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Approximate Analytical Solutions to the Non-Divergent
Barotropic Vorticity Equation in Spectral F orm -

JON HELGE KNUDSEN
_Princeton University, Princeton, N.J, 08540

Knudsen, J. H. Approximate Analytical Solutions to the Non-Divergent Baro-
. tropic Vorticity Equation in Spectral Form. Geophysica Norvegica, Vol. 30,
No. 1, 1972. :

The non-divergent barotropic vorticity equation in spectral form has been in-
vestigated and problems related to the precision attainable in predictions with
such a model on a short time basis discussed. It has been shown that, in a system
containing 45 variables, individual ‘natural modes’ (i.e. waves with constant
amplitude and phase speeds) have low predictive value, but may be used as a
substitute for more exact methods for time spans up to 24 hours. Algebraic
approximate solutions to the deviations from the natural modes are also valid
for time'spans up to 24 hours; hence approximate analytic solutions valid up to

24 hours seem possible.

J. H, Knudsen, Institute of Sociology, University of Bergen, 5000 Bergen, Norway

INTRODUCTION

The non-divergent baro_tropic vorticify equation,
~long a popular model for numerical predictions,
gained renewed interest in the early sixties with

works by Platzman (1960), Baer & Platzman

(1961), and others. Because of the non-divergent
_ Ijroperty of the flow an equation for the change
of the stream function could be found; this stream
function could be represented by an expansion in
spherical (surface) harmonic functions (Haurwitz

1940, Blinova 1943 —see 1. A. Kibel’ (1963)p. 103ff.—

Silberman 1954). Such a transformation had
~ many virtues; it was possible to find analytical
solutions to some severely truncated expansions
(Lorentz 1965). It was also shown that kinetic
. energy was preserved exactly in the equation, re-
gardless of the degree of truncation (Elsaesser

A. Eliassen submitted this paper to the Norwegian
Academy of Science and Letters in Oslo, 15th Sep-
tember 1972. _ . C :

1966). The model has been used by Eliasen &
Machenhauer (1965) to explain important obser-
vational evidence concerning the fluctuations of
planetary fiow. Platzman (1960) found that hemi-
spheric spectral predictions could be done with
expansions containing only terms with a zerp on
equator. These odd expansions make hemispheric
spectral predictions possible, and Elsaésser (_1'956)
showed that such predictions compared favorably
with barotropic predictions using grid point
methods.

In this paper some simple results are presented
on the discrepancies between the solution of the
non-divergent barotropic vorticify equatiorf “in

spectral form and an expansion which attains

the same initial value but propagates the waves
with constant amplitude and phase speed. Such
an expansion seems a natural starting point for

- approximations of the non-linear solution. This

approximate solution is improved by making use

of the predicted deviations from the trial solution.

The form of the differential equations for these
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deviations suggests a certain structure of the in-
fluence from the other waves through interaction.
This structure is investigated for two wave vectors
and the results compared.

In a forthcoming paper (Knudsen 1972) the
writer will present results on how uncertainties of
the variables in a hemispheric model propagate
in time. The present paper uses the same technique
and may be considered an introduction to the
latter.

1. MATHEMATICAL MODEL

If the atmosphere is considered to Ee a two-di-
mensional incompressible, horizontally homo-
geneous fluid, the governing equations for at-

mospheric flow reduce to the two-dimensional

vorticity equation

d
- C+f) = =V PCH)

(see, e.g. Thompson 1961, p. 60). Here ¢ is the ver-
tical component of the absolute vorticity and f

' . the coriolis parameter. This equation may be re-

written if the velocity is represented by means of
a stream function in spherical harmonic functions.
If the siream function is expressed by the ortho-
normal representation

w(@,A,0) = do 2, KXY 0,4) 1
mn=m .
where a is the radius and o the rate of rotation of

the earth, & the colatitude, A the logitude and ¥}
the spherical- harmonic function

Y™(6,2) = exp (imAPTE) ,

the time derivatives of each expansion coefficient
K™(¢) may be expressed by the equation

Kn+ 5-3 33 5 KiK{ B
C))

(Silberman 1954). Here P(0) are associated Le-
gendre polynomials of degree n and order m. When
m = 0 the polynomials are called zonal. If w(6, 1)
is ény sufficiently smooth function of longitude
and colatitude, the expansion coefficients for an

dKy  2mio
dt ~ n(n+1)

orthogonal representation of  are given by

1
= - m
K3 47581111’,, as

where the asterisk denotes the complex conjugate .
function, 45 is a surface element on the sphere,
and the integration is carried out over the unit
sphere. If v is real, only the coefficients for m = 0
need to be determined since

Ky = (-1"Kg* (m=0). 3

The functions A" are a set of constants defined
by

T

e SGED =KD € dPY
Hkns - n(n-l—l) Pn JPi de
_ dP{
~rFg P )dﬂ

in the non-zero case. These interaction coefficients
can be shown to be zero unless the following rela-
tions are fulfilled:

j2Err#0

snk # 0

(m,n) # ('_j:k), (m,n) # (_r’S) (4)
U1~ kP+(ri=sF # 0
lk—sl<n<k+s

n+k+s = odd integer

(Elsaesser 1966). These so-called selection rules
specify which components may contribute to the
time derivatives of the expansion coefficients.
Expressed in words, (4) states that any two com-
ponents may interact provided neither is of zero
degree, and they are not zonal, sectional (fj = &
or —j = k), or identical. Through mutual inter-
action they may contribute to any component
whose order is such as to form with their degree
a triangle of non-zero area and odd perimeter.
A wave vector may contribute to itself by inter-

-acting with a zonal component of odd degree. In

the non-divergent case K9 remains invariant. It is
also seen that if all terms, where the sum of the
super- and subscripts is even, initially have van-
ishing coefficients they will remain zero through-
out the subsequent history of the flow (Platzman
1960). Such representation using only odd spher-
ical harmonics may be used in ‘hemispheric pre-
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dictions’ since the equator in that case will act as
a fixed boundary. Predictions done with only odd
spherical harmonics have proved to compare fa-
vourably with predictions using grid point meth-
_ods in physical space (Elsaesser 1966). In such
hemispheric predictions initial data are only re-
quired on, say, the Northern Hemisphere — this
in spite of the fact that the functions in the ortho-
normal set are defined over the whole sphere.
Because of (3) one may wish to remove the re-
dundancies from (2) by writing (1) in the following
manner: ‘

w(0,2,0) = @0 S 3 (4¥(r) cos M)
: MN
+ B¥(z) sin MA)PY(©) .

This process leads to two equations of the same
- type as (2) but with a more complicated interac-
tion coefficient, viz.

d 2Mo w0 -
—-AM —_ AR BJ KRMJ’
ar N(N-:—l) T 2,5 BLKRE
(5a)
d - 2Mow
b gy MO
ar B =~ Nvry W
ty 3 AR ALLEW
RSTL
+4 3 BEBIMEE (sb)
RSIL
where
HE +H-J (-1 — HEM-I(— 1)
KR = - i R>0,7>0, M>0
4H iﬁglf.f O,R=0,M>0
LS = —HGY - (=Y HE 7 — (—RH-BMW
M?ﬁﬂ HG — (= 1Y HE T — (- 1)RH - By

(Knudsen 1971). In K the first pair of the super
and subscripts refers to the cosine-coefficient; in
all three the middle index refers to the expansum
. coefficient whose time derivative is sought.

Numerical predictions of the motion of the long
waves in the atmosphere using (2) or (5) require
the knowledge of the stream function, One pos-
sibility is offered by the geostrophic balance equa-
tion which expresses a balance between the geo-
metric height field and the stream function. If
both the geometric height field and the stream

function are represented in spherical harmonics -

a recursive relationship connects the expansion
coefficients from the two fields (Eliasen &
Machenhauer 1965). Elsaesser (1966) has sug-
gested a simpler procedure by assuming that the
stream function can be found by a simple scalmg
of the geometric height contours. If £ is an aver-
age value of the Coriolis parameter, C¥, D¥ ex-
pansion coefficients of the geometric height field,

AY g- cH
{B#} = Zofy {D%} ©

where g is the constant of gravity. This expression
will be used in the following.

2. THE EFFECT OF THE QUADRATIC
TERM -

If a study of the propagation in time of the effect
of initial errors in a non-divergent barotropic
model is attempted, two important steps are in-
volved:

1. The selection of a statistical model to repre-
sent the ‘present state’ in the initial state space,
and -

2. The development of a dynamical model to
predict the transformations in time of the uncer-
tain state, and of methods to display the conse-
quences of the uncertainty development,

These two aspects will be dealt with to a greater
exteni in a forthcoming paper by the present
writer. In that paper the importance of the qua-
dratic term in (5) will be shown for the case of
statistical dynamical predictions based on the
same dynamical model. The importance of the
quadratic term in (5) is a legitimate study in itself
since it is by no means clear from the outset what

-orders of magnitude the quadratic terms will have

for long wave atmospheric motlon 1f we intro-
duce in {5)
AY = a?v‘ COS oy, nf+ b Sin apy, wt

B = b} cos ay, yt—alf sin oy, nt ™
where aff, b¥ are a new set of variables, and

2Mw

' G, N = m_-HOH?%MAg . - ®
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we find the following set of equations

d w |
Eb# = TSIHC{M,NZ‘QA(M,N)
w
+ — cos tar, niQs(M,N)
4 ' )

w
ar ay = 3 CO8 &, wtQa(M,N)

_ %sin arg, x1Q(M, N)

Here Q4 and Q3 are the quadratic terms in (5)
rewritten in terms of a}, b}. If the right-hand
sides of (9) vanish for all M, N in the expansion
it means that (5) has a wave solution of constant
amplitude and phase speed given by (8). If the
right-hand side of (9) is small we may use (7) with
constant coefficients as an approximate solution
valid over a limited time period and as a basis for
second order approximations. Such comparisons
and approximations form the main theme of the
present paper. ’

3. RESULTS

Linear versus non-linear prediction.

To investigate the approximation to the solution
of (5) offered by (7) with constant cocfficients, a
comparison was made between the two ap-
- proaches usingwdata for the geometric height of
the 500 mb surface for 12-16 January 1963, Data
for the height field at 1200 GMT for the Northern
Hemisphere were obtained through the coopera-
tion of Geophysical Fluid Dynamics Labora-
tories, NOAA, Princeton University. Using least
squares an expansion in odd spherical harmonics
containing 45 terms was fitted to the geometric
height field ; the height field expansion coefficients
were rescaled to represent the stream field by
using (6) (Table I). Comparisons between the
solution of (5) and (7) can be made in terms of

_ geometric height by doing the reverse scaling and
displaying the height fields on a latitude-longitude
grid.

If (5) is integrated numerically with the values
in Table T as initial data, one obtains the values
in Table II. Here the value of the contributions
from the linear and quadratic terms have been

listed at initial time, after 24 hours, and after a
two-day interval. The constant contribution
ioKPH"K -
has been removed from the quadratic term and
added to the linear term. It is seen from Table 1I
that the guadratic contribution is of the same
order of magnitude as the linear term and hence
one should expect the two solutions to become
distinctly different after some time.
" A comparison between (5} and (7) in physical
space adds more details. If we rescale the solu-

tions to represent geometric height and compute

the height at intersections of latitude and longi-
tude circles with 10 degree intervals, the rate at
which the two solutions move apart may be mea-
sured. Table III shows the root mean squares
(RMS) difference between the non-linear and the
linear solution (7) at selected epochs throughout
the integration; it is shown that after 12 hours the
predictions have a RMS difference of 60 metres

-at 60 degrees latitude. This difference has in-

creased to 111 metres after 24 hours and to 170

Table I. Expansion of stream function for 12 January
1963 (in units of 10-5 m? sec™%)

H J A "B
0 1 —1174
3 —291
5 9
7 —25
: 9 —50
| 2 -8 ~124
4 74 —78
6 ~22 —39
8 131 —99
10 —27 53
2 3 30 132
5 145 69
7 23 —125
9 138 212
11 245 —355
3 4 —152 —160
6 37 —236
8 3 =20
10 39 1
12 —131 —18
4 5 10 94
7 37 65
9 —53 —98
1 4 —~93
13 -1 63
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metres after two days. Up to 36 hours the growth Table II (continued)
of the difference is approximately linear with A B!

time; after that time the increase is less. Without Linear Quadratic ~

oy

J ~ Linear Quadratic

reference to other comparisons these results are  , [ 393 1740 174 1570
difficult to interpret. A natural comparison can 280 1440 284 1260
be made with the size of non-linear prediction 247 —688 342 226
minus initial state. The lower part of Table III 3 4 —28,600 10,100 27,000 —10,900
903 8850 33,100 —12,600
12,900 4540 6330 —13,100
Table IL. The contribution (at initial time, after 24 6 —14,500 8640 —2300  —1990
and 48 hours) for the tendency equation for A and B —15,000 5950 - 1320 2160
m ' —10,400 5370 5450 6420
from o (n—(n_'_—l)— + A‘,’Hﬁ,’,’,"") x expansion coeffi- 8 342 6960 —44 —107
cient and from the remaining quadratic sums (all _3;2 gggg zggg ;ggg
units 10~12 m? sec—1) -
o : 10 -3 1560 153 —3970
& B w0 e e
i J Linear Quadratic  Linear Quadratic 12 282 _g98 ~2080  —3240
0 3 0 —1350 873 1760 —1960  —2550
—1540 . 1360 3330 — 1440 ~900
599 4 5 13,000 -35610 —1440 —2360
5 0 617 7240 —6840 —5640 436
948 . 1970 —5560 ~3820  —470
o 314 73040 1450 1720 2190
7 0 4040 3250 2730 3690 4300 .
2800 3500 —895  —5590 6510
523 9 —666 5070 362 —1610
9 0 - 2540 —585 5470 114~ 4030
“72;‘ —196 3050 —116 8760
- , J11 13200 1520 50 —1150
1 pA “28,900 —1280- 1780 —2230 B 1200 1410 347 2400
8290 1640 28,600  —428 854 279 580 1350
—19,500 172 . — 18,800 —1670 13 —1680 147 299 . 1590
4 —4630 —2240 —4370 2090 1920 —359 679 1570
—4540 —1430 —-1350 3830 —1900 —o23 1270 —99
—2730 516 768 3090 _ _
6 =804 —2450 451 5870
148 377 b4l 4340 contains the RMS difference between the solution
603 1460 373 —632
8  —575 —2240 —760 1620 of (5) minus initial state at various epochs. These
—654 145 —696 —3730 comparisons show that after 24 hours we should
—913  -339 —862  —4190 ot expect to see much similarity between prdic-
0o . Tae 880 tions from (5) and (7).
—11 —1430 —75 3000 Fig. 1 shows the contour maps of geometric
2 3 28,700 2190 —6600 —2400 height for the 500 mb surface on 12 January 1963
— 14,800 653 —25,400  —4490 at 12 GMT using the 45 fitted values in Table I.
s ‘25‘{;88 358;)/ %g’?gg ' 103%8 Fig. 2, 3, 4, and 5 show the two solutions after a
3960 2500 _1 4’000 6’980 12, 24, 36, and 48 hours prediction using (5) and
—3070 854 —15,200 2470 (7). From these maps it is concluded that solu-
7 —2930 335 —573 7580 tions from (7) evéntually move westward at a
- 179(1) 135 — 166 6740 more rapid rate than the solutions from (5), but
9 _447 3?23 _;g; 63;31(1) it becomes a matter of taste when (7) becomes
54 575 — 507 4430 useless. Within the period of one day (7) extra-
204 980 —503 5370 polates (5) fairly well and may be used for predic-
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Table III. Root-mean-square (rms) differences be-
tween (3) and (7) (in metres of geometric height)
compared with rms differences between (5) and initial
state for various epochs and degrees of latitude

(3) Minus (7)
Degrees latitude

Hours 80 70 60 50 40 30 20 10

3 7 14 15 11 14 9 5 5

6 14 34 31 21 26 21 10 11

9 23 45 43 31 40 .34 16 21

12 30 61 60 38 53 42 23 214

15 36 76 14 44 66 53 31 30

18 43 92 94 49 77 59 38 36

24. 58 120 111 57 97 82 55 47

36 75 170 147 75 160 107 96 64

48 92 206 170 103 170 109 136 75
(5) Minus initial state

Hours 70 30 30 10

0-24 51 106 117 90

0-36 55 - 134 139 119

048 58 140 136 132

tion; beyond 24 hours the quality of the extra-
polation deteriorates rapidly.

Second-order approximation

If expansion coefficients with constant magnitude
as analytic expressions prove to be of insufficient

903

accuracy in approximating (5) one is led to try
second-order approximations. If the solution for
each expansion coefficient of (2) is written —

K(r) = {K™(0)+K3(E)} XD (it nt)  (10)

where K¥(0), the value of K™ at ¢ = 0, is a con-
stant term and k™(z) a variable term, the actual
development of &7 can be studied by nurnerical
integration. If (10) is inserted into (2) we get

d = iw
m

Tk =5 2 KO+ K{O)+K @)
dt rs, gl '
1

X eXp {i(ty, s+ 05, 1 — O, ) FH T
where a, s is given by (8) and the zonal term K¢
is excluded from the sum. The initial conditions
for the deviations are £™(0) = 0 (all m,n). (11)
may be linearized by dropping the product term
k7k{. Such a procedure is legitimate if the product
of deviations remains small throughout the inte- '
gration. As a further point of attack we may
separate (11) into its equivalent of (5) and study
the tendency at initial time. Write the expansion
coefficients of (5) in the form of a vector Y; then

the linearized equation (11) may be written
YV = A@#) Y+e (12)

Here A(t) is a maitrix of time-dependent coeffi-

D

EQ.

OF
INITIAL MAP OF GEEMETRIC HEIGHT

180

500 MB  JAN 12 1963 1230 GMT

Fig. 1. The 12 January 1963 contour map of fitted geometric height field for the 500 mb surface using 45
variables. Only Northern Hemisphere depicted. Contour distance 80 metres.
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905

Fig. 2. The predicted height field after 12 hours using (5) (top} and .(7) {(bottom),

cients and ¢ a column vector of constants. If A(¢)
is well approximated by A(0) for #< 1, we may
ask ourselves how much insight into (11) one can
- obtain by solving the following equations with
constant coefficients, viz.

Y = A(OY+C ‘(13)

This system of linear equations has a solution of -

the form
Y = o;KijeMt' b e Kpet2t L oK ettt C, (14

where the eigenvalues 1,(f = 1,2, ..., s)are found
from the determinantal equation

[AQQ)— 1| = 0 (15)

where I is a unit matrix of dimension sxs. The

A A S
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QOE

W Tow

Fig. 3. The predicted height field after 24 hours using (5) (top) and (7) (bottom).

eigenvectors K are found by solving the homo-
geneous system of linear equations

{AO)—-AK =0.
We have investigated the similarity between the
non-linear egs. (11), (12) and (14) by comparing

the results using the initial data in Table 1. Since
K? is invariant in a non-divergent barotropic

model, there are 44 real variables (s = 44) in (13)
and (14).

The numerical solutions of the non-linear egs.
(11) and (12) were obtained using centred differ-
ences. The computation of the complex eigen-
values were performed using a computer program
published in the literature (Grad & Brebner 1968);
this program computes all the -¢igenvalues and



Approximate Analytical Solutions to the Non-Divergent Barotropic Vorticity Equai‘_z‘on in Spectral Form 9

207

) O

(@

Fig. 4. The predicted height field after 36 hours using (5) (top) and (7) (bottom).

eigenvectors of a real (not necessarily symmetric)
matrix. The eigenvalues were computed by the
QR double step method and the eigenvectors by
inverse iteration.

Table 1V contains the real and imaginary part
of the eigenvalues measured in day—!. There were
4 real positive and 20 pairs of complex eigen-
values; 9 out of the 20 pairs had a positive real

part. This means that the approximation provided
by (14) contains both exponentially increasing as
well as decreasing and oscillating components.
The exponentials with positive arguments will

‘eventually dominate the solution, and since the

schution of (11) has bounded variation it suggests
that the algebraic solution (14) will approximate
k™(t) only for a short time, From Table IV it ap-
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Fig. 5. The predicted height field after 48 hours using (5) (top) and (7) (bottom).

pears that the fastest growing exponential uses 17

days to grow e-fold; hence over the first few days

one should expect that (14) behaves much like an
ordinary periodic function.

An inspection of the graphs of the solutions of
the non-linear, linearized and algebraic solution
shows that the latter solution of course always
represents the initial tendency correctly. Within

the first day the non-linear and algebraic solution
agree fairly well and the difference between them
is always less than the magnitude of the non-
linear solution. This suggests that (14) offers a
short term improvement compared to (7) alone.
After 24 hours the solutions start {0 move apart.

"In cases where the non-linear solution reverses

its sign within the first two days, the algebraic
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- solution has great difficulties following. Fig. 6
shows the development of the non-linear, the
linearized and the algebraic solution for the var-
iable 4%. Further approximations could be found
by repeating the process and finding the equations
~ for the deviations of the already determined ap-
proximation. These new functions will all be of
type (14). Such further approximations have at
present not been attempted.

Strength of interaction

In (11) it is seen that the importance of the inter-
action between (r,s) and (7,/) also depends on the
ferim - ’

ar.s+“.i,l—“m.n

which we may call the interaction frequency. If
this frequency is large it is indicative of an inter-

Table IV, The eigenvalues of (15) in day~* and the
corresponding periods in days for the functions

e~ cos w4t to change by a factor of ¢

Periodic part

Exponential part

wday~?) T,(days Adday~) Ty(days)

160 T G

1.382 4.5 -0,0213 294

0.8985 7 —0,2827 22

0.9503 7 —0.0226 279

0.8500 - 7 0.0600 .. 105

0.7266 9 0.0420 150

0.5495 11 —0.0671 94

0,3983 16 0.2618 24

0.5419 12 0.0711 88

0 co 0.3629 17

0.4128 15 0.0968 65

0.4130 15 —0.0621 ‘ 101

0.3871 16 —0.0105 - 598

0.2972 21 0.0086 734

0.2730 23 0.0290 216

0.0349 180 —0.2169 29

0.1927 33 —0.0873 72

0.1503 42 —0.1261 50

0.1858 34 —0.0135 466

0.0586 107 —0.1305 48

0 co 0.2212 28

0.0301 209 0.1650 38

0.0477 132 0.0591 106

0 co 0.0847 74

0 o 0.0104 605

(*) Days to increase by a factor of e.

(**) Days to decrease by a factor of e.

s 7 /
20 :

4] ‘ 1 2
Fig. 6. A comparison between predictions using (11)
(fully drawn), (12) (dashed and (14) (dashed and
dotted), all for the component b%. Arrow shows
magnitude of B%(0).

action which will change direction often and thus
will not have a long term effect on £7(¢); the op-
posite is true for a small value, We have computed
the interaction frequency for selected wave vec-
tors in order to establish if there are more per-
manent long-range couplings between particular
wave vectors, '

In a comparison between the wave vectors (0,3)
and (2,7) with an even-odd expansion with 10
complex terms per (longitudinal) wave number
((m,n) = (0,3) and (m,n) = (2,7)), we have com-
puted the period T, where

2r
- (ar,s'i‘ &g Uy, n)

T

expressed in days, the (r,7) and (j,!) being sub-
jected to the usual selection rules. For (0,3) a2 me-
dian period of 10 days was found and 20 days for
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(2,7). A vanishing interaction frequency can occur
if «,, ; appears twice, once as a contributing wave
vector and once as the vector to which it contri-
butes, Thus we have that

O nt 0o, s— U, n = O

which would constitute a constant coupling if
H" is non-vanishing. By the selection rules we
must have m = 0 since a zonal component cannot
get contributions from other zonal terms. The
net result from this observation is that (2,7) has
constant (steady) contributions from zonal terms
whereas (0,3) can only have periodic contribu-
tions, For (2,7) a few periods were quite long; the
combination (—6, 15) and (8, 11) gave rise to a
period of 4521 days and cases with periods larger
than one year were also observed. (0,3) on the

other hand had only one vector whﬂ:h gaverise to

periods larger than 100 days, namely, the combin-
ation (— 1,10} and (1,8). Other observations, some
obvious, were the following:

(a) The influence of the zonal term' 4? on the in-
teraction frequency is negligible; we may sim-
plify computations by leaving it in the qua-
dratic term in (11).

(b) Usually long periods are found when an in-
teracting pair consists of one Legendre poly-
nomial with a large number of zero intercepts
(i.e. k—|j! is large) and one with few zero in-
tercepts (i.e. s—|r| smali). For (2,7) the pair
(7,10) and (—5,14) had a period of 120 days,
whereas (7,10) and (- 5,6) had a period of 5
days.

(c) The magnitude of the interaction coefficient
does not seem to be related to the interaction
period, except for the zoral term of lowest
degree. For zonal components the longer
periods are found when the degree of the in-
teracting polynomials increases.

4. DISCUSSION

The spectral form of the non-divergent barotropic
vorticity equation lends itself better to studies of
the propagation of uncertainty in the initial data
than does the same equation in physical space.
This follows since 2 dynamical study of the un-

certainty in physical space would require the
knowledge of the covariance function between
any pair of points in physical space. The spectral
approach would only require the knowled:ge of
the covariance between the expansion coefficients
and in studies of long waves in the atmosphere a
small number (< 100) could be used, It is of great
importance, however, to find out to what extent
(2) or (5) behaves like a linear system, since sta-
tistical dynamical predictions are greatly sim-
plified in linear systems of differential equations.
The fact that the quadratic term in (2) or (5)
proves to be important means that dynamical
predictions using inexact initial states must ne-
cessarily use open-ended systems of differential
equations on the higher order statistical moments.

To what extent analytical approximations at
the origin used above can be of help in: gaining
understanding of the time development of spectral
solutions in general is still unresolved. It was
shown above, however, that the analytical solu-

tion gave real 1mpr0vement over a simple trigon- -

ometric solution over a period up to one day. For -
expansions with 45 terms or less we should expect
to be able to obtain analytical solutions valid for
up to 24 hours. Ours is a rather highly truncated
expansion and it remains to be seen to what extent
expansions with more terms have greater tem-
poral validity. The results on the strength of the -
interactions indicate that the contributions from
some pairs of wave vectors are almost random
in nature. With larger systems one would expect
to see a [arger number of such unimportant inter-
actions. It may De profitable at a future time to
explore the effect of systematically deleting the
rapidly changing contributions and compare the
results with predictions which retain them. Alter-
natively one may perhaps replace some of the
interactions with contributions from a stochastic
process, '

ACKNOWLEDGEMENTS

The author would like to thank his advisor, Dr.
John W. Tukey, for the valuable assistance re-
ceived during the execution of this research pro-

“ject. The many fruitful discussions with Dr., K.

Miyako_da and other staff members of Geophys-



Approximate Analytical Solutions to the Non-Divergent Barotropic Vorticity Equation in Spectral Form 13

ical Fluid Dynamics Laboratories, NOAA,
Princeton, N.J., helped the project to a measur-
able degree. While at Princeton the author had
support through a research assistantship spon-
sored by the Office of Army Research through
contract number DA-31-124-AR0O-(D)-215.

REFERENCES

Baer, F. & Platzman, G. W, 1961 J. Mereor. I8,
393-401.

Eliasen, E. & Machenhauer, B. 1965. Tellus 17,
220-238,

Elsaesser, H. W. 1964. J. Appl. Meteor 17, 246-262,

Grad, J. & Brebner, M., A, 1968, Comm. of the ACM
11, 820-826.

Haurwitz, B. 1940. J. Marine Res. 3, 35-37.

Kibel’, I. A. 1963. An Introduction to the Hydro-
dynamical Methods of Short Period Weather Fore-
casting. 383 pp., Pergamon Press, Oxford.

Knudsen, J. H. 1971. Dynamical modelling of trun-
cated moment equations in spectral form for non-
divergent barotropic flow. Unpublished Ph. D.
dissertation, Princeton University, Dept. of Sta-
tistics, 120 pp.

Knudsen, J. H, 1972, Prediction of second moment
properties in spectral form for non-divergent ba-
rotropic flow. Unpublished manuscript.

Lorentz, E. N. 1965. Tellus 17, 321-333.

Platzman, G. W. 1960. J. Mereor. 17, 635-644.

Silberman, 1. 1954, J. Meteor. 11, 27-34.

Thompson, P. D. 1961. Numerical Weather Analysis
and Prediction. 170 pp., The Macmillan Company,
New York.



Instructions to Authors

GEOPHYSICA NORVEGICA
publishes papers in English. When preparing

manuscripts - for submission, -authors:-should .

consult 1973 copies of the journal and follow
its style as closely as possible.

MANUSCRIPTS

Manuscrlpt must be typewrltten double spaced
throughout, on one side of the paper, with

" a wide margin: Authors should submit the

original manuscript (preferably with one copy)
to the editor, whose address is shown on page
2 of the cover. _

- Separate sheets should be used for the fol-
lowing: 1) title page, with the author’s name

.\__.aﬁd institution, and, if the title is longer than
40 letters and spaces, a short title not exceeding

this Hmit for use in the running heads; 2) an

“abstract not exceeding 12 lines (910 letters and

spaces) with the name and full postal address

-+, underneath of the author to whom communi-

cations, proofs, and reprints are-to be sent;

" 3) references; 4) Tables with their headings;
-5) legends to Figures.

- Brief Acknowledgements of grants and other

“dssistance, if any, will be Pprinted -at the end of
the text.

FIGURES, TABLES AND MATHEMATICAL
SYMBOLS

Al 1llustrat10ns are to be cons:dered as Fig-

ures. Each graph, drawing, or photograph
should be numbered in sequence with arabic

numerals, and should be identified on the back.

by the name of the journal, the author’s name,
and the Figure number. The top should be

_ indicated. The Figures should be the original
- -drawing. The columns of Geophysica Norvegica

are 67 mm broad, and the size of the original
drawings should be in proportion. Lines must

-be thick enough to allow for reduction. Letters-

and numbers should not be less than 2 mm
high in the printed illustration, Photographs

. should be submitted as unmounted glossy en-

largements showing good: details.

Tables are to be numbered consecutively
with roman numerals. Each Table should be
typed on a separate sheet, with a descriptive
heading that makes the Table self-explanatory.

All Figures and Tables should be referred
to in the text by their number. Their approxi-
mate position should be indicated in the mar-
gin of the manuscript.

All numbered equations and all unnumbered
but complicated equations should, be typed on
separate lines. Equations should be punctuated.

All text material will be set in roman type
unless otherwise marked. Hence, all variables

-and other. characters to be set. in italic type

should be underlined once with a straight line.
Vectors and other characters in boldface type
should be indicated by underlmmg Wlth a
single wavy line.

“No footnotes shotld be used.

‘REFERENCES TO LITERATURE -

In the text, Brown (1957, p. 9), Brown & White
(1961). If more than two authors, Brown et al.
(1963). Multiple references: ‘As several authors
have reported (Brown 1967, Brown & White
1961, Green et al. 1963)’, i.e. chronological

- .order, no coimmas between names and year, .

Lists .of References are to be unnumbered
and in alphabetical order. The international
alphabetical order of Scandinavian and Ger-
man vowels, should be observed: A = AA, B
and A = AE; @ and 6 = OE, U = UE Indi-
cate 1st, 2nd, 3rd etc. works by the same atl-
thor in the same year by a, b, ¢, etc. (White
1966a). No ditto marks should be used. Titles

of journals should be -abbreviated according to' -

World List of Scientific Periodicals.

Examples:
Cadle, R. D. 1966. p. 83 in Parttcles in the

_Atmosphere and Space.Reinhold Publishing . -

 Corporation, New York:

Craig, R. A. 1965. p. 161 in The Upper At-
mosphere. Meteorology and Physics. Inter-
national Geophysics Series, Vol. 8. ACadE:mlc
Press, New York and London

Eliassen, A. & Kleinschmidt, E. 1957. p. 66 in

Handbuch der Physik. Vol. 48, Part 2, edited
by S. Fliigge. Springer-Verlag, Berlin.

Junge, C. 1972. Quart. J. R, Met, Soc. 98, 711.

PROOFS

‘Two copies of the first proof will bé sent (page

proofs). One copy, duly corrected, should be
returned to the editor with the least possible
delay. All technical parts of the article, includ-
ing references, names, figures (numbers, for-
mulae), illustrations, etc. are the responsibility
of the authors. Authors will be required to pay
for any major alterations they may make.

REPRINTS

Fifty reprints of each article will be supplied .
free. Additional reprints can be ordered at a
charge.









