaces at right angles. The velocity components may then be assumed to be
independent of the y-coordinate: '

ou v L : : |
T?j=€"y_.0 for all ¢ _ ‘ (10)

- In ofder that (10) shall remain true for all ltimes, it is necessary that allf terms in
(1) and (2) are independent of y, i.e. '

M oU PM_ oU

o T

v
axayzfﬁ* _f""é'x_fp_’ 32 "‘"'f_ay -
50 that U is a function of ® and ¢ only. Using (4), we also find
&I _ oI - |
w0 )

It will be noted that, as a result of the non-linear relation (5) between IT and g, eq. -

(3) will not guarantee that (12) remains true at all times; strictly speaking, a baroclinic
current will therefore not remain two-dimensional, even if it is so initially. However,
the resulting departure from two-dimensionality is slight and. will be ignored in -this
study. : ' S

With the simplifications (10) and (11), egs. (1—4), become

o o
L. +f(;u— U)y=0 - (14)
o - | (6)

The last term of (15), where we have made use of the last 'eq. (9) to eliminate 6%/@:6@,
was dropped in the computations since its effect was found to be negligible,

e e R S R P TR L e B R R LR PO T T L e T R T T L e L T
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In eqs. (13-16), u, v, U, and dM/dx are independent of y, whereas p, Il and M vary
with y. However, since no derivatives with respect to y appear, we may apply the
equations at some selected constant value y, of y. All variables may then be considered
as functions of x, ®, and ¢ only, and the problem is thus reduced to one in two spatial
dimensions. The method involves a slight inconsistency, since eqs. (15) and (16) will
be slightly different for a different y,; but this is thought to be of little consequence.

4. Boundary conditions. The surface of the ground is assumed to coincide with
an isentropic surface @ =®g. The domain of 1ntegrat1on may then be taken as a rec-
tangle in the coordinates x, © (with a fixed value of »). Itis bounded below by the ground -
® =0,;, and above by an isentropic surface ® =@y; the upstream and downstream
boundaries are vertical lines at x =x, and x =xp, respectively.

The height of the ground surface ® =@ is a prescribed function of x, denoted by
k(x), representing the mountain profile. However, it was found convenient to start
the integration with a level ground, and let the mountain build up gradually during
the first stages of the computation. Thus we set

2(x, @g, £) =aft) - k() )

where a(f) increases from «(0) =0 to «(#) =1 when >4, In terms of the Montgomery
potential, the boundary condition at the ground is

M(x, ©g, f) =OI1(x, Og, 1) +gu(t)h(x) - (18)

This expression serves as a boundary value for mtegratmn of the hydrostatic equanon
(16). |

At the inflow boundm:y x=x4, the velocity is given at all levels and at all times. The
inflow velocity is assumed to be parallel with the x-axis and equal to the s-component
of the geostrophic wind U(®, £),

u(x4,09,8) =U(0, t) }

(19
v{xy, O, 1) é'O (19)

Thus U is a prescribed function, whereas no restriction is placed on V="V(x, 0, f).
In the present study, the inflow velocity is taken to be independent of time, and the

first equation (19) reads
u(xy, ©, t) =U(@) (20)

In addition, the thermal structure of the inflowing air must be defined by prescribing
a relation between p and @ at x =x,. This relation is likewise taken to be independent
of time: :

Pxp ©, ) =P(6) @)
The upper boundary ® =@y is treated as a Iree surface with boundary condition

(%, O, {) =P(©,) =constant - | (22)
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"This is an artificial condition, its main merit being that it is mathematically consistent. -
It will cause a spurious reflection of wave energy from the upper boundary; however,
this is prevented by introduction of a Rayleigh friction, to be described later.

It is also necessary to formulate boundary conditions at the outflow boundary x ==xpg,
The physically consistent form of these conditions is not quite clear. The conditions
should be sufficient to close the system of finite difference equations, and should mini-
mize the undesired reflection of wave energy from the outflow boundary. :

Nrrra (1962) investigated several outflow conditions in the case of an advection
equation, and found that the best result was obtained from equating the individual
derivative to zero at the outflow boundary, using non-centered, backward differences
in time and space. Although the present problem is not quite the same, we have adopted
a similar condition, viz: :

ou  du

ov de . :
Frimaly (at x=x, (23)
ap 6}9_

5. Elimination of spurious wave energy reflection by addition of an artificial
friction. The gravity-intertia waves set up by the mountain ridge will transfer
wave energy upwards and downstream. Some of the wave energy may be reflected
from inhomogeneities in stability and wind conditions at higher levels. In addition,
- spurious reflection of wave energy must be expected to take place at the artificial upper
and outflow boundaries introduced for the sake of computation. In order to eliminate
such reflection as far as possible, an artificial friction was introduced near the upper
and downstream boundaries, alming at dissipating most of the wave energy in these
-regions. The friction was chosen as a “Rayleigh friction”, which does not increase the
order of the differential equations. Thus eqs. (13) and (14) were replaced by

ou  du oM
dv v

The coefficient x was put equal to zero everywhere except near the upper and down-
stream boundaries. -

6. Initial conditions. The objective of the calculation is to determine steady wave
patterns in relation to the temperature and wind profiles of the air current. This-
is done by computing the evolution of the motion in time, starting from a chosen initial
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state, until it no longer changes noticeably. The underlying assumption is that the tinal
steady state does not depend on the initial condition, but only on the boundary condi-
tions. The initial condition is thus immaterial, provided that it does not lead to wave
breaking during the transient stage, which might cause the numerical integration to
break down. ,

‘As explained in section 4, we chose to start with a straight horizontal current over
level ground and let the mountain build up during the first stages of the computation,

as expressed by the boundary condition (17). The initial condition is thus

u(x, @, 0) =U(®)
a(x, ®, 0) =0 - (26)
p(x, ©,0)=P(©)

7. Finite difference equations. A square grid in the x®f-space is defined by

xi =3-Ax, i:O, 1, .-.,I

®j=®G+jA®3 j=0, I, .-',’j (27)

tk =kAt, k=0, }., ae
The values of , v, p and M in the grid points are denoted by u; ; , etc. They are arranged
in a staggered chessboard-pattern in the xé-plane, so that u, #, and M are defined in
points where -+ is even, and v in points where 7 +£ is odd, as shown in Fig. 1. There
is no staggering in the vertical; in other words, Fig. 1 applies to any value of . The

finite difference analogues of (13—16) are formulated as follows, using the leap-frog
scheme, and with 2Ax as unit of length, 2A¢ as unit of time, and  measured in bars,

Ui jk+1 _ui,j,k—17= — (441,50 ._uzi—l,j,k) +foi 50— Mier,ik +Mioy,5k
Vit1,j e+ Vi1, 5,0-15 —tie1,j,0Vira,i — ;5.0 S (Wira, 0 — U;)
by —Pij-1,6+1 =pi,j k-1 ~Pij-1,k-1
+3{ui1, 510 Fgrs ) (Pirt,i-1 —Piv1,5.0)
— 3oy Fim1,500 * (Pim1,-10 —fi1,i %)

¢, A
My je—Mi1;-14 =—ET(_P¥+1,;',1¢ +ple1 -1 - (28)

As mentioned before, the last term of (15) was dropped because it was found to have
a negligible effect.
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Fig. 1. Staggering of gridpoints in the xt-plane,

The boundary conditions (18—23) are written as follows

Mo, =0gII; 4, +ooh, (7=0)

U, jx=Uj

vy, jx+1=0 (=0, £ even) a —~ (29)
Do, 1 u=F; |
bigp=Pr (=) J

The initial conditions are

Ui g0 =Uir1,;1=U; |
vi+1,j,0=vi’j,1 =O (k=0.1) (30)

Dijo=Pis1,;1=F;

In order to suppress false solutions permitted by the leap-frog method, the following
smoothing was performed at points next to the inflow boundary: u, ; , ‘was replaced by
Y(uy;,+U;), and likewise for » and p; moreover, u,;.., was replaced by
$(2u; ; 449 +uy ;). This procedure effectively damped out noise waves of wave length
2Ax, :
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8. Numerical values of parameters. The calculation was intended to simulate
a westerly air flow across the Scandinavian mountain range; therefore the value of
the Coriolis parameter at 65° latitudes was used (f=1.33 X107%™1). The calculations
were ‘made for a grid of 48 X24 gridpoints in the x@-plane, i.e. I=47, F=23. The
mesh-sizes were: '
' Ax=25km, At=>55s

The latter is dictated by the CFL stability criterion.
" In the vertical, a variable A® was used in order to get suitable resolution in the
troposphere as well as in the stratosphere.
In this paper, results for two different temperature proliles are presented. Case
z has a relatively strong overall static stability, and case & a weak static stability.
In case a:

9.5°, 0<j<6
O, =263°K, A®@=] 5° , 6<j<I15
10° , 15<j<23
In case b: '
[1.25°K, 0<j<6
@, =283°K, A®=2.5°K , 6<j<I5
5K, 15<j<23

Fig. 2 shows the values of ®; and U, plotted as functions of P; for the two cases. (It
will be noticed that the values of U, are the same in cases 4 and b.) U, is increasing all
the way to the top, as is often the case in midwinter. Also shown is a wmd profile (8)
which coincides with protile 4 up to 300 mb, has a strong jet maximum at about 250 mb,
and then decreases upward in the stratosphere.

The adjustment time of the bottom profile was set to #, =16 hours (i.e. «(f) =1
when > 16 hours, eq. (17)). ' ' '

The coefficient of Rayleigh friction x was given the following values near the upper
boundary (in the unit 10747%):

| 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15etc
125 | 67 ] 36| 20| 11 ] 06| 03] 017] 0

Near the outtlow boundary, the following values were used:

i | 46 |45-44]43 —42| 41 etc.
x | 30| 15] 075
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- Fig. 2. Potential temperature and wind profiles, Case a: Strong static stability; case b: Weak static
stability; case b’: Weak static stability with a strong wind maximum near the tropopause.

9. Results. Fié‘s. 3—7 show the location of selected isentropic surface in the
xz-plane after 34.4 hours (1127 double time steps). At this stage the fields appeared.
to be very nearly stationary; the computation was in some cases carried to beyond

50 hours without noticeable change.
In Figs. 3 and 4, the same mountain profile of height 890 m was used. Fig. 3 is

calculated from the temperature and wind profiles of case a in Fig. 2 (strong static
stability), and Fig. 3 from case b (weak static stability).
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Fig. 3. Vertical cross-scction along the flow (=~ Fig. 4. Same as Fig. 3. Case b: Weak static
plane) after 34.4 hours, showing mountain profile stability. ‘
and the location of selected isentropic surfaces.

Case a: Strong static stability.

In both cases, a crest appears in the lower troposphere above the windward moun-
tain slope, and another crest 3—400 km downstream. These crests, as well as the
trough between them, tilt upstream with height, showing that wave energy is trans-
ferred upward and momentum downward, in agreement with linear theory (ELiassEn
& Parm 1961). -

The total horizontal pressure force exerted on the mountain was computed in
both cases; as one would expect, the force decreases with decreasing static stability.
Its value was 1.40X10°N m~* in the case shown in Fig. 3, and 0.97 X 105N m?
in the case shown in Fig, 4. |

In case a (strong static stability, Fig. 3), the vertical wave amplitudes are mo-
derate, with a maximum of about 500 m in the mid-troposphere. The tilt of the waves
is strong. At about 4 km height, the first crest disappears, and a third crest appears
further downstream; and at about 10 km height the second crest disappears and a fourth
crest appears. There is a quick damping of the waves towards the downstream boundary.
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Fig. 5. Same as Fig. 3. Case b: Weak static sta- Fig. 6. Same as Fig. 3. Case b: Weak static sta-

hility, equations linearized. By bility, symmetric mountain profile.

In case & (Fig. 4), the wave pattern again tilts upstream with height, but the tilt

is much weaker. In the stratosphere, the first crest has disappeared, and a third crest.

shows up. : :

‘The most noteworthy difference between cases @ and & is in the wave amplitude.
In case & the strongest lifting of the isentropic surfaces from their upstream levels is
found in mid-troposphere (4—5 km) in the second wave crest, located -over the lee
slope of the mountain ridge; its maximum value is about 1000 m. If the incoming air is
sufficiently humid, the lifting should be sufficient for formation of a stationary wave
cloud with a breadth of the order 100 km. But even if the lifting in these meso-scale
mountain waves is insufficient for producing condensation, it may cause an increase
in the relative humidity which is sufficient for superimposed short gravity mountain
waves to show up as wave clouds. Thus the meso-scale wave pattern may determine
preferred areas for appearance of gravity wave clouds.

The cross-section shown in Fig. 5 has been computed from linearized equations;
the mountain shape, the velocity profile and the temperature profile are as in Fig. 4
(case b), and the difference between Figs. 4 and 5 is therefore only due to the lineariza-

5 _//\/\_/_\_’ 28575 3 /\/\/—- et
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Fig. 8. Streamlines in horizontal'projection atdifferent . , . . : ,
levels, for a case similar to the one shown in Fig. 3. 200 400 600 800 1000 x(km)

tion. It will be seen that the linearized equations in this case give much smaller wave
amplitudes and a stronger downstream damping. .-

Fig. 6 is again computed from the non-linear equations, but with a somewhat
different mountain profile, shaped as a sine-curve with crest height 850 m; otherwise
all conditions are as in Fig. 4 (case b). Comparison between Figs. 4 and 6 indicates that
the wave pattern is quite sensitive to changes in the mountain profile. However, in
Fig. 6 we refind the high crest in mid-troposphere over the lee slope of the mountain.

In Fig. 7, the conditions are identical with those of Fig. 6, except for a change in
the wind profile above 300 mb, as indicated by &’ in Fig. 2. Thus the wind profile cor-
responding to Fig. 7 has a strong jet maximum at about 260 mb (©=303°, z=10 km).
The efiect of this jet is seen to be a pronounced suppression of the wave amplitude at
all levels, but in particular at the jet level itself. :
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Fig. 8 shows the horizontal projection of a number of streamlines at different levels,
for a case which is similar to the case shown in Fig. 4. At low levels, the streamlines
exhibit a cyclonic curvature on the windward side of the mountain, an anticyclonic
bend over the highest part of the ridge, and again a cyclonic bend on the lee side.
At higher levels, there is just an anticyclonic bend over the ridge.

10. Concluding remarks. The present study gives an indication of the structure
and amplitude of the meso-scale inertia-gravity mountain wave in the two-dimensional
case. The study is considered as tentative, however, since there are many features of the
motion which could not be studied, such as the occurrence of critical waves (of wave
length 27U/f), or wave guides bounded above by layers of low wind velocity which
give rise to total reflection. In order to investigate such phenomena, it would be desir-

“able to repeat the integrations for a region with considerably larger vertical and down-
stream extent.
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