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The Ekman layer of a circular vortex.
A numerical and theoretical study
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The v_oftex: motion of a homogeneous and incompressible fluid with a conétant_ eddy
viscosity, bounded by two parallel, rotating planes is studied. The filtered equations

‘describing the slow evolution of the vortex, with inertia oscillations eliminated, are inte-

grated numerically from an initial state, in which there is a differential rotation between

the fluid .and the boundary planes. A slip boundary condition is used at the planes, |

and the structure of the Ekman layers and the spindown process is studied in relation

to the value of the drag coefficient and the Rossby number (or ovetrotation rate) of the

initial state. The numerical results are in good agreement with the theoretical results

of A. Eliassen (1971).

A Ellfasseh, Institute of Géophysics, Uhniversity of Oslo, P.O. Box 1022, 'Bh'ndérn',' Oslo 3, .
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1. INTRODUCTION |

In atmospheric and oceanic vortices, the Fkman
boundary layer next to the bottom .bdimdary
represents a forcing mechanism for a sé_condary
‘meridional’ vertical circulation which extends
outside the Ekman layer and produces a change of
the vortex strength by advection “of angular
momentum. Although the Ekman layer is not the
only forcing mechanism for such vertical circula-
't_ions, it is still of interest to study the Ekxﬁan layer
forcing separately. '

The present paper deals with the Ekman layer
in a homogeneons and incompressible fluid,
where other forcing mechanisms ar‘é;ruled out,
Horizontal momentum is assumed to be diffused

vertically by turbulent eddies which give rise to a.

constant eddy viscosity. Within the fluid, such a
turbulent viscosity produces the same effect as
molecular viscosity in laminarflow, but the bound-
ary conditions are esseﬂtially different in these two
-cases. In laminar flow, the fluid sticks to the lower

boundary. In a turbulent fluid, on the other hand,

‘the constant eddy viscosity cannot be applied all

the way down to the lower boundary, where the

eddy viscosity is known‘t'o-approa'ch Zero; in-

stead, a slip condition must be used, which relates
the eddy stress:to the relative velocity. .
The Ekman layer in a laminar vortex has been

studied by Greenspan & Howard (1963). In the
case of small -Rossbyr numbers, i.e. when the over-

rotation {or undetrotation) of the fluid relative
to the lower boundary is small compared to the

absolute rotation of the boundary itself, they

found that the radial volume flux i the Ekman
layer over a flat boundary is such that the vertical

velacity at the top of the Ekman layer is constant -

when the fluid above the Ekman layer rotates as
a rigid body. As a result, the compensating radial
flow above the Ekman layer praduces, by advec-
tion of angular momentum, 2 exponential decay
with time of the overrotation (o,n:j underrotation),
with a constant spindown (spinup) time. In a more
general vortex, with angular velocity varying with
radius, regularity of the velocity field still demands
nearly solid rotatioff in the central part; therefore,
the vertical velocity at the top of the Ekman layer
is still constant over the central part of the vortex.

The Ekman layer in a turbulent vortex, with a
slip condition applied at the bottom surface, was
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2 Arnt Eliassen and Magne Lystad

studied by A. Eliassen (1971). In this case, the ver-
tical velocity at the top of ‘the Ekman layer was
found to vanish at the vortex axis and increase
linearly with radius; the decay of the overrotation
is no longer exponential in time; and the decay rate
increases with radius in the central part, being zero
at the axis itself. The quoted paper gives quantita-
tive expressions for the strength of the Ekman
circulation and the spindown rate.

In the present paper, the Ekman layer, with a
slip condition at the bottom surface, is studied by
numerical integration of the time-dependent equa-

tions. For values of the surface drag coefficient of
the order 10™3-10~2, the experiments verify the

‘theoretical results in A. Eliassen (1971).. Experi-
ments were also made for a drag coefficient as

largc as 0.2; in this case the results approach those’
which can be inferred from the non-slip theory of

Greenspan & Howard (1963). -

2. DESCRIPTION OF THE FLUID SYSTEM -

We consider a homogeneous and incompressible
fluid confined between two parallel plane solid
‘Boundaries z=0 and z=2H, of infihite extent. The
boundaries' will be referred to for convenience as
‘horizontal’; although grav1ty plays no role in the
problem.” Both- planes rotate around a ‘vertical’
axis at a constant absolute angular velocity - €.

The. motion of the fluid is assumed to be axially

symmetric with respect ‘to the axis of rotation.
Hence, with r denoting distance from this axis, all
fields are functions of r, z, and time ¢. Moreover,
we shall assume that the motion is symmetric
with respect to the middle plane z=H; hence it
suffices to consider the lower half (0<z<H) of
the fluid layer.

The absolute fluid velocity in tangential direc-
tion will be expressed as Q@ + u—=(£;+ w)r; thus u
is the tangential velocity, relative to the boundary,
and o the local relative angular velocity. The ab-
solute angular momentum per unit mass is

m= Q1 +ur=(0,+ w)r? (1)

The curves mlr,z,t)=const. in the rz-plane repre-
sent the absolute vortex lines.

The radial velocity v and the vertical veloc1ty w
represent a superimposed toroidal circulation.

‘that 2a(y, — :
tween the streamlines ¥ =y; and ¥ =1, (or, more
precisely, between the two corresponding surfaces

These velocity components must satisfy the con- -

dition of incompressibility, and may thus be ex-
pressed in terms of a stream function ¥(r, z,t):

W=, @

r

1
v=._';‘!’2s

where subscripts denote partlal derivatives. Note
that  =const. is a streamline in ‘the rz-plane, and
Vs) represents the volume flux be-

of revolution).

Horizontal momentum (tangent1a1 and radial)
is assumed to be diffused vertlcally by turbulent
eddies, and the eddy viscosity K is assumed con-
stant. On the other hand, horizontal diffusion of

honzontal momentum as well as diffusion of -

vertmal momentum is ignored. This is in agree-
ment_ with common practice when dealing with

‘geophysical. Ekman- layers, the justification being

that the vertical scale of such a layer is much
smaller than the horizontal scale.

With ¢ denoting the constant density, and p the -
denatmc pressure, the momcntumr _e_qua_tlons in
tangential, radial, and Vvertical directions become-.

my -+ v, +wm, =Km,, - ' (3)
v+ vv, 4+ wo, = % — ép,-Fszz' @y
Wy OW, +WW, = — Epz . (5)

~The kincmatic boundary condition requires
that w=0 at the bottom boundary, or

y=0 at z=0 o (6)

As a consequence of the symmétry,'the net radial

volume flux between z=0 and z=H must vanish,

and hence we also have-

-ljl'_'—“O_" af z=H N

Clearly =0 also on the aﬁ;is, but this need not be

imposed as a boundary condition, because it is a-

consequence of the regularity of the velocity field
and will be automatically satisfied.

The remaining boundary conditions concern the
flux densities of horizontal momentum..

Suppose that the condition K =constant holds




* down to a level z=1zy, below which there is a
shallow Prandtl layer with varying K. At z=z 1 We

may then apply the familiar expresswn for the.

stress in the Prandtl layer
Kov,=Colvlv at z%zl -

where C is a drag coefficient for the level z;.
Ignoring the depth of the shallow Prandtl layer,

we may apply this condition at z=0. Moreover,.

we shall make use of the approximation [¥l=~u] in
the expression for the surface stress. For unusually
large values of C (>0.02, say), this is not a very
good approximation in strong vortices. However,
in most cases of geophysical interest, |v/u| is small,
and the approximation justified. Thus we obtain
the conditions

cr?

O e Col 0 2y
m= 2 lolo= 2= Im—-Qutm—0s4)  @®
o feat z=0
_Cr _C o b
= g ol = - = 2, ©

Note that the condition for non—shp is obtamed
by letting C — co.

Finally, symmetry at z=H requires that the
stresses vamsh at this Ievel

m=0 ) :
N o a.t Z=H.
a0 )

The conditions (7), (10), and (1 1) at z= H will be
valid also for a free surfacein a gravity field —gbz,

except that such a surface would not be level but
slope downward towards the axis. The effect of
‘this slope would be negligible, however, if the local
Froude number w?r?/gH were everywhere small;

in this case, our system could alternatively be
‘thought of as a fluid with a free surface at z= H.

()

3. FILTERING OF TOROIDAL INERTIA
OSCILLATIONS

We are interested in solutions of the equations of
the preceding section which describe the slow
evolution of the vortex motion due to the toroidal
circulation (p,w) imposed by ‘the Ekman layer.

-UQ
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However, the equations are capable of describing
also superimposed toroidal inertia oscillations (the

vortex is assumed to be rotationally stable, ie. m,
is everywhere positive). To eliminate these from

the outset, we shall use a balanced version of the
momentum equations in radial and vertical direc-
tions, obtained by ignoring the left-hand sides of
egs. (4) and (5). We shall consider the consequences .
of this modification.

It follows from the balanced version of eq. (5)
that the radial pressure gradient force —p,/o does
not vary with z. It is.convenient to express -this
force in terms of a ‘gradient wind angular momen-
tum’ M(r,t) such that the corresponding centrif-

ugal force M%/r* would balance the pressure gra-

dlent force:

B M=0, mM>0) (12
For later reference, we shall also introduce the’ -
‘gradient’ relative angular velocity Q(r,£} which is -

in equilibrium with the radial pressure force:

- @ :

With thls notatlon and v expressed in terms of 1]/
from eq. (2, the balanced versmn ofeq. (4) becomes

 M=@,+0)%, Q=0 -

m2 - M2
!lfzzz W_ ) (14)
Thls is an ordmary hnear dlﬂ‘erentlal equation for
i in the variable z, for any constant values of r and
t. If, for a particular r and ¢, m is known for all z
between 0 and H, the third order equation (14)
together with the four boundary -cenditions (6),

(7, (9), and (11} determine i for all z, and in addi-

-tion the constant M.

As a consequence, knowledge of mfr; z) over. the

' entire domain at a certain time enables us to deter-

mine y(r,z) and M(r) over the dom4in at the same
time. Thus specification of m(r, 2} suffices to deter-
mine the entire motion field, and also the pressure
gradient.
The time evolutien of m is governed by (3),
which may be written
m,= % (mrllbz -

mo)+ Km,, (15)
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4. A HEURISTIC ANALYSIS

We shall assume that m is prescribed initially as a
function of r only:

mlr,2,0)=myr) =@+ e (16)

To ensure rotational stability, m, must be a mono-
tonically i mcreasmg function of r.

With this initial condition, eq. (14) and the
boundary conditions give

M(r,0)=my(r), or, from (13): Q(r,0)=wyr)

and Y(r,z,0)=0 for all r,z, and therefore v=w=0
at t=0. Thus the eddy stresses vanish initially in

the interior, and there is no boundary layer. How-
ever, m and i will unmedlately begin to change by
the process of eddy diffusion of horizontal vorticity -

(m,) from the lower boundary, where the tangeﬁtial
stress is non-zero m1t1a11y according to (8). The
result is the formation of an Ekman boundary

layer, where:m and v vary. with helght and the’ ‘eddy
stress forcesin tangentlal as well as-radial direction

are significant. -Above - the ‘Ekman “layer is- .the
“interior’ flow where m(=M) and v remain prac-
tically independent of height; so that eddy stresses

are neghglble The right-hand side of (14) must,
clearly be non-zero in the Ekman layer therefore.

Y #0, and a secondary ‘meridional’ circulation
must exist, which extends aiso into the interior
flow. :

~ On the assumption that m does not depart too
much from M in the Ekman layer, (14) may be
approx1mated by the linear equatlon

e 2 ) (18
applicable in the Ekman layer as well as in the
interior.

Moreover, even in the Ekman layer, the vortex
lines m=constant are typically much steeper than
the streamlines W =constant. On this basis, we

may in (15) ignore the vertical advection of angular -

momentum versus the horizontal (radial) advec-
. tion; when in addition m, is approximated by M,,

we obtain the following linear approximation to
(15); :

me - Mo+ K, (19)

L

In fact, (18).and (19) are precisely the first-order
field equations obtained by expanding m, M, and
¥ in powers of the drag coefficient C, Therefore, we~
should expect this approximation to be good for
sufficiently small C, but to break down when C is
large.

The Ekman layer increases in thickness at first,
but after a certain time a quasi- statlonary state is
reached, where the eddy stress force is closely
balanced by advection, so that within the Ekman
layer we may write
. ']; r'l/z + szzzo (20) '
From (18} and (20) we get a fourth order equatlon
in either y, or (m— M): S

(M2),

K23 @Yy

(m _-'M)zzzz"' (m""M)NO

suggesting: for the depth of the fully developed
'Ekman ‘boundary layer a scale: - :

M T P
o] - R

= [Reai part {( — (22)
where,: from (i 3) | ‘
NZ=rT(MY), =4O+ QP AR+ A, (23).

is a measure of the rotational étability, expressing
the restoring force per unit radial displacement.
N plays the same role for rotational stability as
the Viiisili-Brunt frequency in the case of gravita-
tional stablhty In solid rotation, N =2(€,+ ).

Eq. (22) shows that the Ekman layer depth will
decrease with increasing rotational stability. Note
also that  does not depend on H.

We may also estimate a diffusive time scale z for
the formation of a fully developed boundary layer:

52 2 1 2, "t
“K~N"q +o(1+ 2(Q,+o)) (24)

It is noteworthy that T depends neither onKnorH.
We shall assume that H > ¢. In the interior flow
above the Ekman layer, we assume m=M, /., =0
in agreement with (14). With the boundary condi-
tions (7) and (11), it follows that ¥ is a linear func-
tion of height in the interior flow, so that v is con-
stant with height, see Fig. 4. Let h(~ 8) denote the
depth of the fully developed Ekman layer, and let

T=




l(r,h,t) be denoted by ¥(r,1). The latter quantity
is a measure of the net radial volume flux in the
Ekman layer, or in the interior flow. Then, in the
interior flow h<z < H,

H-z 20
W= H 2 Y(r,t), v= =y (25)
and the angular momentum eq; (15) béco_mes
| M, |
M‘E_HM’=_m when h<z<H . (26)

Now ¥ can be estimated by integrating theapprox-
imate equation (20) over the Ekman layer O<z<h
and using the boundary conditions (6) and (8)
This gives

% M2 K(m), o= Cri,molseg  (27)

We write _ ‘
| @0=%@ (29

where x is a reduction factor (which tends toWards
‘unity when C approaches zero). Thus we obtain
the estimate. _ :

%2 CJQIOr - XCQIQ 3

¥~ ‘2(os+o)+ro-"

We note that according to ‘this expressmn ¥ de-

pends neither on K nor H, but only on C and the
distribution of @ in the vortex. With M >0, ¥and
2 are of the same sign. Hence, if the fluid rotates
faster than the bottom surface (over-rotation,
Q>0), ¥ is positive and the secondary flow is
directed mainly towards the axis in the Fkman

layer and away from it in the interior. By under--

rotation (— €, <Q<0), the meridional circulation
is in the oppos1te sense.

When (29) is entered into (26), and M, is ex-
pressed as Qtr we find

*®2Cr
H~-h

or, integrated from an initial value Q,:

O — |o;o (30)

1 1 #2Crt
12 12 "H-h’
Here Q, may be of either sign. According to this
approximate formula, |Q] will in any case decay

(with 2Q,>0) (31)

| (29)_'

The Ekman layer of a circular vortex 5

with time, so that there is a spinup in the case of
underrotation and spindown in the case of over-
rotation relative to the boundary. The time re-
quired to.reduce |2 by a factor of two is

oo H—h H
=200 ¥ cria]

(32)

As would be expectcd ty is proportlonal to the-
depth (H — k) of the interior fluid, It is less obvious

that ¢ is. inversely proportlonal to the relative

~velocity r|€2|; therefore, ty increases towards the -

axis, and on the axis itself, there is no spinup/spin-

not appear in (31) and (32).

“downatall. Moreover, itis noteworthy that K does .

Eq. (31) was derived by A. Ehassen.(1971) bya
similar heuristic argument. In the same paper, the
steady—state problem (H =co) was solved by ex- .

_ pansion of w, v, and w in powers of . The solution

is valid also for large Rossby numbers. The value
Wi(r,t) of w-at- the top of the Ekman layer was

found t0: be

Qr OlQr 0

W= 30'9 o, +0(r2) 3

This: formula is in: agreement W1th (29) ie. W=

1y when x=1.

A siniilar heuristic analys1s can be made if the
boundary condition (8) is replaced by a non-shp
condition at the bottom. However, in this case the
Rossby number {|2|/2,) would have to be assumed
small, in order that replacement of m, by M. in the
Ekman layer {eq. (20)) should be a valid approxi-
mation. For small Rossby numbers, N=20, and
0=(K/2,)*. In (27), we might then set: (m,), _

(M —Q%)/3. Instead of (29) we would then have:

Kr(M —-Qr?) _ . Qr
R R T
~ and hence, from (26),
KQ, :
0=- 70 (35)

- expressing exponentTial decay, mdependent of r,in

agreement with the rigorous theory of Greenspan
and Howard. Comparison with (29) and (30)
shows the remarkable difference between the
‘laminar’ and the turbulent case.

EY
3
3
£
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5. NONDIMENSIONAL VARIABLES |

Egs. (14) and (15) with the boundary conditions
(6-11) contain the three constants €2, K, and C. It
is convenient to take as units of time and length

T=07% L=KQ;t (36)

For instance, if we take Q,=19x1075 571

K=20 m?® s™!, which might be representative

values for a hurricane, we get L=1 km, T'=15

hours, and the velocity unit LT ! =0.02' ms™ ..
Henceforth, all variables will be expressed as

nondimensional numbers in these units. As a

consequcnce €, and K will not appear exphmtly :

in the equations, their values in ‘these units being
unity. Thus only the single parameter C remains.
However, the initial condition- (58) mtroduces an-
other t:mc and space scaie

6. NUMERICAL SOLUTION OF THE. .
' FILTERED INITIAL VALUE PROBLEM. -

The filtered initial value problem was solved
numerically for a number of cases, using finite dif-
ference analogues of egs. (14), (15), and the bound-
ary conditions (6-11). The calculations were made
for a reétangular grid of points in the rz-plane.
Since gradients are smail in the outer part of the
vortex it is desirable to let the mesh-size increase
‘with r. Therefore the gridpoints were spaced uni-
formly in Inr. In the vertical, the points were

“spaced uniformly in z, however, with a changeover
from a small mesh-size in the Ekman layer to a
larger mesh-size above it.

Specifically, the - valucs were spe01ﬁed in grid-

points (r;, z;) where

r;=r0eli, i=0, 1,'...,1
seees N
(38)

Az,j, j=0,1
Zj= :
L4z, N+4z,(j—N), j=(N+1),....J

The m-values, on the other hand, were specified
in the points (r;,z;44), j=0,1,....(/—1).

Numerical solution of the balance equation
For an arbitrary r, the balance equation (14) is
replaced by the finite difference analogue =

(37)

(AZ) 2 (2o y— M?),j=0,1,.

(A:?’lll)n% = -(J—1) (39)

where, in the case of uniformly spaced gridpoints, - -

(A3 3= 23541 +3¢— iy (40)

This expression for 4%} must be modified in the

points N+1, due to the change of vertical mesh-

size at j=N; in any case, A3y is-written so as to
yield the exact value for a cubic polynomial.

- Application of (39) at the levels j=0and j=J — 1 _

implies the usc of auxiliary y-values (-, and
Vre1) outside the boundaries. These are obtained
from the boundary conditions, as shown below.

To calculate the y-values and M when all

readily obtained from (42), startmg from the top -

and working down. _
The function x; satlsﬁes

‘(A'sx)n-;w( 2) ( Mz) - constant

m4(i=0,1,...,(J—1)) are given, we write -
. .l,bj".—"((Jj'l‘Xj (41) -
where ¢, satisfies
2 e
(As¢)j+§— ) (m;+% mj - 1) (42)
with
GOJ 1—C0J—(PJ+1—0 (43)
' The values of p;_a(=0),@;_3,...,Q0; ¢~ are

(4

Hence, y; is a cubic polynomial. To satisfy the con-

ditions {6), (7), and (11), i.e.

Po+x0=0, =0, x-1+x+1=0 (45)

we write y; in the form

[z, zf. z
x,-=( - ﬁ) [bﬁ’( f;) cpo] @)
where the constant b i¥ determined from the fol-

lowing finite difference form of (9) (with ¥, =0):
CAz 1

Uity =, y= Im.} zl (47)>
The result is
‘ : . Azl
¢1+¢—1—2¢o—?[¢1—¢0(1“T _
b= (48)

’ AZI 2 Azl AZ]_ : A21 :
6(H.)”H (I'TI— &)



Thus all ¢; and y; can be found, and y; is obtained
from (41).
Finally, it follows from (44) and (45) that

612

b . (49)

M2=m}_%——

Integration of the prognostic momentum equation

The momentum equation (15) was 1ntegrated in
steps of time,
tLe=kAt (50)

using forward time differencing:
om
mfjv--i-} ml J+-1-+ (at) . At (51)
Litd
Eq. (15) was written as
A [(llll j¥1 Iahi,j)Arrn

).
Ot/ vy T

— 4 Wis 1, e Ve i~ Wi-1, 41 ,‘-'J’i—Lj)Azm]
1

+ W [, jea—2m; peytm 5o y] (52)

where A,m and A,m are hon-ceﬁtered ﬁpétream
differences in the directions r and z, respectively.

Due to the change of vertical mesh- -size at j= N,
the expression for 8?m/dz? in (52) had to be modi-
fied in points j+4=N+1.

Application of (52) in the lowest gridpoints
(i,}) requires knowledge of m;, _,. These values are
obtained from the boundary condition (8) in the
finite difference form:

m; 4 =m; . — S l(m: +7F ) (53)
Likewise, when applying (52) in points (,J —1),
we need to know m; ;. ,, which is obtained from
(10) in the form

My g s =My 53 (54)

The vertical boundaries. With the gridpoints uni-
formly spaced in the coordinate In r, the axis itself
cannot be included; the innermost gridpoints
r=ro form a vertical boundary on the inside. This
was treated as an open boundary. In points of
inflow, v>0, the upstream difference A,m on this
boundary was calculated on the assumption that
a/or(mfr*)=0, i.e. :
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A,m=fno,j+%—m— 1,i+3=Mg, jr4(l—e™%) (55)

The outer boundary of the grid r=r; was also
treated as an open boundary. In points of inflow
(v<0), Om/0r was assumed to vanish, so that

Am=0 _ (56)

On both vertical boundaries, w in the advective

term of (52) was calculated from a non-centered

difference in .

The start. With an initial condition m| G=mo(r),
we obtain ¥ ;=0 for all i,j. However, from (53),
ml -3 #mo. Therefore, ‘the finite difference ap-
proximation to azm/az_ in (52) is not zero in the

-point j=4. It follows that (Om/dt)? . #0, so ‘that

already after. the first tlme step, m varies w1th
height, and v} 3#£0.

Numer:cal values. The non-dimensional grid con- -

stants were chosen as follows .

- 1=0076, I=71
Cre=25, rr=re'=539.3
Az; =01, Az,=05
N=14, J=31, H=49

The gridpoints are shown in the axes of Fig. 7,
The time step is restricted not only by the Courant—
Friedrichs—Lewy criterion, but also by the follow-
ing requirement

272

At < —_Herzrmx-

(57
where N, is the highest value of the inertia fre-
quency N (eq. 23). A demonstration of (57) is given
in the Appendix. Since the condition requires
At~H™2, the amount of computatlon increases
rapidly w1th increasing H. It was for this reason
that we had to take for H a-value as small as 4.9,
although a larger value would have been preferred.

7. THE INITIAL STATE

The initial conditien was taken to be

wolr)= p)
Ty +(3)
. . a

mo(r)=(1+ o{)r?,

B e B i L e Y e o e i L
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where Ro and a are positive constants. The Rossby
number Ro measures the relative angular velocity
at the center, in units of ©,. The relative tangential
velocity rw, has its maximum value Roa at the
distance r=a. Integrations were performed with
‘the four Ro-values: Ro=1, 5, 10, and 20. In all
runs, a was taken to be 50.
The initial vortex is rotationally stable; from
(23),

N2=4 Ro Ro

Since N >2 for all #, it follows from (22) and (24)
thaté<l,z<l. =

Fig. 1 shows the boundary layer depth scale d
as a function of r from eq. (22) for the four values
of Ro. From these curves, we must expect the Ek-

man layer depth to increase from the center and

out, and also to. increase with decreasing Ro.

Fig. 2 shows 1, the time scale for formatmn of
the Ekman layer as a function of  and Ro, accord-
ing to (24). The smallest values are found in the
center, where t=(1+Ro)™%; ‘there t is the time
required for the fluid to rotate one radian in the
absolute sense. : '

~ Integrations were made for four different values
of C, viz: 0.002, 0.006, 0.02, and 0.2: According to

0 s 100 r
Fig. 1. Solid curves: The non-dimensional boundary
layer depth scale J as a function of r and Ro according
toeq.(22). Dotted curves: The level at which v=0(divided
by 1.7 for easier comparison), as a function of r and Ro,
from numerical integrations with C=0.002.

I+ —— [+ 7——F 73} >4

=) (el
a a

' (59)

o8t ) . o ‘Re=20
T/t%(C:.OOZ) '
051
Ro=10
041
03F
Ro=5-
02
oty Ro=1
= o 50 \ ‘160' —

(32), the time required for reducing w, to half 1ts
original value is of the order

")

Crom,g CRor

ty {60)

Fig. 3 shows the ratio t/t; as a function of r for
a=>50, C=0.002, and Ro=1, 5, 10, and 20. All val-

o s w0
Fig. 2. The non-dimensional time scale for formation of
the Ekman layer; <, a a function of and Ro, accordmg
to eq. (24). .

Fig. 3. The ratio (z/t,) of the two time scales defined by
(24) and (32), as a function of r and Ro for C=0.002.




ues are small, indicating a good separation be-
tween the adaptation time scale t of the Ekman
layer and the spindown time scale ¢,. Therefore,
we expect the Ekman layer to be only slightly
affected by the spindown process; the fully devel-

oped Ekman layer is adjusted to the interjor flow

Table 1. Time step (4¢) and integration time (T) for the
fourteen combinations of drag coefficient (C) and Rossby
number (R,) for which computations were made

The Ekman layer of a circular vortex 9

as if it were stationary, and the Ekman layer strue-

ture is insensitive to changes in H. _ _
For C=(.02, the values of Fig. 3 should be mul-

tiplied by 10, showing that the separation of the

time scales is no longer as good for large Ro.
Finally, for C=0.2, the values of Fig. 3 must be
increased by a.factor of 100, 5o that the two time
scales are of the same order. In'this- case, we must

expect that the boundary layer structure ~will

depend much upon the arbitrary choice H=4.9.

8. RESULTS

Integrations were made for the 14. combmatlons

time step and the integration timie T for each case.

of C and Ro shown in Table 1, which also gives- the

In all cases the nondnnensmnal a was set” equal to.

50.- .

o Ro = 1 5 10 20
At 0004 0004 0001  0.0005
0002 48 48 08 04
At 0001  0.0005
0006 | 08 04
00a . At 0004 0004 0002 00005
0 T 32 L4 09 04
0z A6 0004 0002 0002 00005
: T 20 1.0 08 04
Ro=10 C=.02 | 2
4]
internal region ]
3_
Zzh == mm e 2
Ekman
boundary layer

=20 0 0v
0 100 200 300 400 ¢ | |
0 1 2 3 m 4x103

Fig. 4. Non-dimensional v, y, and m as function of z for Ro=10, C=0.02, r=22.5, t=0.9.

In all 14 runs, the tor01da1 Ekman mrculatlon,

_grew to a mlaximum strength within a-time of. the ,

~ order 7, and. then: slowly decayed without much
_ change of shape asa: result ofthe spmdown process ,
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_After the formative stage, it was a common feature
of all computed fields that v and m varied with
height in the lower part, but were constant in the
upper part, thus showing a clear-cut subdivision
into a lower Ekman boundary layer and an upper
interior regime. An example is shown in Fig. 4
where v, Y, and m are plotted against height for the
case Ro=10, C=0.02, r=22.5, t==0.9. The curves
suggest an Ekman layer depth h=2.0.

Fig. 5 shows computed Ekman spiral hodo-
graphs (u— U, v) for five different radial distances
for C=0.002 and Ro=1; and Fig. 6 shows the
same for Ro=10. In spite of the great difference in
Ro, the spirals are quite similar,

. An example of the computed fields-of m, ¥, v, and
w is shown in Figs. 7-9, for. the case Ra 10
C=0.002, t=0.3. S SRR

It is apparent from these ﬁgures that the Ekman
layer depth increases. with r; and this was a com-
mon feature of the computed fields in all-cases:
This is in qualitative agreement with the theoretical

‘values of § shown in Fig. 1. To oBtai'nf a quantita-

. tive comparison, § was. compared with the height

where v=10, since this is a well-defined height

parameter. This height (divided by 1.7) is plotted
as the dotted curves in Fig. 1, for the four values
of Ro, and C=0.002; the similarity between the
two sets of curves is apparent, and gives support
to the theoretical expression (22).

~ Figs. 7-9refer to a time when the Ekman circula-
tion had almost reached its maximum strength.
The maximum value of the stream function
(Wmax =1710) is a measure of the total volume flux
in the Ekman circulation. As the circulation builds
up, Yy increases to an overall maximum which
will be denoted by ,; the coordinates of the
maximum point are denoted by r,z,ty. Like-
wise, we may at each time instant identify a point

of maximum rising motion. Its value reaches a

peak wy, (in a point r,,z,) roughly at the time t;,
of maximum volume flux.

Table 2 summarizes the values of ty, Wiy, s Zas
Wat, Fu. Z,, fOr all 14 runs.

Fig. 10 shows ¥, as a function of Re and C. For
small values of C, i, increases with Ro almost as
Ro?; this is clearly due to the non-linear boundary
condition (8). For larger values of C, the increase
of W, with Ro is almost linear, and one might

expect that the curves for large C would approach
the straight line (dashed). '

r=516 :
U=z=249
T
-0.4
redn '\\:_.\O 0
U=24.4
o—
r=30.4 0\_____‘_0
u=221
[«
——g
r=19.3 .§o\
U=167 L]
0\ \-?l
\ el
A I
119
14
; i ; bl
T4 03 02 7l
. . -
R o/ //
. »
RO=1 C=002 t=04 g

Fig. 5. Ekman spirals for Ro=1, C=0.002, t=0.4.

-20 ulu

Ro=10 C=.002

Fig. 6. Ekman spirals for Ro=10, C=0.002, t =0.3.
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23
z _ Ro=10
“[#  C=.002
| t=.3
'-_4 -21
i
-20
[
7
!
3110 /
.,
: Jl'm'..
-18 /
!
'!
211 i
P '
5 ! / ‘
_!B ! / S |
- ¢l S
110 . R
L U | T -
L ] \ K . :
:0 1h0“""?|'0] 111 : lll l3|0I 1 II '-.'-.&l—l-.:- I.-t.o 1 i { . - 1 |\
50 00 e 150
Fig. 7. The fields of m and ¢ at t=0.3 for the case Ro=10, C= 0.002, a=50. Gridpoints are shown-along’ the axes:
;/ .
I [ L} 1
| | L} |
I 1 ' '
Z v 1 1 ' '
3 A t ]
Ro =10 ! 1 ! !
i i ] 1
t=3 i ‘a I ‘\
' 1 1 N
: ; ' A
1 I : \\\.
: ' ' !
3r | | ! )
I I
125 25 75 o
]
L
1
]
'

0 ,
Fig, 8. The field of v at t=0.3. Same case as Fig. 7.
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One of the main objectives of the study was to
investigate the distribution of vertlcal veIomty in
the central part of the vortex. In Fig. 11a b,c,d, the
solid curves show, for the various combmatlons ofc
and Ro, the computed vertical velodlty as a func-
‘tion of radius at the level z,, where w lias its maxi-
mum, and at a time when the Ekman ctrculahon
was fully developed. Although the calculatlons
were not extended to the center, but only to r=2. 5,
the curves confirm the theoretical result that w~r
in the central part of the vortex. The curves aIso

show that the central part of the vortex, where

w~r, decreases in size as Ci 1ncreases In the limit
C — o0, we may thus assume that the radms of the
central part,- ‘Where w~r, tends to €10, 80 that w
becomes constant in agreement w1th Greenspan—
Howard’s theory based on the non-shp boundary

_condltlon This resolves the apparent contradic- -
T 'numerlcal Integratlons the expressmn

The dashed stralght lines of F 1g 11 glve the val—;:--f, B
| ’er," accord- s

tion between these theories.

ues of ow/or at the top of the Ekm f

Ro 2
1+Ro’

I/";theory 'IC (61) .
Although the agreement is not perfect it is appar-
ent that (61) gives a very good estimate of dw/or
in all cases considered; in particular, it should be
stressed that the agreement is good even for large
Rossby numbers, as demanded by the theory.
Next we shall consider the spindown process -

-and the accuracy of the theoretical formula (31).

Two examples are shown in Fig. 12. The curves

.show & as a function of radius att=0and at a later
“time ¢ for two cases: Ro=20, C=0.002, t =04, and

Ro=10,C=0.002,t=028. Inbothcases, the decay of
2 with time is fastest at the axial distance where
Qr is largest, and'there is no decay at'the center.

In order to test the theoretlcal eq. (31), we have
calculated, from the Q—values obtained from the'.'

G —t)
.7._1 et

)

ingto the theoretlcal expressmn (33) whieh in non- oo

dlmensmnal form is i N . Lo

Z :
w
Ro=10

41 C=.002
t=.3

3 »

2 =

1 0

0 50 .

Fig. 9. The field of w at t=0.3. Same case as Fig. 7.

100 r
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Table 2. Summary of resuits from numerical integrations.

13

C Ro bag Par Fag Zy War T Zw

1 10 25 95 14 0017 26 13

0,002 5 06 si2 110 14 023 35 11

' 10 045 1730 120 135 063 41 10

20 035 540 140 13 1.6 4 08

0,006 10 04 470 130 14 14 33 09
; 20 635 910 150 14 3.2 35 -08 :

1 06 175 100 14 0.13 2 13

o2 5 04 2100 120 14 L1 2 11

: 0 04 530 140 14 24 2% 09

20 035 - 13100 160 14 43 2% 08

1 06 488 150 19 036 13 13

02 s 05 . 3230 190 19 1.8 3 11

' 10 05 6980 190 19 30 15 10

20 15100 190 19 19 09

04

5.2

Here Ql and Q, are the values of Q (or o at' -

11e§ vary so-: much that eq. (31) is clearly not ap-

. plicable; This is not surprising, because (31) is -
denved as g approx1mat10n for small C.

z=H) at the times ¢, and 15, respectlvely The
result is shown in Table 3, for five values of 7 and
twelve combinations of Ro and C. Notg that if (31)
were correct, we should have H' =(H — h)/x>. The
‘table shows that the values of H' are remarkably
constant for C =0.002, indicating that (31) is indeed
a good approximétion. With H =49, ha1, the
value H'=5.2 is consistent with a value 0.87 for
the reduction factor x, a rather reasonable figure.
For C=0.02, H' is still quite uniform in the cen-.
tral part of the vortex whereas for C=0.2 the val-

9, FIﬁAi-REMARKS

The numerical computatlons have given strong

15} x10°
Yy

ol éfablhty of the vortex will decrease
ith t {, decreases, eq. {29) predlcts that
‘the Ekiman mrculatlon will grow in strength.
Howew?er whcn M, tends towards zero, the ap-
5t prommat:lon leadmg to (29) and (31) breaks down.
Tt wag hoped at the outset that a clue could be
found as to what-determmes the radius where the
é ascendmg motion is strongest. This would be the

5 0 Ro 20 value of r for which

Fig. 10. Maximum volume transport ); as a function of . 5 (1

Ro and C. Dashed line: extrapolated for C — o, ool ’P,) =0
r\r
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(]
I
N

B e LT T v eeses——

r

Fig. 11. Solid curves: computed vahies of w at the level of w,,,, as a function of ..a: Re=1, b: Ro=5. ¢: Re=10.
d: Ro=20. Dashed lines: W(r) according to (61). o S
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Table 3. H' from eq. (62) : length 2H, a somewhat unusual phenomenon, )

. r= 2.7
C Ro t, t, '

1 10 40 53 53 53 54 53
5 04 48 52 52 54 57 55

0002 19 03 0852 52 52 62 58
20 02 045 5 5 6 -
1 08 3254 57 68 66 60
ooy 501 1454 61 94 12 95
02 10 03 0953 61 10 16 13
20 015 0452 59 12 23 20
106 2065 10 20 20 14
vy . 5-03 107717 51 60 45

10 03 08 80 19 65 111. .86
20 0125 04 84 23 86 18 180

Accordmg to (29), this value of r w111 de end upon-. SRR
), which again by (31) depends ‘on the: 1ength~_;~~--- o
scale a introduced by the initial condition. - = -

APPENDIX .
“Derivation of the st_abi_Ii_ty condition (57) '

In the first integrations computational instability -

was encountered, although the CFL-condition as
well as the stability condition for the diffusion
equation were both satisfied. The unstable mode
had the form sin nz/H in ¢, or cos zz/H in v; thus
it manifested itself as the largest possible wave

) 10 20 30 @ ¢ 50
Fig. 12. The decay of Q(r) with time in two cases.

10.5 47.9 102.0 217.5

Also, the instability showed up first near the inner
boundary r=2.5.

It turns out that this mstablhty is a linear phe-
nomenon which can be explained from the linear-

jzed version (18) and (19) of the equations. We con-

sider a superimposed disturbance ', ¥’ and v'=
— 1/rjr,, which is harmonic in z such that 0%/0z% =.
— o2, There can be no such disturbance i in M, which
is by definition constant in z. Therefore, the linear-
ized equa_tlons (18), (19) for ‘the disturbance be-
come, in dimensional notation .~

o= —att = —I—(—r—sm'- : (A1)
| = — M,y — Ko®m ' (A2)
‘whence, by eliminating v/ .
. m
- where, from (23)
U MMM, |, N* o,
T Krig? + R = o TR (‘%3)

_’Tliu's th‘lea disturbance decays as Aéxp_(f— I/T). A

numerical iﬁte‘gré.tion in forward time steps At
will clearly be unstable unless At<2T. Since the
vertical wave number « may have a spectrum of
values, and since N varies with r, we must require

At<2T (A4

Accordlng to (A3), the smallest values of T corre-
spond to either the largest or the smallest values of
. The largest value of a is n/Az; with this value, the -
last term of (A3) dommates This leads to the usual
stability condltlon for the diffusion equation
(prov1d1ng that also the finite differencing inzis
taken into account).

However, we are here concerned with the other
case, that o has its smallest value

8

Umin = ﬁ (AS)

Then the first term of (A3) dominates; we may

- ignore the second term and write

2K

NI, (A9)

Tmin =
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According to (59), the largest values of N2 occur
in the central part, where

NZ,,=40%14 Ro)? (A7)
From (A4), (A6), and (A7) we finally obtaln
 mK 2K
A< Nz, T oA+ Rop MY

which, in non-dimensional form, is the condition
(57).
The precedmg derivation is shghtly faulty in one

respect; eq. (A5} would be true if the boundary -
conditions were, e.g. vi=0at z=0and z= H.In_

reality, however, this condition apphes only at
z=H, v_vhereas at z=0 we haver _v;_yv. This

changes the value of a,,;, a little, but still the con-
dition (A8) appears to be.a good approximation.
Actually it was found that the stability condition ~.
(A8) could be shghtly exceeded in some cases,

without mstablhty occurring,
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