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Prediction of Second-Moment Properties in Spectral F orm

for Non-Divergent Barotropic Flow

JON HELGE KNUDSEN

Princeton University, Princeton, N.J. 08540

Knudsen, J. H. Prediction of Second-Moment Properties in Spectral Form for
Non-Divergent Barotropic Flow. Geophysica Norvegica, Vol. 30, No. 3, 1973.

The ability of the ‘natural modes’ in a system of non-linear differential equations
to predict first- and second-order statistical moments has been investigated for
a problem arising in the study of long waves in the atmosphere by means of a
one-level non-divergent barotropic model written in spectral form. The ‘natural
modes’ have been compared to the solution of a non-linear moment equation
truncated such that all cumulants from K; up are assumed to vanish at all
times. In the latter model a two-days integration showed that the trace of the
covariance matrix of the expansion coefficients increased almost linearly with
time. The ‘natural modes’ may be useful to obtain first-order approximations
to the time-dependent variance of the fitted field in physical space over a time
space of perhaps one day. '

J. H. Knudsen, Institute of Sociology, University of Bergen, 5014 Bergen - U,

Norway,

INTRODUCTION

The problem of predicting the future state of a
dynamic system for incomplete initial data with
an exact dynamic model has many aspects, two
of which are especially important: the selection of
statistics to describe the initial state, and a
matched dynamical model to transform the
statistics in time. Although problems of this
nature have been most successfully tackled within
the area of statistical turbulence theory the subject
matter. belongs properly within the realm of
stochastic processes (see e.g. Moyal 1949). The
problem has reappeared in recent papers in the
atmospheric sciences where long waves have been
studied using barotropic models. In this field the
historical background of the problem appears to

A. Eliassen submitted this paper to the Norwegian

Academy of Science and Letters in Oslo, 6th April .

1973.

be relatively short. An excellent exposition of the
difficulties in meteorological applications was
given by Freiberger & Grenander (1965), who
discussed the implications of the non-linear

character of the- governing equations. Bpstein .

(1969) examined a problem of this type when
starting with a barotropic flow on a flat earth.
Using the same model Fleming (1970) has
discussed the effect of various schemes to obtain
completeness in the statistical variables.

The main theme of this paper is how a particu-
lar moment truncation method works with a non-
divergent barotropic model written in spectral
form using spherical harmonics as expansion

functions. Since the dynamical equations are

non-linear, it is of 5ome interest to assess the
goodness of various approximate solutions valid
over a short time space. A ‘natural mode’ type
solution is compared to the non-linear solution
found by assuming cumulants from K; upwards,
vanishing at all times. '
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2 . Jon Helge Knudsen

1. STATISTICAL DYNAMICAL
PREDICTION

Consider a set of S dynamical variables y; (i =
- 1,2,...,5) whose initial state is uncertain but
where individual transformations in time, viz.

d

i = Gy - 5 Vs3t) (1)
are determined by the differential equations of
mechanics. Integrating such a statistical dynamical
system implies-finding ensemble averages of y, at

1, b, oo and. specifying the probability that the:

variables occupying a given region in the phase
space would transform into another given region
of the same space. A pfocess where all uncertainty
is limited to the initial value but where the laws
of miechanics apply has been called a crypto-
deterministic process (Moyal 1949).

Let the column vector containing the averages
of the S components y; be written as follows

Average of y; = ().

Similarly one can define- ﬂ}e covariance of the
components y, and y, which measures the degree
of linear covariability between the two com-
ponents of y. In statistical dynamical prediction
the mean values, variances and covariances, and
higher statistical moments will in general change
in time depending on the form of (1). In practice,
the equations comprising the statistical dynamical
system will have to be integrated with the various
statistical- moments replaced by their estimates;
the actual values of these estimates depend on the
statistical method used in obtaining them. For
example, if the method of least squares is used in
estimating the »’s in a regression model; a method
of obtaining estimates of the covariance matrix
of the y’s can readily be found (see. appendix).
Prediction of; say, second moment properties can
be ‘used for constructing time-dependent con-
fidence intervals for each -of the y’s, or for linear
functions of them. . -

Let 'V be the matrix that contains the variances -

and covariances of the ¥’s. The element v, in
the rth row and the pth column is the covariance
of the components y, and y,; clearly the matrix is
symmetric. Starting from ‘a single confidence

interval for one variable, it is intuitively clear
that the more narrow the confidence interval is”
the more determined this variable is. If (1) con-
tains more than one variable an ellipsoid of con-
centration may be used to describe the joint un-
certainty. For the case S=2 we may find two new
random variables that are uniformly distributed
within an ellipse and have means, variances, and
covariances coinciding with those of the originél

variables. The area of this ellipse is then a joint

measure of the uncertainty in these two variables.
In the general case of a non-singular distribution
one can define a new set of variables Z that are
uniformly distributed within the ellipsoid

(Z— LYY V- Z— (L)) = s+2,

where the prime, here and in the rest of this paper,
denotes the transposing of the vector or matrix.
These variables will have mean values {Z) and
variances-covariances V (Cramer 1946, p. 300).
The volume of this ellipsoid is given by

(s+ 2" V|2 (% + 1) :

For a non-singular distribution the uncertainty
is thus proportional to |V]; this latter quantity”
is called the generalized variance {Cramer 1946,
p. 301). It follows that a joint measure of the un-
certainty in a statistical dynamical process can be
found by studying the generalized variance.

If V is full rank and y is distributed according
to the gaussian distribution, the quadratic form

Y VY (2)

will be distributed according to a chi-square
distribution with S degrees of freedom. Whenever

{Y) = O this distribution is the ordinary -chi-

square distribution; otherwise the form is distri-

buted according to the non-central chi-square

distribution with non-centrality parameter J,

where

&= (Y)Y V-KY)

(Scheffe 1959, p. 412). The connection between §
and the generalized variance may be shown by
noting (Scheffe 1959, p. 417) that

IV+LY) Y)Y -

1486 =
+ \
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which shows that §? increase when V] decreases,
If [V] decreases in such a way that all elements on
the main diagonal approach zero simultaneously,
the non-centrality parameter tends to infinity, A
small value of |V| could be brought about by
improved measuring techniques of the initial
values, Roughly speaking then, the larger the & (or
smaller the {V]) the more ‘predictable’ is the
dynamic process. It will be shown below that &
can be used to characterize the degree of un-
cerfainty in statistical dynamical processes with
gaussian distributed variables, In fact, in linear
systems, where the right-hand side .of (1) is a
linear function of the s, § is invariant.
To show this let (1) be of the form

d B . A
avar o

where Yis a Sx1 and A-a real Sx S matrix of -

constants. The mean of Y can be ShQWIl to follow
the equation f ' :

Thus, for-linear systems, ensemble means follow
the same differential equation-as'individual solu-
tions of (3). Furthermore, one can show that

d“ o ’

| Z,;Y= AY-+VA 2 S (5)
Note: that (3) is linear in:the variances and co-
variances, and in particular independent of other
statistical ‘moments. -Similarly, the equations for
higher-moments may be found. - : :

]

- 'Since\_‘fV‘1=IA'"." |
— VY1 -1 = -
dtVV +V dtv 0
and because of (5)
dv-t-
dt

= —V-1A-AV-1,
Taking the time derivative of 62 we have

- d 2 —~1 S i "~y —-1
W) = 2 yy vy,

| P
d—_(Y'}%Vﬁ-(¥)+(Y’)V‘Ia_(Y> |

= (YDA’ V-KY)
+(Y )~ VA~ A'V-1(Y)
H(YYVIALY) = 0

which proves our assertion.

The sparsity of similar si}nple mathematical
results on systems of differential equations where -
the right-hand side of (1) is a quadratic or higher
order polynomial is regrettable, since many
physical processes can be shown to be governed
by such systems. Differential equations can al-
ways be found for statistical moments of any

~order, but it seems impossible to obtain a closed

set of variables and equations unless special as-
sumptions are made on the structure of the mo-
ments; this in turn restricts the computations of -
the probability distributions of (y1). Forexample, if

d .
“gt"yi = t,.zrbtrt.yryt ’ - (6)

where by, (i,r,t = 1,2,.. .,.§) do not depend on
the y’s, - : '

%o«) = Zhul O+ ON 0N @

. d , '._,.,:.
. E(yryi>

= Zoud Oy + v G+ il i}

2Bl O+ O Gu+ G
-t - | @®)
Here y’ = y— (y), so that

O = G- ) G ),

and - . .
(y;y}y_b = {(ri— ) (yj_— @D = ).

Similarly higher .moment equations can be
found. Evidently the time derivatives of any rth-
order -moment will depend on moments of order
up to r+1. Rather than assuming that certain -
higher-order momefits vanish at all times, closure
can be obtained by assuming certain high-order
cumulants (Kendall & Stuart, Vol. I, p. 70)
vanishing. The connection between the. moments
and cumulants- is as follows: Let K, be the rth
cumulant, 4, the (central) moiment, and write -
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o= )
pr = (V) = =
in general

= {(y—>-

Then the connection between moments and cumu-
lants is given by a series of relations of which we
give the first five, viz. '

=K,
=K
Hs = K4+ 3K%

s = Ks+10K:K;
He = K6+15K4K2+10K§+15Kg.

The importance of the cumulants stems from the
fact that they give a measure of the non-normality
of the distribution. For the gaussian distribution
one finds that X, = 0 (r=3). Another reason for
dealing with cumulants rather than moments is
their convenient relation to convolutions:
variable is written as the sum of independent
terms the cumulant of any order is the sum of
cumulants of - that order for the independent
terms.

The assumption of vanishing higher cumulants
produces a new approach to truncation of
moments. To what extent these cumulant-discard
schemes (Kraichnan 1962) show any similarity
with the original statistical dynamical process is
undoubtedly the most crucial question. The
sunplest system is found .by assumlng that all
third-order cumulants vanish; in which case only
(7) and (8) are needed with a total of S(S+3)/2
variables; this model will be used in subsequent
sections. If all fourth-order and higher cumulants
vanish and the fourth moment is related to the
second moment as in the multivariate gaussian
distribution, a new closure scheme can be found
(‘quasinormal truncation scheme’, Kraichnan,
op. cit.). Although intuitively more attractive than
arbitrarily assuming vanishing higher moments,
the cumulant-discard scheme may nevertheless
lead to solutions with moments that violate basic
properties of moments in general. One of these
properties is the positive definiteness of the co-
variance matrix; this aspect will be dealt with in
the following sections. -

if a

The remarks above have been aimed at the

- problems -of obtaining predictions of statistical -

quantities under the assumption that the physical
process may be successfully modelled by (1).
Many physical processes are, however, known to
be computationally well approximated by linear
and quadratic right-hand sides in (1) (Baer &
King 1967).

2. INITIAL UNCERTAINTY AND ITS
ESTIMATION

Of the methods presently available for obtaining
estimates of the physical variables, regression
methods have found their most widespread use
in the atmospheric sciences (Panofsky 1949, Gil- .
christ & Cressman 1954). In regression a large
number of observations with errors attached are
supposed to have arisen from a model with a
small number of constants to which has been
added random errors. The problem is usually
posed quite oppositely: given a model containing
a small number of constants which are undeter-
mined and a large number of observations which
have errors attached to them, estimate the con-
stants and their errors. In obtaining these esti-
mates various principles of ‘judging the fit may
be employed; only least squares will be used here.

Regression methods are convenient to use
when the data consist of observations at irregular-
ly distributed points in the plane. Let ¢,(6,4)
(j = 1,2,...) be a series of functions in the plane
and let 0., A, (r = 1,2, ...,m) be the coordinates
to the rth point in the plane for which an observa-
tion w(6,,2,) exists. A function Y{(f,1) can be
fitted such that the residuals (i.e. the difference
between observed and fitted) £’s are jointly mini-
mized, -

251

Here Y(0,4) is a linear function in constants a;
i=1,...,8),viz. :

Z(W(ﬂz, I-Y(0,4)7 . O

)
Ye,h = _ZI a; (6, 2) (10)

and the functions ¢,(8, 1) are linearly independent.

In Appendix it is shown that the estimates of the
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a’s are given by

a= (00 "oy (1)

where a is an s-dimensional vector containing the

estimates, ¢ is an mxs matrix containing the
column vectors ¢,

(p = [(PI!(DZD .' . -,(Psl (12)
-and

¢ = [wi(gls 2‘1): (0;(92, "12)5" ‘- “s (01(9"!’ im)], >

here as usual the prime denotes the transposing of
the vector or matrix, If the residuals are considered
to be independently distributed with the same
variance o?, the variance-covariance matrix of the
estimated &’s in (15) will be

V.= do'e)t. (13)

One of the benefits from using regression methods
is that an estimate of the variance can be found
at any of the m points 8,1, in the plane. In fact

Variance of fitted Y(6,,4) = ¢, V.9, (14)

where @, is an s-dimensional column vector that
contains the values of the § regressors ¢, at the
point &,, 4,:

q)p = [(01(81'5 Al‘), ¢’2(8,-, A’r)s .. .- F ¢’s(9r, 11’)]’ .

To use (13) and (14) in practice, an estimated
value of ¢? is needed; such an estimate can be
found from (9} by -

Estimate of g2 Z &2 fim—S).

More complex methods than least squares are
usually used in the atmospherit sciences and
needless to say the assessment of second moments
of the estimates tend to be difficult. In meteorol-
ogy it is common to relate the state of one atmos-
pheric field in terms of other observable atmos-
pheric fields. These relationships may take the
form of diagnostic relations which are second-
order partial differential equations; in such cases
it becomes extremely difficult to relate the
statistical properties of the observed ficlds to
those of the derived fields. For instance, if the
balance equation (Bolin 1955) is used, how can
the statistical properties of the stream field be

expressed, given the various assumptions on the

" corresponding properties of the pressure field?

The solution of these and similar- theoretical
problems are important for a better under-
standing of the effects of error propagation and
the workings of statistical dynamics in meteoro-
logical prediction.

3. MOMENT INTEGRATION OF THE NON-

DIVERGENT BAROTROPIC VORTICITY

- EQUATION iIN SPECTRAL FORM -

The combining of least square with the non-
divergent barotropic vorticity equation in spectral
form yields a series of simple results concerning

the precision in the predictions of long waves in

the atmosphere using a heavily truncated system;

Let the iwo-dimensional stream functlon w(6,1)

be represented by (10) such that

cos _
p8,1) = 1 or-L mAP™(0) (15)
| sin '
where r (r = 1,...,5) determines m and #. The
S equations in (1) become '

d
dt

(Silberman 1954). C,; and d,; are theoretical
constants; in the present case the d’s determine
which of the spherical harmonics (15) are allowed
to interact to produce changes in the coefficients
a;. For the non-divergent barotropic vorticity

equation Cj; reduces to a single term in each of -

the § equations in (16) In fact, if a; is tl'fe coef-
ficient of cos mAP™#) and a a1 the coefficient of
sin miP”’(f)) (m > 0), then

2mw

Crijv1 = v T Y= —Cria,j

Here w is the rate of rotation of the earth. The
amount of non-linear interaction of the various
pairs of waves is determined by d, s If dig
vanished or were small in comparison with C, i
the solutions of (16) would behave much like
tfrigonometric solutions of the form '

—a; = Jz:cuaj'}'jzl:c dmajak (16) .

e T e o a8 T L e T R o e A 5 e 5005
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a; (1) = A cosat+ B sin at
a;41() = B cos at— A sin af

a(t) = D cos i+ E sin fir

A discussion on the validity of this approximation
has been reported elsewhere (Knudsen 1973). If a
trigonometric solution applies, the statistical
dynamic system would have solutions

cov (a); axlt))
= L((D'A"Y— (E'B"Y) cos (a+ )t
+ H{D'AY+ {(E'B’)) cos (&— p)i
+ J(D'B’ Y+ (E'A’Y) sin (a+B)t
+ DBy~ (E'A") sin@—f)r. (A7)

where, as before, A" = A~ {A4).

We have chosen to investigate the short-term
properties of (17) in comparison with the statis-
tical dynamical solution of {16) when cumulants
from the third order up vanish. Since in the
statistical dynamical solution of (16) there will
always be a component of type (17) due to the
linear part of (16), one may interpret the difference
between (17) and the statistical dynamical solu-
tion of (16) as being brought about by non-linear
interaction between the first and second moments.
If this interaction is negligible one may interprete
(17) as the contribution to the development of
the second moments in (4) and (8) that is inde-
pendent of the initial a.

4, RESULTS

Data were obtained through the kind cooperation
of ]GeOphysical Fluid Dynamics Laboratories,
NOAA, at Princeton University. They consisted
of reported geometric heights of the 500 mb sur-
face at the observing sites of around 400 stations
on the northern hemisphere. An expansion con-
taining 45 odd spherical harmonic functions was
fitted and the coefficients rescaled fo represent
stream function (Knudsen 1973). The dates in-
volved in this study were 12-16 January 1963.
The geographical distribution of the observing
stations in the sample was quite uneven; large
areas over the oceans had no stations at all. The

Table 1. The eigenvalues and the trace of the covari-
ance matrix of the stream function at various epochs

in a two-day prediction using equations for first and —

second moment (eigenvalues and trace in units of
10~ P*m*sec—?) :

Rank of

Eigen- Time (hours)

value 0 6 127 - 24 48
1 8400 7700 7300 | 7100 8900
2 2700 2700 2700 2900 3600
3 1500 1500 1700 2100 2700
4 950 1000 1100 1100 1600
5 810 780 760 950 1300
6 53¢ 550 590 680 1100
7 460 480 520 610 910
8 380 370 410 500 690
9 320 350 390 470 " 600

10 310 330 350 410 570
11 280 - 290 310 390 - 470
12 250 1250 270 300 380
13 210 200 200 300 330
14 190 190 190 240 290
15 -~ 170 180 170 . 210 270
16 140 130 140 180 220
17 120 130 . 130 140 220
18 - 110 . 120 - 120 140 180
19 100 110 110 130 170

20 94 110 97 120 160
21 92 96 51 110 130 _
22 80 81 86 . 110 110
23 717 74 75 94 - 99
24 13 71 75 88 89
25 66 68 63 80 82
26 59 61 T 57 74 T
27 58 58 53 65 38
28 58 56 52 60 50
29 52 53 48 51 48
30 50 51 45 44 42
31 48 49 43 40 34
32 45 46 41 39 30
33 43 43 38 33 25
34 41 40 36 31 21
35 40 38 32 27 19
36 37 36. 28 217 16
37 37 33 26 22 16
38 35 30 26 21 14
39 33 28 . 22 18 12
40 29 20 20 15 9
41 29 21 17 13 7
42 24 18 15 - 12 7
43 18 17 1 9 -6
44 11 13 11 7 6
45 9 3 5 —-16. —26
Trace: 19393 18886 18791 20006 25794
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45 basic expansion coefficients are still far short

of the 200 to 300 variables needed to represent
phenomena on a synoptic scale, but it was felt
that the extra. effort needed for handling 20,000
to 45,000 second-moment equations was not
justified at present. Only one case was studied;
this choice was dictated by the high cost of per-
forming the numerical integration of the statistical
dynamical system of differential equations. The
numerical integration used centred differénces. If
a(t) is a vector of variables, then

d N a(t+ At)—a(t— At)
dr = 247

a(t+A4s) = a(t—4) + ?.At a(t)
On the first step, uncentred differences are used, viz.
d- .
a(dr) = a(Q)+ At ar a(0) .

With 45 expansion coefficients and equations for
first and second moment the total number of
equations is 45445 x 46/2 = 1080. The maximum
stepsize was determined by experimenting on
(16); when using heavily truncated expansions

very large stepsizes (6 hours) can be used on this -

equation. For the statistical dynarmcal system
At = 3 hours was chosen. The programs were

written in Fortran for the Princeton .University. -

Computer Centre’s IBM. 360/91. The time used
for running a single 48 hour statistical dynamical
prediction was about seven and a half minutes.

. Imitially (13) is a positive definite quadratic
form but no guarantee exists_that it will remain
so throughout the integration since the cumulants
from K; up have been excluded. If the positive
definiteness is lost at some point one could even .
expect that (18) would show negative variances in
some geograph:cal arcas. .

‘Table I contains the elgenvalucs of the co-
variance mafrix of the expansion coefficients a
throughout the integration. Initially this .co-
variance matrix is given by (13), at later times the
time derivative of any of its elements is given by a

combination of (5) and (8). Evidently the definite- -

ness was lost after one day, since a single eigen-:

value became slightly negative, but the loss does -

not seem to be too serious. Figs. 1,2, 3, 4,’and 5
show the contours in #, A ~ space for the solution
for the standard deviation (that is, the squaré
root of (14)) throughout the integrated 48
hours. In no case did negative variances appear.
Table I shows that in the first few hours
of the integration the largest eigenvalue actually
shrank in size. From the sixth hour onwards, there .
is a tendency for the initially largest eigenvalues

903

OE

_ | 180 | | -
Fig. 1. Initial standard deviation of the geomettic height field using (14) (Contour distance 15m.) B

é'(!{;)f}f?;i;‘,r,z_;;s, e e T L L E D et
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to grow larger and the smallest to become still
smalfer, This indicates a move towards a reduc-
tion of the rank of the matrix and, what amounts
to the same thing, a greater linear dependence
between the components of a.

A question of practical importance is whether
the time development of (17) and the statistical
dynamical solution is close enough so that (17)

may be used over shorter time space rather than

integrating the more complicated statistical dyna-

mical solution. One way to investigate this is to B

compare maps of the geographical distribution
of the variance of the fitted expansion. Fig. 1
shows the initial standard deviation (14); Figs. 2,
3, 4, and 5 show the time development of the
statistical dynamical solution using (17). A com-

907

15,

o T ow

i5

i <15

30

45

45
50

i

f

Fig. 2. Standard deviation of geometric height after 12 hours using the statistical dynamical method (top)

and using (17) (boltom).
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parison shows that (17) is adequate for some time
but does not predict the non-linear build up of
uncertainty at 120 degrees west which was started
after 24 hours. The smoothing out of the North
American-Siberian low uncertainty area is partly
predicted by (17), but the overall increase in un-
certainty as predicted by the statistical dynamical
system is not present. From the figures one may

conclude that (17) gives a reasonably true picture
of the time development in the present case up to
24 hours. : _ '
Another way of looking at the similarities is to
compare the changes in the eigenvectors of the
covariance matrix from both methods (Table II).
If (17) has any merit the discrepancies between
the eigenvectors as predicted dynamically and by

907

15

30

30

45

7/

15

- 30
30

45

1)k

/—\\

Fig. 3. Same comparison as in Fig. 2, but after 24 hours,
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(17) should be small. Table II contains the eigen-
vecters belonging to the four largest eigenvalues,
initially and as they appear after 48 hours.
Correlation. coefficients have been computed
between corresponding eigenvectors at a few
epochs within the 48 hours of integration. In
Table III the absolute value of the correlation
coefficient is given between the four most impor-

tant eigenvectors initially and at later epochs. An
important finding here is that the persistence of _
the largest eigenvector is much greater than the - _
three other vectors. After 24 hours, for instance,
persistence seems to be more important the larger
the eigenvalue is; this fact is not so clear after 48
hours. The lower part of thie table shows the cor-
relation. between the corresponding pairs of

9079

457

EQ.

30

“ OE

s T TTow

\Vj

Fig. 4. Same comparison as in Fig. 2, but after 36 hours.
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eigenvectors. Again the greater persistence of the
most important eigenvector seems to be the
reason for the decay of the solution from (17).

5. DISCUSSION

The inconvenience of integrating a large number

of second-moment equations leads to a search for

11

simpler ways of solving the non-divergent baro-
tropic statistical dynamical system. If the similari-

ty between solutions using (17) and the statistical

dynamical solution is relatively high over a short
period, (17) could be inserted into the statistical

this idea further and obtain closure in the statisti-

30

léO

Fig. 5. Sdme comparison as in Fig. 2, but after 48 hours.

- dynamical equations and eguations on higher -
‘moments deleted altogether. One may generalize
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cal dynamical system for any chosen moment assessing any harmful effect one is forced to use -

truncation by allowing the highest moment to be
transformed by a periodic function like (17). In

experimental sampling with a completely deter-
-ministic model; very large samples may then be-

Table II. Eigenvectors (in terms of spherical harmonic coefficients) for the four largest eigenvalues (A)
initially, (B} after 48 hours using the moment equations and (C) after 48 hours using (17)

‘Largest 2nd Largest 3rd Largest 4th Largest
* ok A B C A B c A B C A B C
0 1 9 9 9 -4 —6 -4 3 o . 3 18 10 18
3 -17. —17 -17 8 5 8 3 16 3 =22 4 —22
5 9 - 17 19 —-10 -8 -—-10 —18 -17 —-19 11 4 11
7 —-13 —-12 —13 g8 -1 8 23 18 23 0 -7 0
9 7 7 7 -4 5 — 4 —14 —-13 —14 —2 0 -2
1 2 24 16 —11 5 =21 —-17 -6 —4 11 —29 35 0 30
2 —6 1 22 18 2 -8 0 -8 -13 -16 -22 -—12
4 —-36 -—-24 -12 -9 =25 =27 -3 —-19 -7 15 19 20
4 8 19 35 —-25 =23 -6 -7 —-19 -1 14 -23 —5
6 38 32 33 10 —10 18 29 29 32 § -—12 6
6 -8 -3 -20 24 38 20 15 23 4 -4 -15 -7
8 —26 =27 =26 -5 18 -7 -29 =22 -11 -3 6 —12
8 6 7 8 —-16 -7 -—16 —6 -30 -—13 -3 -6 =2
10 13 17 13 1 3 1 12 =2 13 0 —-14 0
10 -1 -4 -1 7 -9 7 9 18 9 6 6 6
2 3 23 33 —14 14 0 -14 -2 —13 3 13 —-20 -35
3 -9 8 21 4 6 5 -2 -16 0 41 6 —26
‘5 —28 -12 1 -16 —-12 —-10 21 -8 27 2 =21 33
5 11 8 30 -4 12 14 2t —14 -12 -3 10 —14
7 24 15 17 15 22 16 -28 -—13 -39 -9 13 -1
7 -1 -5 -20 4 -3 -3 -32 12 —18 22 —10 24
9 —14 -13 -14 —12 12 —13 16 3 18 2 17 1
9 8 10 9 -3 -6 -3 25 16 24 —13 0 —14
11 6 7 6 8 3 8 -3 g -1 - 3 6 2
11 -1 -5 -1 2 10 3 12 —-13 —13 10 11 10
3 4 18 33 —19 -10 -9 11 —-10 -—13 10 5 13 -6
4 —-10 -6 9 22 =33 -—-22 -3 5 3 —-13 -9 13
6 -21 —-13 -3 12 -5 -—-17 -9 -~14 -—15 -20 -22 -—19
6 9 —12 23 -25 —-22 -23 —17 8 -7 —10 12 13
8 17 11 15 -12 —-10 -6 3 9 10 19 13 26
8 -5 =3 -—10 19 4 22 23 20 21 23 20 16
10 —-10 -~16 -—10 10 4 11 3 12 4 -9 4 -8
10 1 4 0 -8 4 -8 -13 —-17 13 -19 —15 -19
12 6 3 4 —6 1 -6 -4 -7 =5 2 -4 0
12 2 2 3 1 -3 0 -3 3 1 10 0 10
4 -5 11 34 -—14 32 —-23 -7 -1 22 _1 —8 2 21
5 —38 2 =2 26 —-25 -—-41 0 -—18 0 21 14 -11
7 -12 -23 -1 —-29 -—-37 -39 4 4 18 4 -7 -1
7 10 —10 16 =27 5 3 21 =27 i1 -5 26 —6
9 10 8 g 19 11 21 1 g -2 9 32 9
9 -8 -2 -9 22 20 20 -23 6 -—23 0 —-11 -1
11 -7 -8 -8 —8 2 -4 -4 -4 =7 —16 =23 -—15
11 4 7 2 -4 —-13 -—16 12 -3 11 -3 —-15 =7
13 4 3 4 1 —-14 -2 27 1 4 11 6 8
13 0 2 1 7 0 7 —-29 1 -1 40 11 8

* Order of spherical harmonic.
** Degree of spherical harmonic; cosines precede sines.
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necessary to obtain precise moment estimates.

The time-dependent covariance matrix of the
expansion coefficients can be used to display the
loss in prediction in time of the fitted regression
mg’:dei using (14). Since it relates to the precision
(or lack thereof) in the numerical prognosis it
should be useful in giving weights to newly
entered data in continuous time prediction sys-

Table IlIa. Difference in direction as measured by
the correlation coefficient between the eigenvectors
of the covariance matrix of the four largest eigen-
 values initially compared with /ater epochs

Epoch  Rank of initial eigenvalue

{Hours) * 1 2 3 4
1 100 0 0 0

0 2 0 100 0 0

3 0 0 100 0

4 0 0 0 100

1 95 2 9 0

2 6 97 6 6

6 3 0 7 86 11

4 4 4 10 87

1 80 5 15 5

2 9 90 8 11

12 3 | 16 77 17

4 3 7 32 59

1 92 20 4 8

24 2 8 62 14 15

3 1 38 51 9

4 1 14 42 49

1 83 21 2 13

2 1 24 7 10

48 3 6 42 32 3

4 20 4 1 2

* Rank of eigenvalue at Epoch.

Table IIb. Difference in direction (at the same
epochs) measured by the correlation coefficient
{x 100) between the eigenvectors of the covariance
matrix of the four largest eigenvalues from a predic-
tion with the moment equations and with (17).

Epoch Rank of eigenvalue
{Hours) 1 2 3 4
6 93 98 97 96
12 75 94 89 65
24 67 86 73 74
48 32 72 49 51

tems. In a similar vein information on the clima-
tology could be entered with weights related to
the sparsity of data in the area as suggested by
Bergthorsson & Do6s (1955) or alternatively by
using vaf@_ous bayesian procedures.
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APPENDIX

Let Y be a random variable whose mean (expected
value) is completely described by a linear func- -
tion in a set of k regressors X; (i = 1,2,...,k)
such that _ .
E(Y) = Xp An
where X is a nxk matrix consisting of column
vectors of X, each containing the value of the ith
regressor af each of the » points in the sample. A
sample of size # for Y may be considered to be
brought about by having a random variable &
added to each of the ¥’s in the sample so that

Y = EY)+¢

Y = Xp+e. (A2)

The random variables ¢ may have any distribu-
tion; in particular the covariance between any
pair (i,j) of random variables may be given by a
covariance matrix &*V._The Gauss—Markoff
theorem states that of those estimators with the
property that E(ﬁ) = B the ones with the (jointly)
smallest variances are given by

= XVv-xX)IXv-ly (A3)

and the covariance between any pair of the esti-
mators B is given by the elements in the covariance
matrix

E{B-B) B-B)} = AX'VIX)™'  (Ad)
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(for proof see Kendall & Stuart, Vol. 2, 1961, p.
87 ff). In some cases B is found by minimizing
the sum of the squares of the reSIduals e; where

e—Y XB

This solution, the least squares solution, is found
to be

B=(XX)1XY.

It is seen that one could have arrived at the same
result by assuming V = o2l where 1 is the nxn
identity matrix. This assumes that the errors &
are uncorrelated. With this latter assumption the
covariance matrix between the. least squares
estimates becomes

E{-B BB} = XX, (A6)
In the present paper we shall consider the case
where a-functional expansion has been truncated
to-a finite number of terms. Such expansion may
have had mathematical advantages if continuous
data were available, since the expansion coef-

ficients may have been obtained by definite
integrals. When data are given only in discrete

(A5)

poiats one may approximate the integrals by

various: quadrature formulae; alternatively one
may use.the method of least squares: In the latter
case the expansion coefficients will-be given by
(A5). The spherical (surface) harmonics are such
an expansion. The regressors X; are given by the
expression

cos mAP™()
or :

sin miP™(@) @

where 1 is longitude, # is colatitude, and P™(8)

-are associated Legendre polynomials of degree n

and order m. Although the functions are ortho-

gonal when multiplied together and integrated

over the surface of the sphere, this aspect is of

little use when the data are given 1n discrete -
points.

REFERENCES

Baer, F. & King, R. L. 1967. J. of computational
Physzcs 2, 32-60.

Bergthorsson P. & D66s, B. R. 1955, Tellus 7, 329—
340.

Bolin, B. 1955, Tellus 7, 27-49.

Cramer, H. 1946. Mathematical Methods of, Statistics,”
Princeton University Press.

Epstein, E. 8. 1969. Tellus 21, 739,

Fleming, R. J. 1970. NCAR cooperative thesis No.
22, University of Michigan and Laboratory of
Atmospheric Science, NCAR.

Freiberger, W. F. & Grenander, U. 1965. Internation-
al Statistical Institute Revtew 33, 59.

Gilchrist, B. & Cressman, G. P. 1954 Tellus 6,
309-318.

Kendall, M. G. & Stuart, A. 1963. The Advanced
Theory of Statistics, Vo! 1, Charles Griffin and
Co., London,

Knudsen J. H. 1973. Geophysica Norvegica 30,
No. 1. :

Kraichnan, R. H. 1962. Proc Symposia Appl. Math.
13, 199,

Moyal, J. E. 1949. J. Royal Stattstzcal Soc., Series B,
11, 150-210.

Panofsky, H. A, 1949. J. of. Meteorology 6, 150-210.

Scheffe, H. 1959. The Analysis of Varrance, John
Wiley and Sons, New York.

Silberman, I. 1954. J. of Meteorology 11,27-34.




Instructions to Authors

GEOPHYSICA NORVEGICA

publishes papers in English. When preparing
manuscripts for submission, autheors should
consult 1973 copies of the journal and follow
its style as closely as possible.

MANUSCRIPTS

Manuscript must be typewrittén, double spaced
throughout, on one side of the paper, with
a wide margin. Authors should submit the
original manuscript (preferably with one copy)
to the editor, whose address is shown on page
2 of the cover.

Separate sheets should be used for the fol-

lowing: 1) tiile page, with the author’s name
and institution, -and, if the title is longer than
40 letters and spaces, a short title not exceeding
this limit for use in the running heads; 2) an
abstract not exceeding 12 lines (910 letters and
spaces) with the name and full postal address
underneath of the author to whom communi-

cations, proofs, and reprints are to be sent;

3) references; 4) Tables with their headings;
5) legends to Flgures

Brief Acknowledgements of grants and other
assistance, if any, will be printed at the end of
the text.

FIGURES, TABLES, AND MA’I‘I—IEMATICAL
SYMBOLS

All illustrations are to be considered as Flg—
ures. Each graph, drawing, or photograph
should be numbered in sequence with arabic
numerals, and should be identified on the back
by the name of the journal, the author’s name,

and the Figure number. The top should be.

indicated. The Figures should be the original
drawing. The columns of Geophysica Norvegica
are 67 mm broad, and the size of the original
drawings should be in proportion. Lines must
be thick enough to allow for reduction. Letters
and numbers should not be less than 2 mm
high in the printed illustration. Photographs
should be submitted as unmounted glossy en-
[argements showing good details.

Tables are to be numbered consecutively
with roman numerals. Each Table should be
typed on a separate sheet, with a descriptive
heading that makes the Table self-explanatory.

All Figures and Tables should be referred
to in the text by their number. Their approm-
mate position should be indicated in the mar-
gin of the manuscript.

All numbered equations and all unnumbered
but complicated equations should be typed on
separate lines. Equations should be punctuated.

All text material will be set in roman type
unless otherwise marked. Hence, all variables
and other characters to be set in italic type
should be underlined once with a straight line.
Vectors and other characters in boldface type

.should be indicated by underlining with a

single wavy line.
No footnotes should be used.

REFERENCES TO LITERATURE

In the text, Brown (1957, p. 9), Brown & White
(1961). If more than two authors, Brown et al.~
(1963). Multiple references: ‘As several authors -
have reported (Brown 1967, Brown & White
1961, Green et al. 1963), i.e. chronological

-order, no commas between names and year.

Lists of References are to be unnumbered
and in alphabetical order. The international
alphabetical order of Scandinavian and Ger-
man vowels, should be observed: A = AA, £
and A = AE, @ and 0 = OE, U = UE. Indi-
cate 1st, 2nd, 3rd, etc. works by the same au-
thor in the same year by a, b, ¢, etc. (White
1966a). No ditto marks should be used. Titles
of journals should be abbreviated accordmg to
World List of Scientific Periodicals.

Examples:

Cadle, R. D. 1966. p. 83 in Particles in the
Atmosphere and Space. Reinhold Publishing
Corporation, New York. ‘

Craig, R. A. 1965. p. 161 in The Upper At-
mosphere. Meteorology and Physics. Inter-
national Geophysics Series, Vol. 8. Academic
Press, New York and London.

Eliassen, A. & Kleinschmidt, E. 1957. p. 66 in

Handbuch der Physik. Vol. 48, Part 2, edited.
by 8. Fliigge. Springer-Verlag, Berlin.

Junge, C. 1972. Quart. J. R. Met. Soc. 98, T11.

PROOFS

Two copies of the first proof will be sent (page
proofs). One copy, duly corrected, should be
returned to the editor with the least possible
delay. All technical parts of the article, includ-
ing references, names, figures (numbers, for-
mulae), illustrations, etc. are the responsibility
of the authors. Authors will be required to pay
for any major alterations they may make.

REPRINTS

Fifty reprints of each article will be supplied
free. Additional reprints can be ordered at a
charge.




Ay

T
SRR






